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1Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
(alexb@math.su.se)

2Department of Mathematical Sciences, University of Copenhagen,
Universitetsparken 5, DK-2100 Copenhagen, Denmark (kajb@math.ku.dk)

(Received 25 February 2018; first published online 18 July 2019)

Abstract We introduce a notion of Koszul A∞-algebra that generalizes Priddy’s notion of a Koszul
algebra and we use it to construct small A∞-algebra models for Hochschild cochains. As an application,
this yields new techniques for computing free loop space homology algebras of manifolds that are either
formal or coformal (over a field or over the integers). We illustrate these techniques in two examples.
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1. Introduction

Koszul algebras were introduced by Priddy [22] and have since then played an important
role in algebraic topology, representation theory and homological algebra (see [18,21] for
introductory accounts). A∞-algebras are generalizations of associative algebras where one
relaxes the associativity constraint up to (coherent) homotopy. They were introduced by
Stasheff [25] in the study of homotopy associative H-spaces, but have found applications
in many other branches of mathematics (see [16] for a readable introduction).

In this paper we introduce a notion of Koszul A∞-algebra that generalizes Priddy’s
notion of a Koszul algebra (see Definition 2.3). The principal technical result is the follow-
ing characterization of Koszul A∞-algebras, which generalizes a known characterization
of Koszul algebras (see [3, Remark 2.13]). Recall that a differential graded (dg) coalgebra
is called formal if it is quasi-isomorphic to its homology through maps of dg coalgebras.

Theorem 1.1. A connected A∞-algebra A is quasi-isomorphic to a Koszul A∞-algebra
if and only if the bar construction BA is formal as a dg coalgebra. Moreover, every Koszul
A∞-algebra is quasi-isomorphic to a minimal Koszul A∞-algebra.

Furthermore, we show that several of the main features of Koszul algebras carry over
to Koszul A∞-algebras. In particular, if A is Koszul, then the homology of the bar con-
struction H∗(BA) may be computed as the Koszul dual coalgebra A¡, which can be
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read off from a presentation for A. We also construct small A∞-algebra models for the
Hochschild cochains on Koszul A∞-algebras that facilitate the computation of Hochschild
cohomology (see Theorem 3.2).

Our work is motivated by the problem of computing the homology of free loop spaces of
manifolds, together with algebraic structure such as the Chas–Sullivan loop product [4].
Free loop space homology is interesting because of its relation to closed geodesics (see,
for example, [11, Chapter 5] and [13]) and because it provides potentially interesting
examples of ‘homological conformal field theories’ (see [12]). In previous work [3] we
explained how Koszul algebras can be used to compute H∗(LM) for manifolds M that
are both formal and coformal. While there are interesting examples of formal and coformal
manifolds, this is a rather restrictive constraint. The new notion of Koszul A∞-algebras
introduced in this paper allows us to treat manifolds that are either formal or coformal,
not necessarily both. Our main results are summarized by the following theorem.

Theorem 1.2. Let M be a simply connected topological space and let k be a field.

(1) The space M is formal over k if and only if the homology of the based loop
space H∗(ΩM ; k) admits a minimal Koszul A∞-algebra structure making it quasi-
isomorphic to C∗(ΩM ; k). In this situation, the homology of M is isomorphic to
the Koszul dual coalgebra,

H∗(M ; k) ∼= H∗(ΩM ; k)¡.

(2) The space M is coformal over k if and only if its homology H∗(M ; k) admits a
minimal Koszul A∞-coalgebra structure making it quasi-isomorphic to C∗(M ; k).
In this situation, the homology of the based loop space is isomorphic to the Koszul
dual algebra,

H∗(ΩM ; k) ∼= H∗(M ; k)!.

In either situation, there is a twisting morphism

κ : H∗(M ; k) → H∗(ΩM ; k)

such that the twisted convolution A∞-algebra

Homκ(H∗(M ; k),H∗(ΩM ; k))

is quasi-isomorphic, as an A∞-algebra, to the Hochschild cochains on C∗(ΩM ; k).
In particular, if M is a d-dimensional manifold that is formal or coformal over k, then

there is an isomorphism of graded algebras

H∗+d(LM ; k) ∼= H∗ Homκ(H∗(M ; k),H∗(ΩM ; k)),

where the left-hand side carries the Chas–Sullivan loop product.

This generalizes [3, Theorem 1.2]. As an illustration, we offer two case studies where
the methods of [3] do not apply, but where the new methods do apply. The first is an
example of a formal but non-coformal manifold, CPn. The Chas–Sullivan algebra of CPn

was computed in [6], but the methods here give a streamlined computation (in fact,
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the twisted convolution algebra model may be viewed as a chain-level refinement of the
Cohen–Jones–Yan spectral sequence). The second example is a certain coformal but non-
formal 7-manifold M , obtained by pulling back the Hopf fibration η : S7 → S4 along the
collapse map S2 × S2 → S4. We show that this manifold is coformal but not formal over
Z and compute H∗+7(LM ; Z). This calculation is new.

2. Koszul A∞-algebras

In this section we introduce a notion of Koszul A∞-algebra that extends Priddy’s notion
of a Koszul algebra [22]. First, let us recall the definition of A∞-algebras. We will follow
the sign conventions of Lefèvre-Hasegawa [17].

Definition 2.1. Let k be a commutative ring. An A∞-algebra over k is a graded
k-module A = {Ai}i∈Z together with maps

mn : A⊗n → A, n ≥ 1,

of degree n− 2 such that ∑
r+s+t=n
u=r+1+t

(−1)rs+tmu(1⊗r ⊗ms ⊗ 1⊗t) = 0 (1)

for every n ≥ 1.

Note that an A∞-algebra A such that mn = 0 for n ≥ 3 is the same thing as a (non-
unital) dg algebra. The differential m1 of A will also be denoted by dA.

Definition 2.2. A weight grading on an A∞-algebra A is a decomposition of A as a
direct sum of graded k-modules,

A =
⊕
k∈Z

A(k),

such that mn : A⊗n → A is homogeneous of weight n− 2, in the sense that

mn(A(i1) ⊗ · · · ⊗A(in)) ⊆ A(i1 + · · · + in + n− 2).

Note that each component A(k) is itself a graded k-module; in effect A is bigraded. An
element x ∈ A(k)i is said to have weight w(x) = k and (homological) degree |x| = i.

Next, recall that the bar construction of an A∞-algebra A is the dg coalgebra BA =
(T c(sA), b), where T c(sA) is the tensor coalgebra on sA and b is the differential given by
b = b0 + b1 + b2 + · · · , where

bn−1[sx1| . . . |sxm] =
m−n∑
k=0

(−1)εk [sx1| . . . |sxk|smn(xk+1, . . . , xk+n)| . . . |sxm],

and where the sign is given by

εk = 1 +
k∑

i=1

|sxi| +
n∑

j=1

(n− j)|sxk+j |.
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If A is equipped with a weight grading, then the bar construction BA admits a weight
grading where

w[sx1| . . . |sxn] = w(x1) + · · · + w(xn) + n.

(The suspension operator s increases weight and homological degree by 1.) The differential
b then becomes homogeneous of weight −1.

A weight grading on A is called negative if A(k) = 0 for k ≥ 0. In this situation, the
bar construction is concentrated non-positive weights,

BA(0) b−→ BA(−1) b−→ BA(−2) → · · · .

The weight-0 homology of the bar construction,

A¡ = H∗(BA)(0) = ker (b : BA(0) → BA(−1)),

will be called the Koszul dual coalgebra of A. It is a graded subcoalgebra of BA, with
trivial differential.

Definition 2.3.

(1) A Koszul weight grading on an A∞-algebra A is a negative weight grading such
that the homology of the bar construction BA is concentrated in weight 0.

(2) An A∞-algebra is called Koszul if it admits a Koszul weight grading.

Thus, A is Koszul if and only if the inclusion A¡ → BA is a quasi-isomorphism.

Remark 2.4. The above definition is modelled on the following well-known charac-
terization of Koszul algebras: a (non-unital) quadratic algebra A is Koszul if and only if
the grading induced by the (negative) wordlength in the generators is a Koszul weight
grading (see, for example, [18, Theorem 3.4.4]). In this case, the weight grading on BA
corresponds to the ‘syzygy degree’ of [18, § 3.3.1]. However, as we will see, the notion of
a Koszul weight grading is more flexible and applies not only to quadratic algebras.

Proposition 2.5. Let C be a graded coalgebra with zero differential. Then the cobar
construction ΩC is a Koszul dg algebra; the grading by tensor length,

ΩC(−k) = (s−1C)⊗k,

is a Koszul weight grading.

Proof. We may view C as a weight graded coalgebra by declaring it to be concentrated
in weight 0. The canonical quasi-isomorphism C → BΩC is weight homogeneous, showing
the homology of BΩC is concentrated in weight 0. �

https://doi.org/10.1017/S0013091519000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000154


Koszul A∞-algebras and free loop space homology 41

A chain complex (A,m1) of k-modules is called split if there exists a contraction of
chain complexes,

(A,m1)
f

��
h �� (H∗A, 0),

g
�� (2)

meaning f and g are chain maps such that fg = 1 and h is a chain homotopy between
gf and 1. For instance, if k is a principal ideal domain (PID) then every chain complex
of free k-modules with k-free homology is split. In particular, if k is a field, then every
chain complex is split. Recall that an A∞-algebra is called minimal if m1 = 0.

Theorem 2.6. Every Koszul A∞-algebra whose underlying chain complex is split is
quasi-isomorphic to a minimal Koszul A∞-algebra.

Proof. Let (A, {mn}) be a Koszul A∞-algebra. Since the differential m1 of A is homo-
geneous of weight −1, the homology H∗A may be equipped with a weight grading as
follows:

H∗A(k) = ker(A(k) m1−−→ A(k − 1))/ im(A(k + 1) m1−−→ A(k)).

Since (A,m1) is assumed to be split, there exists a contraction as in (2) and we may
without loss of generality assume that f and g are homogeneous of weight 0 and that h is
homogeneous of weight 1. The homotopy transfer theorem (see, for example, [1]) produces
a minimal A∞-algebra structure m′ = {m′

n}n≥2 on H∗A and an A∞-quasi-isomorphism

{gn}n≥1 : (H∗A, {m′
n}) → (A, {mn}n≥1)

with g1 = g. The A∞-quasi-isomorphism {gn} corresponds to a quasi-isomorphism of dg
coalgebras G : B(H∗A,m′) → B(A,m). A glance at the explicit formulas for the trans-
ferred structure shows that m′

n is homogeneous of weight n− 2 and that G is homogenous
of weight 0. Since BA has homology concentrated in weight 0, it follows that so does
BH∗A. In other words, the weight grading on (H∗A,m′) is Koszul. �

Corollary 2.7. Let C be a graded coalgebra. If ΩC is split as a chain complex, then
the homology of the cobar construction H∗(ΩC) admits a minimal Koszul A∞-algebra
structure, such that it is quasi-isomorphic to ΩC.

Proof. Combine Theorem 2.6 and Proposition 2.5. �

In [2, Corollary 2.10] (see also [3, Remark 2.13]), it was shown that a graded algebra
A is Koszul if and only if the bar construction BA is formal as a dg coalgebra, giving an
intrinsic characterization of the Koszul property for algebras. The next theorem extends
this result to A∞-algebras. For simplicity we state the result when the ground ring k is
a field.

Definition 2.8. An A∞-algebra (or A∞-coalgebra) is called connected if it is concen-
trated in homological degrees greater than 0 and simply connected if it is concentrated
in degrees greater than 1.
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Theorem 2.9. Let A be a connected A∞-algebra over a field k. The following
statements are equivalent.

(1) The A∞-algebra A is quasi-isomorphic to a Koszul A∞-algebra.

(2) The bar construction BA is formal as a dg coalgebra.

Proof. Suppose that A is quasi-isomorphic to a Koszul A∞-algebra. Since B preserves
A∞-quasi-isomorphisms, we may without loss of generality assume that A is Koszul itself.
In this case, the inclusion A¡ → BA is a quasi-isomorphism of dg coalgebras. Since the
coalgebra A¡ has trivial differential, this shows that BA is formal.

Conversely, assume BA is formal. Since A connected, BA is simply connected. Thus, the
cobar construction preserves quasi-isomorphisms and there exists a quasi-isomorphism of
dg algebras ΩH∗(BA) → ΩBA. By Proposition 2.5, the dg algebra ΩH∗(BA) is Koszul.
Since A is A∞-quasi-isomorphic to ΩBA, this shows that A is quasi-isomorphic to a
Koszul A∞-algebra. �

2.1. Koszul A∞-coalgebras

Everything in the previous section can be dualized.

Definition 2.10. An A∞-coalgebra is a graded k-module C = {Ci}i∈Z together with
maps

Δn : C → C⊗n, n ≥ 1,

of degree n− 2 such that

∑
r+s+t=n
u=r+1+t

(−1)rs+t(1⊗r ⊗ Δs ⊗ 1⊗t)Δu = 0

for every n ≥ 1.

Definition 2.11. A weight grading on an A∞-coalgebra C is a decomposition of C as
a direct sum of graded k-modules,

C =
⊕
k∈Z

C(k),

such that Δn : C → C⊗n is homogeneous of weight n− 2, in the sense that

Δn(C(k)) ⊆
⊕

C(i1) ⊗ · · · ⊗ C(in),

where the sum is over all i1, . . . , in such that i1 + · · · + in = k + n− 2.
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The cobar construction on an A∞-coalgebra C is defined as ΩC = (T (s−1C), δ), where
the differential is a sum of derivations δ = δ0 + δ1 + · · · determined by

δn−1(s−1x) = (s−1)⊗nΔn(x).

If C is weight graded, then the cobar construction is weight graded by

w(s−1x1 ⊗ · · · ⊗ s−1xn) = w(x1) + · · · + w(xn) − n.

Then δ becomes homogeneous of weight −1.
If C is positively weight graded, then ΩC is concentrated in non-negative weights,

· · · δ−→ ΩC(2) δ−→ ΩC(1) δ−→ ΩC(0).

The weight-0 homology of the cobar construction,

C ! = H∗(ΩC)(0) = coker (δ : ΩC(1) → ΩC(0)),

is called the Koszul dual algebra of C. It is a quotient graded algebra of ΩC, with trivial
differential.

Definition 2.12.

(1) A Koszul weight grading on an A∞-coalgebra C is a positive weight grading such
that the homology of ΩC is concentrated in weight 0.

(2) An A∞-coalgebra is called Koszul if it admits a Koszul weight grading.

Thus, C is Koszul if and only if the map ΩC → C ! is a quasi-isomorphism.

Remark 2.13. Note that ΩC(0) may be identified with the tensor algebra T (s−1C(1))
and the image of δ : ΩC(1) → ΩC(0) with the two-sided ideal generated by∑

n≥1

(s−1)⊗nΔn(x)

for x ∈ C(2). Thus, the Koszul dual algebra of C admits a presentation where C(1) enu-
merates the generators and C(2) enumerates the relations. This presentation is quadratic
if and only if Δn = 0 for all n �= 2, that is, if C is a graded coalgebra with trivial differential
and higher operations.

The results in the previous section have obvious duals. We state these results below
for reference.

Proposition 2.14. Let A be a graded algebra with zero differential. Then the bar
construction BA is a Koszul dg coalgebra; the grading by bar length,

BA(k) = (sA)⊗k,

is a Koszul weight grading.
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Theorem 2.15. Every Koszul A∞-coalgebra whose underlying chain complex is split
is quasi-isomorphic to a minimal Koszul A∞-coalgebra.

Corollary 2.16. Let A be a graded coalgebra. If BA is split as a chain complex, then
the homology of the bar construction H∗(BA) admits a minimal A∞-coalgebra structure
such that H∗(BA) is Koszul and quasi-isomorphic to BA.

Theorem 2.17. Let C be a simply connected A∞-coalgebra over a field k. The
following are statements equivalent.

(1) C is quasi-isomorphic to a Koszul A∞-coalgebra.

(2) The cobar construction ΩC is formal as a dg algebra.

Proof. The proof is dual to the proof of Theorem 2.9. The assumption that C is simply
connected is used to make sure that the cobar construction preserves quasi-isomorphisms.

�

We now give some examples of Koszul A∞-(co)algebras.

Example 2.18.

• As remarked earlier, every quadratic Koszul algebra is a Koszul A∞-algebra.

• As shown above, the bar construction BA of a graded algebra A is a Koszul dg
coalgebra. The presentation of the Koszul dual algebra BA! described in Remark 2.13
gives the ‘multiplication table’ presentation of A; BA! = T (A)/(a⊗ b− a · b|a, b ∈
A).

• The Chevalley–Eilenberg complex C∗(g) = (Λ∗g, dCE) of a Lie algebra g, with weight
grading given by C∗(g)(k) = Λkg, is a Koszul dg coalgebra. The Koszul dual algebra
C∗(g)! is isomorphic to the universal enveloping algebra Ug, and the presentation
from Remark 2.13 agrees with the standard presentation Ug = T (g)/(x⊗ y − y ⊗
x− [x, y]|x, y ∈ g).

• For a non-homogeneous Koszul algebra A, in the sense of Priddy, the co-Koszul
complex (see [22, § 4]) is a Koszul dg algebra, whose Koszul dual algebra is A.

• In [8,15], a notion of Koszul duality for associative algebras with relations generated
by R ⊆ V ⊗N is discussed. The Koszul dual is defined there as an A∞-algebra with
m2 and mN as the only non-vanishing structure maps. With our definition of Koszul
A∞-algebra, this A∞-algebra will be Koszul.

• In [20] a notion of Koszul P -algebra is developed for quadratic operads P . The
A∞-operad admits a quadratic presentation, so this would lead to another notion of
Koszul A∞-algebra. It would be interesting to compare this to our notion.

In later sections we will see further non-trivial examples of Koszul A∞-algebras that
are not equivalent to ordinary Koszul algebras.
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2.2. Twisting morphisms and twisted tensor products

Let C be a dg coalgebra and A an A∞-algebra. The graded k-module Hom(C,A) admits
an A∞-algebra structure with

μ1(f) = dA ◦ f − (−1)|f |f ◦ dC ,

μn

(
f1, . . . , fn

)
= mn ◦ (f1 ⊗ · · · ⊗ fn) ◦ Δ(n), n ≥ 2,

for f, f1, . . . , fn ∈ Hom(C,A). Here {mn} denotes the A∞-structure on A and Δ(n) : C →
C⊗n the iterated coproduct on C. The graded vector space Hom(C,A) together with this
A∞-structure will be referred to as the convolution A∞-algebra.

Similarly, if C is an A∞-coalgebra and A is a dg algebra, then Hom(C,A) admits an
A∞-algebra structure where

μ1(f) = dA ◦ f − (−1)|f |f ◦ dC ,

μn

(
f1, . . . , fn

)
= m(n) ◦ (f1 ⊗ · · · ⊗ fn) ◦ Δn, n ≥ 2,

where {Δn} is the A∞-coalgebra structure on C and m(n) : A⊗n → A denotes the iterated
product on A.

Definition 2.19. A twisting morphism is a map τ : C → A of degree −1 such that∑
n≥1

μn(τ, . . . , τ) = 0.

For an A∞-algebra A, there is a twisting morphism τA : BA→ A, called the universal
twisting morphism, given by the composite

BA→ sA→ A,

where the first map is the projection and the second the desuspension. It gives rise to a
natural bijection

Homdgc(C,BA)
τA∗ �� Tw(C,A).

Similarly, for an A∞-coalgebra C, there is a twisting morphism τC : C → ΩC, also
called the universal twisting morphism, given by the composite

C → s−1C → ΩC,

where the first map is the desuspension and the second the inclusion of generators. It
gives rise to a natural bijection

Homdga(ΩC,A)
τ∗

c �� Tw(C,A).

A proof of these bijections can be found in [23, Lemma 3.17].
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Definition 2.20.

(1) Let A be a negatively weight graded A∞-algebra with Koszul dual coalgebra A¡.
The twisting morphism defined by the composite

A¡ → BA
τA−−→ A

will be denoted by

κ : A¡ → A.

(2) Let C be a weight graded A∞-coalgebra with Koszul dual algebra C !. The twisting
morphism defined by the composite

C
τC−−→ ΩC → C !

will be denoted by

κ : C → C !.

Definition 2.21. Let C be a dg coalgebra, A an A∞-algebra and τ ∈ Hom(C,A)−1 a
twisting morphism. The twisted tensor product C ⊗τ A is the usual tensor product chain
complex with the term∑

k≥2

(1 ⊗mk) ◦ (1 ⊗ τ⊗(k−1) ⊗ 1) ◦ (Δ(k) ⊗ 1)

added to the differential where Δ(k) is the iterated coproduct.
Similarly, let C be an A∞-coalgebra, A a dg algebra and τ ∈ Hom(C,A)−1 a twisting

morphism. The twisted tensor product C ⊗τ A is the usual tensor product chain complex
with the term ∑

k≥2

(1 ⊗m(k)) ◦ (1 ⊗ τ⊗(k−1) ⊗ 1) ◦ (Δk ⊗ 1)

added to the differential where m(k) is the iterated product.

Remark 2.22. In the following theorem and in our topological applications we need
to add (co)units, so in effect we will work with (co)augmented A∞-(co)algebras. Thus, in
what follows, we will assume that (co)bar constructions, twisted tensor products and other
related constructions are (co)unital. To make sense of attributes such as connectedness,
weight gradings, Koszulness, etc., one applies them to the (co)augmentation (co)ideal.

Theorem 2.23.

(1) A negatively weight graded connected A∞-algebra A is Koszul if and only if the
twisted tensor product

A¡ ⊗κ A

is contractible, where κ : A¡ → A is the composite A¡ → BA
τA−−→ A.
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(2) A positively weight graded connected A∞-coalgebra C is Koszul if and only if the
twisted tensor product

C ⊗κ C
!

is contractible, where κ : C → C ! is the composite C
τC−−→ ΩC → C !.

Proof. The theorem follows by an adaptation of the spectral sequence argument in [18,
§ 2.5]. In the case of (1) this is a comparison of spectral sequences obtained from filtrations
of BA⊗τA

A and A¡ ⊗κ A. These filtrations come from filtrations by homological degree
on BA and A¡. �

2.3. Applications to topological spaces

Let k be a field. Recall that a based topological space X is called formal over k if the
singular chain complex C∗(X; k) is quasi-isomorphic, as a dg coalgebra, to the homology
coalgebra H∗(X; k). Dually, the space X is called coformal over k if the singular chains on
the based loop space C∗(ΩX; k) are quasi-isomorphic, as a dg algebra, to the homology
algebra H∗(ΩX; k). By applying the homotopy transfer theorem to the dg coalgebra
C∗(X; k) one obtains a minimal A∞-coalgebra structure on H∗(X; k), where the binary
coproduct is the ordinary coproduct in homology. Similarly, the homology H∗(ΩX; k)
is endowed with a minimal A∞-algebra structure where m2 is the Pontryagin product.
Theorem 2.9 allows us to interpret formality and coformality in terms of Koszulness of
these A∞-structures.

Theorem 2.24. Let X be a simply connected based topological space and let k be a
field. The following are statements equivalent.

(1) The space X is formal over k.

(2) H∗(ΩX; k) is a Koszul A∞-algebra.

In this situation, the homology coalgebra H∗(X; k) is isomorphic to the Koszul dual
coalgebra of H∗(ΩX; k).

Proof. This follows from Theorem 2.9 and the fact that BC∗(ΩX; k) is quasi-
isomorphic to C∗(X; k) as a dg coalgebra (see [9, Theorem 6.3]). �

Remark 2.25. When X is formal over k, the Koszul weight grading on H∗(ΩX; k)
corresponds to the ‘lower gradation’ of the non-commutative bigraded minimal model for
the cohomology ring H∗(X; k) (cf. [14]).

Dually, we have the following theorem.

Theorem 2.26. Let X be a simply connected space and let k be a field. The following
are statements equivalent.

(1) The space X is coformal over k.

(2) H∗(X; k) is a Koszul A∞-coalgebra.
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In this situation, the Pontryagin algebra H∗(ΩX; k) is isomorphic to the Koszul dual
algebra of H∗(X; k).

Proof. This follows from Theorem 2.17 together with the well-known fact that
ΩC∗(X; k) is quasi-isomorphic to C∗(ΩX; k) as a dg algebra. �

Remark 2.27. The results in this section can be extended to the case when k is a
PID if one assumes that H∗(X; k) and H∗(ΩX; k) are free k-modules.

3. Hochschild cohomology and obstructions to formality

In this section we will use the notion of Koszulness for A∞-algebras to write down small
chain complexes for computing Hochschild cohomology, generalizing the results of [3].
We also discuss weight gradings on Hochschild cohomology and obstructions to formality
and coformality.

3.1. Hochschild cochains and twisted convolution algebras

Given a convolution algebra Hom(C,A), and a twisting morphism τ : C → A, we can
define a new A∞-structure {μτ

n} on Hom(C,A) by

μτ
n(f1, . . . , fn) =

∑
i≥0

μn+i(τ⊗i ∗ f1 ⊗ . . .⊗ fn),

where ∗ denotes the anti-symmetric shuffle product, and where {μn} is the convolution
A∞-algebra structure on Hom(C,A) described in § 2.2. The first maps are given by

μτ
1(f) = μ1(f) + μ2(τ, f) + (−1)|sf |μ2(f, τ)

+ μ3(τ, τ, f) + (−1)|sf |μ3(τ, f, τ) + μ3(f, τ, τ) + · · ·
and

μτ
2(f, g) = μ2(f, g) + μ3(τ, f, g) + (−1)|sf |μ3(f, τ, g) + (−1)|sf |+|sg|μ3(f, g, τ)

+ μ4(τ, τ, f, g) + (−1)|sf |μ4(τ, f, τ, g) + · · · .
The Hochschild cohomology complex can be defined as a convolution algebra twisted

by the universal twisting morphism as follows.

Definition 3.1. Let A be a weight graded A∞-algebra. The Hochschild cohomology
complex C∗(A,A) is the weight graded A∞-algebra defined by HomτA(BA,A), the con-
volution algebra twisted with the universal twisting morphism τA. Dually, the Hochschild
cohomology complex C∗(C,C) of a weight graded A∞-coalgebra C is defined as the weight
graded A∞-algebra HomτC (C,ΩC).

This point of view enables us, in the case of Koszul A∞-(co)algebras, to construct
twisted convolution algebras that are smaller than the Hochschild cohomology complex
but have the same homology.
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Theorem 3.2.

(1) Let A be a Koszul A∞-algebra over a PID k with Koszul dual coalgebra A¡ and let

κ : A¡ → A be the composite A¡ → BA
τA−−→ A. Assume that A is free over k. Then

there are quasi-isomorphisms of weight graded A∞-algebras

Homκ(A¡, A) ∼ C∗(A,A) ∼ C∗(A¡, A¡).

(2) Let C be a Koszul A∞-coalgebra over a PID k with Koszul dual algebra C ! and let

κ : C → C ! be the composite C
τC−−→ ΩC → C !. Assume that C and C ! are free over

k. Then there are quasi-isomorphisms of weight graded A∞-algebras

Homκ(C,C !) ∼ C∗(C,C) ∼ C∗(C !, C !).

Proof. We will prove the first statement; the proof of the second one is analogous.
The proof relies on the basic perturbation lemma and we assume that the reader is

familiar with it. For an introduction, see, for example, [1]. Consider the injective quasi-
isomorphism f : A¡ → BA that exists since A is a Koszul A∞-algebra. Since A is assumed
to be free over k it follows that so is BA, and since k is a PID it follows that A¡ is free
over k as well. Since the chain complexes in question are free over the PID k, it is possible
to extend f to a contraction of chain complexes,

(
BA, dBA

) g
��

h ��
(
A¡, 0

)
f

�� .

We apply the dg-functor Hom(−, A) and obtain a new contraction.

(
Hom(BA,A), ∂

) f∗
��

h∗ ��
(
Hom(A¡, A), 0

)
g∗

�� .

Since f is a morphism of coalgebras, one sees that f∗ is a strict morphism of A∞-algebras.
Consider the initiator

t =
∑
k≥1

μk+1((τA, . . . , τA) ∗ (−))

where τA : BA→ A is the universal twisting morphism. This choice means that
Hom(BA,A) perturbed with t is isomorphic to HomτA(BA,A). If we apply the basic
perturbation lemma with t as initiator, we obtain a new contraction

(
Hom(BA,A), ∂ + t

) f ′
��

h′ ��
(
Hom(A¡, A), t′

)
g′

�� .

To see that the sum
∑

n≥0(h
∗t)n converges, we use the fact that A carries a weight-

grading. The chain complex Hom(BA,A) inherits a filtration from this grading, where t
decreases the filtration degree and h∗ preserves it. It follows that

∑
n≥0(h

∗t)n converges
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pointwise. Since f∗ is a strict A∞-morphism, we can simplify the formulas for f ′ and t′.
Indeed, f ′ is given by f ′ = f∗ + f∗th∗ + f∗th∗th∗ + · · · . We note that

f∗th∗ = f∗
∑
k≥1

μk+1((τA, . . . , τA) ∗ (h∗)) =
∑
k≥1

μk+1((f∗τA, . . . , f∗τA) ∗ (f∗h∗)) = 0,

since f∗ is a strict morphism and f∗h∗ = 0. Thus, we see that f ′ = f∗. Similarly, t′ =
f∗tg∗ + f∗th∗tg∗ + · · · , where

f∗tg∗ = f∗
∑
k≥1

μk+1((τA, . . . , τA) ∗ (g∗)) =
∑
k≥1

μk+1((f∗τA, . . . , f∗τA) ∗ (f∗g∗)) =

=
∑
k≥1

μk+1((κ, . . . , κ) ∗ (−)),

which is the differential on Homκ(A¡, A). The higher terms all vanish in the same way as
above, so we may identify (Hom(A¡, A), t′) with Homκ(A¡, A). Thus, we see that f ′ = f∗

is a strict A∞-quasi-isomorphism HomτA(BA,A) → Homκ(A¡, A).
Thus, we have proved the first part of (1), that HomκA(A¡, A) ∼ C∗(A,A), and we only

need to prove that Homκ(A¡, A) ∼ C∗(A¡, A¡). This can be done via a spectral sequence
argument. The key is to consider the following inductively defined filtration of A¡:

F0(A¡) = k1,

Fr(A¡) = {x ∈ A¡|Δ(x) − 1 ⊗ x− x⊗ 1 ∈ Fr−1(A¡) ⊗ Fr−1(A¡)}.

By analysing the resulting spectral sequence we see that we indeed obtain a quasi-
isomorphism. �

3.2. Obstructions to formality

Building on ideas of Halperin and Stasheff [14], an obstruction theory for formality of
dg algebras over fields of characteristic 0 has been described by Saleh [24]. For associative
dg algebras, Saleh’s obstruction theory is valid over more general ground rings, but since
the proof in [24] relies on working in characteristic zero, we need to indicate the necessary
modifications.

Theorem 3.3. Suppose that A is a dg algebra over a commutative ring k such that
A is split as a chain complex of k-modules. There is a sequence of ‘obstruction classes’

[mk] ∈ HH2(H∗A,H∗A)(−k), k ≥ 3,

where [mk] is defined if the previous classes [m3], . . . , [mk−1] vanish. If [mk] = 0 for all
k ≥ 3, then the dg algebra A is formal.
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Proof. Since A is assumed split, there is a contraction

(A,m1)
f

��
h �� (H∗A, 0)

g
�� .

Using the homotopy transfer theorem, we obtain a minimal A∞-algebra structure on the
homology,

mk : (H∗A)⊗k → H∗A, k ≥ 2,

such that m2 is the usual product on homology and g extends to an A∞-quasi-
isomorphism from (H∗A,m) to A. Considering H∗A as concentrated in weight 0, we
may interpret mk for k ≥ 3 as a cochain of (total) cohomological degree 2 and weight −k
in the Hochschild cochain complex of the algebra (H∗A,m2). Let k ≥ 3 and suppose that
mi = 0 for 2 < i < k. Then the A∞-axiom (1) for n = k + 1 says that mk is a Hochschild
cocycle. If the cohomology class [mk] is 0, say mk = d(ν), a look at the defining formulas
for A∞-morphisms shows that there is a unique A∞-structure {m′

n}n on H∗A such that
f1 = 1, fk−1 = ν, fi = 0 (i �= 1, k − 1) defines an A∞-isomorphism

f : (H∗A,m) → (H∗A,m′).

One checks that m′
2 = m2, m′

i = 0 for 2 < i ≤ k. Importantly, m′
k = 0 because mk is

the coboundary of fk−1. Thus, if the obstruction [mk] vanishes, then (H∗A,m) is A∞-
isomorphic to (H∗A,m′) where m′

i = 0 for 2 < i < k + 1. The next obstruction class is
[m′

k+1]. This describes the inductive construction of the obstruction classes. If all obstruc-
tion classes vanish, we obtain an A∞-isomorphism from (H∗A,m) to (H∗A,m2), which
implies that A is A∞-quasi-isomorphic to (H∗A,m2), that is, A is formal. �

The following useful proposition will allow us to deduce integral formality from rational
formality in favourable situations.

Proposition 3.4. Let A be a dg algebra over Z such that A and H∗A are free
as Z-modules with H∗(A) considered in weight 0. Suppose that the obstruction group
HH2(H∗A,H∗A)(−k) is torsion free for all k ≥ 3. Then A is formal over Z if and only if
A⊗ Q is formal over Q.

Proof. Write U = H∗A for brevity. The claim follows from the easily checked fact
that the obstruction classes for A map to the obstruction classes for A⊗ Q under the
canonical map

HH2(U,U)(−k) → HH2(U,U)(−k) ⊗ Q ∼= HH2(U ⊗ Q, U ⊗ Q)(−k).
Clearly, this map is injective if HH2(U,U)(−k) is torsion-free. �

4. Applications to free loop space homology: two case studies

In this section we will see the theory developed in the previous sections in action. We
will work over the ring Z of integers.
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We offer two case studies. Firstly, we will treat complex projective space as an example
of a manifold that is formal but not coformal over Z. The result of the calculation is
not new, but the perspective is, and the reader may find it interesting to compare our
approach to the existing ones, such as [6].

Secondly, we treat a certain 7-manifold as an example of a manifold that is coformal
but not formal over Z. This is a new computation. Our methods apply more generally
to other coformal but not formal manifolds, but in the interest of brevity and clarity we
choose to focus on a specific example.

4.1. Free loop space homology through Hochschild cohomology

It is well known that Hochschild cohomology can be used to compute the free loop
space homology of a manifold.

Theorem 4.1 (Cohen and Jones [5], Félix, Menichi and Thomas [10], Malm
[19]). Let M be a simply connected manifold of dimension n and let k be a commutative
ring. There are graded ring isomorphisms

H∗+n(LM ; k) ∼= HH∗(C∗(M ; k), C∗(M ; k)) ∼= HH∗(C∗(ΩM ; k), C∗(ΩM ; k))

where the algebra structure on the left-hand side is the Chas–Sullivan loop product.

We can now state the main theorem that will be used for our computations.

Theorem 4.2. Let M be a simply connected closed n-dimensional manifold. Let k be
a PID such that H∗(M ; k) and H∗(ΩM ; k) are free k-modules.

(1) If M is formal over k, then there is an algebra isomorphism

H∗+n(LM) ∼= H∗ Homκ(H∗M,H∗ΩM),

where H∗(ΩM ; k) is considered as A∞-algebra and κ is the composite

H∗(M) → BH∗(ΩM)
τH∗(ΩM)−−−−−→ H∗(ΩM).

(2) If M is coformal, there is an algebra isomorphism

H∗+n(LM) ∼= H∗ Homκ(H∗M,H∗ΩM),

where H∗M is considered as A∞-coalgebra and κ is the composite

H∗(M)
τH∗(M)−−−−−→ ΩH∗(M) → H∗(ΩM).

Proof. This follows from Theorems 2.24, 2.26, 3.2 and 4.1 together with Remark
2.27. �
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4.2. Complex projective space

To compute the free loop space homology of CPn with coefficients in Z we will use the
following approach. First we introduce an A∞-algebra A, prove that it is Koszul and note
that its Koszul dual coalgebra A¡ is isomorphic to H∗(CPn; Z). This enables us to use
Theorem 3.2 to compute the Hochschild cohomology of H∗(CPn) with its weight grading.
From this we can use the obstruction theory of Proposition 3.4 together with the familiar
fact that CPn is formal over Q to prove that CPn is formal over Z. Then, finally, we can
apply Theorem 4.2 to see that our Hochschild cohomology computation also calculates
string topology.

Theorem 4.3. The manifold CPn is formal over Z. Moreover, the Hochschild
cohomology algebra of H∗(CPn; Z) is isomorphic to

Λ[x, y, z]
(xn+1, (n+ 1)xnz, xny)

,

where Λ[x, y, z] is the free graded commutative algebra on generators x, y, z with degrees
|x| = −2, |y| = −1 and |z| = 2n.

Proof. Let A denote the A∞-algebra given by the free graded commutative algebra
Λ(α, β), with |α| = 1, |β| = 2n, together with the higher A∞-structure maps

mn+1(α, . . . , α) = β,

mn+1(. . . , βφ, . . . ) = βmn+1(. . . , φ, . . . ),

mn+1(. . . , 1, . . . ) = 0.

We put mk = 0 if k is not equal to 2 or n+ 1. We give A the weight grading determined by
w(α) = −1 and w(β) = −2. From inspection of BA we see that A¡ = Z{1, x1, . . . , xn} ∼=
H∗(CPn; Z) where |xi| = 2i. There is a twisting morphism κ : A¡ → A taking x1 to α. We
want to show that A¡ ⊗κ A is contractible so that we can apply Theorem 2.23 to conclude
that A is Koszul.

The differentials are given as follows on the basis elements, where for simplicity we
denote x0 = 1:

dτ (xi ⊗ βk) =

{
xi−1 ⊗ αβk if i ≥ 1
0 if i = 0,

dτ (xi ⊗ αβk) =

{
x0 ⊗ βk+1 if i = n

0 if i < n.

We see that the basis elements pair up except for 1 ⊗ 1, showing that the complex is
indeed contractible. Now we can apply Theorem 3.2 to calculate Hochschild cohomology
of A¡. For ease of writing we will dualize A¡ and use A! ∼= H∗(CPn; Z), the linear dual of
A¡.

Since it is isomorphic to T (a)/(an+1) with |a| = −2, Homκ(A¡, A) is isomorphic to the
A∞-algebra A! ⊗A twisted by the element a⊗ α. The twisted differential is given on
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generators as follows:

∂τ (a� ⊗ βk) = 0, ∂τ (a� ⊗ αβk) =

{
(n+ 1)an ⊗ βk+1 if � = 0
0 if � > 0.

The twisted multiplication is given by

(ak ⊗ αiβ�)(ap ⊗ αjβq) = ak+p ⊗ αi+jβ�+q +
∑

antisymmetric
shuffles

±ak+p+n−1

⊗mn+1(α, . . . , αi, . . . , αj , . . . , α)β�+q.

The first term is zero unless i+ j < 2 and the second term is zero unless i+ j = 2, so we
only have one term at a time for any two basis elements. Moreover, the second term is
zero unless k + p < 2, so the only possible non-zero second terms are as follows:

(1 ⊗ αβk)(1 ⊗ αβq) =
(
n+ 1

2

)
an−1 ⊗ βk+q+1,

(a⊗ αβk)(1 ⊗ αβq) =
(
n+ 1

2

)
an ⊗ βk+q+1,

(1 ⊗ αβk)(a⊗ αβq) =
(
n+ 1

2

)
an ⊗ βk+q+1.

Since 1 ⊗ αβk is not a cycle, these terms will not affect the multiplication in the homology.
We see that a⊗ 1, a⊗ α and 1 ⊗ β are algebra generators for the homology and if we write
a⊗ 1 = x, a⊗ α = y and 1 ⊗ β = z we see that we get the relations xn+1 = 0, xny = 0
and (n+ 1)xnz = 0. From this description of the Hochschild cohomology of A¡ we see that
we can apply Proposition 3.4 together with the well-known fact that CPn is rationally
formal (which follows, for example, since it is a compact Kähler manifold [7] together
with [14, Corollary 6.9]) to conclude that CPn is formal over the integers. �

Corollary 4.4. There is an isomorphism

H∗+2nLCPn ∼= Λ[x, y, z]
(xn+1, (n+ 1)xnz, xny)

of graded algebras where the algebra structure on the left-hand side is given by the string
topology multiplication.

Proof. This follows from the above theorem together with Theorem 4.2. �
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4.3. A non-formal 7-manifold

The manifold M is defined as the pullback of the Hopf fibration η : S7 → S4 along the
collapse map S2 × S2 → S4:

M

��

�� S7

η

��
S2 × S2

∧ �� S4

In other words,

M =
{
(x, y, z) ∈ S2 × S2 × S7 | x ∧ y = η(z)

} ⊂ S2 × S2 × S7.

The manifold M is the total space of a principal S3-bundle,

S3 i−→M
p−→ S2 × S2.

We begin by computing the cohomology ring of M .

Theorem 4.5. The cohomology ring of M is given by

H∗M = Z ⊕ Za⊕ Zb⊕ Zx⊕ Zy ⊕ ZM,

where |a| = |b| = 2, |x| = |y| = 5, and |M | = 7. The ring structure is determined by a 

x = −b 
 y = M ; all other non-trivial products are zero.

Proof. It is well known that the Euler class of the S3-bundle S7 → S4 is ±1 times
the fundamental class. We can also see this by applying the Gysin sequence associated
to η : S7 → S4. Euler classes are preserved under pullbacks, so the Euler class of the
S3-bundle M → S2 × S2 is ±1 times the fundamental class of S2 × S2. Now we can
analyse the associated Gysin sequence. We see that H4(M) ∼= 0 since

H0(S2 × S2) �e−−→ H4(S2 × S2) → H4(M) → 0

has to be exact and the first map is multiplication with the Euler class and thus an
isomorphism. We also see thatH5(M) ∼= Z2, H6(M) ∼= 0 andH7(M) ∼= Z from the Gysin
sequence. Now the result follows from Poincaré duality if we choose generators x, y for
H5(M) and let a, b ∈ H2(M) be defined via the Poincaré duality pairing such that a 

x = −b 
 y = M. �

Next, we turn to the homotopy groups.

Theorem 4.6. The manifold M is simply connected and, for every k ≥ 2, the map

ψ : πk(S2) ⊕ πk(S2) ⊕ πk(S3) → πk(M),

sending (a, b, c) to α ◦ a+ β ◦ b+ [α, β] ◦ c, is an isomorphism.
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Proof. There are two embeddings α, β : S2 →M given by α(x) = (x, ∗, ∗) and β(y) =
(∗, y, ∗). The composite

S2 ∨ S2 α∨β−−−→M → S2 × S2

is the standard inclusion of the wedge into the product. In particular, the composite map
πk(S2 ∨ S2) → πk(M) → πk(S2 × S2) is split surjective. It follows that so is πk(M) →
πk(S2 × S2). From the long exact homotopy sequence of the fibration S3 i−→M

p−→ S2 × S2

we deduce that the map

πk(S2) ⊕ πk(S2) ⊕ πk(S3) → πk(M),

sending (a, b, c) to α ◦ a+ β ◦ b+ i ◦ c, is an isomorphism for every k ≥ 2. It remains to
identify the inclusion of the fibre, i : S3 →M , with the Whitehead product [α, β] up to
homotopy.

The universal Whitehead product w2,2 : S3 → S2 ∨ S2 is null when composed with the
inclusion into the product S2 × S2. It follows that the composite map S3 → S2 ∨ S2 →M
factors over the fibre of p : M → S2 × S2, giving a self-map λ of S3 such that the diagram

S3

λ

���
�
�

w2,2
�� S2 ∨ S2

α∨β

��

�� S2 × S2

S3
i �� M

p
�� S2 × S2

commutes up to homotopy. By looking at the induced maps on π3, we get a commutative
diagram

0 �� π3(S3) ��

λ∗
��

π3(S2 ∨ S2)

��

�� π3(S2 × S2) �� 0

0 �� π3(S3)
i∗ �� π3(M)

p∗ �� π3(S2 × S2) �� 0.

The upper row is split exact; this follows from the Hilton–Milnor theorem. The bottom
row is split exact by our considerations above.

By comparing homology, the map α ∨ β : S2 ∨ S2 →M is seen to be 4-connected. In
particular, the middle vertical map in the diagram above is an isomorphism. It follows
from the five lemma that λ∗ is an isomorphism; in other words, λ : S3 → S3 has degree
±1. Since i ◦ λ � (α ∨ β) ◦ w2,2 = [α, β], this implies that i is homotopic to ±[α, β]. �

The following corollary will be useful when we later compute the Pontryagin ring
H∗(ΩM ; Z).

Corollary 4.7. The map (α ∨ β)∗ : πk(S2 ∨ S2) → πk(M) is an isomorphism for k ≤ 3
and split surjective for all k ≥ 4. The kernel of π4(S2 ∨ S2) → π4(M) is isomorphic to
Z2, generated by the Whitehead products [[ι1, ι2], ι1] and [[ι1, ι2], ι2].
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Proof. We have already established that the map α ∨ β : S2 ∨ S2 →M is 4-connected.
Let ι1, ι2 : S2 → S2 ∨ S2 denote the canonical inclusion maps. Define ϕ : πk(S2) ⊕
πk(S2) ⊕ πk(S3) → πk(S2 ∨ S2) by

ϕ(a, b, c) = ι1 ◦ a+ ι2 ◦ b+ [ι1, ι2] ◦ c.

The composite ϕ : πk(S2) ⊕ πk(S2) ⊕ πk(S3)
ϕ−→ πk(S2 ∨ S2)

(α∨β)∗−−−−−→ πk(M) is equal to
the isomorphism ψ. It follows that (α ∨ β)∗ is split onto, as claimed.

By the Hilton–Milnor theorem, the map

ξ : π4(S2) ⊕ π4(S2) ⊕ π4(S3) ⊕ π4(S4) ⊕ π4(S4) → π4(S2 ∨ S2),

ξ(a, b, c, d, e) = ι1 ◦ a+ ι2 ◦ b+ [ι1, ι2] ◦ c+ [[ι1, ι2], ι1] ◦ d+ [[ι1, ι2], ι2] ◦ e
is an isomorphism. In view of Theorem 4.6, the composite of ξ with (α ∨ β)∗ : π4(S2 ∨
S2) → π4(M) clearly has kernel π4(S4) ⊕ π4(S4) generated by [[ι1, ι2], ι1] and
[[ι1, ι2], ι2]. �

Another corollary is a description of the rational homotopy Lie algebra and, as a
consequence, the rational Pontryagin ring H∗(ΩM ; Q).

Corollary 4.8. The rational homotopy Lie algebra of the manifold M is five-
dimensional with basis α, β, α2, β2, [α, β]. In particular, M is rationally elliptic.

A presentation is given by

π∗(ΩM) ⊗ Q = L(α, β)/([[α, β], α], [[α, β], β]).

Hence, the rational loop space homology algebra is given by

H∗(ΩM ; Q) ∼= Q〈α, β〉/([[α, β], α], [[α, β], β]).

The Poincaré series of the loop space is given by

∑
k≥0

rank(HkΩM)tk =
1

(1 − t)2(1 − t2)
.

Proof. The description of the rational homotopy Lie algebra follows immediately from
Theorem 4.6; recall that π∗(S2) ⊗ Q has basis ι, η, with ι2 = (1/2)[ι, ι] = η, and π∗(S3) ⊗
Q has basis ι.

The description of the rational loop space homology algebra follows from the
Milnor–Moore theorem: since M is simply connected, the loop space homology alge-
bra H∗(ΩM ; Q) is isomorphic to the universal enveloping algebra UL of the graded Lie
algebra L = π∗(ΩM) ⊗ Q.

By the Poincaré–Birkhoff–Witt theorem, there is an isomorphism of graded vector
spaces UL ∼= ΛL, where ΛL denotes the free graded commutative algebra on L. The
description of the Poincaré series of H∗(ΩM ; Q) is an easy consequence of this fact. �

We now turn to the computation of the integral Pontryagin ring. First, we need to
establish an auxiliary result.
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Lemma 4.9. The Serre spectral sequence of the fibration

ΩS3 → ΩM → Ω(S2 × S2)

collapses at the E2-page. Hence, there is a filtration of the Pontryagin ring H∗ΩM such
that the associated graded ring is isomorphic to

H∗Ω(S2 × S2) ⊗H∗ΩS3 ∼= Z〈α, β, γ〉/([α, β], [α, γ], [β, γ]).

In particular, H∗ΩM is torsion-free.

Proof. First, we note that H∗Ω(S2 × S2) is isomorphic to Z〈α, β〉/(αβ + βα) and
H∗ΩS3 is isomorphic to the polynomial ring Z[γ], where α, β ∈ H1Ω(S2 × S2) and γ ∈
H2ΩS3 are the images under the Hurewicz homomorphism of generators for π1Ω(S2 ×
S2) ∼= Z2 and π2ΩS3 ∼= Z, respectively.

The Serre spectral sequence has

E2
p,q = Hp(Ω(S2 × S2);HqΩS3) ∼= HpΩ(S2 × S2) ⊗HqΩS3,

since the homology groups are torsion-free and the action of the fundamental group on
the homology of the fibre is trivial. In particular, E2

∗,∗ is torsion-free with Poincaré series

1
(1 − t)2(1 − t2)

.

Since this agrees with the Poincaré series of H∗(ΩM ; Q), the spectral sequence col-
lapses after tensoring with Q. But since E2

∗,∗ is torsion-free, this implies that the
spectral sequence collapses integrally. Moreover, since E∞

p,q = E2
p,q is free, the exten-

sions relating Hp+qΩM and E∞
p,q split, yielding an isomorphism of graded abelian groups

H∗ΩM ∼= H∗Ω(S2 × S2) ⊗H∗ΩS3. In particular, H∗ΩM is torsion-free. Since the maps
in the fibrations are maps of loop spaces, the spectral sequence is multiplicative, and the
resulting filtration on H∗(ΩM) has associated graded ring H∗Ω(S2 × S2) ⊗H∗ΩS3 ∼=
Z〈α, β, γ〉/(αβ + βα, αγ − γα, βγ − γβ). �

We are now in position to calculate the integral Pontryagin ring H∗ΩM .

Theorem 4.10. The map Z〈α, β〉 ∼= H∗Ω(S2 ∨ S2) → H∗ΩM is surjective. The kernel
is generated by the classes [[α, β], α] and [[α, β], β] as a two-sided ideal. Thus, there is an
isomorphism of graded rings,

H∗ΩM ∼= Z〈α, β〉/([[α, β], α], [[α, β], β]
)
.

Proof. As verified in Theorem 4.6 above, the image of the generator π2ΩS3 → π2ΩM is
the Samelson product [α, β]. It follows that the mapH∗ΩS3 → H∗ΩM sends the generator
γ to the commutator [α, β] = αβ + βα with respect to the Pontryagin product. As estab-
lished in the previous lemma, there is a filtration of the ringH∗ΩM with associated graded
ring isomorphic to Z〈α, β, γ〉/([α, β], [α, γ], [β, γ]). It follows that H∗ΩM is generated by
the classes α, β, γ under the Pontryagin product. Since γ can be expressed as [α, β] it fol-
lows that already α and β generate H∗ΩM . Hence, Z〈α, β〉 ∼= H∗Ω(S2 ∨ S2) → H∗ΩM
is surjective.
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Let I ⊂ Z〈α, β〉 denote the two-sided ideal generated by [[α, β], α] and [[α, β], β]. It
follows from Corollary 4.7 that [[α, β], α] and [[α, β], β] map to zero in H∗ΩM . There
results a surjective ring homomorphism ϕ : Z〈α, β〉/I → H∗ΩM . A straightforward cal-
culation shows that Z〈α, β〉/I is torsion-free with the same Poincaré series as H∗ΩM .
Every surjective map between finitely generated free abelian groups of the same rank is
an isomorphism, so ϕ must be an isomorphism. �

Theorem 4.11. The manifold M is coformal over Z.

Proof. As pointed out in [3, Example 2.18], the manifoldM is coformal over Q because
its minimal model has quadratic differential. To show that M is coformal over Z we will
apply Proposition 3.4 to A = C∗(ΩM ; Z).

The Hochschild cohomology of

U = H∗ΩM ∼= Z〈α, β〉/([[α, β], α], [[α, β], β]
)

is calculated in the next section using Theorem 3.2 (see Theorem 4.14 and Remark 4.15).
The calculation shows that the only non-vanishing obstruction group is HH2(U,U)(−3),
and that this is isomorphic to (U/[U,U ])5. This group is easily seen to be torsion-free. It
follows that M is coformal over Z. �

Corollary 4.12. The cohomology H∗(M ; Z) is a Koszul A∞-algebra, weakly equi-
valent to C∗(M ; Z). The generators a, b have weight −1, the classes x, y have weight −2
and the top class M has weight −3. The only non-zero higher operations are

m3(a, b, b) = −m3(b, b, a) = x,

m3(a, a, b) = −m3(b, a, a) = y.

The operations mn are zero for n ≥ 4.

Proof. This follows from the proof of Theorem 4.14 below, together with Theorem
2.26 and Remark 2.27. �

4.4. Hochschild cohomology computation

In this section we compute the Hochschild cohomology of U = H∗(ΩM). As seen above,
this will enable us to conclude that M is coformal over the integers and thus give us a
description of the free loop homology of M.

We will describe the Hochschild cohomology HH∗(U,U) as a module over its centre
Z(U). We begin by determining Z(U) explicitly.

Proposition 4.13. The centre of the ring U = Z〈α, β〉/([[α, β], α], [[α, β], β]) is iso-
morphic to the polynomial ring,

Z(U) ∼= Z[t1, t2, t3], |ti| = 2,

generated by the three elements

t1 = α2, t2 = β2, t3 = [α, β].
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Proof. To determine Z(U) we first note that U has n additive basis given by elements
βk(αβ)�αm. Being in the centre is equivalent to commuting with α and β. Writing out
the commutators, we see that Z(U) has an additive basis given by elements α2p((αβ)q +
(βα)q)β2r. Thus Z(U) is generated freely as a commutative algebra by α2, β2 and [α, β] =
αβ + βα. �

Next, we determine the Hochschild cohomology as a module over Z(U).

Theorem 4.14. The Hochschild cohomology of U is a module over Z(U).
In weight 0 the Hochschild cohomology is isomorphic as a Z(U)-module to

Z(U).

In weight −1 the Hochschild cohomology is isomorphic as a Z(U)-module to

Z(U){e1, e2, e3, e4, e5, e6}/(2t1e1 + t3e2, 2t2e2 + t3e1, t3e3 − 2t1e4 + 2t2e5 − t3e6),

where |e1| = |e2| = −2, |e3| = |e4| = |e5| = |e6| = −1.
In weight −2 the Hochschild cohomology is isomorphic as a Z(U)-module to

Z(U){f1, f2, f3, f4, f5, f6}/((4t1t2 − t23)f1, (4t1t2 − t23)f2, t1t2f3 + t3f4 − t2f5 − t1f6),

where |f1| = |f2| = −5, |f3| = −4, |f4| = |f5| = |f6| = −2.
In weight −3 the Hochschild cohomology is isomorphic to s−7U/[U,U ] which as a

Z(U)-module is isomorphic to

Z(U){g1, g2, g3, g4}/(2t1g1, 2t2g1, t3g1, t3g2 − 2t1g3, t3g3 − 2t2g2),

where |g1| = −7, |g2| = −6, |g3| = −6, |g4| = −5.

Proof. Let C be the A∞-coalgebra defined as follows. As a Z-module,

C ∼= Z{1, a∗, b∗, x∗, y∗,M∗}

where |1| = 0, |a∗| = |b∗| = 2, |x∗| = |y∗| = 5, |M∗| = 7. The structure is determined by

Δ2(a∗) = 1 ⊗ a∗ + a∗ ⊗ 1, Δ2(b∗) = 1 ⊗ b∗ + b∗ ⊗ 1,

Δ2(x∗) = 1 ⊗ x∗ + x∗ ⊗ 1, Δ2(y∗) = 1 ⊗ y∗ + y∗ ⊗ 1,

Δ2(M∗) = a∗ ⊗ x∗ + x∗ ⊗ a∗ − b∗ ⊗ y∗ − y∗ ⊗ b∗ + 1 ⊗M∗ +M∗ ⊗ 1,

Δ3(a∗) = 0, Δ3(b∗) = 0, Δ3(M∗) = 0,

Δ3(x∗) = a∗ ⊗ b∗ ⊗ b∗ − b∗ ⊗ b∗ ⊗ a∗,

Δ3(y∗) = a∗ ⊗ a∗ ⊗ b∗ − b∗ ⊗ a∗ ⊗ a∗,

with the differential and all higher maps zero. There is a weight grading on C such
that w(1) = 0, w(a∗) = w(b∗) = 1, w(x∗) = w(y∗) = 2 and w(M∗) = 3. It is convenient
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to work with the linear dual A∞-algebra A as well. As a Z-module,

A ∼= Z{1, a, b, x, y,M},
where the weights and degrees are inverted compared to C. The structure maps are
determined by

m2(a, x) = m2(x, a) = −m2(b, y) = −m2(y, b) = M,

m2(a, y) = m2(y, a) = m2(b, x) = m2(x, b) = 0,

m3(a, a, b) = −m3(b, a, a) = y,

m3(a, b, b) = −m3(b, b, a) = x,

m3(a, a, a) = m3(a, b, a) = m3(b, a, b) = m3(b, b, b) = 0,

together with m3 being zero if at least one argument is proportional to the unit and all
other mi being zero.

If one writes down ΩC explicitly, one sees that it is described by(
Z〈α, β, ξ, ζ, ω〉, δ),

with differential determined by δα = δβ = 0 and

δξ = [[α, β], β], δζ = [[α, β], α], δω = [α, ξ] + [β, ζ].

One can now easily observe that H∗(ΩC) coincides with U, the Pontryagin ring calculated
in Theorem 4.10. We have the twisting morphism κ : C → U given by sending a∗ and b∗

to α and β, respectively. The twisted tensor product C ⊗κ U has differential described
as follows:

dκ(1 ⊗ u) = 0, dκ(x∗ ⊗ u) = a∗ ⊗ β2u− b∗ ⊗ βαu,

dκ(a∗ ⊗ u) = 1 ⊗ αu, dκ(y∗ ⊗ u) = a∗ ⊗ αβu− b∗ ⊗ α2u,

dκ(b∗ ⊗ u) = 1 ⊗ βu, dκ(M∗ ⊗ u) = x∗ ⊗ αu− y∗ ⊗ βu.

This is easily seen to be contractible, thus, by Theorem 2.23, C is a Koszul A∞-
coalgebra. By Theorem 3.2, the Hochschild cohomology of U is given by the homology
of Homκ(C,U). As a graded abelian group we have Homκ(C,U) ∼= A⊗ U. Twisting
Hom(C,A) with κ is equivalent to twisting the tensor product of the A∞-algebras A and
U with the element κ = a⊗ α+ b⊗ β. The twisted differential μκ

1 = ∂κ acts on generators
by

∂κ(1 ⊗ u) = a⊗ [α, u] + b⊗ [β, u], ∂κ(x⊗ u) = −M ⊗ [α, u],

∂κ(a⊗ u) = −y ⊗ [β, [α, u]], ∂κ(y ⊗ u) = M ⊗ [β, u],

∂κ(b⊗ u) = x⊗ [α, [β, u]], ∂κ(M ⊗ u) = 0,

where the brackets are graded commutators. The differential respects the Z(U)-module
structure since elements of Z(U) pass through commutators, so the homology will be a
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Table 1. Table describing the differential ∂κ.

∂κ = μκ
1 1 α β αβ

1 0 2α2a ⊗ 1 [α, β]a ⊗ 1 2α2a ⊗ β − [α, β]a ⊗ α

+[α, β]b ⊗ 1 +2β2b ⊗ 1 +[α, β]b ⊗ β − 2β2b ⊗ α

a 0 0 0 ([α, β]2 − 4α2β2)y ⊗ 1

b 0 0 0 ([α, β]2 − 4α2β2)x ⊗ 1

x 0 −2α2M ⊗ 1 −[α, β]M ⊗ 1 −2α2M ⊗ β + [α, β]M ⊗ α

y 0 [α, β]M ⊗ 1 2β2M ⊗ 1 [α, β]M ⊗ β − 2β2M ⊗ α
M 0 0 0 0

module over Z(U). Here we already see that in weight 0 the Hochschild cohomology is
isomorphic to Z(U), and in weight 3 it is isomorphic to s−7U/[U,U ].

We now want to describe U as a Z(U)-module. The complex A⊗ U twisted with κ is
a free Z(U)-module of rank 24. Table 1 describes the differential ∂κ = μκ

1 . An element in
the table is the differential of the element in the first column tensor the element in the
top row.

From this table we see that the kernel is a weight graded Z(U)-module with the fol-
lowing description. In weight 0 the kernel is generated by 1 ⊗ 1. In weight −1 the kernel
is generated by the six elements

a⊗ 1, b⊗ 1, a⊗ α, a⊗ β, b⊗ α, b⊗ β.

In weight −2 the kernel is generated by the six elements

x⊗ 1, y ⊗ 1, x⊗ β + y ⊗ α, β2x⊗ α+ α2y ⊗ β, 2α2y ⊗ α+ [α, β]x⊗ α, 2β2x⊗ β

+ [α, β]y ⊗ β

with the relation

α2β2(x⊗ β + y ⊗ α) + [α, β](β2x⊗ α+ α2y ⊗ β) − α2(2β2x⊗ β + [α, β]y ⊗ β)

− β2(2α2y ⊗ α+ [α, β]x⊗ α) = 0.

In weight −3 the kernel is generated by the four elements

M ⊗ 1,M ⊗ α,M ⊗ β,M ⊗ αβ.

Except in weight −2, these are immediate. There we have to check which linear
combinations can vanish in M ⊗ 1 and we see that the elements x⊗ 1, y ⊗ 1, x⊗
β + y ⊗ α, β2x⊗ α+ α2y ⊗ β, 2α2y ⊗ α+ [α, β]x⊗ α, 2β2x⊗ β + [α, β]y ⊗ β span this
part of the kernel. These are, however, not linearly independent but satisfy the
identity α2β2(x⊗ β + y ⊗ α) + [α, β](β2x⊗ α+ α2y ⊗ β) − α2(2β2x⊗ β + [α, β]y ⊗ β) −
β2(2α2y ⊗ α+ [α, β]x⊗ α) = 0.

Now determining the Z(U)-module description of the homology is a matter of com-
paring the description of the kernel and the description of the image. We rename our
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generators as follows to get the presentation in the theorem:

e1 = a⊗ 1, e2 = b⊗ 1, e3 = a⊗ α, e4 = a⊗ β, e5 = b⊗ α, e6 = b⊗ β;

f1 = x⊗ 1, f2 = y ⊗ 1, f3 = x⊗ β + y ⊗ α, f4 = β2x⊗ α+ α2y ⊗ β;

f5 = 2α2y ⊗ α+ [α, β]x⊗ α, f6 = 2β2x⊗ β + [α, β]y ⊗ β;

g1 = M ⊗ 1, g2 = M ⊗ α, g3 = M ⊗ β, g4 = M ⊗ αβ. �

Remark 4.15. Note that in weight −3, the Hochschild cohomology is torsion-free in
even homological degrees. This is since the relations imposed by the differentials are all of
the form αu = uα and βu = uβ without any minus signs. This is useful in our discussion
of coformality; in particular, the obstruction group HH2(U,U)(−3) is torsion-free.

Finally, we compute the algebra structure on the Hochschild cohomology.

Theorem 4.16. The Hochschild cohomology HH∗(U,U) is an algebra over Z(U). A
presentation is given by the free graded commutative algebra over Z(U) on generators
e1, e2, e3, e4, e5, e6, f1, f2, f3 and f4 of degrees |e1| = |e2| = −2, |e3| = |e4| = |e5| = |e6| =
−1, |f1| = |f2| = −5, |f3| = −4, |f3| = −2, with relations imposed as follows. Firstly, all
generators square to zero. Secondly, we have the relations

2t1e1 + t3e2 = 0 t3e1 + 2t2e2 = 0 t3e3 + 2t2e5 = 2t1e4 + t3e6
t23f1 = 4t1t2f1 t23f2 = 4t1t2f2 2t1e1f1 = 0
2t2e1f1 = 0 t3e1f1 = 0 t3e3f1 = 2t1e4f1
2t2e3f1 = t3e4f1 t1t2f3 + t3f4 = t2e3e5 + t1e4e6

e1e2 = 0 e1e3 + t3f2 = 0 e1e4 + 2t2f2 = 0
e1e5 + t3f1 = 0 e1e6 + 2t2f1 = 0 e2e3 = 2t1f2
e2e4 = t3f2 e2e5 = 2t1f1 e2e6 = t3f1
e3e4 = 2t2f3 − e4e6 e3e5 = 2t1f3 − e5e6 e3e6 = 2f4
e4e5 = t3f3 e1f1 + e2f2 = 0 e1f2 = 0
e1f3 + e4f1 = 0 e1f4 + t2e3f1 = 0 e2f1 = 0
e2f3 + e5f2 = 0 e2f4 = t1e4f1 e3f1 + e5f2 = 0
e3f2 = 0 e3f3 = e6f3 e3f4 + t1t2e1f1 = 0
e4f1 + e6f2 = 0 e4f2 = 0 e4f3 + t2e1f1 = 0
e4f4 + t2e3f3 = 0 e5f1 = 0 e5f3 = t1e1f1
e5f4 + t1e3f3 = 0 e6f1 = 0 e6f4 = t1t2e1f1
f1f2 = 0 f1f3 = 0 f1f4 = 0
f2f3 = 0 f2f4 = 0 f3f4 = 0.

Thirdly, the product of any three generators not all of the form ei is zero and the product
of any four generators is also zero.
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Proof. From the definition of twisted A∞-algebra we obtain the following formulas:

μκ
2 (a⊗ u1, a⊗ u2) = −y ⊗ [β, u1u2],

μκ
2 (b⊗ u1, b⊗ u2) = x⊗ [α, u1u2],

μκ
2 (a⊗ u1, b⊗ u2) = y ⊗ [α, u1]u2 − (−1)|u1|x⊗ u1[β, u2],

μκ
2 (x⊗ u1, a⊗ u2) = M ⊗ u1u2,

μκ
2 (x⊗ u1, b⊗ u2) = 0,

μκ
2 (y ⊗ u1, a⊗ u2) = 0,

μκ
2 (y ⊗ u1, b⊗ u2) = −M ⊗ u1u2.

Together with the fact that 1 ⊗ 1 acts as the identity and M ⊗ u is zero when multiplied
with anything other than the identity, they determine the multiplication. Note that μκ

2

is not associative on the nose but induces a commutative associative multiplication in
homology. We see that μκ

2 respects the Z(U)-module structure so the homology will be
an algebra over Z(U). We will use the notation for the elements in the proof of Theorem
4.14. Note that we have e1f1 = −e2f2 = g1, e2f3 = e3f1 = −e5f2 = g2, e1f3 = −e4f1 =
e6f2 = g3, e3f3 = e6f3 = −g4, e3e5 = f5 and e4e6 = f6. The other additive generators are
primitive so we see that e1, e2, e3, e4, e5, e6, f1, f2, f3 and f4 generate the homology as a
graded commutative algebra. The relations imposed come from two different sources. The
first set comes from the Z(U)-description in Theorem 4.14. The second set comes from
writing out the products of all pairs of generators and comparing them.

There might be more relations coming from looking at products of three generators.
It is easy to see that multiplying three generators gives zero unless all three are of the
form ei. Since the generators square to zero we see that all the potentially non-zero such
products are products of different generators.

Now any such potentially non-zero triple reduces to a scalar times a multiplication of
two generators. Since all relations between such have been exhausted by the relations
already written down, we do not need to impose any more relations for these.

Finally, it is easy to see that multiplying any four generators gives zero. �

Corollary 4.17. With the above description there is an algebra isomorphism

H∗+7(LM) ∼= HH∗(U,U).

Proof. This follows from Theorem 4.2. �
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