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Numerical simulations are employed to investigate the dynamical separation of an initially
stationary sphere from the surface of a two-dimensional ramp in hypersonic flow. We
consider the inviscid limit, which is equivalent to assuming the sphere radius to be
much larger than the ramp boundary-layer thickness; this assumption allows a range
of Mach numbers and ramp angles to be explored efficiently. Of particular interest is
determining how the shock-surfing phenomenon discovered by Laurence & Deiterding
(J. Fluid Mech., vol. 676, 2011, pp. 396–431), in which a spherical body can stably
oscillate about an oblique shock as it moves downstream, manifests itself in such a
situation. First, the isolated interactions between a sphere and an oblique shock, and
then between a sphere and an inviscid wall, are examined independently to elucidate
relevant trends. Full trajectory predictions are subsequently performed using a decoupled
model in which the shock and wall interactions are assumed to contribute independently
to the aerodynamic forces. Three types of trajectories are found to be possible: surfing
of the spherical body; initial expulsion outside the shock layer followed by re-entry and
entrainment; or direct entrainment. At relatively low hypersonic Mach numbers, the latter
two types of trajectories are predominant, but at higher Mach numbers (M � 10), surfing
becomes possible over an increasingly wide range of ramp angles and downstream release
locations. By reparameterizing the release location as the initial lateral distance of the
sphere from the shock, good collapse of the transition boundary delineating surfing from
ejection/re-entrainment over various Mach numbers and ramp angles is obtained.

Key words: high-speed flow, flow–structure interactions

1. Introduction

In flight, the leading-edge region of a hypersonic vehicle is exposed to extreme thermal
loads and thus, on a practical vehicle, is likely to be fabricated of a high-temperature
ceramic material. Although able to withstand high temperatures, such materials are
susceptible to ablation and scouring from the hot gas (Zeng et al. 2017), potentially leading
to the shedding of particulate matter from the leading-edge region. These particles will be
quickly accelerated along the vehicle and, if they impact structures further downstream,
will potentially be carrying sufficient kinetic energy to inflict damage. In such situations
it is important to be able to predict the likely trajectories of these shed particles and,
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FIGURE 1. Numerical schlieren images of a sphere being shed from a 10◦ ramp in a Mach-6
inviscid flow.

in particular, to ascertain whether certain areas may have a higher probability of being
impacted. A physically similar problem, but on a larger scale, was encountered during
the ascent of STS-102, when a piece of foam insulation detached from the external tank
and struck the left wing of the orbiter, causing damage that resulted in the demise of the
vehicle upon re-entry (Bertin & Cummings 2006). The process of store separation from a
hypersonic vehicle also shares the basic physical nature of these two other problems, i.e. a
free-flying object separating from a slender parent geometry at high Mach numbers.

The present two-part work is concerned with studying a simplified version of such a
separation problem, in which the parent geometry is represented by a two-dimensional
ramp and the shed object by a spherical body of uniform density. To provide a well-defined
initial condition for the shed body, we limit ourselves to the situation in which it lies
on the ramp with zero initial velocity and is released instantaneously into the flow.
Although somewhat idealized, the problem as studied captures much of the key physics
of the situations described above, and we thus expect it to give insight into more realistic
scenarios. We illustrate this problem in the sequence of numerical schlieren images in
figure 1, taken from an inviscid free-flight simulation with a ramp angle of 10◦ and a
free-stream Mach number of 6. In this example, the ramp-generated oblique shock initially
intersects the sphere’s bow shock just above the sphere, and in the resulting trajectory the
sphere appears to ride the shock downstream. Our objective is to characterize such sphere
trajectories as the Mach number, ramp angle and starting position along the ramp are
varied, for both inviscid and viscous flows. The inviscid case is the focus of the present
article; the effects of flow viscosity are examined in Part 2 (Butler et al. 2021).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.756


A spherical body shedding from a hypersonic ramp. Part 1 906 A28-3

In figure 1, it is clear that there are two distinct phases to the sphere trajectory: at earlier
times the sphere is affected by the near-wall flow created by its interaction with the ramp
itself, but at later times only by the external ramp flow (and in this particular case, the
ramp-generated shock). We first summarize what can be expected of the later phase based
on the literature to date. To begin, note that this part of the trajectory will depend very little
on whether the flow is viscous or inviscid, as the forces on a blunt body in high-speed flow
are dominated by pressure components. If the sphere is immersed entirely within either
the shock layer or the free-stream flow, the dynamics will be rather trivial as they will be
determined purely by the drag force in that respective region (in the corresponding flow
direction). If the sphere is interacting with the shock itself, however, the situation becomes
more interesting. The detailed flow structures created when an oblique shock impinges
on the bow shock generated by a blunt body were first elucidated by Edney (1968a,b),
who identified six qualitatively different shock–shock interaction patterns (denoted type
I to type VI). The aerodynamic forces that are produced on a spherical geometry when
exposed to such interactions were examined by Laurence & Deiterding (2011), who
also used these results to predict the dynamical behaviour of a sphere interacting with
an isolated planar oblique shock. Cases were examined in which the sphere is initially
stationary and released upstream of or on the shock; it was found that there are a range
of initial conditions for which the sphere ‘surfs’ the shock downstream, i.e. moves along
the shock while oscillating about a stable point lying at a fixed location relative to the
shock. This behaviour is possible because the maximum lift-to-drag ratio of the sphere
as it interacts with the shock can exceed the tangent of the shock angle. From a vehicle
standpoint then, one concern in the current context may be that the shock generated at the
leading edge would act as a guide to channel particles towards (or away from) particular
regions.

In contrast to the interaction of the sphere with the oblique shock, the initial phase of
sphere separation from the wall will be highly dependent on whether the fluid is inviscid or
viscous, as the presence of a ramp boundary layer will significantly alter the flow field near
the wall. We assume for the time being that this near-wall flow is unaffected by the ramp
shock (this will be a reasonable assumption in cases such as that shown in figure 1, for
which the sphere starts from an appreciable distance downstream of the leading edge). For
an inviscid flow, the ramp wall will act simply as a reflecting boundary condition, and the
near-wall flow will be exactly the same as if the wall were replaced by a second, mirroring
sphere. The separation of such identical blunt bodies from one another has been studied
in the context of meteoroid fragmentation. Artem’eva & Shuvalov (1996) performed
numerical simulations and found that the normalized separation (transverse) velocity of
two hemi-cylinders once separation was complete was V ′

T = √
ρb/ρaVT/V ≈ 0.2, where

VT is the dimensional transverse velocity of each object, V is the free-stream velocity
and ρb and ρa are the densities of the bodies and the atmosphere. Laurence, Parziale
& Deiterding (2012) conducted both experiments and simulations of separating spheres
at Mach 4, and found that V ′

T = 0.24. Further investigations of this or similar problems
have been carried out, for example, by Park & Park (2020) and Register et al. (2020). In
such configurations, the mutual repulsion of the two bodies is caused by the confined,
high-pressure region that develops between them when they are closely spaced. If a
boundary layer is present on the ramp, however, the resulting flow field will be much
more complicated, as the sphere bow shock will produce a shock-wave/boundary-layer
interaction (SWBLI) where it impinges upon the wall. We might thus expect the forces
on the sphere in the presence of an SWBLI to be quite different from the inviscid case,
which in turn will affect the sphere dynamics; such viscous effects will be the focus
of Part 2.
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For the present article, the main implication of the inviscid approximation will be to
neglect the boundary layer that develops on the ramp, and therefore any interactions
between this and the flow around the sphere. This approximation will thus become
increasingly realistic in the limit of the sphere radius being much larger than the ramp
boundary-layer thickness. Neglecting the ramp boundary layer here will enable us to
explore a wider range of ramp angles and free-stream Mach numbers than would otherwise
be possible; nevertheless, much of the insight gained (especially in cases where the
sphere/shock effects are dominant) can be expected to carry over to the viscous scenario.

In the inviscid separation event of figure 1, the sphere is repulsed away from the
ramp wall in the initial part of its trajectory; this is a result of both the wall and
shock interactions. In this example, we note that even though the influences of both
these interactions are present at early times, they are effectively decoupled from one
another since they affect different regions of the sphere surface. Such decoupling will
generally hold unless the sphere is initially positioned close to the leading edge of the
ramp. Therefore, in the following analysis, we consider first the sphere–shock interactions
(§ 3) and then the sphere–wall interactions (§ 4) independently of one another, before
examining their combined influence on the sphere dynamics in § 5. Additional effects
are investigated in § 6 before conclusions are drawn. To begin, however, we describe the
numerical approach employed.

2. Numerical methodology

As in Laurence & Deiterding (2011), we employ the Cartesian fluid solver framework
AMROC (Deiterding 2003, 2011; Ziegler et al. 2011) to simulate numerically the
interaction of a spherical body with a two-dimensional ramp. The equations solved to
model the inviscid compressible fluid are the Euler equations in conservation-law form

∂tρ + ∇· (ρu) = 0, ∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0, ∂t(ρE) + ∇ · ((ρE + p)u) = 0.
(2.1a–c)

Here, ρ is the fluid density, u the velocity vector and E the specific total energy. The
hydrostatic pressure p is given by the polytropic gas equation, p = (γ − 1)(ρE − 1

2ρuTu),
where γ is the ratio of specific heats. We approximate (2.1a–c) in three spatial dimensions
using a discretely conservative Cartesian finite-volume discretization built on dimensional
splitting. The flux vector splitting approach by Van Leer is used to evaluate an upwinded
numerical flux at cell interfaces; the monotonic upstream-centred scheme for conservation
laws (MUSCL)-Hancock reconstruction technique with Minmod-limiter is employed to
construct a high-resolution method that is of second-order approximation accuracy away
from shocks and contact discontinuities, cf. Deiterding (2003).

The spherical bodies are represented on the Cartesian mesh with a scalar level-set
function, ϕ, that stores the signed distance to the nearest point on either sphere surface
to each finite-volume cell centre. For non-overlapping spheres, the evaluation of ϕ is
straightforward and we adopt the convention ϕ > 0 in the fluid domain and ϕ < 0
inside the solid bodies. By utilizing the sign of ϕ, the first layer of cells inside each
body can be identified; the vector of state in these cells is then adjusted to model the
relevant non-Cartesian boundary conditions, i.e. a rigid sphere moving with velocity v,
before applying the unaltered Cartesian finite-volume discretization. The last step involves
the interpolation and mirroring of ρ, u, and p across the sphere boundary and the
modification of the normal velocity in the immersed boundary cells to (2v · n − u · n)n,
with n = ∇ϕ/|∇ϕ|, cf. Deiterding (2009). The benefit of this immersed boundary, aka
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A spherical body shedding from a hypersonic ramp. Part 1 906 A28-5

‘ghost fluid’ method (Fedkiw et al. 1999) is the natural incorporation of moving bodies.
However, the approach usually reduces the approximation accuracy along the immersed
boundary, in the present implementation to first order. We mitigate this error by applying
automatic, dynamic mesh adaptation along ϕ = 0 and additionally to important flow
features, specifically to gradients larger than a certain threshold in the fluid density.
The adopted mesh adaptation method is the recursive block-structured algorithm for
explicit finite-volume discretizations after Berger & Colella (1988), allowing simultaneous
adaptive mesh refinement (AMR) in time and space by the same factor, lj, for each
additional level j. In AMROC, the AMR method is fully parallelized for distributed
memory machines, including automatic load balancing and parallel re-partitioning as the
mesh refinement hierarchy changes throughout a computation (Deiterding 2005).

In the simulations described hereinafter, the sphere and ramp surface are always fully
enveloped by cells at the highest level of mesh adaptation, and no exchange of kinetic
energy by direct contact is allowed to take place. The hydrodynamic force, f , on the
sphere is updated after every highest-level time step by integrating the pressure over the
body surface, for the purpose of which spherical longitude–latitude grids are temporarily
constructed. The position of the sphere’s centre, x, is then updated by advancing the
equation of motion, ẍ = f /m, with mass m = 4

3πr3ρb (r being the sphere radius and ρb

its density). Finally, the level-set function is re-calculated.
This inviscid computational approach has been applied and experimentally validated

in our earlier work on high-speed interactions between two spheres (Laurence 2006;
Laurence, Deiterding & Hornung 2007; Laurence et al. 2012). The present sphere–ramp
geometry is somewhat simpler and includes just a single moving body; we can thus expect
the methodology to provide accurate and reliable results.

Two different categories of simulations were employed within this general framework.
The first was free-flight simulations, in which the initial sphere velocity was zero and
the sphere density was typically set to a value such that the sphere would traverse the
computational domain of interest while typically maintaining a velocity that was negligible
compared to that of the free stream. An example of such a simulation is shown in
figure 1; here, the sphere velocity remains below 2.5 % of the free stream throughout
the simulation. One such computation, however, can only provide information about a
single initial condition, and as such, free-flight simulations were primarily performed to
analyse the sphere dynamics near the ramp leading edge (§ 5.3), where the approximations
used elsewhere (as described in § 5.1) become tenuous. In such simulations, a typical
base grid was 60 × 40 × 20 (physical dimensions 3.0 × 2.0 × 1.0), with three levels of
additional refinement, each of factor two. The sphere diameter was 0.4 in physical units,
which corresponded to 64 cells at the finest level. The sphere velocity remained below
0.5 % of the free stream in all simulations investigating the leading-edge behaviour.

The second category of simulation we refer to as ‘forced’, in that the sphere density was
set to an artificially high value and an impulsive velocity was imparted on the sphere
once the flow over it had been established; thus, the sphere traced out a prescribed
straight-line trajectory that was not influenced by the aerodynamic forces. In this way
the aerodynamic forces as functions of the position relative to the ramp wall or shock
could be characterized in an efficient manner. Two sub-categories of forced simulations
were performed. In the first, the ramp was present and the sphere was started with a
lateral velocity from an initial position either touching the ramp (if a characterization
of the aerodynamic influences from both the ramp wall and shock was desired, as in
§ 5.1) or out in the shock layer (if only the influence of the shock was of interest, as in
§ 3). The sphere velocity in the forced sphere-ramp simulations was generally 1.5 % of
the free-stream velocity. A typical computation had a base grid of 280 × 90 × 20 cells
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(14.0 × 4.0 × 1.0 in physical units), with three levels of additional refinement, each of
factor two. The sphere diameter was 0.5 physical units, corresponding to 80 cells at the
finest level – this was found to be sufficiently resolved for converged force calculations
(results of a mesh refinement study involving such a forced simulation are provided in § 3).
Such a computation would typically require ∼1800 CPU hours on 20 Intel Xeon cores,
including both the flow start-up period and the time for sphere traversal. In some cases, a
refinement factor of four at only the highest level was used to improve the quality of flow
visualization, while additional simulations with only two levels of additional refinement
were used to fill out the relevant parameter space in § 3 and § 5.

In the second sub-category of forced simulations, the angle of the ramp was set to
zero, and the ramp thus acted simply as a reflecting wall boundary condition. The sphere
was again traversed normal to the free-stream flow (this time with a lateral velocity of
0.7 % of the free-stream value). The base grid was 60 × 30 × 50 cells, with three levels
of additional refinement (factor two); the sphere diameter was again 80 cells at the finest
level. Such simulations were performed to explore the interaction of the sphere solely with
the ramp surface and will be described in further detail in § 4.

In all inviscid simulations, the fluid was a perfect gas with a ratio of specific heats of 1.4
(unless otherwise stated). The Courant–Friedrichs–Lewy (CFL) number ranged from 0.6
to 0.95, the lower value being necessary to maintain numerical stability at higher Mach
numbers.

3. Interactions between a sphere and an oblique shock

In an earlier work (Laurence & Deiterding 2011), two of the present authors discovered
a phenomenon referred to as ‘shock-wave surfing’, whereby it is possible for a sphere to
follow a stable trajectory downstream along a planar oblique shock. Since the main focus
of that earlier work was the interaction between two spheres, only a brief description of
the ramp-sphere case was given; for the present work, it is instructive to both review this
surfing phenomenon and examine it in further detail.

To begin, a sequence of flow visualizations from a forced sphere-ramp simulation is
shown in figure 2. Here, the free-stream Mach number is 6 and the ramp angle, θ , is
10◦. The lateral position of the sphere centre (y) is varied while the streamwise location
(x) remains constant (with the origin of the coordinate system being the leading edge
of the ramp). A numerical schlieren (magnitude of the density gradient) on the plane
through the sphere centre is visualized at each time step, along with a colour map showing
contours of pressure on the surface of the sphere. Corresponding drag and lift coefficients
(CD and CL) are plotted in figure 3(a) (high refinement curve); here, the abscissa is
the lateral distance from the sphere centre to the extrapolated location of the oblique
shock at the streamwise location of the sphere centre (ys = x tan β, where β is the shock
angle), normalized by the sphere radius. Force coefficients are calculated based on the free
stream rather than post-shock conditions. We observe that the drag coefficient decreases
essentially monotonically as the sphere passes from inside to outside the shock layer. The
lift coefficient has a finite, positive value inside the shock layer (because of the non-zero
flow angle behind the shock), increases further as the sphere passes through the shock,
reaches a maximum value at y slightly below ys, and then decreases again as the sphere
moves out into the free stream. The small non-zero value of CL in the free stream is a result
of the finite lateral velocity of the sphere; for a stationary sphere, CL would of course be
zero here. The increase in CL during interaction with the shock is caused primarily by the
lower side of the sphere being exposed to doubly shocked flow, which results in a higher
pressure than the singly shocked flow on the upper side of the sphere.
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A spherical body shedding from a hypersonic ramp. Part 1 906 A28-7

FIGURE 2. Numerical schlieren images with pressure contour maps on the surface of the sphere
as it interacts with the oblique shock generated by a 10◦ ramp at Mach 6. The pressure scale is
different for each visualization.
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FIGURE 3. (a) Drag (upper curves) and lift (lower curves) coefficients computed for a sphere
as its position is varied relative to the shock generated by a 10◦ ramp at Mach 6 for a range of
refinement levels: (· · · ) coarse; (– –) medium; (– · – · –) medium-high; (––) high. (b) Lift-to-drag
ratio as the sphere position is varied at Mach 6 (– · – · –), 10 (– –) and 20 (––). For each curve,
tan β is indicated by the horizontal dotted line. The symbols on the Mach-6 curve indicate the
locations of the visualizations in figure 2.

As the force coefficients are integrated quantities, they are relatively insensitive to the
grid resolution. To demonstrate this, in figure 3(a) we also show curves derived from
three other numerical simulations with different total levels of refinement: the coarse
through medium–fine simulations have one through three levels of additional refinement
over the base grid, each of factor two, while the fine simulation (referred to previously)
has a refinement factor of four only at the third additional level. Each simulation is thus
effectively twice as resolved as the one before. Although some small changes are noted
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as we move from coarse to medium–fine, the medium–fine and fine results are essentially
identical. To conserve computational resources then, medium–fine refinement was used
for the bulk of the force characterization described in this section, while the highly refined
simulations were used primarily for flow visualization in a few select cases, such as that
shown in figure 2. In these highly refined simulations, a smaller computational domain
was used with the sphere located further upstream than in the force-characterization
simulations.

The lift-to-drag ratio (L/D) of the sphere as it is translated through the shock is shown in
the right part of figure 3, together with corresponding curves for two other Mach numbers.
To reduce the effects of the sphere motion on the calculated forces (primarily the lift, as
the drag is largely unaffected), the lift profile used to calculate this curve has been shifted
so that the free-stream value is zero, and scaled such that L/D is equal to the tangent of
the ramp angle when the sphere is fully immersed in the shock layer. The points in this
simulation corresponding to the visualizations of figure 2 are indicated by symbols on
the curve. The maximum L/D ratio, (L/D)max , occurs when the sphere is experiencing a
type-IV Edney interaction (second visualized time step). Changes in the slope of the L/D
curve are generally observed at transitions between shock–shock interaction types (e.g.
type-III to type-II near the penultimate visualized time step) or when other qualitative
changes in the flow field take place (e.g. the shear layer generated in the type-III interaction
moving off the sphere surface in the fourth visualized time step). Also shown is a dotted
horizontal line indicating the value of tan β for this Mach number. The maximum L/D
is seen to be larger than tan β in this case, and L/D is equal to tan β at two values of
( y − ys)/r. Both of these locations will therefore be stationary points, i.e. if the sphere
is released at either of those points with zero velocity, it will remain at the same value
of ( y − ys)/r as it moves downstream; however, the slope of the L/D curve tells us that
only the outer point will be a stable one (see Laurence & Deiterding (2011) for further
discussion).

Similar curves for Mach numbers of 10 and 20 (again for θ = 10◦) are also shown in
figure 3(b). We see that the degree to which the maximum L/D exceeds the tangent of
the shock angle increases substantially as the Mach number is increased. This is a result
of both a decreasing tan β (for a fixed θ ) and an increasing (L/D)max ; the former effect
is well-known oblique shock behaviour, while the second we shall return to shortly. The
distance between the two stationary points also increases with Mach number.

As was shown in Laurence & Deiterding (2011), to analyse the sphere dynamics it
is instructive to utilize the reduced coordinates η = ( y − ys)/r and vη = dη/dt̂ = v̂y −
tan β v̂x , with v̂x = √

ρb/ρavx/V , v̂y = √
ρb/ρavy/V and t̂ = √

ρa/ρbVt/r. We can then
reduce the original four equations of motion to the following two-equation system:

dη

dt̂
= vη, (3.1)

dvη

dt̂
= 3

8
[CL(η) − tan βCD(η)] . (3.2)

This allows a phase-plane analysis to be employed to describe the sphere dynamics, with
trajectories obtained by integrating the combined equation

dvη

dη
= 3(CL − tan βCD)

8vη

, (3.3)
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FIGURE 4. Phase diagrams of the sphere behaviour for a Mach-6 free stream and ramp angles
of (a) 5◦, (b) 10◦ and (c) 20◦. Separatrices are shown by dashed lines.

giving

v2
η = 3

4

∫
(CL − tan βCD) dη. (3.4)

Note that by writing CL and CD as functions solely of η (and not of sphere velocity),
we are assuming that the sphere velocity remains negligible in comparison to the free
stream throughout the time period of interest. Phase diagrams of the sphere motion for a
Mach-6 free stream and ramp angles of 5◦, 10◦, and 20◦ are shown in figure 4. For the
smallest ramp angle, there are no stationary points: in this case, the maximum value of
the lift-to-drag ratio is smaller than tan β, which precludes the possibility of the sphere
following the shock downstream. Therefore, all sphere trajectories eventually lead to the
sphere becoming entrained inside the shock layer. Increasing the ramp angle to 10◦ brings
about a qualitative change in the phase portrait. Now the maximum L/D is greater than
tan β and two stationary points appear on the phase diagram: the inner (η < 0), unstable
point is a saddle, while the outer (η > 0), stable point is a centre. The separatrix to the
right of the saddle point is a closed curve that forms the boundary of all stable orbits about
the centre. Increasing the ramp angle to 20◦ does not bring about a qualitative change in
the phase portrait, although we see that the stable region becomes more extended along
both the η and vη axes. Manipulating the coefficient curves revealed that the extent of
the stable region in the vη dimension is directly related to the degree by which (L/D)max

exceeds tan β.
One point regarding (3.3) that will become important is that if vη = 0, dvη/dη is infinite

(unless CL = tan βCD), and therefore trajectories starting from rest will initially trace out
vertical lines in the phase plane (except those that begin exactly at stationary points).
We also note that, for η � −1, CD is constant and CL = CD tan θ (as the sphere is fully
immersed inside the shock layer). In this case we can directly integrate equation (3.4) to
obtain

v2
η = c − 3

4(tan β − tan θ)CDη, (3.5)

c being a constant of integration. We thus see that these parts of the sphere trajectories in
the phase plane are parabolas. Similarly, for η � 1 (outside the shock), CD is constant and
CL = 0, and the trajectories are parabolas of the form

v2
η = c − 3

4 tan βCDη. (3.6)
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FIGURE 5. Separatrices of the phase diagrams for a sphere interacting with a ramp-generated
oblique shock for ramp angles of (a) 5◦, (b) 10◦ and (c) 20◦, in each case for free-stream Mach
numbers of (– –) 6, (——) 10 and (– · – · –) 20. The symbols indicate the centre locations for (+)
Mach 6, (×) Mach 10 and (◦) Mach 20.

In figure 5 we have graphed the phase-plane separatrices for ramp angles of 5◦, 10◦ and
20◦, in each case for Mach numbers of 6, 10 and 20. The most consistent trend observed is
that increasing M enlarges the stable region in the phase plane along both axes. At Mach
6 and 10, increasing the ramp angle to 20◦ similarly extends the stable region along both
axes, but the corresponding effect at Mach 20 is not so clear: the extent in the η dimension
is in fact maximum for 5◦, whereas the vη extent grows (if modestly) up to 20◦. To the left
of the saddle point, the slope of the separatrix becomes shallower as the Mach number is
increased, and steeper as the ramp angle is increased.

The effects of varying θ and M on the stationary-point locations are shown more
explicitly in figure 6. In panel (a), θ is varied for Mach numbers of 6, 10 and 20, whereas
in (b), M is varied for each of θ = 5◦, 10◦ and 20◦. The location of the centre is relatively
unaffected by the ramp angle, but does change more substantially with M, being pushed
out to larger η as M is increased. The saddle point, on the other hand, shows a weak general
trend to more negative η as both M and θ are increased. The net result is that the spacing
between the two stationary points grows with increasing M, but remains relatively constant
as θ is varied.

As we will see, the slope of the separatrix at the saddle point is an important parameter
in determining the separation behaviour; this value can be determined from (3.3). Noting
that both the numerator and denominator are zero at the saddle point, we use l’Hôpital’s
rule to obtain

dvη

dη

∣∣∣∣
sp

= ±
√

3
8

[C′
L(ηsp) − tan βC′

D(ηsp)], (3.7)

where the subscript sp refers to the saddle point. For the Mach-6 phase portraits, this slope
takes the values of 0.41 and 0.62 for 10◦ and 20◦ ramps; at Mach 10, the values are 0.48,
0.73 and 0.80 for 5◦, 10◦ and 20◦ ramps. We thus observe that this slope tends to increase
with both Mach number and ramp angle, but remains somewhat below unity for the cases
considered.

We noted earlier that the source of the large lift coefficients generated as the sphere
moves through the shock is the difference in pressures resulting from the singly shocked
flow on the upper surface and the doubly shocked flow on the lower surface. We finish the
present section by examining this effect in more detail. In Laurence & Deiterding (2011),
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FIGURE 6. Locations of (unfilled symbols) saddle point and (filled symbols) centre (a) as the
ramp angle is varied at constant M (�, 6; ◦, 10; �, 20) and (b) as M is varied for a several ramp
angles (�, 5◦; ◦, 10◦; �, 20◦).

it was noted that a reasonable approximation to the lift and drag curves could be obtained
if it were assumed that the oblique shock effectively divided the flow over the sphere
into two regions of Newtonian flow. Then the local pressure coefficient is Cp = C∗

p sin2 θ ,
where θ is the angle between the local surface element and the incoming flow, and C∗

p is a
reference pressure coefficient, which according to the modified Newtonian theory of Lees
(1955), will simply be the Pitot pressure in the relevant flow region. An examination of the
Pitot pressure upstream and downstream of the ramp-generated oblique shock should thus
provide some understanding of the lift behaviour of the sphere.

Formulae for the ratios of Pitot pressure across an oblique shock in terms of the shock
angle and Mach number are given by Graham & Davis (1965) for cases in which the
post-shock flows are both subsonic and supersonic. In figure 7(a) we have plotted this
ratio, pt2/pt1, against the ramp angle for Mach numbers of 6, 10 and 20. We see that pt2/pt1
reaches a maximum on the weak-shock branch at a ramp angle that decreases from 23.1◦

for Mach 6 to 15.3◦ for Mach 20. The peak value of pt2/pt1 increases with M, and would
reach a maximum of 6 for M = ∞, θ = 0. At a very basic level, we might thus expect
the peak CL of the sphere to increase with M for a given θ and, for a given Mach number
(within the range considered in the present work), to occur at an angle somewhere in
the range of 15–25◦. In figure 7(b), we have plotted this peak, CL,max , versus ramp angle
for the same Mach numbers, as computed in the forced numerical simulations. We do
indeed observe a monotonic increase in CL,max with Mach number and although CL,max

is increasing with θ over the range plotted, for M = 20 it does appear to be approaching
a maximum near θ = 25◦. The peak L/D values from these simulations are also plotted
on the same axes. We see that these again increase monotonically with Mach number,
although the curves do not appear to be approaching a maximum with θ (this is because
the drag values at peak L/D begin to decrease with θ ). Nevertheless, we conclude that
a simple consideration of the Pitot pressures before and after the oblique shock gives
significant insight into the prevalence of surfing over a range of conditions.

4. Near-wall aerodynamics

It is clear from the first two images of figure 1 that the presence of the ramp significantly
alters the flow over the lower part of the sphere, in particular, by maintaining a stronger
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FIGURE 7. (a) Ratio of Pitot pressure before and after obliques shocks with varying turn angle
for Mach numbers of (-�-) 6, (-•-) 10 and (-�-) 20. The weak-shock branch in each case is
indicated by the solid curve with symbols, the corresponding strong-shock branch by the dashed
curve. (b) Computed maximum lift coefficient (closed symbols) and maximum lift-to-drag ratio
(open symbols) as functions of ramp angle for a sphere interacting with an oblique shock for
Mach numbers of (-�-) 6, (-•-) 10 and (-�-) 20.

shock down to the ramp wall. This increases the pressure on the lower half of the sphere,
leading to a repulsive force that propels the sphere out towards the ramp-generated oblique
shock. If the near-wall part of the flow field is free from the influence of the oblique
shock, as we have assumed thus far, variation of just two flow parameters – the Mach
number behind the oblique shock and the wall-normal displacement of the sphere – is
sufficient to fully characterize such near-wall aerodynamic effects. Therefore, we may
elucidate these effects by considering the simpler problem of a sphere separating from
a reflecting, inviscid wall aligned with the incoming flow.

We performed forced simulations of a sphere translating away from a reflecting wall
boundary at various Mach numbers, as described in § 2. Figure 8 shows the computed
flow fields at different stages during the sphere–wall separation for Mach numbers of 3
and 12. The flow field development is seen to be qualitatively similar in the two cases.
When the sphere is in contact with the wall, the sphere bow shock extends down to the
wall with little decrease in strength; the flow ahead of the lower part of the sphere is then
entirely subsonic and generates high pressure levels on the sphere surface. As the sphere
translates away from the wall, the flow between the sphere and the wall accelerates to
supersonic conditions, resulting in first a Mach throat and then a three-dimensional regular
reflection. The reflected shock initially impinges on the lower sphere surface, causing a
local increase in pressure, but once the shock moves off the rear of the sphere, the presence
of the wall has negligible further influence on the sphere aerodynamics (the only effect
possible being to modify the wake flow). For the higher Mach number, the bow shock lies
closer to the sphere and the transitions between these different flow configurations occur
at smaller values of y/r: for example, in the second image showing the Mach reflection for
the Mach-3 sequence (figure 8b), the sphere is at y/r = 1.39, while for the corresponding
Mach-12 image (figure 8e), the sphere is at y/r = 1.15.

In figure 9 we plot the lift and drag coefficients as functions of normalized wall-normal
distance for Mach numbers of 3, 6, 10 and 14. In the lift-coefficient profiles (note that these
have been shifted vertically so that they asymptote to zero, in order to remove the influence
of the wall-normal motion), we observe that the lateral force in each case decreases
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FIGURE 8. Sequences of numerical schlieren slices and pressure contours on the sphere as it is
translated away from an inviscid wall in (a–c) Mach-3 and (d–f ) Mach-12 free-stream flows.
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FIGURE 9. (a) Lift and (b) drag coefficients of a near-wall sphere as functions of normalized
distance from the wall, for Mach numbers of (-�-) 3, (-�-) 6, (-�-) 10 and (-•-) 14.

monotonically as the sphere moves away from the wall. The maximum lift value increases
slightly as the Mach number increases (from 0.259 for M = 3 to 0.277 for M = 14), but
much more significant is the extended range of y/r over which the influence of the wall
is felt at lower Mach numbers. For M = 14, CL drops below 0.005 at y/r = 1.44, while
for M = 3, this does not occur until y/r = 1.64. The sphere drag is moderately enhanced
through being in close proximity to the wall, increasing by approximately 20 % compared
to the uninfluenced value in the free stream. For each Mach number, the drag initially
decreases as the sphere moves away from the wall, then undershoots slightly before rising
to the free-stream value; this undershoot occurs when the reflected shock from the wall
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FIGURE 10. Parameters of the sphere motion when it is effectively free of wall influence (the
subscript sep refers to the point at which the lift coefficient has decreased to 1 % of its maximum
value): (a) separation distance, ysep/r; (b,c) normalized lateral and streamwise velocities at
ysep/r.

impinges towards the rear of the sphere, increasing the back-side pressure. The effect of
increasing Mach number is to decrease the overall drag coefficient and limit the y/r range
over which the sphere is influenced, as with the lift.

The effects of these Mach number trends on the sphere parameters once separated
from the wall are summarized in figure 10, where we plot the normalized wall-normal
distance, ysep/r, at which the lift coefficient has fallen to 1 % of its maximum value,
as well as the normalized sphere velocities at this point (e.g. v̂y,sep = √

ρb/ρavy,sep/V ,
where vy,sep is the physical y velocity at ysep), versus the Mach number. The velocities
are obtained by integrating the force-coefficient profiles; note that v̂y,sep is identical to the
normalized separation velocity, V ′

T , discussed in the introduction. As would be expected
from the discussion of the previous paragraph, all plotted separation parameters (ysep/r,
v̂y,sep and v̂x,sep) decrease with increasing Mach number, falling rapidly at first but then
more gradually as the Mach number increases above ∼4. Despite the enhanced lateral
impulse the sphere receives at lower Mach numbers, the angle at which it is travelling
once it escapes the influence of the wall increases slightly as the Mach number rises (from
8.6◦ at M = 2 to 10.4◦ at M = 14). Comparing CL and CD at y/r = 1 in figure 9, it is clear
that this trend also holds true for the initial direction of travel.

Ultimately we are interested in how this behaviour will affect the separation of the
sphere from a ramp oriented at a non-zero angle to the free stream. Each of the forced
sphere–wall computations allows us to simulate a range of sphere-ramp separation cases,
all sharing their post-shock Mach number with the free-stream value in the relevant
computation (but through different combinations of free-stream Mach number and ramp
angle to achieve this). The trajectory of the sphere in η−vη space in these simulated
separation events will then provide insight into how this initial wall interaction affects
the possibility of subsequent surfing in the full separation problem. In figure 11(a), we
present such phase-plane trajectories for a 10◦ ramp and three free-stream Mach numbers
(M = 6.59, 8.49 and 14.30, corresponding to post-shock Mach numbers of 5, 6 and 8); the
abscissa here is the change in η, since the initial value of η is arbitrary. To obtain these
trajectories, the sphere–wall force-coefficient curves are integrated and then rotated; ρa

and V are then rescaled (in calculating vη) based on the oblique-shock relations. For the
reason noted in discussing (3.3), all trajectories start off vertically, but then curve around
as the influence of the wall diminishes, resulting in a peak vη in all cases. This peak
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FIGURE 11. Initial sphere trajectories in the η–vη phase plane produced by isolated wall
interactions: (a) for θ = 10◦ and free-stream Mach numbers of (——) 6.59, (– –) 8.49 and
(– · – · –) 14.30; (b) for M = 10 and ramp angles of (——) 5.85◦, (– –) 12.24◦, (– · – · –) 16.18◦
and (· · · ) 21.40◦.

increases notably with increasing Mach number, and typically occurs when vη is of the
same order of or slightly larger than 	η. In figure 11(b), we show phase-plane trajectories
for a fixed free-stream Mach number of 10 and various ramp angles. The trajectories are
all of a similar shape, but the trend with θ is non-monotonic insofar as the 16.2◦ trajectory
reaches a higher value of vη than those of either the smaller or larger ramp angles. Overall,
however, the influence of the ramp angle on the phase-plane trajectory is somewhat less
than that of the Mach number (at least over the range of parameters considered here).

We can explore the trends in the value of vη following separation in more detail by
interpolating the data shown in figure 10 to determine the value of vη once separation from
the wall is complete – which we denote vη,sep (note from figure 11 that this will be slightly
lower than the peak value of vη) – for varying ramp angles and Mach numbers. We do this
by following a procedure similar to that just described for the trajectories in figure 11, i.e. a
rotation of the interpolated values of vx,sep and vy,sep followed by a rescaling of the density
and velocity to calculate vη,sep. In figure 12(a), vη,sep is plotted versus Mach number for
ramp angles of 5◦, 10◦, 15◦, 20◦ and 25◦, and in figure 12(b) versus the ramp angle for
free-stream Mach numbers of 6, 8, 10, 12, 16 and 20. For all ramp angles, vη,sep increases
monotonically with Mach number; this we can attribute primarily to the decreasing shock
angle (for a given θ ) as the Mach number is increased, together with a small contribution
from the increase in the angle of the sphere velocity relative to the wall noted earlier. In
contrast, the trend with θ (for fixed M) is non-monotonic, with vη attaining a maximum
at a ramp angle that decreases with increasing Mach number (generally between θ = 10◦

and 15◦).
Before proceeding further, let us consider how the behaviour observed thus far is likely

to affect the possibility of surfing. We note that the trends for the sphere–wall separation
in the present section in some way reflect those seen in the extent of the stable surfing
region in § 3. In particular, for fixed θ , the stable region contracts with decreasing Mach
number; however, since the effective repulsion from the wall interaction (in terms of vη) is
also reduced as the Mach number is decreased, we might expect these effects to counteract
one another (to some extent) when considering the full separation problem. Also, if the
ramp angle is increased from zero for fixed M, both the extent of the stable region and the
wall repulsion increase to a maximum before falling again. Again, these two effects would
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FIGURE 12. Normalized shock relative velocity when the sphere is free of the wall influence:
(a) versus Mach number for ramp angles of (—�—) 5◦, (—�—) 10◦, (—�—) 15◦, (—•—) 20◦
and (—�—) 25◦; and (b) versus ramp angle for Mach numbers of (—�—) 6, (—�—) 8,
(—�—) 10, (—•—) 12, (—	—) 16 and (—
—) 20.

be expected to work against one another with regard to enabling stable surfing trajectories.
Which of these effects are dominant, however, remains to be seen.

5. Full separation behaviour

5.1. Decoupled force model
Having investigated the aerodynamic interactions of the sphere with the ramp-generated
shock and ramp wall independently, we are now in a position to examine the full separation
behaviour. To allow complete sphere trajectories to be calculated in an efficient manner,
a decoupled approach based on forced simulations was developed as follows. For a given
M and θ , force-coefficient data were generated for sphere positions from the ramp surface
out into the free stream. The streamwise sphere location in each of these simulations was
chosen such that there was a finite intermediate region over which the sphere was free
from the influence of both the wall and the shock, and thus the coefficients were constant,
say, CDi and CLi. The force coefficients as functions of y/r for such a simulation with
M = 10 and θ = 10◦ are shown in figure 13(a); in this case x/r = 48 and the boundaries
of the intermediate region are indicated by dashed lines. For any larger x/r, the coefficient
profiles will be identical except that the intermediate region will be stretched as a result of
the increased distance between the wall and shock (which will grow as [tan β − tan θ ]x).
For smaller x/r, this intermediate region will shrink until a critical value, xc/r, is reached
at which its extent is exactly zero. If we decrease x/r further from this critical point, the
sphere will begin to experience the effects of the oblique shock before it is free from the
wall influence. Nevertheless, as we have noted earlier, these two effects will be largely
independent of one another unless the sphere is very close to the leading edge; this means
their combined influence on the force coefficients will be additive. Thus, if x < xc, we
modify the parts of the coefficient curves over which the sphere is influenced by both
the shock and the wall in the following way (illustrated in figure 13b). For the drag,
let 	CDw be the additional increment in the drag coefficient compared to CDi produced
by the influence of the wall at a given y location (as calculated from the original CD
curve); similarly, let 	CDs be the increment (compared to CDi) at that y produced by the
interaction with the oblique shock. The total drag coefficient is then calculated simply
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FIGURE 13. (a) Full force-coefficient curves (——, CD; – · – · –, CL) including wall- and
shock-affected regions for M = 10, θ = 10◦; the vertical dashed lines indicate the boundaries of
the region over which the sphere is free from the influence of both the wall and the shock, and the
dotted line is the shock location (ys). (b) Construction of composite curve using the decoupled
model for values of x/r for which the wall and shock simultaneously influence the sphere; the
wall-only and shock-only parts of the original curve are plotted in dashed and dashed-dotted
lines, respectively.

as CD = CDi + 	CDw + 	CDs, and similarly for CL. In this way the forces experienced
by the sphere anywhere in the flow field can be well approximated, with the exception
of locations close to the leading edge (just how close to the leading edge this decoupled
assumption is valid will be examined in § 5.3). Thus, for any initial sphere position, we
can integrate the equations of motion and derive the resulting sphere trajectory. Again, the
assumption that the sphere velocity remains negligible in comparison to the free-stream
flow is required here (since CL and CD are assumed to be functions solely of the sphere
position).

5.2. Sphere trajectories with the decoupled model
Example trajectories for a ramp angle of 10◦ and a Mach number of 10 are shown in
figure 14. Those trajectories for which the sphere is shed further upstream (x0/r ≤ 15)
appear to exhibit stable surfing; for x0/r = 36 the sphere is clearly entrained within
the shock layer, while for x0/r = 25 and 32 its fate is less clear. The corresponding
phase-plane trajectories for these cases are shown in figure 15(b). Here we see that for
x0/r = 9, 11, 13, and 15, the sphere does indeed attain an orbit within the stable region
of the phase diagram. For x0/r = 25 and 32, the initial repulsion from the wall takes
the sphere trajectory above the upper branch of the separatrix – the sphere will thus
temporarily move outside the shock layer but will subsequently re-enter and become
entrained within. If the initial position of the sphere is shifted further rearwards (e.g.
x0/r = 36), it will simply become entrained without first exiting the shock. We can
generalize to say that one of these three categories of trajectories – stable surfing,
temporary escape/ejection followed by re-entrainment or direct entrainment – will be the
fate of any spherical body shed from a ramp. Ejection/re-entrainment trajectories are only
possible (for initially stationary spheres) because of the repulsive influence of the ramp
interactions, whereas the other two trajectory types would be possible for an isolated
oblique shock without any direct ramp influence. What remains to determine then is
how the boundaries of x0/r delineating these behaviours vary for different free-stream
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FIGURE 14. Calculated separation trajectories for a Mach 10 free stream and a ramp angle of
10◦; the starting positions are x0/r = 9, 11, 13, 15, 25, 32 and 36.
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FIGURE 15. Separation trajectories in the phase plane for a Mach 10 free stream with ramp
angles of: (a) 5◦, x0/r = 9, 11, 13, 15, 25, 32 and 36; (b) 10◦, x0/r = 9, 11, 13, 15, 25, 32 and 36;
(c) 20◦, x0/r = 9, 11, 13, 15, 21 and 25. In each case, the trajectory that corresponds to the largest
x0/r is the one that originates from the minimum value of η on the vη = 0 axis. Separatrices are
shown in dashed lines.

Mach numbers and ramp angles. For combinations of Mach number and ramp angle
for which there is no stable region (e.g. the Mach-6, θ = 5◦ case shown in figure 4a),
ejection/re-entrainment and direct entrainment will be the only possibilities, but there will
be no distinct boundary between the two.

Some insight into the effect of varying the ramp angle can be gained by comparing the
graph just described with the other two of figure 15, which show phase-plane trajectories
for angles of 5◦ and 20◦ (at Mach 10). We see in both cases the limiting x0/r for stable
surfing is shifted forward, with only the x0/r = 9 case of those plotted producing a
stable orbit. This is despite the extent of the stable region along the vη coordinate being
significantly larger for θ = 20◦ than for θ = 10◦.

For Mach-6 trajectories at ramp angles of 10◦, 15◦ and 20◦, figure 17 demonstrates that
there is in fact no possibility of stable surfing according to the decoupled model, with all
sphere trajectories being pushed outside the stable boundary during the wall-separation
phase (figure 16 shows the trajectories in physical space for θ = 10◦). In contrast, for the
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FIGURE 16. Calculated separation trajectories for a Mach 6 free stream and a ramp angle of
10◦; the starting positions are x0/r = 5, 7, 9, 11, 13, 15.5 and 17.
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FIGURE 17. Separation trajectories in the phase plane for a Mach 6 free stream with ramp angles
of: (a) 10◦, x0/r = 5, 7, 9, 11, 13, 15.5 and 17; (b) 15◦, x0/r = 5, 7, 9, 11, 13, 15 and 17; (c) 20◦,
x0/r = 5, 7, 9, 11, 13, 13.5 and 15.

Mach-20 trajectories with θ = 5◦, 10◦ and 20◦ (figure 18), a wide range of initial locations
can produce surfing, especially for the smaller ramp angles.

In general, we observe from figures 15, 17, and 18 that, for surfing to be initiated, the
sphere must initially lie within the stable region of the phase plane. In discussing figure 11
it was noted that the sphere–wall interactions impart a combination of 	vη and 	η that is
somewhat steeper than the slope of the separatrix near the saddle point. As a result, there
is no way for the wall interaction to push the sphere trajectory into the stable region if it
begins outside (the opposite tendency rather prevailing). Therefore, if η0 is the initial value
of η, η0 ≥ ηsp is a necessary (but not sufficient) condition for surfing, and thus surfing
trajectories are only possible if the ramp-generated oblique shock is initially incident on
the sphere.

5.3. Sphere dynamics near the ramp leading edge
The decoupled force model will not be a good approximation close to the leading edge
of the ramp, as there the shock–shock interactions will affect the lower part of the sphere
and thus the flow in the vicinity of the wall, in violation of our decoupled assumption.
This is clear from figure 19(a), which shows the flow field over a sphere at the surface of
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FIGURE 18. Separation trajectories in the phase plane for a Mach 20 free stream with ramp
angles of: (a) 5◦, x0/r = 15, 23, 31, 33, 65, 95 and 100; (b) 10◦, x0/r = 13, 19, 25, 27, 45, 65
and 70; (c) 20◦, x0/r = 9, 11, 13, 14, 22, 28 and 33.

4.0 4.5 5.0 5.5 6.0 6.5 7.0

x/r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y/r

(b)(a)

FIGURE 19. (a) Numerical schlieren image of a sphere sitting on a 10◦ ramp in a Mach-6 free
stream at a distance downstream of x/r = 5; pressure contours on the sphere surface are also
shown. (b) Comparison of the initial part of the sphere trajectory for this starting location as
predicted by the decoupled model (– –) and in the free-flight simulation (——).

a 10◦ ramp with x/r = 5 in a Mach-6 free stream. The shock–shock interaction produces
a complex flow pattern near the wall, with a Mach stem extending to the ramp surface
and a localized region of very high pressure on the underside of the sphere. This is quite
different from the near-wall flow field effectively assumed in the decoupled model, of
which the first image in figure 1 is representative.

In order to obtain more accurate predictions for such upstream starting locations, as well
as to verify that the decoupled model performs well elsewhere, free-flight simulations were
conducted for a range of initial sphere positions (but concentrating on cases relatively close
to the leading edge). The initial part of the trajectory in physical space for the case shown
in figure 19(a) (M = 6, θ = 10◦, x0/r = 5) is compared with the decoupled prediction
in (b). The free-flying sphere leaves the wall at a steeper angle than the decoupled model
predicts, as the localized high-pressure region on the underside of the sphere generates
higher lift than in the decoupled model (with little difference in drag). As the sphere
moves away from the wall, however, the free-flight trajectory curves around more sharply
than the decoupled one, leading to a shallower angle of travel at later times. This is a result

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.756


A spherical body shedding from a hypersonic ramp. Part 1 906 A28-21

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

–2.0 0 2 4 –2 –1 0 1 2 –2 –1 0 1 2
–0.6

–0.4

–0.2

0

0.2

0.4

(b)(a) (c)

η η η

v
η

FIGURE 20. Trajectories near the leading edge for: (a) Mach 10, 10◦ ramp and initial sphere
locations of x0/r = 5, 9, 13, 17 and 21; (b) Mach 6, 10◦ ramp and initial sphere locations of
x0/r = 3, 5, 7, 9 and 11; (c) Mach 6, 15◦ ramp and initial sphere locations of x0/r = 3, 5, 7, 9
and 11. In each case, the solid lines show the results of free-flight simulations and the dot-dashed
lines indicate the predicted trajectory from the decoupled force model.

of the shock–shock interaction displacing the high-pressure region on the underside of the
sphere downstream, meaning that although the lift coefficient is initially higher than in the
decoupled prediction, it drops off rapidly as the sphere moves away from the wall. The
overall influence of the sphere–wall interaction is thus decreased.

With these observations in mind, in figure 20 we compare free-flight and decoupled
trajectories in the phase plane for a 10◦ ramp at Mach 10, as well as 10◦ and 15◦ ramps
at Mach 6. In all three graphs, for starting locations near or upstream of the centre, the
overprediction of the wall repulsion just noted results in decoupled trajectories that are
pushed out to larger vη values than those of the free-flying spheres. For M = 10, θ =
10◦, this discrepancy does not modify the qualitative behaviour, although the decoupled
model will slightly underpredict the x0/r value at which the transition from surfing to
ejection/re-entrainment occurs. Similarly, for M = 6, θ = 10◦, no change in qualitative
behaviour is noted for the free-flight trajectories compared to the decoupled ones, despite
the reduced wall repulsion; in particular, surfing is still not possible for any starting
location. For M = 6, θ = 15◦, however, the free-flight simulations show that there is in
fact a range of near-leading-edge initial positions for which surfing is possible (x0/r � 5),
contrary to the predictions of the decoupled model. For all three Mach-number/ramp-angle
combinations considered here, the decoupled model provides accurate predictions for
starting locations with η0 � 0.

Our objective in the following subsection is to use the decoupled model to determine
how the transition boundaries between the different trajectory types vary with Mach
number and ramp angle; the comparisons just made provide a means to gauge how
accurate these predictions will be. First, we note that the ejection/re-entrainment to direct
entrainment boundary will be well predicted, given that this transition occurs when
η0 < ηsp, which will always be sufficiently far downstream that the decoupled assumption
is valid. The trajectories in figure 20 show that the transition x0/r from surfing to
ejection/re-entrainment will be slightly underpredicted by the decoupled model (and, in
cases where surfing is marginal, may be erroneously predicted not to exist). Nevertheless,
as this underprediction appears to be consistent across ramp angle and Mach number (at
least for the cases examined), we may still expect that the trends predicted by the model to
be accurate.
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FIGURE 21. Boundaries between regions of different sphere behaviours: (a) in x0/r–θ space
for Mach numbers of (�) 6, (◦, •) 10 and (�, �) 20; (b) in x0/r–M space for ramp angles of
(�, �) 5◦, (◦, •) 10◦ and (�, �) 20◦. Open symbols with dashed lines indicate transitions from
surfing to ejection/re-entrainment, and closed symbols with solid lines indicate transitions from
ejection/re-entrainment to direct entrainment.

5.4. Boundaries of sphere behaviour
From decoupled trajectory predictions such as those shown in figures 15, 17 and 18,
for a given M and θ it is straightforward to determine the critical values of x0/r
at which the sphere behaviour transitions between the different categories – surfing,
ejection/re-entrainment, direct entrainment – with the minor caveats mentioned in the
previous paragraph. In figure 21 we plot these boundaries in x0/r–θ space for Mach
numbers of 6, 10, and 20 (a) and in x0/r–M space for ramp angles of 5◦, 10◦, and 20◦ (b).
In (a), we see that the transition between surfing and ejection/re-entrainment at Mach 10
exhibits a relatively weak dependence on θ for ramp angles between 5◦ and 25◦. The trend
is not monotonic, but rather the transition x0/r increases to a maximum of 14.0 for θ = 10◦

as the ramp angle is increased, before gradually decreasing to reach x0/r = 7.6 at θ = 25◦.
The maximum range of initial locations leading to surfing is thus found near θ = 10◦. For
M = 20, the surfing to ejection/re-entrainment transition x0/r is larger and the curve is
shifted to lower θ , with the maximum x0/r now occurring near or below θ = 5◦. For
both Mach 10 and Mach 20, the ejection/re-entrainment to direct entrainment boundary
shows the same qualitative behaviour as the surfing to ejection/re-entrainment boundary
at the same Mach number, just shifted to larger x0/r. For M = 10, the range of x0/r
for ejection/re-entrainment is maximum at θ ≈ 7.5◦(13.1 ≤ x0/r ≤ 33.6). For M = 20,
the range of x0/r over which this behaviour is observed reaches a maximum (of the
ramp angles simulated) of 32.3 ≤ x0/r ≤ 98.3 at θ = 5◦. The corresponding M = 6 curve
(note that there is no surfing to ejection/re-entrainment boundary at this Mach number) is
somewhat flatter and shifted to smaller x0/r; the maximum here is x0/r = 15.7 at θ = 10◦.

Figure 21(b) shows how these transition boundaries vary with Mach number. The most
obvious trend is that both transition boundaries shift to larger x0/r as Mach number
is increased. For θ = 20◦, there is little change above M = 16, behaviour which might
be expected from the Mach number independence principle (Anderson 2006); however,
for θ = 10◦ and especially for θ = 5◦, the transition x0/r values are still increasing
significantly at M = 20. In general then, the range of x0/r over which both surfing and
ejection/re-entrainment are possible will increase with Mach number, especially for small
ramp angles.
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FIGURE 22. Lateral distance between shock and ramp at unit distance downstream for Mach
numbers of (uppermost to lowermost curve) 4, 6, 8, 10, 15, 20.

One factor that has not been considered thus far, but will certainly influence the x0/r
values plotted in figure 21, is the initial lateral distance from the sphere centre to the
shock. We have noted that surfing is only possible if the shock is initially impinging on
the sphere, and if the shock angle is larger relative to the ramp angle, the sphere will
need to be located further upstream to produce such a flow configuration. In figure 22 we
plot the quantity tan β − tan θ , i.e. the lateral separation between ramp and shock at unit
distance downstream of the leading edge, versus the ramp angle. As would be expected,
this quantity decreases with Mach number; however, perhaps less intuitively, we see that
the minimum for a given (finite) M is reached at non-zero θ , which shifts closer to zero
as M is increased. We note that the minima in the Mach 6, 10 and 20 curves in figure 22
fall at roughly the same angles as the corresponding extrema in figure 21(a), which may
indicate that the initial sphere–shock spacing plays an important role here.

As an aside, since the θ values for minimum separation in figure 22 are small and the
Mach numbers of interest large, the corresponding shock angles will also be small and we
can approximate tan β − tan θ ≈ tan(β − θ). Differentiating the oblique-shock relation

tan(β − θ) = tan β
(γ − 1)M2

1 sin2 β + 2
(γ + 1)M2

1 sin2 β
, (5.1)

it is straightforward to show that tan(β − θ) has a minimum when

tan β =
(

1 + γ − 1
2

M2

)−1/2

. (5.2)

No such simple relation is known by the authors for the minimum in tan β − tan θ .
In figure 23 we replot the boundary curves of figure 21 but now versus the normalized

initial lateral distance from the sphere centre to the shock, η0 = ( y0 − ys)/r. This
successfully collapses much of the data for the surfing to ejection/re-entrainment transition
boundary; indeed, we see that the value of η0 for this transition is close to constant (η0 ≈ 0)
over the range of cases considered, with discrepancies only for small ramp angles and
lower Mach numbers. We thus conclude that the dynamical behaviour of the sphere as it
transitions from surfing to ejection/re-entrainment is determined primarily by the initial
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FIGURE 23. Boundaries between regions of different sphere behaviours: (a) in ( y0 − ys)/r–θ
space for Mach numbers of (�) 6, (◦, •) 10 and (�, �) 20; (b) in ( y0 − ys)/r–M space for
ramp angles of (�, �) 5◦, (◦, •) 10◦ and (�, �) 20◦. Open symbols with dashed lines indicate
transition from surfing to ejection/re-entrainment and closed symbols with solid lines indicate
transition from ejection/re-entrainment to direct entrainment.

lateral location of the sphere relative to the shock, regardless of Mach number and ramp
angle. This suggests that it is the sphere–shock interactions (rather than the sphere–wall
interactions) that are most important in determining the sphere dynamics in this region
of the parameter space. The ejection/re-entrainment to direct entrainment boundaries, in
contrast, are poorly collapsed by this scaling, for variations in both ramp angle and Mach
number. The main Mach number trend observed here is that the transition η0 becomes
more negative, i.e. the sphere lies further inside the shock, as the Mach number is increased
(and more rapidly for smaller θ ). The trend with ramp angle depends on the specific Mach
number, but we do see that for large ramp angles, the boundary appears to be asymptoting
to η0 ≈ −1.5 (from above for low M and from below for high M). The poor collapse of
the data for this boundary points to the increased significance of the initial sphere–wall
interactions compared to the surfing to ejection/re-entrainment boundary.

6. Additional effects

6.1. Influence of non-negligible sphere velocity
In all results derived from the forced simulations, we have effectively assumed that the
aerodynamic forces experienced by the sphere are independent of the sphere velocity,
which will be appropriate if this remains a negligible fraction of the flow velocity.
Similarly, in the free-flight simulations presented thus far, we have specified the sphere
density such that this would be the case. In a more realistic situation, however, as the
sphere accelerates downstream the assumption of negligible sphere velocity will become
increasingly tenuous. It is of interest then to evaluate the effects of finite velocity on the
sphere dynamics, and in particular how the surfing phenomenon is affected. To this end,
a set of free-flight simulations was conducted on an extended domain (150 sphere radii
in downstream extent) in which the sphere density was varied so as to achieve a range of
sphere velocities with otherwise identical computational parameters. In all cases the Mach
number was 10 and the ramp angle 10◦. To make such large-domain simulations feasible,
the degree of refinement was reduced to a single level of factor two above the base grid
(equivalent to the coarse computation in figure 3). Although this will have some influence
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FIGURE 24. Phase trajectories for M = 10, θ = 10◦ showing the effect of non-negligible sphere
velocity on the sphere behaviour. In each case the starting locations are x0/r = 13, 14 and
15, and the sphere densities are set such that the maximum streamwise sphere velocities are
approximately (a) 8 %, (b) 16 % and (c) 29 % of the free stream.

on the force coefficients compared to the better-resolved simulations, we expect the effects
of finite sphere velocity to be consistent within this set and representative of such effects
overall. Results from these simulations are shown as phase-plane trajectories in figure 24.
Three starting locations close to the boundary between surfing and ejection/re-entrainment
were chosen (x0/r = 13, 14 and 15) and the sphere density was varied by a factor of sixteen
(ρb/ρa = 21.4 × 103, 5.36 × 103 and 1.34 × 103), resulting in sphere velocities towards
the downstream end of the computational domain of typically 8 %, 16 % and 29 % of the
free-stream velocity. The effects of such sphere velocities on the surfing behaviour is seen
to be limited. For the largest sphere density, the qualitative behaviour is exactly the same as
if the sphere velocity was entirely negligible, with the x0/r = 13 and 14 trajectories stably
surfing (despite the x0/r = 14 trajectory temporarily leaving the stable region) and the
x0/r = 15 trajectory exhibiting expulsion/re-entry. For ρb/ρa = 5.36 × 103, the x0/r = 14
trajectory has now (just) transitioned from surfing to expulsion/re-entry, while the other
two remain qualitatively unchanged; this remains the case when the sphere density is again
decreased to ρb/ρa = 1.34 × 103. We note that for hypersonic flight at 30 km altitude and
assuming a sphere density of 6 × 103 kg m−3 (typical of high-temperature ceramics), we
will have ρb/ρa ≈ 3.3 × 105; the finite-velocity effects on surfing seen here would thus
only manifest themselves a substantial distance further downstream than was simulated.
We conclude that a non-negligible sphere velocity may decrease the prevalence of surfing,
but its effects will be limited and generally only become important hundreds of sphere
radii downstream.

6.2. Variable ratios of specific heats
Thus far we have assumed that the fluid is a perfect gas with a constant ratio
of specific heats of γ = 1.4. As the free-stream Mach number increases, however,
high-temperature effects (primarily vibrational excitation and molecular dissociation)
will emerge (Anderson 2006) and this perfect-gas assumption will become increasingly
inaccurate. A detailed examination of these effects is beyond the scope of this paper, but
at least a qualitative estimate of how they will affect the sphere dynamics is possible
through considering variations in the ratio of specific heats. Activation of the internal
energy modes will decrease the effective γ towards unity; approximating high-temperature
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FIGURE 25. (a) Ratio of Pitot pressure before and after an oblique shock with varying turn
angle for a Mach number of 10 and ratios of specific heat of (-�-) 1.1, (-�-) 1.2, (-�-) 1.3 and
(-•-) 1.4. The weak-shock branch in each case is indicated by the solid curve with symbols, the
corresponding strong-shock branch by the dashed curve. (b) Lift-to-drag ratio for a sphere as it
is translated through the oblique shock created by a 10◦ ramp at Mach 10 for (– –) γ = 1.2 and
(––) γ = 1.4.

effects through variations in γ is thus common in the literature (see, for example, Gnoffo
et al. 1996). To begin, we note that decreasing γ will reduce the shock angle for a given θ ,
and from this alone we would expect the transition boundaries between the categories of
sphere behaviour to be shifted to larger x0/r; however, changes in γ will also affect both
the sphere–shock and sphere–wall interactions, and we consider these briefly now.

Regarding sphere–shock interactions, we noted earlier in our discussion of figure 7 that
the maximum L/D that the sphere experiences as it passes through the shock is closely
linked to the ratio of pressures before and after the oblique shock, and that this in turn
dictates the surfing behaviour (i.e. the existence and size of the stable surfing region). In
figure 25(a) we have plotted the ratio of Pitot pressures across a Mach-10 oblique shock
against the ramp angle for values of γ from 1.1 to 1.4. For a fixed θ , this Pitot-pressure
ratio increases with decreasing γ , and the maximum value over the range of possible θ
also increases: for γ = 1.1, this maximum is more than double that for γ = 1.4. Based
on our earlier arguments then, we would expect the maximum sphere L/D to increase as
γ is decreased. In figure 25(b), which shows the sphere L/D versus ( y − ys)/r for forced
simulations with γ values of 1.2 and 1.4 (both for M = 10, θ = 10◦), we see that this is
indeed the case. As a result, the stable region in the phase plane is larger for γ = 1.2
compared to γ = 1.4, and we can generalize to predict this as a consistent trend.

As for the effect of decreasing the ratio of specific heats on the sphere–wall interactions,
a series of forced simulations similar to those described in § 4 were performed with
varying γ . As γ tends towards unity, the bow shock around the sphere moves closer to
the sphere surface, which decreases the value of ysep/r (i.e. the wall-normal distance at
which the wall effects on the forces become negligible), and thus also the net repulsion
that the sphere experiences from the wall. Overall then, decreasing γ would be expected
to promote the likelihood of surfing for a given Mach number and ramp angle. This
is confirmed in figure 26, which shows phase-plane trajectories for M = 10, θ = 10◦,
and ratios of specific heats of γ = 1.2, 1.3 and 1.4, all with the same x0/r values
(note that the γ = 1.4 case is the same as figure 15b). Clearly, decreasing γ shifts the
transition boundaries downstream, expanding the range of x0/r for which surfing and
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FIGURE 26. Separation trajectories in the phase plane for a Mach 10 free stream, a ramp angle of
10◦ and ratios of specific heats of (a) 1.4, (b) 1.3 and (c) 1.2. The starting locations are x0/r = 9,
11, 13, 15, 25, 32 and 36 (as in figure 15b).

ejection/re-entrainment will occur. For example, the x0/r = 15 trajectory is ejected just
outside the stable region for γ = 1.4, but remains inside for γ = 1.3, and even more so
for γ = 1.2.

We finally note that the trends observed in this section (pertaining to both finite sphere
velocities and high-temperature effects) can be expected to carry over to viscous scenarios.

7. Conclusions

In this first of a two-part work, we have examined the dynamical behaviour of a
sphere released suddenly into a hypersonic inviscid flow from the surface of a planar
ramp. A variety of numerical simulations were performed to investigate the separation
behaviour. Forced simulations, in which the aerodynamic forces acting on the sphere
along a specified trajectory were computed, were used to study the interactions first
between the sphere and the ramp-generated oblique shock and then between the sphere and
the ramp wall itself. The sphere–shock simulations provided insight into the conditions
under which shock-wave surfing – a phenomenon in which the sphere rides the oblique
shock downstream – is possible for different free-stream Mach numbers and ramp angles.
This was facilitated by a phase-plane analysis that showed that the size of the stable
region associated with surfing increases monotonically with increasing free-stream Mach
number; however, the trend with ramp angle was less clear. For the sphere/ramp-wall
interactions, forced simulations were conducted of a sphere translating away from a wall
aligned with the free-stream flow (i.e. zero ramp angle); results were then extrapolated to
finite ramp angles with the same post-shock Mach numbers (equal to the free-stream value
in the corresponding simulation). The wall exerts a repulsive force on the sphere, and this
is felt further away from the wall as the local Mach number is reduced. Nevertheless, as the
free-stream Mach number is increased for a given ramp angle, the wall interactions result
in an increased tendency for the sphere to be expelled out of the stable surfing region in
the phase plane.

To enable full sphere trajectories to be simulated in a computationally efficient manner,
a decoupled model was developed in which the influences of both shock and wall
interactions contributed to the overall sphere forces, but were assumed to act independently
of one another. Predictions from the model were compared to results from free-flight
simulations, with generally good agreement except when the sphere was released close
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to the ramp leading edge. Three types of sphere trajectories were found to be possible: in
order of increasing distance of release from the ramp leading edge these were (i) surfing
of the sphere down the shock, (ii) initial expulsion from the shock layer followed by
re-entry and entrainment or (iii) direct entrainment inside the shock layer. At Mach 6,
the decoupled model predicted surfing to be unattainable because of the tendency of the
wall interaction to push the sphere trajectory outside of the stable region in the phase plane
(though free-flight simulations showed that surfing was in fact possible for a very limited
range of ramp angles and release locations). At lower hypersonic Mach numbers then, type
(ii) and (iii) trajectories are predominant. By raising the Mach number, however, surfing
becomes possible over an increasing range of ramp angles and sphere release locations.
This demonstrates that, in terms of Mach number trends, the enlargening of the stable
region in the phase plane with increasing Mach number is more significant for the sphere
behaviour than the increased wall-induced expulsion. In all cases, however, the nature
of the wall interaction is to expel the sphere trajectory from the stable region of the phase
plane rather than bring it inside, meaning that the sphere must initially lie within the stable
region for surfing to be initiated.

The decoupled model was used to predict the transition boundaries (in terms of the
downstream release location, x0/r) between the different trajectory types as functions of
the free-stream Mach number and ramp angle. For large Mach numbers and small ramp
angles, the range of initial sphere locations over which surfing and ejection/re-entrainment
occur can become quite large; however, it should be noted that in such cases the ramp
boundary layer would become very thick, resulting in pronounced viscous interactions
and making the inviscid assumption increasingly untenable, even for large sphere
radii. The observed trends were clearly linked to the spacing between the oblique
shock and the ramp surface at the release location, which motivated recasting the
transition boundaries in terms of the initial lateral sphere displacement from the shock.
This re-parameterization was found to give a good collapse of the type (i) to (ii)
transition boundary, but was less successful in collapsing the type (ii) to (iii) boundary
data.

We noted in the introduction that, from a hypersonic-vehicle standpoint, one concern
associated with the surfing phenomenon may be that the leading-edge shock would guide
shed particles preferentially towards downstream parts of the vehicle. Based on our present
findings, we expect that this concern should be more significant at higher Mach numbers,
and that particles shed very close to the leading edge are most likely to follow such
trajectories. Indeed, it is also closest to the leading edge that heating levels are highest
and we might thus surmise that particulate shedding is most likely to occur. Alternatively,
it may be possible to take advantage of the surfing phenomenon to direct shed objects
away from vulnerable parts of the vehicle.

As a closing observation, we note clear parallels between the separation behaviour here
and that observed for two spheres in Laurence & Deiterding (2011) and Laurence et al.
(2012). In the earlier works, as the secondary (smaller) sphere size was increased, the
behaviour transitioned from entrainment within the shock layer of the primary (larger)
sphere, to an increased tendency to surf the primary shock downstream, to expulsion of
the secondary sphere from the primary shock layer beyond a critical radius ratio. This
behaviour is clearly mirrored in the present work as the sphere release location is moved
progressively closer to the ramp leading edge. The primary difference in behaviours arises
from the constant shock angle in the present case. This means that the force-coefficient
profiles resulting from the sphere–shock interactions are unchanging as the sphere moves
downstream, allowing clear distinctions between the trajectory types that are not possible
in the two-sphere case.
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Future work might consider shedding from a non-planar parent body. An axisymmetric
configuration, for example, would have a decreased shock angle for the equivalent final
deflection angle and, as we have seen in the current study, a shallower shock angle
increases the likelihood of surfing. Additionally, it may be of interest to examine the effects
of sudden or gradual changes in ramp angle on sphere trajectories. Such geometrical
changes are characteristic of scramjet intakes (see, for example, the X-43 vehicle),
and might in some cases cause a jump from one trajectory type to another. Finally,
non-spherical geometries for the shed body may exhibit behaviour distinct from that found
in the present study, especially if rotations play a significant role.
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