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Abstract

Human ascariasis is the most common and prevalent neglected tropical disease and is esti-
mated that ∼819 million people are infected around the globe, accounting for 0.861 million
years of disability-adjusted life years in 2017. Even with the existence of highly effective
drugs, the constant presence of infective parasite eggs in the environment contribute to a
high reinfection rate after treatment. Due to its high prevalence and broad geographic distri-
bution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here,
we provide data from both experimental models and humans studies that illustrate how com-
plex is the interaction of Ascaris with the host immune system, especially, in the context of
reinfections, co-infections and associated co-morbidities.

Introduction

Helminth parasites are infectious agents belonging to a diverse group of the phylum Nematoda
(roundworms) and the phylum Platyhelminthes (flatworms). Among the nematodes is the
group of the soil-transmitted helminths (STH), also known as geohelminths, classified as para-
sites which are infective agents, including embryonated eggs or larval stages are transmitted to
the host by direct contact with the soil through either skin penetration or oral ingestion
(Lustigman et al., 2012). The STH, Ascaris lumbricoides and Ascaris suum, Trichuris trichiura
and both Necator americanus and Ancylostoma duodenale are the most important etiological
agents of the most common intestinal parasitic diseases of developing countries, being part of
the neglected tropical diseases (NTD), such as ascariasis, trichuriasis and hookworm infec-
tions, respectively (Lustigman et al., 2012). Among them, the most common and prevalent
NTD is the human ascariasis caused by A. lumbricoides or A. suum, by which recent studies
estimate that ∼819 million people are infected worldwide (Pullan et al., 2014). This high
prevalence is associated with poverty and precarious health conditions, mainly in tropical
and subtropical areas of developing countries such as sub-Saharan Africa, Southeast Asia
and South America (Bethony et al., 2006; WHO, 2015, 2019).

Human ascariasis is transmitted through the faecal–oral route. Infection occurs by inges-
tion of water or food contaminated with embryonated eggs containing the fully developed
L3 larval stages. The eggs hatch in the intestine, and the L3 larvae that pass through the intes-
tinal wall and migrate along the liver and heart, up to the lungs. In the lung tissue followed by
the airways passage, the larvae are expectorated and then swallowed, passing through the
gastrointestinal tract until they arrive at the small intestine, where they mature into adult
worms, which after mating, females release millions of fertilized eggs with the faeces, contam-
inating the environment (Douvres et al., 1969; WHO, 2011, 2019; CDC, 2019; Conterno et al.,
2020).

Clinically, ascariasis can be divided into 2 distinct phases in the human host because of its
complex biological life cycle. The initial phase, known as larval or acute ascariasis, is caused by
hepato-tracheal migration of the larval forms of the parasite in the first weeks of infection,
characterized by a profound inflammatory response in the affected organs, mostly in the
lungs, leading to diffuse lung disease as a consequence of the tissue damage provoked by
the migrating larval stages (Weatherhead et al., 2020). When the migrating larval stages com-
plete their quest for program development with the maturation into adult worms in the intes-
tine, the second phase of human ascariasis initiates, which is characterized by a chronic and
long-term infection (Crompton, 1985).

Although the chronic infection in most cases is associated with light to moderate burden,
with nonspecific symptoms, human ascariasis is considered a worldwide public health prob-
lem due to the clinical complications observed in individuals with a high parasitic burden.
The severe form of the disease is associated with abdominal distension, nausea, diarrhoea
and can be fatal due to intestinal obstruction by adult worms (Chan, 1997). Morbidity and
mortality increase with the intensity of the disease (de Silva et al., 1997). Moreover, in
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moderate infections, ascariasis is correlated with nutritional def-
icit, growth retardation and cognitive deficit (Dold and
Holland, 2011). Considering the limitation of data to quantify
the complications of ascariasis, the estimated number of deaths
worldwide in 2017 due to human ascariasis was 3206 (Vos
et al., 2017), causing a global burden of 0.861 million years of
disability-adjusted life years (DALYs) in 2017 (Kyu et al., 2018).

Moreover, due to its high prevalence and wide geographic dis-
tribution, a high rate of co-morbidities and co-infections asso-
ciated with ascariasis is expected. In this review, we will provide
insights about the immune response of Ascaris infection in the
context of reinfection and co-morbidities such as lung fibrosis,
allergic diseases, and co-infections.

Reinfections

Developing strategies to control the spread of Ascaris is a major
challenge. The development of an integrated control strategy, con-
sisting of preventive chemotherapy (PC), combined with health
education and environmental sanitation is needed to interrupt
transmission of STH (Jia et al., 2012). Even with the existence
of highly effective drugs (Keiser and Utzinger, 2008; Jia et al.,
2012; Moser et al., 2017), the constant presence of infective para-
site eggs in the environment guarantees reinfection months after
treatment. Jia et al. (2012), in a meta-analysis study, showed that
the prevalence of ascariasis tended to regress to the pretreatment
levels 12 months post-treatment. On top of that, after decades of
scientific discussion, currently, it has been a consensus that A.
suum, the etiological agent of the swine ascariasis, with a massive
cosmopolitan distribution among pigs, are also capable to infect
human, causing human ascariasis. Although zoonotic infection
is a rare event, A. suum infection represents a risk for farmers
and farming areas worldwide, creating another obstacle for the
control and elimination programs (Nejsum et al., 2005;
Thamsborg et al., 2013; Alves et al., 2016).

As an initiative to eliminate morbidities caused by STH infec-
tions, especially in children, World Health Organization (WHO)
launched in 2012 a strategic plan aimed to increase the coverage
of PC from 15 to 75% of school-age children and preschoolers
(WHO, 2011). With the impact of increased PC coverage, in
2015 STH control programs prevented the loss of >500 000
DALYs (Kassebaum et al., 2016). Therefore, the existence of a
gap between PC and the prevention of reinfections, makes
reinfection an extremely important phenomenon for ascariasis.

Despite its epidemiological importance, what is known about
acute ascariasis was described based on experimental models,
due to the difficulty of an early diagnosis in humans. Thus, in
recent decades, a special focus has been given to the long-term
ascariasis, with the assessment of immunological aspects of
chronically infected individuals from endemic areas (McSharry
et al., 1999; Cooper et al., 2000, 2004; Geiger et al., 2002;
Jackson et al., 2004). In this way, there are many gaps in the
understanding of how initial infection factors (such as larval
migration) may influence the development of the immune
response and the induction of resistance/susceptibility to infec-
tion. Therefore, the understanding of the immunobiological
aspects of larval ascariasis in primary infection and reinfection,
makes it possible to understand the type of initial immune
response necessary for infection control.

The characterization of the mechanisms developed by the para-
site to evade the host’s immune response contribute to the basic
scientific knowledge necessary for the development of more effect-
ive immunoprophylactic strategies to interrupt the parasite’s trans-
mission cycle before it establishes chronicity in the host.

In this sense, the use of an animal model for the study of larval
ascariasis has been shown to be efficient, especially in

understanding the mechanisms of the immune response and
pathophysiology after multiple exposures (Fig. 1). Initially, with
the use of pigs as an experimental model, it was demonstrated
that repeated infections with A. suum would generate resistance
to new infections. This finding was evidenced by the reduction
in the number of larvae found at intestinal, hepatic and pulmonary
levels after reinfection, and with the reduction in the number of
milk-spots in the liver in necropsy (Urban et al., 1988; Eriksen
et al., 1992; Nejsum et al., 2009b). Afterwards, Eriksen et al.
(1992) in an elegant paper demonstrated that the protective
immune response was dose dependent, with the highest first inocu-
lum leading to a lower final burden after reinfection. In addition, it
was verified by analyzing the sizes of the worms in the small intes-
tine, that the adult worms established themselves mainly from the
first doses of inoculated eggs, giving rise to a patent infection, while
the newly inoculated larvae were less successful (Eriksen et al.,
1992; Mejer and Roepstorff, 2006; Nejsum et al., 2009b).

The protective phenotype in the reinfection of A. suum had
been also previously demonstrated by Urban and collaborators
in pigs inoculated orally with UV-irradiated eggs, leading to pro-
tection against infection (Urban and Tromba, 1984). Such find-
ings also corroborate with studies that demonstrated that
previous exposure to other helminths contributed to the reduc-
tion of the parasitic burden, of Strongyloides ratti (Dawkins and
Grove, 1982), of Neodiplostomum seoulensis (Yu et al., 1995),
Clonorchis sinensis (Sohn et al., 2006), S. stercoralis (Rotman
et al., 1996) and Trichuris suis (Nejsum et al., 2009a).

The immune pathways responsible for controlling the parasitic
burden of Ascaris are not fully understood. Prolonged helminth
infections have been shown to induce the generation of specific
antibodies to the parasite, with a predominance of IgG1 and
IgA; on the other hand, recent primary infections generate poly-
reactive IgG and IgE antibodies (McCoy et al., 2008). And,
although it is not clear, the passive transfer of immune serum,
or IgG, showed that the humoral immune response plays an
important role in resistance to Ascaris, contributing to the control
of the parasitic burden in animals challenged after the transfer
(Khoury et al., 1977; Gazzinelli-Guimarães et al., 2018).
Interestingly, it was demonstrated in vitro that circulating eosino-
phils degranulated in direct contact with larvae, in the presence of
serum from reinfected animals, which means that specific anti-
bodies and complement components can contribute to protection
via eosinophils (Masure et al., 2013). In addition to IgG, animals
infected with A. suum have high levels of specific IgA, which con-
tributes to the control of the weight and size of parasites in the
intestinal lumen (Marbella and Gaafar, 1989; Kringel et al., 2015).

Several studies suggested that the immune response triggered in
the mucosal tissue contribute to control Ascaris larvae migration;
with an increase in the number and activation status of eosinophils
in lung tissue as well as in the intestine, suggesting an important
role of eosinophils in reducing Ascaris burden (Masure et al.,
2013; Nogueira et al., 2016; Gazzinelli-Guimaraes et al., 2019).
Masure et al. (2013), demonstrated that recruitment of eosinophils
to the caecum of reinfected animals was further supported by
increased levels of interleukin-5 (IL-5), interleukin-13 (IL-13),
C-C motif chemokine ligand 11 (CCL11) and eosinophil peroxid-
ase transcripts in the cecal mucosa of reinfected swine. In the same
work, using a porcine model demonstrated that the reduction in
the number of larvae in reinfected animals was associated with
eosinophilia, mastocytosis and hyperplasia of goblet cells in the
cecum (Masure et al., 2013).

Recently, using the murine model, it has been demonstrated
that A. suum reinfected mice showed an important and significant
reduction in parasitic burden at the pulmonary level (Nogueira
et al., 2016), however, reinfected mice have greater tissue damage.
After multiple exposures to A. suum, Nogueira et al. (2016)
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observed a significant increase in lung tissue and airways cellular-
ity, characterized by an increase in lymphocytes and macro-
phages, in addition to a marked eosinophilic and neutrophilic
inflammation of the lungs. In addition, it was observed that
induction of a mixed Th2/Th17 systemic response defined by ele-
vated levels of IL-4, IL-5, IL-10, IL-6, tumor necrosis factor (TNF)
and IL-17A compared to single-infected mice. Similar to what was
observed in Toxocara canis infection (Resende et al., 2015).

The presence of eosinophils can also be implicated in tissue
repair and remodelling due to the extensive mechanical injury
and haemorrhage associated with larvae migration (Isobe et al.,
2012). It was also highlighted that reinfection induced a larger
area of lung injury when compared to primary infection, also sug-
gesting that multiple exposures can lead to repeated tissue injury
and chronic inflammation (Nogueira et al., 2016). The contribu-
tion of the inflammatory response in the control of parasitic bur-
den has been evidenced in models of susceptibility and resistance
to single infection by A. suum (Lewis et al., 2007; Dold et al.,
2010). Hepatic inflammation has been associated with infection
control seen in animals resistant to A. suum infection (Dold
et al., 2010). Pulmonary inflammation, on the other hand, was
considered important for the control of A. suum infection, but
directly associated with tissue repair induced by larval migration
(Lewis et al., 2007).

In general, previous studies have shown that the mechanism of
protection against helminth reinfection is mediated by an

eosinophil dominated-type 2 immune response, and susceptibility
is associated with the Th1 immunity (Gause et al., 2003; Hayes
et al., 2007). During experimental Ascaris reinfection, elevated
levels of IL-4 and IL-10 in serum (Nogueira et al., 2016) was
also observed. The combination of these 2 cytokines was crucial
for the control of the damage caused by Nippostrongylus brazilien-
sis larvae migration through the host’s organs (Chen et al., 2012).
However, the findings by Nogueira et al. (2016), demonstrated
that the protection driven by reinfection was associated with a
mixed Th2/Th17 response pattern (). In fact, the increase in
IL-17A levels after multiple exposures to A. suum may reflect
intense and chronic inflammation, analogous to the pulmonary
fibrosis model (Wilson et al., 2010).

The pulmonary physiological changes observed in A. suum
infected mice, such as loss of lung volume, airway flow and elasti-
city, were observed due to intense parenchymal injury, haemor-
rhage and edema (Nogueira et al., 2016). After multiple
exposures, the persistence of physiological modulation and chronic
lung parenchymal injury, associated with intense eosinophilia, were
consistent with human ascariasis associated with Loeffler syn-
drome/eosinophilic pneumonitis (Nutman, 2007; Kunst et al.,
2011). Such findings demonstrate that collagen deposition and
fibrogenesis is a cumulative effect of larval ascariasis, and together
with the persistence of eosinophils in the tissue, those factors can
lead to restrictive lung disease. It is worth mentioning, acute injury
to the lung parenchyma caused by the migration of the larvae,

Fig. 1. Ascaris reinfection. Figure compiles the data obtained from the different experimental model for 1 or multiple infections with A. suum. In the lungs, repeated
infection leads to higher lung inflammation and cellularity with increase number and activation status of neutrophils, eosinophils, lymphocytes and macrophages.
Nevertheless, reinfected animals display lower larvae burden, less haemorrhage and pulmonary impairment. Necropsy also evidenced a reduction in the number of
milk spots in the liver from reinfected animals. In the intestine, reinfected animals show an increase in number and activation status of eosinophils, mastocytes and
goblet cells with higher expression of IL-13 that leads to increased contractility and mucus secretion. All those factors culminate with lower L4/young adult’s larvae.
The prolonged infection has been shown to induce the generation of specific antibodies to the parasite, with a predominance of IgG1 and IgA, while recent primary
infection generates polyreactive IgG1, IgG3 and IgE. The cytokine response also differs from single to reinfection models. With a predominance of a Th2/Th17
response in the latter compared to Th1/Th2 phenotype in primo-infected animals.
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detected mainly in simple infections, and tissue remodelling by
fibrogenesis, detected in prolonged simple and multiple infections,
can lead to increased pulmonary resistance, and decrease compla-
cence, accentuated in single infected animals (Nogueira, et al.,
2016). The fibrogenesis caused due to tissue healing induced by
the Th2/Th17 immune response and already proven in the larval
ascariasis model (Oliveira et al., 2019).

Ascaris comorbidities

Pulmonary fibrosis

Pulmonary fibrosis is a chronic and progressive lung condition
caused by excessive collagen deposition in the lung parenchyma
that can severely disrupt lung function and contribute to the
development of lethal fibrotic pathology (Wilson and Wynn,
2009; Gause et al., 2013). After acute injury or infection, reso-
lution of inflammation is important to restore normal tissue
architecture. However, the healing process can become pathogenic
when important checkpoints are missed and chronic inflamma-
tion can result in scar tissue formation (Wynn, 2004; Wilson
and Wynn, 2009).

Cytokines such as ransforming growth factor beta 1 (TGF-β1),
IL-1β, IL-8 and IL-17A have already been recognized and is well
characterized as important mediators in the development process
of pulmonary fibrosis, inducing fibroblast proliferation and conse-
quent type I collagen deposition (Russo et al., 2009, 2011; Wilson
et al., 2010). In addition, contributing to collagen deposition, type
2 responses are linked to fibrogenic processes of tissue regeneration
and repair following injury. Several studies have shown the involve-
ment of cytokines IL-4, IL-5 and IL-13 in the resolution of inflam-
mation, with the participation of macrophages, eosinophils, mast
cells, basophils, T helper type 2 cells and type 2 innate lymphoid
cells. In response to persistent chronic insults and injury, the
wound healing process can become pathogenic (Van Dyken and
Locksley, 2013; Guo et al., 2015; Minutti et al., 2017; Gieseck
et al., 2018). The participation of these cells in type 2 fibrosis
defines whether type 2 response results in a beneficial tissue repair
or fibrogenic process with associated pathology. ILC2 and Th2 cells
promote fibrosis contributing to the local secretion of type 2 cyto-
kines such as IL-4, IL-5 and IL-13, which support cell recruitment
and activation. Eosinophils can be important promoters of inflam-
matory and tissue damage, releasing type 2 cytokines and TGFβ1, a
potent profibrotic eosinophil secretory cytokine that stimulates
fibroblasts to promote the synthesis and direct deposition of
many extracellular matrix proteins (Raghow, 1991; Rosenberg
et al., 2013; Aceves, 2014). Alternatively, activated macrophages
are substantial to regulate the initiation, maintenance, and reso-
lution of inflammation, contributing to repair the following injury
by clearance of matrix and cell debris along with the production of
cytokines, growth and angiogenic factors that promote fibroproli-
feration and angiogenesis (Leibovich and Ross, 1976; Martin and
Leibovich, 2005; Gieseck et al., 2018).

Chronic helminth infections are considered potent inducers of
type 2 immunity, which is the main protective immune response
against helminth parasites, important for worm expulsion and to
regulate tissue repair that are frequently related to fibroprolifera-
tive response during chronic stages of disease (Van Dyken and
Locksley, 2013; Gieseck et al., 2018). Studies have shown that
IL-13 is crucial for lung and liver fibrosis induction in schisto-
somiasis. An IL-13 inhibitor was able to block the development
of liver fibrosis in a murine model of schistosomiasis
(Chiaramonte et al., 1999). In another study, IL-13 receptor α1
(IL-13Rα1) – deficient mice infected with Schistosoma mansoni
showed an increased survival rate due to fibrosis suppression
(Ramalingam et al., 2008).

Experimental infections by Ascaris have contributed to the
understanding of the elements involved in the immune response,
inflammatory process, and pathogenesis of ascariasis, especially in
the acute phase. However, there are few studies investigating the
relationship of Ascaris sp. infection with the process of developing
fibrosis in affected organs after larval migration. Studies reported
by our group, as previously mentioned, demonstrate in a murine
experimental model that in the larval migration phase, there is a
polarization of the immune response in ascariasis, with a mixed
profile of Th2/Th17 cytokines (Gazzinelli-Guimarães et al.,
2013, 2018; Nogueira et al., 2016; Oliveira et al., 2019). Notably,
most of the cytokines present in Ascaris infection are known to
contribute effectively to the production and deposition of collagen
(IL-17A and TGF-β1) (Leask and Abraham, 2004; Wilson et al.,
2010; Gieseck et al., 2018) or to have a fibrogenic potential
(IL-4, IL-6, IL-13 and IL-33), contributing indirectly for the fibro-
sis development (Gharaee-Kermani et al., 2001; Saito et al., 2008;
Wilson et al., 2010; Gause et al., 2013; Li et al., 2014; Gieseck
et al., 2018).

Indeed in A. suum infection, it was reported collagen deposition
around the lower airways, blood vessels and in the alveolar wall as a
result of injuries caused by larval migration, followed by tissue
remodelling (Nogueira et al., 2016; Gazzinelli-Guimarães et al.,
2018; Oliveira et al., 2019). These findings suggest that ascariasis
could predispose or contribute to the worsening of the progressive
development of pulmonary fibrosis.

Recently, using the bleomycin experimental model of pulmon-
ary fibrosis (Benítez, 2006; Walters and Kleeberger, 2008; Liu
et al., 2017) and Ascariasis (Gazzinelli-Guimarães et al., 2013),
our group shed light on the comorbidity environment generated
by these 2 pathologies. In this study, it was observed that the
co-existence of lung fibrosis and Ascaris infection led to the
exacerbation of lung damage, evidenced by a loss of pulmonary
physiological parameters that were related to the increase in
exudative phenomena and haemorrhage induced by larval migra-
tion (Oliveira et al., 2019). Although the comorbidity directed the
immune response to a profibrogenic profile with increased cyto-
kines IL-1, IL-4, IL-6, IL-13, and IL-33, the study did not observe
collagen deposition alteration or change in the levels of IL-17A
and TGF-β1 expression. In addition, the previous fibrosis in the
pulmonary parenchyma, around airways, blood vessels and thick-
ening of alveolar septa, did not impair the larval migration, which
was carried out in preserved areas of the lung parenchyma
(Fig. 2). (Oliveira et al., 2019). There is a clear need for further
studies addressing comorbidities produced by helminth infections
and pulmonary fibrosis, considering different association times to
elucidate and a better understanding of immunopathological
changes, which directly affect the progression of the diseases
involved.

Pulmonary allergic inflammation

The comorbidities associated with Ascariasis and other helminth
infections can be triggered by 2 important features of their para-
sites’ biologies, including the progressive larval development in
the host – characterized by a transient larval migration through
organs and tissues – and their molecular and structural similar-
ities with other pathogens or agents, including common environ-
mental allergens. Over the years, many studies have examined the
interface between allergic diseases and helminth infections (Van
Den Biggelaar et al., 2001; Daniłowicz-Luebert et al., 2011;
Gazzinelli-Guimarães et al., 2016). These largely immunoepide-
miologic studies associate chronic helminth infections with the
modulation of allergic responses through the induction of
IL-10, expansion of regulatory T cells, and blockade of IgG4 anti-
bodies (Van Den Biggelaar et al., 2000; Satoguina et al., 2005;
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Yazdanbakhsh and Wahyuni, 2005). On the other hand, there are
studies in humans and in experimental models which demon-
strate that helminth infections are associated with increased aller-
genicity. Notably, the allergy-like reactions and syndromes seen in
helminth-infected patients (e.g. urticaria in Strongyloides infection
(Zubrinich et al., 2019); angioedema and tropical pulmonary
eosinophilia in filarial infections (Van Dellen, 1985; Ottesen
and Nutman, 1992; Rakita et al., 1993); atopic dermatitis and
asthma-like syndrome in ascariasis (Caraballo et al., 2015;
Qualizza et al., 2018); and swimmer’s itch in schistosomiasis
(Kolářová et al., 1999)) have been associated with the acute stages
of the infections. These allergic-type inflammatory responses are
normally a consequence of the helminth-driven, dominant
type-2 immune response orchestrated by the host as an attempt
to kill or expel these early stages of parasites (Cruz et al., 2017).
Notably, A. lumbricoides infection has been implicated in indu-
cing asthma and wheezing (Leonardi-Bee et al., 2006), while
other murine studies have indicated that the pre-sensitization to
Ascaris antigens triggers mite-specific IgE responses upon subse-
quent mite antigen inhalation (Suzuki et al., 2016).

Ascaris parasites have transient life cycles in which migration
through the lung tissue is a necessary step for development in
the host. The migrating lung-stage larvae lead to diffuse lung
infiltrates (Gazzinelli-Guimarães et al., 2013; Weatherhead
et al., 2020) and eosinophilic pneumonia, termed Löeffler’s
Syndrome (Gelpi and Mustafa, 1968).Gazzinelli-Guimaraes
et al. (2019) demonstrated by using a controlled model of mul-
tiple timepoints of early Ascaris infection that in primary expos-
ure to Ascaris, the L3-stage larvae migrate to the lung
parenchyma in their quest to reach the airways, leading to a
marked influx of neutrophils and associated levels of IL-6,
and penetrate into the alveolar spaces, causing bleeding and
mechanical damage in the organ. These migrating Ascaris lar-
vae, while growing in size towards the L4 stage of development
(Douvres et al., 1969), induce a tissue inflammatory type 2
immune response in the lungs characterized by increased IL-5
levels followed by the production of IL-4 and IL-13, culminating
in the differentiation of M2 macrophages and eosinophilia in
the tissue. Very similar to a severe allergic airway disease, this
diffuse lung inflammation induced by Ascaris infection is char-
acterized by an eosinophil-dominated type-2 immune response

and manifests clinically as coughing, wheezing and in severe
cases, respiratory failure (Aleksandra et al., 2016).
Notwithstanding, Weatherhead et al. (2018) using a murine
model, demonstrated that Ascaris larval migration in the lung
tissue induces significant pulmonary damage, including airway
hyperresponsiveness and type 2 inflammatory lung pathology
resembling an extreme form of allergic airway disease. These
authors and others, given similar clinical features, support the
idea that ascariasis may be an important cause of allergic airway
disease in regions of high endemicity. Moreover, immunoepide-
miologic studies suggest that children with Ascaris-induced
allergic airway disease have increased cross-reactivity to
bystander antigens such as house dust mites (HDM) (Acevedo
and Caraballo, 2011).

Many studies have shown that helminth infection promotes
type 2-associated immune polarization that converges into IgE
antibody production (Jarrett and Bazin, 1974; Urban, 1982). As
a result of the structural similarities of helminth and common
allergen B-cell epitopes, helminth antigens eventually drive
allergen-specific cross-reactive IgE antibodies (Sereda et al.,
2008; Acevedo et al., 2009; da Costa Santiago and Nutman,
2016). Indeed, it has been shown that the allergic sensitization
with environmental common allergens, including HDM, drives
cross-reactive immune responses to homologous helminth pro-
teins (Santiago et al., 2011; Da Costa Santiago et al., 2015).
Several molecules from common aeroallergens, including those
from the dust mites Dermatophagoides pteronyssinus (Der p 1,
Der p 8 and Der p 10) have been characterized as having signifi-
cant IgE cross-reactivity with helminth proteins from a variety of
parasites including Ascaris (Santos et al., 2008; Acevedo et al.,
2009; Santiago et al., 2011). A recent study investigating the inter-
face between Ascaris infection and pulmonary allergic inflamma-
tion induced by HDM identified the Ascaris larval antigens
recognized by HDM-specific antibodies as Ascaris tropomyosin
and enolase based on high sequence and structural similarity to
HDM homologs (Gazzinelli-Guimarães et al., 2021). In this
study, it was shown that HDM-triggered IgE cross-reactive anti-
bodies were functional as they mediated hypersensitivity
responses in skin testing. Moreover, helminth tropomyosin was
capable of inducing a severe type-2-associated pulmonary inflam-
mation following sensitization with the homologous HDM

Fig. 2. Pulmonary fibrosis. The association of previous
pulmonary fibrosis and A. suum infection increases
lung damage, characterized by an increase in exuda-
tive phenomena and haemorrhage induced by larval
migration. The presence of A. suum in pulmonary par-
enchyma that already present fibrosis increased the
expression of IL-1, IL-4, IL-6, IL-13, IL-17A, IL-33 and
TGF-β1 cytokines. Despite the increase in the expres-
sion of cytokines with a profibrogenic profile during
comorbidity, this did not contribute to the worsening
of lung fibrosis. Larval migration is not impaired by
pulmonary fibrosis. The success of the loss cycle in
comorbidity occurs due to A. suum larvae migration
non-fibrous areas in the lung parenchyma.
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tropomyosin (Der p 10), indicating a potential mechanism to
understand how helminth infections induce or exacerbate allergic
inflammation.

The immunobiology of Ascaris co-infections

Individuals are continuously exposed to multiple pathogens with
co-infections being extremely likely during life. Nevertheless,
there is still poor knowledge about how combinations of
co-infections may impact our immune response and can influ-
ence disease outcomes. Generally, in infections that affect
humans, the prevalence of parasites in each region depends not
only on the climate or the presence of susceptible hosts but also
on the social, political and economic conditions of the population
that can favour the spread and perpetuation of diseases. That
explains how certain regions tend to be more affected by parasites
(Murray et al., 2015; Osakunor et al., 2018).

Therefore, there are several studies that aim to evaluate the
mechanisms of interaction among different pathogens and their
implication in the outcome of diseases (Salgame et al., 2013).
However, it is worth mentioning the importance of helminth
infections, in the context of coinfections, since helminth infec-
tions are present in all tropical regions of the planet, and may
influence the course, diagnosis, and treatment of various infec-
tions by different pathogens. As mentioned before, among the
NTDs commonly encountered, ascariasis is by far the most preva-
lent (Bethony et al., 2006; Brooker, 2010).

Since helminths stimulate Th2 type of response, many
researchers have focused on the investigation of the relationship
between helminths and pathogens that require a Th1 immune
response, such as Mycobacterium tuberculosis (MTB). Helminth
infections appear to indirectly affect the diagnosis of tuberculosis
by modulating the immune response of MTB antigens (Babu and
Nutman, 2016). In South Africa, children with IgE antibodies
against Ascaris are less likely to mount a positive response to
the tuberculin skin test (Gebreegziabiher et al., 2014).

Patients with tuberculosis and infected with S. mansoni had
lower sputum bacterial loads (Mhimbira et al., 2017). In agree-
ment with this, Mycobacterium bovis bacterial loads are also
decreased in cattle co-infected with Fasciola hepatica
(Garza-Cuartero et al., 2016). A study with Brazilian patients
showed that coinfection with Ascaris and MTB does not alter
the clinical evolution of pulmonary tuberculosis, though it may
influence the severity of pulmonary lesions. The coinfection
also did not influence the Th1, Th2 and Th17 responses or the
percentage of innate and adaptative cell subpopulations (Santos
et al., 2019). In a recent article, the exposure to A. lumbricoides
proteins induced an enhanced capacity to control MTB growth
in human monocyte-derived macrophages but the minimal effect
in human PBMCs (Togarsimalemath et al., 2020).

Another well-studied interaction is the co-infection between
Ascaris and Plasmodium. Literature suggests that there is a biological
association between Plasmodium and helminths when they coexist
in a host (Mwangi et al., 2006; Nacher, 2011; Degarege and Erko,
2016). Studies as early as 1978 indicated that anti-helminth treat-
ment of ascariasis in a high-transmission area was followed by an
increase in symptomatic malaria (Murray et al., 1978; Spiegel
et al., 2003). Conversely, other studies showed a beneficial effect in
co-infections between helminths and Plasmodium (Tshikuka et al.,
1996; Nacher et al., 2002; Lyke et al., 2006). Ascaris infection has
been associated with protection from cerebral malaria in Thailand
(Nacher et al., 2000) and with the occurrence of severemalaria attack
in a case-control study in Senegal (Le Hesran et al., 2004). It was
suggested that helminth infection might reduce the number and fre-
quency of mature schizonts and therefore reducing severe malaria,
although the mechanisms are yet not understood (Nacher et al.,

2001). A randomized controlled trial was performed in
Madagascar. The study showed a negative interaction between
Ascaris and Plasmodium in children older than 5 years of age,
with an increase in Plasmodium density after anti-helminthic treat-
ment (Brutus et al., 2006). Of note, although Ascaris and
Plasmodium were the predominant parasites, the presence of other
helminths such as S. mansoni or hookworms may have interfered
in the results observed.

Another possible consequence of the immune alterations driven
by helminth infection is based on the impact of vaccines. The pro-
tective efficacy of BCG against pulmonary tuberculosis presents
great variation around the globe, ranging from 80% in the
United Kingdom to 0–50% in countries where helminths are
often endemic (Roy et al., 2014). The lower cellular immune
response against MTB antigens in individuals co-infected with hel-
minths, together with the skew to a Th2 phenotype may explain, at
least in parts, the effect of helminth infection on BCG efficacy
(Elias et al., 2001, 2008). A similar effect could play a role in a mal-
aria vaccine, by affecting the induction of an efficient Th1 immune
response (Hartgers and Yazdanbakhsh, 2006). Recently, using a
model of Litomosoides sigmodontis-infected mice it was demon-
strated that concurrent helminth infection reduces the efficacy of
vaccination against seasonal influenza and H1N1 influenza A
virus. Importantly, the impaired response was also observed after
helminth clearance. The suppression of vaccination efficacy was
mediated by sustained IL-10 levels and abrogated by IL-10 receptor
blockade (Hartmann et al., 2019). In a similar way, A. suum infec-
tion negatively affected the protection after Mycoplasma hyopneu-
moniae in pigs. Infected animals display a higher percentage of
lung pathology after challenge and lower sero-conversion after
vaccination. The effect was mediated by a skewed Th2 response
induced by A. suum infection (Steenhard et al., 2009).

In addition to MTB and malaria, it has been hypothesized that
helminth infections may increase susceptibility to the human
immunodeficiency virus (HIV). Infection with Ascaris, S. man-
soni and Trichuris were linked to increased frequencies of acti-
vated HLA-DR + T cells and a potential higher risk of HIV-1
transmission in patients from Tanzania (Chachage et al., 2014).
HIV + patients with high Ascaris IgE display high viral loads
and lower CD4 + counts compared with the HIV negative group
in South Africa (Mkhize-Kwitshana et al., 2011). Furthermore,
a randomized, double blind, placebo-controlled trial conducted
in Kenya showed that treatment of A. lumbricoides with albenda-
zole in HIV co-infected adults resulted in significantly increased
CD4 counts and may potentially reduce plasma HIV-1 RNA
viral load (Walson et al., 2008). Similar results were obtained in
Ascaris/HIV co-infected patients from Southern Ethiopia
(Abossie and Petros, 2015). Albendazole treatment in co-infected
patients was associated with decrease IL-10 plasma levels (Blish
et al., 2010). In another study, egg excretion and/or Ascaris spe-
cific IgE was associated with lower proliferative capacity and
reduced Th1 cytokines in HIV-1 + patients (Mkhize-Kwitshana
et al., 2014). Although promising, more studies are needed to bet-
ter clarify the importance of deworming in HIV progression. Our
group has demonstrated that concomitant infection with Ascaris
and Vaccinia virus (VACV) in experimental model induces a
reduction in interferon gamma (INFγ) produced by CD4 + T
cells and a robust pulmonary inflammation that were associated
with increased morbidity/mortality in the coinfected compared
to single infected mice (Gazzinelli-Guimarães et al., 2017).

To better understand how Ascaris and other helminth infec-
tion may influence the course of a concurrent viral infection,
and the mechanisms of immunoregulation present during
co-infection is an important field that needs further investigation.
Indeed, it is possible that larvae migration, as well as, immune
modulation during Ascaris infection may influence the clinical
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outcome of COVID-19. Indeed, very recently papers have
attempted to argue if helminth SARS CoV-2 coinfection would
be beneficial or detrimental to the host. Bradbury et al. (2020)
suggested that immune modulation by helminths could reduce
the resistance to SARS CoV-2 infection. Nonetheless, Hays
et al. (2020) argue that the Th2 immunomodulation observed
during helminth infection may have a mitigating effect. Indeed,
Fonte et al. (2020) point out that the great variability in
COVID-19 lethality rate between countries and regions might
be related to helminth prevalence, particularly the low
COVID-19 lethality in Sub-Saharan Africa. It is important to
note that, as described earlier, the immune modulation driven
by helminth infection could also interfere with the efficacy of a
SARS CoV-2 vaccine. In agreement with others, we do believe
that it is key to investigate the influence of helminth co-infection
on COVID-19 outcome and vaccine efficacy.

Conclusion

Animals and humans are continuously exposed to different
pathogens. A better understanding of how different pathogens
interact in the same host, as well as how chronic infection may
impact the response to injuries and immunological challenges is
crucial. Increasing data indicate that Ascaris infection conse-
quences are beyond ascariasis and may influence the clinical out-
come of a variety of conditions. Conflicting results and
conclusions from different studies illustrate that there are still
many unknown factors involved, and this is a promising field
with a complexity of factors.
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