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We study heat transfer in plane Couette flow laden with rigid spherical particles by
means of direct numerical simulations. In the simulations we use a direct-forcing
immersed boundary method to account for the dispersed phase together with a
volume-of-fluid approach to solve the temperature field inside and outside the particles.
We focus on the variation of the heat transfer with the particle Reynolds number, total
volume fraction (number of particles) and the ratio between the particle and fluid
thermal diffusivity, quantified in terms of an effective suspension diffusivity. We show
that, when inertia at the particle scale is negligible, the heat transfer increases with
respect to the unladen case following an empirical correlation recently proposed in the
literature. In addition, an average composite diffusivity can be used to approximate
the effective diffusivity of the suspension in the inertialess regime when varying the
molecular diffusion in the two phases. At finite particle inertia, however, the heat
transfer increase is significantly larger, smoothly saturating at higher volume fractions.
By phase-ensemble-averaging we identify the different mechanisms contributing to the
total heat transfer and show that the increase of the effective conductivity observed at
finite inertia is due to the increase of the transport associated with fluid and particle
velocity. We also show that the contribution of the heat conduction in the solid phase
to the total wall-normal heat flux reduces when increasing the particle Reynolds
number, so that particles of low thermal diffusivity weakly alter the total heat flux
in the suspension at finite particle Reynolds numbers. On the other hand, a higher
particle thermal diffusivity significantly increases the total heat transfer.

Key words: multiphase and particle-laden flows, multiphase flow, particle/fluid flows

1. Introduction
Problems involving particle–fluid interactions are widely encountered in different

applications, such as sediment transport, air pollution, the pharmaceutical industry,
blood flow, and petrochemical and mineral processing plants. Controlling heat
transfer in particulate suspensions also has many important applications, such as
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packed- and fluidized-bed reactors and industrial dryers. In these cases, in addition
to momentum and/or mechanical interactions between particles and fluid, the flow is
also characterized by heat transfer between the two phases. Owing to the complex
phenomena related to the diffusion and convection of heat in particulate flows, a better
understanding of the heat transfer between the two phases in the presence of a flow
is essential to improve the current models. The aim of this study is to validate the
proposed numerical algorithm against existing experimental and numerical studies and
then to examine, in particular, the effect of finite particle inertia and the difference in
fluid- and solid-phase thermal diffusivity on the heat transfer across a sheared particle
suspension. Ensemble-averaged equations are derived to disentangle the heat transfer
in the fluid and solid phases.

Simplified theoretical approaches and experiments have been used previously to
study these challenging physical phenomena. The experiments of Ahuja (1975) on
sheared suspensions of polystyrene particles at finite particle Reynolds numbers
(Rep > 1) revealed a significant enhancement of heat transfer. The author attributed
this enhancement to a mechanism based on the inertial effects, in which the fluid
around the particle is centrifuged by the particle rotation. Sohn & Chen (1981)
investigated the eddy transport, associated with microscopic flow fields in shearing
two-phase flows with volume fraction of spherical particles up to 30 %. At low
Reynolds numbers and high Péclet numbers Pe, they found an increase in the heat
transfer, which approaches a power-law relationship with Pe. The Péclet number Pe
defines the ratio between fluid viscosity and heat diffusivity in the fluid. Chung &
Leal (1982) measured experimentally the effective thermal conductivity of a sheared
suspension of rigid spherical particles. These authors compared their results to the
theoretical prediction of Leal (1973) for a sheared dilute suspension at low particle
Péclet number, Pe, reporting good agreement. In addition, they investigated moderate
concentrations (volume fraction φ < 25 %) and higher Péclet numbers compared to
the study by Leal (1973). It was later suggested by Zydney & Colton (1988) that the
increase in solute transport, previously observed for particle suspensions, is caused by
shear-induced particle diffusion (Madanshetty, Nadim & Stone 1996; Breedveld et al.
2002) and the resulting dispersive fluid motion. These authors proposed a model,
based on existing experimental results, concluding that the augmented solute transport
is expected to vary linearly with the Péclet number. Shin & Lee (2000) experimentally
studied the heat transfer of suspensions with low volume fractions (φ < 10 %) for
different shear rates and particle sizes. They found that the heat transfer increases
with shear rate and particle size; however, it saturates at large shear rates.

Recently, the rapid development of computer resources and efficient numerical
algorithms have directed more attention to approaches based on the direct numerical
simulation (DNS) of heat transfer in particle suspensions. Numerical algorithms
coupling the heat and mass transfer are complex and require considerable computational
resources, which limits the number of available direct simulations. Hence, in the first
attempts, researchers used DNS only for the hydraulic characteristics of the flow
and modelled the energy or mass transport equation. Among more recent studies,
we consider here Wang et al. (2009), who presented experimental, theoretical and
numerical investigations of the transport of fluid tracers between the walls bounding
a sheared suspension of neutrally buoyant solid particles. In their simulation, these
authors used a lattice Boltzmann method (Ladd 1994a,b) to determine the fluid
velocity and solid particle motion and a Brownian tracer algorithm to determine the
chemical mass transfer. They reported that the chaotic fluid velocity disturbances,
caused by the motion of the suspended particles, led to enhanced hydrodynamic
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diffusion across the suspension. In addition, it was found that for moderate values of
the Péclet numbers the Sherwood number, quantifying the ratio of the total rate of
mass transfer to the rate of diffusive mass transport alone, changes linearly with Pe.
At higher Péclet numbers, however, the Sherwood number grows more slowly due
to the increase in the mass transport resistance by a molecular-diffusion boundary
layer near the solid walls. Further, these authors report that the fluid inertia enhances
the rate of mass transfer in suspensions with particle Reynolds numbers in the range
between 0.5 and 7.

The effect of shear-induced particle diffusion on the transport of the heat across
a suspension was investigated more recently by Metzger, Rahli & Yin (2013)
through a combination of experiments and simulations. In this study, the effects
of particle size, particle volume fraction and applied shear are investigated. Using
index matching and laser-induced fluorescence imaging, these authors measured
individual particle trajectories and calculated their diffusion coefficients. They also
performed numerical simulations using a lattice Boltzmann method for the flow field
and a passive Brownian tracer algorithm to model the heat transfer. Their numerical
results are in good agreement with experiments and show that fluid fluctuations due to
particle movement can lead to more than 200 % increase in heat transfer through the
suspension. A correlation is presented in this study for the effective thermal diffusivity
of the suspension in the limit of inertialess regimes, i.e. when the particle Reynolds
number is sufficiently small. This correlation is found to be a linear function of both
the Péclet number and the solid volume fraction. This correlation is suggested to be
valid up to volume fraction of ≈40 %, where a sudden decrease in effective thermal
diffusivity is reported.

Souzy et al. (2015) investigated the mass transport in a cylindrical Couette cell
of a sheared suspension with non-Brownian spherical particles. They found that
a rolling–coating mechanism (particle rotation convects the dye layer around the
particles) convectively transports the dye directly from the wall towards the bulk.

Including buoyancy forces, Feng & Michaelides (2008) used DNS to study the
dynamics of non-isothermal cylindrical particles in particulate flows. These authors
resolve the momentum and energy equations to compute the effect of heat transfer
on the sedimentation of particles. They found that the drag force on non-isothermal
particles strongly depends on the Reynolds number and the Grashof number, reporting
that the drag coefficient is higher for the hottest particles at relatively low Reynolds
numbers. Grashof number quantifies the ratio of the buoyancy to viscous force acting
on a fluid. The same numerical method is also used to study a pair of hot particles
settling in a container at different Grashof numbers. The simulations demonstrated
that the well-known drafting–kissing–tumbling (DKT) motion (see e.g. Ardekani et al.
2016) observed for isothermal particles (Feng & Michaelides 2008) disappears in the
case of particles hotter than the fluid. Feng & Michaelides (2009) extended these
earlier works to three-dimensional (3D) cases using a finite difference method in
combination with the immersed boundary method (IBM) for treating the particulate
phase. They used an energy density function to represent thermal interaction between
the particle and the fluid, similar to that of a force density to represent the momentum
interaction, without solving the differential energy equation inside the solid particles.
Dan & Wachs (2010) suggested a distributed Lagrange multiplier/fictitious domain
(DLM/FD) method to compute the temperature distribution and the heat exchange
between the fluid and solid phases. The Boussinesq approximation was used to
model density variations in the fluid. These authors employed a finite element
method (FEM) to solve the mass, momentum and energy conservation equations and
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a discrete element method (DEM) to compute the motion of particles. Distributed
Lagrange multipliers for both the velocity and temperature fields are introduced to
treat the fluid–solid interaction. Tavassoli et al. (2013) extended the IBM proposed
by Uhlmann (2005) to systems with interphase heat transport. Their numerical
method treats the particulate phase by introducing momentum and heat source terms
at the surface of the solid particle, which represent the momentum and thermal
interactions between the fluid and the particle. The method is used to investigate
the non-isothermal flows past stationary random arrays of spheres. Hashemi, Abouali
& Kamali (2014) studied numerically the heat transfer from spheres, settling under
gravity in a box filled with liquid. The simulations in this study employ a 3D
lattice Boltzmann method to simulate fluid–particle interactions, investigating the
effects of Reynolds, Prandtl and Grashof numbers (Re, Pr, Gr) for the case of a
settling particle at fixed and varying temperature. These authors also studied the
hydraulic and heat transfer interactions of 30 hot spherical particles settling in an
enclosure. Recently, Sun et al. (2016) investigated and modelled the pseudo-turbulent
heat flux in a suspension. These authors report results for a wide range of mean
slip Reynolds numbers and solid volume fractions using particle-resolved direct
numerical simulations (PR-DNS) of steady flow through a random assembly of fixed
isothermal monodisperse spherical particles. They revealed that the transport term in
the average fluid temperature equation, corresponding to the pseudo-turbulent heat
flux, is significant when compared to the average gas–solid heat transfer.

In the present work, the numerical algorithm developed by Breugem (2012),
previously used to study suspensions in laminar and turbulent flows (Lashgari et al.
2014; Picano, Breugem & Brandt 2015; Fornari et al. 2016a; Lashgari et al. 2016), is
extended to resolve the temperature field in the fluid and solid phases of a suspension
with the possibility to examine different particle and fluid thermal diffusivities,
using a volume-of-fluid (VoF) approach. The accurate IBM, resolving the solid–fluid
interactions, together with VoF to resolve the heat equation enable us to investigate
the different heat transport mechanisms at work. We quantify the heat flux across a
plane Couette flow when varying the particle volume fraction, the particle Reynolds
number (thus including inertial effects) and the ratio between the fluid and solid
thermal diffusivities, aiming to identify the conditions for enhancement or reduction
of heat transfer.

2. Governing equations and numerical method
2.1. Governing equations

The equations describing the flow field are the incompressible Navier–Stokes
equations:

ρf

(
∂u
∂t
+ u · ∇u

)
=−∇p+µf∇

2u+ ρf f , (2.1)

∇ · u= 0. (2.2)

Here u is the fluid velocity, p the pressure, ρf the fluid density and µf the dynamic
viscosity of the fluid. It should be noted that the density variation due to thermal
expansion is neglected in this work since the Grashof number, Gr, is small compared
to the Reynolds number, Re, for the studied cases. The ratio, Gr/Re2, can be used
as a measure for the importance of natural convection (Incropera et al. 2007). The
additional term f is added on the right-hand side of (2.1) to account for the presence
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of particles. This force is active in the immediate vicinity of a particle surface
to impose the no-slip and no-penetration boundary conditions indirectly (see the
description of the numerical algorithm below).

The motion of rigid spherical particles is described by the Newton–Euler Lagrangian
equations:

ρpVp
dUp

dt
=

∮
∂Sp

τ · n dA− Vp∇pe + (ρp − ρf )Vpg+Fc, (2.3)

Ip
d(ωp)

dt
=

∮
∂Sp

r× (τ · n) dA+ Tc. (2.4)

Here Up and ωp are the translational and the angular velocity of the particle, and ρp,
Vp and Ip are the particle’s mass density, volume and moment of inertia. The outward
unit normal vector at the particle surface is denoted by n, and r is the position vector
from the particle’s centre. The integrated stress tensor τ =−pI+µf (∇u+∇uT) on the
surface of particles and the force terms −ρf Vpg, Vp∇pe and g account for the fluid–
solid interactions, the hydrostatic pressure, any external constant pressure gradient and
the gravitational acceleration, respectively. Finally, Fc and Tc are the force and the
torque, acting on the particles, due to the particle–particle (particle–wall) collisions.

The energy equation for incompressible flows can be simplified to

ρCp

[
∂T
∂t
+ u · ∇T

]
=∇ · (k∇T), (2.5)

where Cp and k are the specific heat capacity and thermal conductivity, and T the
temperature. Considering the same ρCp for the fluid and particles (i.e. (ρCp)p =

(ρCp)f ), as in this study, equation (2.5) reduces to

∂T
∂t
+ u · ∇T =∇ · (α∇T), (2.6)

where α is the thermal diffusivity, equal to k/(ρCp).
Equation (2.6) is resolved on every grid point in the computational domain, i.e. in

the fluid and solid phases, with different thermal diffusivities: αf for the fluid phase
and αp for the particles.

2.2. Numerical scheme
Uhlmann (2005) developed a computationally efficient IBM to fully resolve particle-
laden flows. Breugem (2012) introduced improvements to this method, making it
second-order-accurate in space while increasing the numerical stability of the method
for mass density ratios (particle over fluid density ratio) near unity (see also Kempe
& Fröhlich 2012). The IBM is coupled here with a VoF approach (Hirt & Nichols
1981) to study the heat transfer in a suspension of rigid particles. The VoF approach
has been suggested among others by Ström & Sasic (2013) for resolving both heat
and momentum transfer in the presence of solid particles.

Details on the IBM accounting for fluid–solid interactions are discussed in Breugem
(2012) and several validations can be found elsewhere (Lambert et al. 2013; Picano
et al. 2015; Ardekani et al. 2016; Lashgari et al. 2016). For clarity a short description
of the IBM is given in the first two sections below, followed by the VoF method for
heat transfer within the suspension.
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2.2.1. Solution of the flow field
The flow field is resolved on a uniform (1x=1y=1z), staggered, Cartesian grid,

while particles are represented by a set of Lagrangian points, uniformly distributed
on the surface of each particle. The number of Lagrangian grid points NL on the
surface of each particle is defined such that the Lagrangian grid volume 1Vl becomes
equal to the volume of the Eulerian mesh 1x3. Thus 1Vl is obtained by assuming
the particle to be a thin shell with the same thickness as the Eulerian grid size. A
first prediction velocity is obtained by advancing (2.1) in time without considering
the force field f and neglecting the pressure-correction term (see Breugem (2012)
for the details of the pressure-correction scheme), using an explicit low-storage
Runge–Kutta method. The first prediction velocity is then interpolated from the
Eulerian grid to each Lagrangian point on the surface of the particle, U∗l (2.7),
using the regularized Dirac delta function δd of Roma, Peskin & Berger (1999).
The IBM point force Fl is then calculated at each Lagrangian point based on the
difference between the particle surface velocity (Up+ωp× r) and the first interpolated
prediction velocity (2.8). Lagrangian forces Fl are interpolated back to the Eulerian
grid by the same regularized Dirac delta function (see (2.9) below) and added to the
first prediction velocity to obtain a second prediction velocity u∗∗ (2.10). The second
prediction velocity u∗∗ is then used to update velocities and pressure following a
classic pressure-correction scheme. The calculation of u∗∗ is summarized below for a
Runge–Kutta substep q:

U∗l =
∑

ijk

u∗ijkδd(xijk −Xq−1
l )1x1y1z, (2.7)

Fq−1/2
l =

U(Xq−1
l )−U∗l
1t

, (2.8)

f q−1/2
ijk =

∑
l

Fq−1/2
l δd(xijk −Xq−1

l )1Vl, (2.9)

u∗∗ = u∗ +1tf q−1/2, (2.10)

where capital letters indicate the variable at a Lagrangian point with index l and xijk
refers to an Eulerian grid point.

2.2.2. Solution of the particle motion
Taking into account the motion of rigid spherical particles and the mass of the

fictitious fluid phase inside the particle volumes, Breugem (2012) showed that (2.3)
and (2.4) can be rewritten as

ρpVp
dUp

dt
≈−ρf

NL∑
l=1

Fl1Vl + ρf
d
dt

(∫
Vp

u dV

)
+ (ρp − ρf )Vpg+Fc, (2.11)

d(Ipωp)

dt
≈−ρf

NL∑
l=1

rl ×Fl1Vl + ρf
d
dt

(∫
Vp

r× u dV

)
+ Tc, (2.12)

where the first term on the right-hand side of the equations is the IBM force and
torque exerted on the particle. The second term directly accounts for the inertia of the
fluid that is trapped inside the particles, when using IBM. The interaction force Fc and
torque Tc are activated when the gap width between the two particles (or between one
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T, p

u

FIGURE 1. (Colour online) The staggered Eulerian grid and the phase indicator ξ around
the velocity point ui−1/2,j.

particle and the wall) is less than one Eulerian grid size. Indeed, when the gap width
reduces to less than one Eulerian mesh, the lubrication force is underpredicted by the
IBM. To avoid computationally expensive grid refinements, a lubrication model based
on the asymptotic analytical expression for the normal lubrication force between two
equal spheres (Brenner 1961) is used here for particle–particle interactions, whereas
the solution for two unequal spheres, one with infinite radius, is employed for particle–
wall interactions. A soft-sphere collision model with Coulomb friction takes over the
interaction when the particles touch. The restitution coefficients, used for normal and
tangential collisions, are 0.97 and 0.1, with Coulomb friction coefficient 0.15. More
details about the short-range models and corresponding validations can be found in
Costa et al. (2015) and Ardekani et al. (2016).

The equations above are integrated in time using the same explicit low-storage
Runge–Kutta method used for the flow.

2.2.3. Solution of the temperature field
A phase indicator, ξ , is used to distinguish the solid and the fluid phases within

the computational domain. The ξ value is computed at the velocity (cell faces) and
the pressure points (cell centre) throughout the staggered Eulerian grid. This value
varies between 0 and 1 based on the solid volume fraction of a cell of size 1x around
the desired point. As we know the exact location of the fluid–solid interface for rigid
spheres, a level-set function ζ given by the signed distance to the particle surface S
is employed to determine ξ at each point. With ζ < 0 inside and ζ > 0 outside the
particle, the solid volume fraction is calculated similar to Kempe & Fröhlich (2012):

ξ =

∑8
n=1 −ζnH(−ζn)∑8

n=1 |ζn|
, (2.13)

where the sum is over all eight corners of a box of size 1x around the target point
and H is the Heaviside step function. Figure 1 indicates the staggered Eulerian grid
and the phase indicator ξ around the velocity point ui−1/2,j.
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Using a VoF approach (Hirt & Nichols 1981), the velocity and the thermal
diffusivity of the combined phase are defined at each point in the domain as

ucp = (1− ξ)uf + ξup, (2.14)
αcp = (1− ξ)αf + ξαp, (2.15)

where uf is the fluid velocity and up the solid-phase velocity, obtained by the
rigid-body motion of the particle at the desired point; αf and αp denote the thermal
diffusivity of the fluid and the solid phase.

Substituting ucp and αcp in (2.6) and taking into account that the velocity field ucp
is divergence-free results in

∂T
∂t
+∇ · (ucpT)=∇ · (αcp∇T), (2.16)

which is discretized around the Eulerian cell centres (pressure and temperature points
on the Eulerian staggered grid) and integrated in time, using the same explicit low-
storage Runge–Kutta method used for marching the flow and particle equations.

2.3. Flow configuration
In the present work, the Couette flow between two infinite walls a distance 2h apart in
the wall-normal direction, y, is investigated. The size of the computational domain is
Lx = 4h, Ly = 2h and Lz = 2h in the streamwise, wall-normal and spanwise directions.
Periodic boundary conditions for velocity, temperature and particles are imposed in
both streamwise and spanwise directions (x and z), while the upper and lower walls
are moving with velocity 0.5Ub and −0.5Ub. Here Ub is the reference velocity, used to
define the flow Reynolds number Reb=Ub2h/ν, with ν the kinematic viscosity of the
fluid phase. The diameter of the particles considered in this study is equal to one-sixth
of the distance between the planes (2h/D = 6) and the particle Reynolds number is
defined as Rep = γ̇D2/ν, where γ̇ =Ub/2h is the shear rate. The temperature is non-
dimensionalized by (T − Tavg)/(Thot − Tcold), where Thot and Tcold are the operating
temperatures at the walls and Tavg is their average. Therefore, the non-dimensional
temperatures T for the upper and lower walls are fixed at T =−0.5 and 0.5.

Simulations are performed at different particle Reynolds number Rep, volume
fraction φ (total volume of the particles over the volume of the computational
domain) and thermal diffusivity ratio Γ ≡ αp/αf . We investigate the effect of each
parameter on the heat transfer between the two walls and quantify the results in terms
of αr ≡ αe/αf , with αe denoting the effective thermal diffusivity of the suspension.
This is the diffusivity that would correspond to the heat flux extracted from the
numerical data, q′′, with the temperature gradient of the single-phase flow:

αe = q′′
/

dT
dy

∣∣∣∣
φ=0 %

. (2.17)

The different parameters investigated are reported in table 1. Simulations are
performed with an Eulerian grid of 24 grid points per diameter of the spherical
particles, corresponding to 288×144×144 Eulerian grid points over the computational
domain, with 1721 Lagrangian points used to represent the surface of each particle.

To check if the grid resolution is adequate to carry out the simulations, two cases
(Rep = 16, Γ = 1 at φ = 10 % and 20 %) are re-simulated with resolutions of 32 and
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24 32

Grid resolution
40

1.00

1.01

1.02

1.03

1.04

FIGURE 2. (Colour online) The effective thermal diffusivities, normalized by the value
of αr for 24 grid points per particle diameter (α24

r ), versus grid resolution per particle
diameter.

Rep 0.5 1 4 8 16
Reb 18 36 144 288 576
φ (%) 0 3 10 20 30
Np 0 28 84 168 252
Γ 0.1 1 10

TABLE 1. Summary of the different parameters under investigation. From the top: particle
Reynolds number Rep and the corresponding bulk Reynolds number Reb; suspension
volume fraction φ and corresponding number of particles Np inside the computational
domain; and ratio between the thermal diffusivity of the particles and of the fluid, Γ .

40 grid points per particle diameter. The effective thermal diffusivities obtained from
these high-resolution cases are depicted in figure 2, where the results are normalized
by the value of αr for the resolution of 24. It can be observed that the difference is
less than 3.8 % when increasing the resolution to 40 grid points per particle diameter;
therefore, we choose the resolution of 24 to be able to perform the parameter study
presented here with numerous simulations.

The simulations are started with a random distribution of particles inside the
domain and a linear temperature field between −0.5 and 0.5 for both the fluid and
the particles. Statistics are collected over an interval of almost 10 000 in units of
D/Ub after the wall-normal heat flux has reached a steady-state value with small
oscillations in time. The statistics presented are averages in time and wall-parallel
directions.

3. Validation

The IBM used in this study to resolve the fluid–solid interaction has been fully
validated by Breugem (2012) and Picano et al. (2013, 2015). The validation of the
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0.1 1 5 10 15
0.90

0.95

1.00

1.05

y

x

1.10
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FIGURE 3. (Colour online) (a) A two-dimensional section of the boundary-fitted
orthogonal grid used in the finite volume solver. (b) Effective thermal diffusivity αe
normalized by the thermal diffusivity of the fluid (αr ≡ αe/αf ) for different thermal
diffusivity ratios Γ between the particle and the fluid.

temperature solver with the mentioned VoF approach for the heat transfer between
the phases is presented here, considering first a single sphere.

The numerical code developed for this study enjoys the ability to resolve the
temperature field across the domain with different thermal diffusivities for the particles
and the fluid. When there is a significant difference between the thermal diffusivities
of the solid and the fluid, the coefficient in the diffusion term of the temperature
equation experiences a jump across the interface. This jump is smoothed around the
interface in the present numerical scheme. To evaluate how the present numerical
model performs for these situations, a simpler validation case is chosen.

We consider a computational domain of size 3D × 3D × 3D with a sphere in
the centre and vary the ratio of the thermal diffusivities of the sphere and of the
surrounding fluid, Γ . The non-dimensional temperatures at the upper and lower walls
of the domain are set to T = −0.5 and 0.5, respectively, while periodic boundary
conditions are imposed on the other four faces of the cube. The fluid and the
particle are at rest and we thus solve only the temperature equation, in particular,
the diffusive terms. This case is simulated with the present numerical code over
a uniform Cartesian grid with a resolution of 24 grid points per diameter of the
sphere. The results of this simulation are compared with a finite volume solver
(ANSYS Fluent commercial software), using an orthogonal body-fitted grid around
the sphere and the box surfaces, in which the body-fitted mesh allows the solver
to capture the sharp temperature gradients at the interface accurately. Figure 3(a)
shows a two-dimensional section of the grid across the middle of the computational
domain. In the commercial solver the diffusion terms of the temperature equation are
discretized by a central difference scheme and an implicit solver for the discretized
equation. The same case is simulated with 100 000 and 360 000 grid cells to ensure
grid convergence. The temperature field reaches a steady-state solution in time, given
the constant temperatures at the walls. We report the effective thermal diffusivity,
computed based on (2.17), normalized by the thermal diffusivity of the fluid phase
in figure 3(b) for both the present numerical code and the finite volume solver over
the boundary-fitted grid. It is observed that the results perfectly match each other for
the range of thermal diffusivity ratios Γ investigated in this study.
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FIGURE 4. (Colour online) Effective thermal diffusivity, normalized by the thermal
diffusivity of the single-phase flow, αr, for the different volume fractions under
investigation. The parameters for these simulations are set to Pr= 20, 2h/D= 6, Rep= 0.5
and Pe= RepPr= 10.

As further validation, directly relevant to this work, we recall that Metzger et al.
(2013) have proposed a correlation (αe/αf = 1+ 0.046φPe) based on experimental and
numerical data of spherical particles in a Couette flow in the inertialess Stokes regime,
i.e. valid when the particle Reynolds number is less than 0.5. As validation of our
numerical code, simulations are therefore performed at Rep= 0.5 for different volume
fractions 10, 20 and 30 % with Γ = 1. The Prandtl number is set to 20 and the results
compared to the correlation in Metzger et al. (2013). Figure 4 depicts the comparison
between the effective thermal diffusivity of the suspension, normalized by the thermal
diffusivity of the single-phase flow, αr, obtained in this work and the suggested
correlation. It is observed that the present numerical results are in good agreement
with the empirical fit in the literature, as further shown when discussing the results.

4. Heat transfer in a particle suspension subject to uniform shear
4.1. Effect of the particle inertia on the heat transfer

Having shown that the current implementation can reproduce the correlations obtained
experimentally and numerically in the limit of vanishing inertia, when particle
Reynolds number is sufficiently small Rep 6 0.5 (Metzger et al. 2013), we shall
focus first on the effect of Reynolds number, finite inertia, on the heat transfer. We
will consider dilute and semi-dilute suspensions at volume fractions φ = 3, 10, 20
and 30 % with Prandtl number Pr = 7 and particles of the same diffusivity as the
fluid (Γ = αp/αf = 1). The simulations are performed with four values of the particle
Reynolds number, Rep = 1, 4, 8 and 16.

Snapshots of the temperature in the suspension flow are shown in figure 5 for the
volume fractions φ = 10, 20 and 30 % at Rep = 16. The instantaneous temperature
is represented on different orthogonal planes with the bottom plane located near the
bottom wall. Finite-size particles are displayed only on one half of the domain to give
a visual feeling on how dense the solid phase is. The layering of the particles and
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(a)

(c)

(b)

FIGURE 5. (Colour online) Snapshots of the temperature in the suspension flow for the
volume fractions φ = 10, 20 and 30 % at Rep = 16.

movement between the layers can be observed for φ= 30 %. There is a noisy pattern
in the temperature distribution due to the particles motion and fluctuations. At higher
volume fractions these noisy patterns are stronger and more observable, as we will
quantify in the following.

The effective thermal diffusivity of the suspension, normalized with that of the
single-phase flow, αr, is reported in figure 6(a) for all cases under investigation.
The correlation suggested by Metzger et al. (2013) is also depicted. This correlation
shows a linear variation of the effective thermal diffusivity of the suspension with the
particle volume fraction in the Stokes regime. The data are observed to follow the
relation proposed in Metzger et al. (2013) at the two lowest Rep and then deviate as
Rep increases. At high Rep, the almost-linear profile of αr changes to a curve, which
is underpredicted and overpredicted (by the mentioned correlation) for low and high
volume fractions, respectively. Metzger et al. (2013) report a sudden decrease of the
effective thermal diffusivity when the volume fraction exceeds 40 %, due to steric
effects. This sudden decrease seems to be substituted by a smooth saturation of the
effective thermal diffusivity at lower volume fractions in the inertial regimes (high
Rep).

An attempt is made in this work to study the role of particle rotation on the heat
and momentum transfer between the two walls. For this purpose, a set of additional
simulations are performed at Rep= 16 with different volume fractions, while imposing
zero particle angular velocity, i.e. the particles are free to move but they cannot rotate.
The results of these simulations are depicted in figure 6(a), denoted as NR (non-
rotating). The data show a significant increase in the heat transfer for volume fractions
φ = 3, 10 and 20 % with respect to the reference cases (with rotation) at the same
Rep. At φ = 30 %, however, αr is barely affected.

Figure 6(b) depicts the same data as in figure 6(a), the normalized effective thermal
diffusivity, now displayed versus Rep for the different volume fractions considered.
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FIGURE 6. (Colour online) The effective thermal diffusivity of the plain Couette flow,
normalized with that for the single-phase flow, αr, versus (a) volume fraction percentage
φ, (b) particle Reynolds number Rep and (c) φPe. The linear correlation, suggested by
Metzger et al. (2013) is depicted in (a) and (c) by black dotted lines and the difference
between this correlation and the DNS results are depicted in (d). The cases denoted as
NR show the results of the simulations with non-rotating particles.

The results show that the normalized effective diffusivity αr varies almost linearly
with Rep at fixed volume fraction in the range of Rep studied here. It should be noted
that the thermal diffusivity inside the particles is the same as that of the fluid for
the results in this section, hence only the wall-normal particle motions can enhance
the mean diffusion. Depicting the results versus φPe as in figure 6(c), where Pe is
the Péclet number defined as PrRep, demonstrates that the linear trend suggested by
Metzger et al. (2013) for the Stokes regime can approximate well the effective thermal
diffusivity up to roughly Rep = 4. A difference between the DNS results and the
correlation is depicted in figure 6(d), where it can be observed that the difference is
less than ±4 % up to Rep = 4.

One aspect that should be considered when aiming to increase the heat transfer
by employing particulate flows is that the increase of the effective thermal diffusivity
usually comes at the price of an increase in the effective viscosity of the flow. This
means a higher friction at the walls and higher external power needed to drive the
flow. To quantitatively address this issue, the effective viscosity of the suspension νe,
normalized by the viscosity of the single-phase flow, νr ≡ νe/νf , is computed for all
cases and depicted in figure 7(a) versus Rep. The data confirm an increase of the
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FIGURE 7. (Colour online) (a) Effective viscosity of the suspension normalized by the
viscosity of the fluid and (b) the ratio between the increase of the heat transfer αr and
the increase of the suspension effective viscosity νr.

suspension viscosity with φ and with fluid and particle inertia: the former, at low
Rep, closely follows classical empirical fits, e.g. Eiler’s fit (Stickel & Powell 2005),
whereas the latter, also denoted as inertial shear thickening, is discussed and explained
in Picano et al. (2013), among others.

The ratio between αr and νr can be used to measure the global efficiency of the
heat transfer increase, taking into account the external power needed to drive the
flow: a value of this ratio larger than 1 means that the presence of particles increases
heat transfer more than the momentum transfer, while for a ratio smaller than 1 the
opposite is true. This ratio can be interpreted as an effective Prandtl number of the
suspension, similarly to the turbulent Prandtl number used to quantify mixing in
turbulent flows with respect to laminar flows. The mentioned ratio is depicted versus
Rep in figure 7(b) and is observed to increase with Rep and decrease with the volume
fraction φ. The increase of heat transfer obtained on adding particles is always lower
than the increase of the suspension viscosity for Γ = 1 and φ > 3 % except for the
case with φ = 10 % and Rep = 16, where inertial effects are more pronounced on the
heat transfer than on the momentum transfer.

To understand the mechanisms behind the heat transfer enhancement, mean statistics
of the fluid and particle phases are given in figures 8 and 9. The local volume fraction
Φ(y), describing the concentration of particles as a function of the distance to the
wall, is depicted for the different cases under investigation in figure 8, where a
tendency for layering is observed. This tendency increases with particle Reynolds
number (figure 8a) and total volume fraction (figure 8b). The tendency to form
layers due to confinement from the wall is consistent with the findings of, for
example, Fornari, Picano & Brandt (2016b). A clear migration towards the wall
is also observable for particles with higher inertia (higher Rep) as the first peak
significantly increases in figure 8(a). A possible explanation for this may be that the
repulsive viscous lubrication between the walls and the particles decreases at higher
inertia. Different particle concentration profiles are observed for the NR cases: the
layering almost disappears and particles tend to avoid the wall, reaching an almost
uniform distribution far from it. At φ = 30 %, however, a weak layering is observed.

The mean fluid velocities are depicted in figure 8(c,d); here we observe a curvy
profile close to the wall that increases with the volume fraction and the particle inertia.
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FIGURE 8. (Colour online) Local volume fraction Φ(y) and the mean streamwise velocity
of the fluid versus the normalized distance to the wall y/h for (a,c) the different particle
Reynolds number under investigation at φ = 30 % and (b,d) different volume fractions at
Rep = 16. The results for non-rotating particles are indicated with the same line style as
their rotating counterparts, using asterisks in (b) and (d).

For the NR cases, this effect is more pronounced as the particles tend to avoid the
wall and occupy the regions far from it, creating a high-shear region close to the wall.

The root-mean-square (r.m.s.) values of the wall-normal velocity fluctuations (v′) are
given in figure 9, where the results are normalized by the diffusive velocity scale
ν/D. Figure 9(a,b) depicts the r.m.s. of the wall-normal velocity for the fluid and
the particles, showing the effect of Rep on the fluctuations at φ = 30 %. It can be
observed that the maxima of v′f and v′p are smaller than the diffusive velocity scale
ν/D only when Rep 6 4, suggesting that diffusion can only play an important role
in the heat transfer between the walls when particle Reynolds number is sufficiently
small. For Rep > 4, however, v′ exceeds the diffusive velocity scale ν/D, except for
a thin region close to the wall. The consequences of layering on v′ are observed
especially in the particle fluctuations, which increase significantly from layer to layer
and remain constant within each layer.

The effect of volume fraction on the velocity fluctuations at Rep = 16 is shown in
figure 9(c,d). The results show a saturation of v′pD/ν, as it increases slightly from
φ = 20 % to φ = 30 %; nonetheless, v′f continues to increase with the volume fraction
due to the presence of a larger number of particles in the mentioned layers. In the
NR cases, v′f increases at the centreline of the domain for low volume fractions, 3
and 10 %, while it is lower than ordinary counterparts at φ = 30 %. At φ = 20 %, v′f
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FIGURE 9. (Colour online) Root-mean-square of wall-normal velocity fluctuations,
normalized by the diffusive velocity scale ν/D, for the fluid phase (v′f D/ν) and the
particles (v′pD/ν) versus the distance to the wall y/h: (a) fluid phase for the different
particle Reynolds number under investigation at φ = 30 %; (b) particles – same cases as
in (a); (c) fluid phase – different volume fractions at Rep= 16; (d) particles – same cases
as in (c). The results for non-rotating particles are indicated with the same line style as
their rotating counterparts, using asterisks in (c) and (d).

is barely changed. On the other hand, v′p is significantly decreased for all the volume
fractions.

To further understand the details of the transport mechanisms in a particle-laden
plane Couette flow, it is useful to separate the different contributions to the total heat
transfer. Following the rationale on the heat transfer balance given in appendix A, we
write the wall-normal heat flux in the following form:

q′′tot =−Φ〈v
′

pT ′p〉 − (1−Φ)〈v
′

f T
′

f 〉 +Φαp

〈
dTp

dy

〉
+ (1−Φ)αf

〈
dTf

dy

〉
. (4.1)

The total heat flux, on average constant across the channel, is divided into four terms:
(i) convection by the particle velocity fluctuations, q′′Cp

; (ii) convection by the fluid, q′′Cf
;

(iii) molecular diffusion in the solid phase (solid conduction), q′′Dp
; and (iv) molecular

diffusion in the fluid phase (fluid conduction), q′′Df
.

Figure 10 shows the wall-normal profiles, from the wall to the centreline, of these
four different terms for volume fractions φ = 10 and 30 % at the different particle
Reynolds numbers under investigation, computed by averaging each term through
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FIGURE 10. (Colour online) Heat flux budget for the volume fractions φ = 10 %:
(a) Rep= 1; (b) Rep= 4; (c) Rep= 8; (d) Rep= 16; and φ= 30 %: (e) Rep= 1; ( f ) Rep= 4;
(g) Rep = 8; (h) Rep = 16.
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FIGURE 11. (Colour online) Wall-normal integral of the heat fluxes transferred by
different mechanisms, normalized by total heat flux in single-phase flow for: (a) φ= 10 %
and (b) φ = 30 %.

time and space (periodic directions). The results at Rep = 1 (figure 10a,e), which
can be considered as representative of the Stokes regime, reveal that the heat flux is
almost completely due to the heat molecular diffusion in the fluid and solid phase,
and the role of the fluctuations is negligible in both phases. When Rep increases, the
contribution from the term −(1 − Φ)〈v′f T

′

f 〉, the correlation between the fluctuations
in the temperature and wall-normal fluid velocity, increases. At Rep = 16, this term
gives the largest contribution at the centreline. The heat transfer due to conduction
in the solid phase, q′′Dp

, is found to reduce with increasing Rep, when the particle
velocity fluctuations transfer heat by the motion of the particles across layers.

The integral of the contribution to the total heat flux of each term is depicted in
figure 11, where the results are normalized by the total heat flux in the absence of
particles. Figure 11 shows that the heat flux transferred by the velocity fluctuations
increase significantly with Rep and this explains the increase of the effective
suspension diffusivity shown above; the total amount of diffusive heat flux (in the
fluid and solid phases) saturates. Interestingly, the heat flux transferred by conduction
in the solid phase reduces as Rep increases for φ = 10 % (figure 11a) and φ = 30 %
(figure 11b). To explain this behaviour, we refer to figure 9(b), where we report the
particle wall-normal velocity fluctuations normalized by the diffusive velocity scale.
As discussed above, the order of magnitude of the velocity fluctuations is significantly
larger than the diffusive velocity scale for the highest Rep (note that the heat diffusion
velocity is smaller than ν/D by a factor of the Prandtl number, Pr). This difference
in velocity scales, particle fluctuations and heat diffusion explains the reduction of
heat transferred by conduction in the solid; in other words, heat diffusion in the solid
phase is slow compared to the time it takes the particle to move to a new position.
Nevertheless, heat transfer by convective processes in both phases accounts for more
than half of the total except for the case at φ = 30 % and Rep = 16. An increase
in the thermal diffusivity of the solid phase can reduce the difference between the
velocity scales, increasing the heat transfer.

In the NR cases q′′Cp
is reduced significantly due to the drastic decrease of v′p

with respect to the ordinary cases (figure 9d). However, q′′Cf
is increased to a great

extent, compensating for the reduction in q′′Cp
. The increase in q′′Cf

can be confusing,
especially for φ = 30 %, since we report in figure 9(c) a decrease in v′f compared
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FIGURE 12. (Colour online) (a) The effective thermal diffusivity of the suspension,
normalized with that of the single-phase flow, αr, versus the particle volume fraction φ and
(b) the same data normalized with the effective thermal conductivity of a composite (αec)
with the same volume fraction, estimated according to the Lewis–Nielsen model (Nielsen
1974).

to the case where the particles are free to rotate. This can be explained by the
higher concentration of the non-rotating particles at the centreline: this creates higher
temperature fluctuations in this region where v′f reaches its maximum value, causing
the correlation between the fluctuations in the temperature and wall-normal fluid
velocity to increase. Therefore, it can be concluded that for the inertial cases, where
q′′Cf

plays an important role in the heat transfer, the migration of the particles towards
the wall and therefore formation of particle layers is less efficient for the heat transfer
with respect to the situation where the particles migrate towards the centreline.

4.2. Different thermal diffusivity of the particle
In this section we present results obtained by varying the particle thermal diffusivity
and examine the implications on the heat transfer in the same Couette geometry. We
first consider a solid thermal diffusivity higher than (Γ = αp/αf = 10), lower than
(Γ = 0.1) and equal to the fluid thermal diffusivity at Rep = 0.5. The effect of
inertia in the presence of particles with different thermal diffusivity is investigated by
performing simulations at Rep= 16 for Γ = 0.1 and 10. These flow cases are studied
at volume fractions φ = 10, 20 and 30 % with constant Prandtl number Pr= 7.

Figure 12(a) depicts the effective diffusivity of the suspension, αr, versus the
volume fraction of the solid phase for the different values of the thermal diffusivity
ratio Γ investigated. As expected, at small particle Reynolds number Rep = 0.5, αr
increases or decreases with the particle volume fraction when the thermal diffusivity
of the solid particles is higher or lower than that of the fluid. Interestingly, at Rep=16,
the inertial effect overcomes the lower diffusivity (see case Γ = 0.1), resulting in a
considerable global increase of the heat transfer across the flow. The results for the
case at Rep = 16 and Γ = 1 (depicted previously in figure 6a) are again reported
in figure 12(a) for a better comparison. When inertial effects become important, the
difference between the results with Γ = 1 and Γ = 0.1 is negligible. Although the
difference in αr is also small at Rep = 0.5 between Γ = 1 and Γ = 0.1, this is
noticeable when calculating the relative decrease of αr (normalizing the difference
with αr for the case with Γ = 1).
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FIGURE 13. (Colour online) Heat flux budget for the volume fractions φ = 10 %:
(a) Rep= 0.5, Γ = 0.1; (b) Rep= 0.5, Γ = 10; (c) Rep= 16, Γ = 0.1; (d) Rep= 16, Γ = 10;
and φ = 30 %: (e) Rep = 0.5, Γ = 0.1; ( f ) Rep = 0.5, Γ = 10; (g) Rep = 16, Γ = 0.1;
(h) Rep = 16, Γ = 10.
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In figure 12(a) the effective thermal diffusivity is normalized with that of the
single-phase flow. This normalization might not be the most relevant when the thermal
diffusivity inside the particles is different from that of the surrounding fluid due to
the change in the average thermal diffusivity of the suspension. To highlight how the
motion of the particles can enhance the heat transfer of a suspension, it may therefore
be better to normalize the effective thermal diffusivity of a sheared suspension to that
of a suspension at rest. Pietrak & Wisniewski (2015) recently reviewed the models for
effective thermal conductivity of composite materials. The first analytical expression
for the effective conductivity of a heterogeneous medium was suggested by Maxwell
(1904) in his pioneering work on electricity and magnetism. Maxwell’s formula was
found to be valid in the range of φ < 25 % (Pietrak & Wisniewski 2015). Later,
Nielsen (1974) suggested an empirical model, now frequently used in the literature,
which provides relatively good results up to φ < 40 % and covers a wide range of
particle shapes. The effective thermal conductivity of a composite (αec) according to
the Lewis–Nielsen model is given by

αec =
1+ abφ
1− abψ

, b=
αp/αf − 1
αp/αf + a

, ψ = 1+
1− φm

φ2
m

φ, (4.2a−c)

where φm is the maximum filler volume fraction and a is the shape coefficient for
the filler particles. For random packing of spherical particles, φm has the value 0.637,
while a= 1.5 for spherical particles (Nielsen 1974).

The effective thermal diffusivities extracted from the simulations are depicted in
figure 12(b) normalized with the effective conductivity of the suspension at rest (αec).
The data show that the largest relative increase of the heat transfer when particles
move occurs for Γ = 0.1 and Rep = 16. This can be explained by the fact that αec
is minimum in this case while inertial effects are large at Rep = 16. Interestingly,
a reduction is observed at φ = 30 % compared to 20 % for the case with Γ = 10
and Rep = 16, indicating that αec grows faster than inertial effects at φ = 30 %. The
trend is different when inertia is negligible, Rep = 0.5. In this case, αec calculated by
the Lewis–Nielsen model matches the value of αe from the simulations. The small
deviation observed can be related to the layering of particles discussed above, as the
particles in the Lewis–Nielsen model are assumed to be randomly distributed. This
effect is more pronounced for the case with Γ = 10.

The analysis of the averaged heat flux across the gap width between the planes
(see (4.1)) is repeated here for the cases with different Γ . The results are presented
in figure 13(a–d) for φ = 10 % and figure 13(e–h) for φ = 30 % at Γ = 0.1, 10 and
Rep = 0.5, 16. As mentioned before, all terms in (4.1) are normalized with the total
wall-normal heat flux.

The data show that for the case at Rep = 0.5 and Γ = 0.1, when the flow around
the particles is in the Stokes regime, molecular diffusion in the fluid is the dominant
contribution to the overall heat flux. The contribution from diffusion in the solid
phase is small in this case owing to the low thermal diffusivity of the particles; the
terms related to the velocity fluctuations play a very minor role because of the low
particle Reynolds number and low level of fluctuations. Indeed, the fluid and particle
fluctuations are almost negligible when Rep = 0.5. When Γ = 10, the diffusion in the
solid is larger than that in the fluid only when the volume fraction φ = 30 %, except
for a small region close to the wall, where the local solid volume fraction tends to
zero.

Finally, we consider inertial effects, the last two rows of figure 13 pertaining
to the results at Rep = 16. When the particle diffusivity is lower than the fluid
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FIGURE 14. (Colour online) Wall-normal integral of the different terms defining the
average heat flux across the channel, normalized by the total heat flux in single-phase
flow for: (a) φ = 10 % and (b) φ = 30 %.

one, Γ = 0.1, the fraction of heat diffusing through the solid particles is negligible
and the fluctuations in the fluid and solid particles play a major role in the heat
transfer process. Already at φ = 10 %, the heat transfer due to the fluctuations in the
fluid velocity is comparable to the heat diffusing in the fluid towards the centreline
of the domain. At higher particle volume fractions, q′′Cf

dominates over the other
transport mechanisms except for a region close to the wall where the velocity and
temperature fluctuations vanish. At the highest volume fraction investigated, φ= 30 %,
the wall-normal heat transfer due to the combined effect of temperature and particle
velocity fluctuations is almost equal to the heat diffusion in the fluid. For the cases
with Γ = 10, however, all four terms play an important role and none of them can
be a priori discarded. At the lowest volume fraction, φ = 10 %, the heat diffusion
and the transport related to the fluid velocity fluctuations, q′′Df

and q′′Cf
, are dominant

especially in the centre of the channel. On the contrary, the diffusion in the solid
phase, q′′Dp

, dominates at higher volume fractions, except for the small region close
to the wall where the local volume fraction approaches zero.

The global contribution of each term to the steady-state heat flux is depicted in
figure 14, where the results are normalized by the total heat flux in the absence of
particles. Interestingly, the heat flux due to the particle velocity fluctuations reduces
when Γ = 10. Indeed, as we discussed in the previous section, the ratio between the
velocity and time scale of thermal diffusion inside the particles and transport with
the particles (proportional to the particle velocity fluctuations) can affect the relative
importance of these two transport mechanisms; for example, for Γ =10 the velocity of
thermal diffusion is significantly larger than for Γ = 1, causing the particles to reach
the surrounding fluid temperature fast in comparison to the particle’s own motion.

The above results shed some light on the contribution of the solid-phase thermal
diffusivity to the heat transfer in particle suspensions. We show that, in a suspension
of solid particles with a lower thermal diffusivity than the fluid, the heat transfer
through the suspension can become smaller than that in single-phase flow. However,
as the inertia of the particles increases, the heat transfer can be enhanced by the wall-
normal velocity fluctuations even in the presence of particles with lower diffusivity,
Γ < 1. The results indicate that the thermal diffusivity of the solid phase is more
important when the flow is in the Stokes regime and inertial effects are negligible.
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5. Final remarks
We report results from interface-resolved direct numerical simulations (DNS) of

plane Couette flow with rigid spherical particles. In this study, we focus on the
heat transfer enhancement when varying particle Reynolds number, total volume
fraction (number of particles) and the ratio between the particle and fluid thermal
diffusivities. Simulations are performed using a numerical approach proposed in this
study to address heat transfer in both phases. The numerical algorithm is based on an
immersed boundary method (IBM) to resolve fluid–solid interactions, with lubrication
and contact models for the short-range particle–particle (particle–wall) interactions. A
volume-of-fluid (VoF) model is used to solve the heat transfer equation both inside
and outside of the particles, enabling us to consider different thermal diffusivities in
the two phases. In the current work we show how the ratio between the velocity and
time scale of thermal diffusion inside the particles and transport with the particles
(proportional to the particle velocity fluctuations) can affect the relative importance
of these two transport mechanisms. For this purpose we consider similar ρCp for the
particles and the fluid while changing the particle Reynolds number and the thermal
diffusivity of the particles. Indeed, having different ρ ∗ Cp between the particles and
the fluid can change the ratio of the velocity and time scales, and therefore it will
be very interesting also to distinguish the effect of Cp and K in future studies, using
the same VoF approach with a slightly different discretization of the energy equation.

The results of the simulations show that the effective thermal diffusivity of the
suspension increases linearly with the volume fraction of the particles at small
particle Reynolds numbers, in agreement with the experimental and numerical findings
in Metzger et al. (2013) for the Stokes regime, which serve as validation for the
present method. We report that this correlation can predict well the effective thermal
diffusivity of the suspension, up to approximately Rep = 4, where the deviation from
the correlation is less than ±4 %. At high Rep, the almost-linear profile of effective
thermal diffusivity changes to a curve, which is underpredicted and overpredicted by
the correlation for low and high volume fractions, respectively.

We also vary the ratio between the particle and fluid thermal diffusivities and
show that the results are found to collapse reasonably well for vanishing inertia
when rescaled with the conductivity of a composite estimated by the Lewis–Nielsen
model (Nielsen 1974). Inertial effects trigger an increase of the heat transfer, which
is, in absolute value, more pronounced for Γ = 10. However, when scaling the data
with the average conductivity of a composite, the increase due to inertial effects is
relatively more important at Γ = 0.1.

It should be noted that the increase of the effective thermal diffusivity with the
addition of particles usually comes at the price of an increase in the effective
viscosity of the flow, resulting in higher external power needed to drive the flow.
We show in this study that for particle volume fractions lower than 10 % inertial
effects (Rep = 16) increase the heat transfer more than the momentum transfer; in
other words the enhancement in the effective thermal diffusivity of the suspension
is more than the increase of the effective viscosity, which we denote as an efficient
heat transfer enhancement. The increase of the effective thermal diffusivity is limited
at low volume fractions. At higher volume fractions, instead, the increase of the
effective viscosity exceeds the increase in effective thermal diffusivity.

To better understand the heat-transfer process, we ensemble-average the heat transfer
equation and obtain four different contributions making up the total heat transfer:
(i) transport associated with the particle motion; (ii) convection by fluid velocity;
(iii) molecular diffusion in the solid phase (solid conduction); and (iv) molecular
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diffusion in the fluid phase (fluid conduction). The analysis shows that the increase
of the effective conductivity observed at finite inertia can be associated with an
increase of the transport associated with fluid and particle velocity. Interestingly,
the total contribution of the solid conduction term reduces when increasing the
particle Reynolds number. This can be explained by the ratio between the time scale
of molecular diffusion in the solid and of the transport by particle motions. As
particles move faster, conduction inside the solid becomes negligible. Given the small
contribution of the solid conduction term at high particle Reynolds numbers, we
expect that decreasing the particle thermal diffusivity does not have a large influence
on the total heat transfer. Indeed, the results of the simulations with different thermal
diffusivities match the mentioned expectation, as the effective thermal diffusivity at
Γ = 0.1 is close to that at Γ = 1. On the other hand, a particle thermal diffusivity
higher than that of the fluid significantly increases the effective heat transfer.

We investigate in this study the effect of particle Reynolds number, total volume
fraction (number of particles) and the thermal diffusivity of the particles on the
effective thermal diffusivity of the suspension. However, the effect of particle shape
on the heat transfer still remains unexplored, something that may be addressed in the
near future. This is potentially interesting, as particles of different shapes may have
different distributions across the channel. We show in this study that for the inertial
cases, where the convection by the fluid plays an important role in the heat transfer,
the migration of the particles away from the wall and therefore near-wall depletion
further enhances the effective heat transfer. In the present study, we obtain depletion
of the near-wall region by artificially imposing zero angular velocity on the motion
of particles, an effect that may be induced by a different particle shape.
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Appendix A. Different contributions to the total heat transfer
In this section we examine the heat flux in suspension mixtures by phase-ensemble-

averaging the heat transfer equation using the framework developed and employed in
Marchioro, Tanksley & Prosperetti (1999), Zhang & Prosperetti (2010) and Picano
et al. (2015), and find the different contributions to the total heat transfer reported
in the main text. We define the phase indicator ξ , whose value varies between 0 and
1 based on the solid fraction in the considered volume. Defining the phase-ensemble
average 〈 〉 as the ensemble average (implicitly) conditioned to the considered phase,
the local volume fraction is defined as

Φ = 〈ξ〉. (A 1)

A generic observable of the combined phase, Oc, can be constructed in terms of
Op and Of (the same observable inside the particles and in the fluid phase), using the
phase indicator ξ . The phase-ensemble average of Oc is

〈Oc〉 = 〈ξOp + (1− ξ)Of 〉 =Φ〈Op〉 + (1−Φ)〈Of 〉, (A 2)

where we use the subscript inside the brackets to indicate the phase conditioning.
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The differential heat transfer equation,

ρCp
DT
Dt
=∇ · (k∇T), (A 3)

can be rewritten in terms of both phases as

ξ(ρCp)p
DTp

Dt
+ (1− ξ)(ρCp)f

DTf

Dt
=∇ ·

[
ξkp∇Tp + (1− ξ)kf∇Tf

]
. (A 4)

Phase-ensemble-averaging (A 4) and using (A 1) and (A 2) results in

Φ(ρCp)p

[〈
∂Tp

∂t

〉
+ 〈up · ∇Tp〉

]
+ (1−Φ) (ρCp)f

[〈
∂Tf

∂t

〉
+ 〈uf · ∇Tf 〉

]
=∇ ·

[
Φkp〈∇Tp〉 + (1−Φ) kf 〈∇Tf 〉

]
. (A 5)

Next we decompose temperature and velocity into the average and fluctuating part
(u=U+u′ and T =T +T ′) and consider the mean of these quantities. With the above
decomposition, equation (A 5) can be rewritten as

Φ(ρCp)p

[
Up · ∇Tp + 〈u′p · ∇T ′p〉

]
+ (1−Φ)(ρCp)f

[
Uf · ∇T f + 〈u′f · ∇T ′f 〉

]
=∇ ·

[
Φkp〈∇Tp〉 + (1−Φ)kf 〈∇Tf 〉

]
. (A 6)

Assuming (ρCp)p = (ρCp)f and exploiting the symmetries in the two homogeneous
directions, the projection of (A 6) in the inhomogeneous wall-normal direction y gives

d
dy

[
−Φ〈v′pT ′p〉 − (1−Φ)〈v

′

f T
′

f 〉 +Φαp

〈
dTp

dy

〉
+ (1−Φ)αf

〈
dTf

dy

〉]
= 0, (A 7)

where αp = kp/(ρCp)p and αf = kf /(ρCp)f .
Finally, integrating (A 7) in the wall-normal direction results in the following

equation for the total heat flux q′′tot:

q′′tot =−Φ〈v
′

pT ′p〉 − (1−Φ)〈v
′

f T
′

f 〉 +Φαp

〈
dTp

dy

〉
+ (1−Φ)αf

〈
dTf

dy

〉
. (A 8)
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