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Abstract. Mathematical proof is the primary form of justification for mathematical knowledge,
but in order to count as a proper justification for a piece of mathematical knowledge, a mathematical
proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According
to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely
translated into a formal proof. The standard view is almost an orthodoxy among contemporary
mathematicians, and is endorsed by many logicians and philosophers, but it has also been heavily
criticized in the philosophy of mathematics literature. Progress on the debate between the proponents
and opponents of the standard view is, however, currently blocked by a major obstacle, namely, the
absence of a precise formulation of it. To remedy this deficiency, [ undertake in this paper to provide a
precise formulation and a thorough evaluation of the standard view of mathematical rigor. The upshot
of this study is that the standard view is more robust to criticisms than it transpires from the various
arguments advanced against it, but that it also requires a certain conception of how mathematical
proofs are judged to be rigorous in mathematical practice, a conception that can be challenged on
empirical grounds by exhibiting rigor judgments of mathematical proofs in mathematical practice
conflicting with it.

§1. Introduction. Mathematical proof is the primary form of justification of mathe-
matical knowledge. But in order to count as a proper mathematical proof, and thereby to
function properly as a justification for a piece of mathematical knowledge, a mathematical
proof must be rigorous. The philosopher and logician John P. Burgess, in his book entitled
Rigor & Structure (Burgess, 2015), put it as follows:

The quality whose presence in a purported proof makes it a genuine
proof by present-day journal standards, and whose absence makes the
proof spurious in a way that if discovered will call for retraction, is called
rigor. (Burgess, 2015, p. 2)

Any account of mathematical knowledge that does not provide a satisfactory characteri-
zation of rigor as a quality of mathematical proof necessarily fails to capture an essential
aspect of the justification of mathematical knowledge, and for this reason shall be consid-
ered as inherently incomplete. Providing a philosophical account of what it means for a
mathematical proof to be rigorous thus constitutes a central task for the epistemology of
mathematics.

It may be argued that the issue was solved almost a century ago with the revolutionary
logical and philosophical developments happening in the foundations of mathematics.
In this regard, it is often considered that the notion of formal proof, together with the
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identification of a set of axioms from which all of ordinary mathematics could be deduced,
provide all the necessary elements for characterizing what it means for a mathematical
proof to be rigorous. Such a characterization has been formulated by the mathematician
Saunders Mac Lane:

A Mathematical proof is rigorous when it is (or could be) written out in
the first order predicate language L(€) as a sequence of inferences from
the axioms ZFC, each inference made according to one of the stated
rules. (Mac Lane, 1986, p. 377)

According to this view, a mathematical proof P is rigorous if and only if P complies to
the standards of formal proof in one of the accepted formal deductive systems for the
foundations of mathematics. This characterization, however, sets the standards too high. It
is widely acknowledged that the mathematical proofs to be found in ordinary mathematical
practice deviate significantly from the standards of formal proof.! For this reason, adopting
such a characterization of rigor in an account of mathematical knowledge would have for
direct consequence that the vast majority of mathematical knowledge we presumably have
would not qualify as such, since it is justified by mathematical proofs that do not comply
to the standards of formal proof.

Although the above characterization does not capture what it means for a mathematical
proof to be rigorous in mathematical practice, it does set an ideal or absolute standard of
rigor. Insofar as this ideal cannot be attained in practice, it has been proposed that it could
still be reached in principle. Thus, Mac Lane pursued the above passage as follows:

To be sure, practically no one actually bothers to write out such formal
proofs. In practice, a proof is a sketch, in sufficient detail to make possi-
ble a routine translation of this sketch into a formal proof. When a proof
is in doubt, its repair is usually just a partial approximation of the fully
formal version. (Mac Lane, 1986, p. 377)

According to this view, a mathematical proof P is rigorous if and only if P can be routinely
translated into a formal proof. The view presumably originates from Mac Lane’s Goéttingen
dissertation entitled Abgekiirzte Beweise in Logikkalkul (Mac Lane, 1934), and has been
disseminated in the mathematical community with the first book of Bourbaki’s Elements
de Mathématique (Bourbaki, 1970). This latter treatise contains, at the very beginning of
its introduction, the following similar expression of the view:

In practice, the mathematician who wishes to satisfy himself of the per-
fect correctness or “rigour” of a proof or a theory hardly ever has re-
course to one or another of the complete formalizations available nowa-
days, nor even usually to the incomplete and partial formalizations pro-
vided by algebraic and other calculi. In general he is content to bring
the exposition to a point where his experience and mathematical flair
tell him that translation into formal language would be no more than an
exercise of patience (though doubtless a very tedious one). If, as happens
again and again, doubts arise as to the correctness of the text under

I As the mathematician Thomas Hales put it: “The ultimate standard of proof is a formal proof,
which is nothing other than an unbroken chain of logical inferences from an explicit set of
axioms. While this may be the mathematical ideal of proof, actual mathematical practice generally
deviates significantly from the ideal” (Hales, 2012, p. x).
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consideration, they concern ultimately the possibility of translating it
unambiguously into such a formalized language [...] [T]he process of
rectification, sooner or later, invariably consists in the construction of
texts which come closer and closer to a formalized text until, in the
general opinion of mathematicians, it would be superfluous to go any
further in this direction. (Bourbaki, 1970, p. 8)

This view constitutes almost an orthodoxy among contemporary mathematicians—probably
as a direct influence of Bourbaki’s heritage—and I shall therefore refer to it as the standard
view of mathematical rigor (henceforth, the standard view).?

The standard view is endorsed today by many philosophers, logicians, and
mathematicians—see, e.g., Avigad (2006), Burgess (2015), and Weir (2016)3, among oth-
ers.* But the view has also been heavily criticized in the literature, most notably by Robin-
son (1997), Hersh (1997), Detlefsen (2009), Antonutti Marfori (2010), Larvor (2012, 2016),
and Tanswell (2015). Determining whether the standard view should be maintained, re-
vised, or rejected is today one of the most pressing issues regarding the nature of mathe-
matical rigor and proof.

The debate between the proponents and opponents of the standard view suffers, however,
from a deficiency that threatens to block any significant progress, that is, the absence of
a precise formulation of the standard view. As a consequence, this debate runs the risk of
resting upon confusions of what the view actually means. The present work purports to
remedy this deficiency by providing a precise formulation of the standard view. This will
make it possible, in turn, to conduct a proper examination of the arguments against and in
favor of it. The aim of this paper is thus to provide a precise formulation and a thorough
evaluation of the standard view of mathematical rigor.

In this project, it will be of primary importance to introduce a distinction between what
we shall call a descriptive account and a normative account of mathematical rigor. The
distinction can be stated as follows: a descriptive account of mathematical rigor provides
a characterization of the mechanisms by which mathematical proofs are judged to be
rigorous in mathematical practice; a normative account of mathematical rigor stipulates
one or more conditions that a mathematical proof ought to satisfy in order to qualify as
rigorous.

Taken at face value, the standard view provides a normative account of mathematical
rigor, where the condition that a mathematical proof P ought to satisfy in order to qualify

2 The same terminology is adopted by Antonutti Marfori (2010), while Detlefsen (2009) refers to
it as the common view.

Weir (2016) endorses an amended version of the standard view in which the notion of formal

proof is not restricted to finite proofs but allows for “infinitary derivations” as well (Weir, 2016,

p- 25).

4 Azzouni (2004, 2006, 2009, 2013) has defended a view that he has called the derivation-indicator
view and in which mathematical proofs indicate formal derivations. The derivation-indicator view
bears some similarities to the standard view in that it accounts for the rigor of mathematical proofs
through a certain relation to formal proofs, but it also distinguishes itself from Mac Lane’s and
Bourbaki’s original formulation by rejecting the idea that mathematical proofs are abbreviations
or sketches of formal proofs (see Azzouni (2006, pp. 148-150) and Azzouni (2013, p. 248)).
In this paper, I will focus on the standard view since this is the view that has been driving the
contemporary discussions on mathematical rigor and proof. A detailed comparison of the standard
view and the derivation-indicator view is called for to do full justice to the subtleties of Azzouni’s
view.

3
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as rigorous is that P can be routinely translated into a formal proof.> The motivation behind
this condition can be read directly from the passages of Mac Lane and Bourbaki quoted
above, and originates from the issue that arises when one wishes to maintain formal proof
as the ideal of proof while realizing that this ideal is not reachable in practice (for the
simple reason that the length of formal proofs would render them unmanageable for any
human being). The condition that P can be routinely translated into a formal proof offers
some sort of a middle ground to solve this issue: it provides a less demanding condition
for qualifying mathematical proofs as rigorous which, one might hope, could be met in
practice, while still maintaining a certain connection with formal proofs, i.e., with the ideal
of proof.

Yet, if the standard view would only amount to a normative account of mathematical
rigor, it would not provide much of an epistemological grip, for stating a normative con-
dition is harmless until one somehow commits to it in practice. This is why Mac Lane
and Bourbaki do consider that the above normative condition does bind rigor judgments
of mathematical proofs in mathematical practice—this is manifest in the passages quoted
previously, where both Mac Lane’s and Bourbaki’s descriptions of the standard view are
preceded by the phrase “in practice”. This means that, from their perspectives, one can
legitimately qualify a mathematical proof P as rigorous only when one possesses some
grounds for holding that P can be routinely translated into a formal proof. But how, then,
according to this conception, can one ever be able to legitimately qualify a mathematical
proof P as rigorous in mathematical practice? The most natural way to make sense of
this, it seems, is to think of the proponents of the standard view as possessing an implicit
conception of the mechanisms by which mathematical proofs are judged to be rigorous in
mathematical practice—i.e., as possessing an implicit descriptive account of mathematical
rigor—together with some reasons for holding that whenever a mathematical proof P has
been judged as rigorous according to these mechanisms, P can be routinely translated into
a formal proof, i.e., P satisfies the above normative condition. This idea lies at the basis of
the present attempt to provide a precise formulation of the standard view.

Thus, we shall take the standard view as embedding both a descriptive account and a
normative account of mathematical rigor, and as stating a certain relation between them.
We shall refer to the descriptive account as the descriptive part of the standard view, and
say that a mathematical proof P is rigorousp if and only if P would be judged to be rigorous
according to the mechanisms inherent to this descriptive account. We shall refer to the
normative account as the normative part of the standard view, and say that a mathematical
proof P is rigorousy if and only if P can be routinely translated into a formal proof. The
relation between the descriptive part and the normative part of the standard view expresses
then a substantial philosophical thesis, namely that the practice conforms to the normative
condition stated in the normative part. We shall refer to this as the conformity thesis, and
shall state it at follows: for any mathematical proof P, P is rigorousp implies that P is
rigorousy.

From this perspective, a proponent of the standard view must hold (1) a precise concep-
tion of what it means for a mathematical proof to be rigorousp, (2) a precise conception
of what it means for a mathematical proof to be rigorousy, (3) some reasons for holding

5 The standard view cannot be meaningfully read as a descriptive account of mathematical rigor, for
it does not say anything on how mathematical proofs are judged to be rigorous in mathematical
practice. As we shall see later on, several of the arguments against the standard view originates
from a reading of the standard view as providing a descriptive account of mathematical rigor.
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the conformity thesis. This suggests, in turn, a three-step methodology to reach a precise
formulation of the standard view: (1) specify the descriptive part of the standard view,
i.e., characterize what it means for a mathematical proof to be rigorousp; (2) specify the
normative part of the standard view, i.e., characterize what it means for a mathematical
proof to be rigorousy; (3) identify the reasons for holding the conformity thesis. This
is precisely the methodology to be adopted in this paper in order to provide a precise
formulation of the standard view of mathematical rigor.

Before moving further, it is important to say explicitly at the outset, and to keep in mind
all along, what the standard view is meant to accomplish. The raison d’étre of the standard
view is to be found in its capacity of dealing with the facts that, on the one hand, formal
proof is considered to be the contemporary ideal of proof in present-day mathematics, but
on the other hand, this ideal is not reachable in practice. What the standard view provides
is a tie between the practice of proof and the ideal of proof, thus allowing to maintain
the contemporary ideal of proof while admitting that it cannot be reached in practice.
It is precisely in this tie that lies the philosophical core of the standard view. It is also
for this reason that the debate between the proponents and the opponents of the standard
view requires dedicated attention, for if the standard view is shown to be philosophically
untenable, this would have for direct consequence to break the tie between the practice
and the ideal of proof. And in the absence of a viable alternative to restore such a tie, this
would force to give up, or at least revise, the contemporary ideal of proof. Such an issue
would then be of primary importance not only for the philosophy of mathematics, but for
the contemporary practice of mathematics itself.

The paper is organized as follows. §2 comes back to the historical roots of the standard
view in the works of Mac Lane and Bourbaki. §3 proposes a general schema for the
formulation of any descriptive account of mathematical rigor, specifying thereby what is to
be expected of a descriptive account of mathematical rigor. §4, §5, and §6, are concerned
with the three elements of the standard view—the descriptive part, the normative part, and
the conformity thesis—which, taken together, provide a precise formulation of the standard
view. §7 evaluates, from the point of view of this formulation, the main arguments that have
been advanced against the standard view. §8 develops and assesses an argument in favor
of the standard view based on an approach originally proposed by Mark Steiner (1975). §9
ends this paper by wrapping up the main conclusions of our study.

§2. Historical roots: Mac Lane and Bourbaki on mathematical rigor. In order
to provide a precise formulation of the standard view, it is necessary to first come back
to its historical roots, that is, to its original formulations by Mac Lane and Bourbaki.
It is then interesting to notice that neither Mac Lane nor Bourbaki had the intention to
provide a philosophical account of mathematical rigor as a quality of mathematical proof.
Rather, their conceptions of the rigor of mathematical proofs, as expressed in the passages
quoted in the introduction, appear as a consequence of the general projects they were
undertaking. In order to understand Mac Lane’s and Bourbaki’s original formulations of
the standard view, we shall, in this section, review the essential elements of these projects
as presented by Mac Lane in his Gottingen dissertation entitled Abgekiirzte Beweise im
Logikkalkul (“Abbreviated Proofs in the Calculus of Logic”) (Mac Lane, 1934) as well
as in the associated paper (Mac Lane, 1935), and by Bourbaki in the first book of the
Eléments de Mathématique entitled Théorie des Ensembles (Bourbaki, 1970). We shall
then see how their formulations of the standard view follow naturally from the projects
they were undertaking.
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2.1. Mac Lane on mathematical rigor. Although Mac Lane is often invoked in the
philosophical literature as a main proponent of the standard view, and the quote from Mac Lane
(1986) reported in the introduction is often considered as the archetypal formulation of the
standard view, it is only rarely mentioned that the standard view finds its origins in Mac
Lane’s Gottingen dissertation in mathematical logic, which was precisely concerned with
the analysis of the structure of mathematical proofs. And yet, as we shall now see, being
acquainted with the content of Mac Lane’s dissertation (Mac Lane, 1934), as well as with
the associated paper (Mac Lane, 1935), turns out to be essential in order to understand
the formulation of the standard view expressed in Mac Lane (1986), and in particular to
understand Mac Lane’s conception of the notion of routine translation central to it.

The main goal of Mac Lane’s dissertation was to develop, within the field of mathe-
matical logic, a richer theory of the structure of mathematical proofs.® One part of his
doctoral project was then dedicated to providing a precise analysis of the inferential steps
constituting ordinary mathematical proofs—what we shall call mathematical inferences.”
To this end, Mac Lane’s starting point was the view that mathematical inferences can be
seen as specific combinations of the elementary types of inferences usually investigated
in mathematical logic at the time. An analysis of mathematical inferences could then be
obtained by identifying and characterizing such combinations:

It is well known that all the steps of a proof may be reduced to combina-
tions of the two following elementary processes:

1. Inference: If the theorems p and p D ¢ are known to be true, then
we can assert the proposition g.

2. Replacement: If the theorem ¢ (x) involving the free variable x is
known to be true, then we can assert the proposition ¢ (c) which arises
from ¢ by replacing x everywhere by some one symbol c. This sym-
bol ¢ may be a constant, a variable, or a combination of constants and
variables, but all its values must be within the range of the variable x.

The actual steps taken in the course of most mathematical proofs are
not single instances of these two rules, but are rather complex com-
binations of them. [...] If mathematical logic is to be developed into
a powerful method, it cannot content itself with these two elementary
operations alone, but it must advance to the definition of their most
important combinations. (Mac Lane, 1935, p. 122)

Most of Mac Lane’s dissertation was thus dedicated to the development of a formal
machinery aiming at analyzing those combinations, an enterprise nicely summarized by
Mac Lane himself in the following passage:

6 Mac Lane (1935) remarks that: “Classical mathematical logic has [...] given a complete and

adequate description of the structure of mathematical theorems, but is has solved only the most
elementary problems connected with the structure of mathematical proof” (Mac Lane, 1935,
p. 121).
In his review of Mac Lane’s philosophy of mathematics, Colin McLarty points out that since
his first encounter with foundational issues through the reading of Hausdorft’s 1914 monograph
on set theory (Hausdorff, 1914): “Mac Lane has [...] urged that logic should not merely study
inference in principle, but the inferences made daily by mathematicians™ (McLarty, 2007, p. 89).
For an analysis of the differences between mathematical inferences—inferences as commonly
carried out in mathematical practice—and logical inferences—inferences as described by the
model of formal proof—see Hamami (2018).
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The thesis [...] observes that long stretches of formal proofs (written,
say, in the style of Principia) are indeed trivial, and can be reconstructed
by following well-recognized general rules. The thesis develops standard
metamathematical terminology to describe formal expressions—as cer-
tain strings of symbols, suitably arranged. This is followed by a metic-
ulous description of what it means to substitute y (or something more
complex) for x in an expression. This description let me state exactly
what it would mean to determine that one expression is a special case of
another.

On this basis, I described exactly a number of the routine steps in a
proof, giving each a label, as for example:

Inf schrumpf: To prove a theorem L O P, search for a prior theorem
of the form M O N, where L is a “special case” of M and P the
corresponding special case of N.

Sub inf schrumpf: Given a prior theorem M O N, one can conclude
that L D L', where L’ is obtained from L by replacing every “positive”
component of the form M by a new component N.

Sub Def: Substitute the definitions.

Identitdt: Use one of the standard identities of algebra (or of the propo-
sitional calculus).

Sub Theorem # 20.43: Use the cited theorem, in the (only) possible
way.

x = C fixieren: Given a premise (Ix)L(x), assert L(C) for some suit-
able “constant” C.

Halborn: Move a quantifier 3x or Vx to the front of an expression.

All told, the thesis gives twenty or twenty-five of such rules (listed
at the start of Chapter VII), and then observes that many proofs can be
“abbreviated” by listing in order the rules to be applied. In this sense,
the thesis gives a formal definition of a routine proof. (Mac Lane, 1979,
p. 65)

The central idea of Mac Lane’s dissertation is thus to introduce what we shall call higher-
level rules of inference—what Mac Lane refers to as “general rules” in the previous quote.®
Those higher-level rules of inference correspond to specific combinations of the elementary
rules of inference of the formal deductive system one is considering. For each higher-level
rule of inference identified, Mac Lane specifies in his dissertation the specific combination
it corresponds to in terms of the rules and theorems of Principia Mathematica. This means
that to each higher-level rule of inference is associated an algorithmic procedure that makes
it possible to transform any application instance of the rule into a sequence of inferences
complying to the rules of the considered formal deductive system, for it suffices to replace
it by the combination of elementary rules of inference it corresponds to. It is with respect
to these algorithmic procedures that Mac Lane uses the term ‘routine’: a mathematical
inference is routine if it corresponds to an instance of a higher-level rule of inference for

8 Some rules, such as Inf schrumpf, have a structure different from a traditional rule of inference,
insofar as they may encompass one or more search procedures.
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which there exists an algorithmic procedure allowing to transform the given mathematical
inference into a sequence of applications of elementary rules of inference; a mathematical
proof is routine if it is composed of routine mathematical inferences.

In this way, Mac Lane offers a formal framework in which it is possible to represent
any given routine mathematical proof as a particular sequence of applications of higher-
level rules of inference. These higher-level rules of inference constitute thus a means
to abbreviate or condense formal proofs so as to obtain proof descriptions that come
much closer to the way routine mathematical proof are presented in ordinary mathematical
practice:

In summary, the thesis observed that many proofs in mathematics are
essentially routine—and that one can carefully write even a complete
description of each type of routine step, so that the formal proof of the
theorem, written in detail, can be replaced by the much shorter descrip-
tion of these steps. (Mac Lane, 1979, p. 66)

It is now easy to see why Mac Lane came to conceive of a rigorous mathematical
proof as one that can be routinely translated into a formal proof: insofar as he considers
that the (routine) mathematical inferences comprising a (routine) mathematical proof are
all instances of higher-level rules of inference, one can then appeal to their associated
algorithmic procedures to turn each (routine) mathematical inference into a sequence of
inferences complying to the elementary rules of inference of the formal deductive system
under consideration, and thus to translate the original (routine) mathematical proof into a
formal proof. The procedure of routine translation is thus entirely specified by the set of
algorithmic procedures underlying the higher-level rules of inference, and simply consists
in replacing each application of a higher-level rule of inference by the combination of
elementary rules of inference it corresponds to.

2.2. Bourbaki on mathematical rigor. The mathematical text at the origin of the large-
scale diffusion of the standard view within the mathematical community is presumably
Bourbaki’s Eléments de Mathématique, and more specifically the first book of the trea-
tise entitled Théorie des Ensembles (Bourbaki, 1970), which contains most of Bourbaki’s
considerations on rigor and foundational issues. The Bourbaki’s quote reported at the
beginning, and expressing the most common formulation of the standard view, was indeed
extracted from the second page of the introduction to the Théorie des Ensembles. In order
to understand this formulation of the standard view, we shall now come back on the
more general perspective undertaken by Bourbaki in the first book of the Eléments de
Mathématique.

For the purpose of the present discussion, it is important to first recall two of the main
goals of Bourbaki’s enterprise. First, Bourbaki aims to rebuild the whole edifice of math-
ematics in the manner of Euclid’s Elements, that is, to establish each mathematical result
deductively using resources previously obtained in the treatise, which can be traced back
ultimately to a given set of primitive principles or axioms stated at the very beginning.
Second, Bourbaki aims to adopt a proof practice that could claim to the highest level of
rigor attainable, and which rests on a particular use of formalized languages. This second
goal is discussed in the very opening of the introduction to the Théorie des Ensembles,
where it is first noticed that:

By analysis of the mechanism of proofs in suitably chosen mathemat-
ical texts, it has been possible to discern the structure underlying both
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vocabulary and syntax. This analysis has led to the conclusion that a suf-
ficiently explicit mathematical text could be expressed in a conventional
language containing only a small number of fixed “words”, assembled
according to a syntax consisting of a small number of unbreakable rules:
such a text is said to be formalized. (Bourbaki, 1970, p. 7)

Although the mere possibility of formalizing existing mathematical texts does not necessar-
ily imply that ordinary mathematical practice should be directly concerned with formalized
languages, Bourbaki argues that the “conscious practice” of the axiomatic method does
require a certain epistemological relation with formalized languages:

Just as the art of speaking a language correctly precedes the invention
of grammar, so the axiomatic method had been practised long before
the invention of formalized languages; but its conscious practice can
rest only on the knowledge of the general principles governing such
languages and their relationship with current mathematical texts. In this
Book our first object is to describe such a language, together with an
exposition of general principles which could be applied to many other
similar languages; however, one of these languages will always be suffi-
cient for our purposes. (Bourbaki, 1970, p. 9)

The issue of describing such a formalized language is, of course, directly connected to
the other goal of Bourbaki’s enterprise mentioned above, namely to provide a general
foundational framework within which the whole of mathematics could be represented
and deduced. As is well-known, Bourbaki adopted as a foundational framework a (certain
version of) the theory of sets:”

For whereas in the past it was thought that every branch of mathematics
depended on its own particular intuitions which provided its concepts
and prime truths, nowadays it is known to be possible, logically speak-
ing, to derive practically the whole of known mathematics from a single
source, the Theory of Sets. Thus it is sufficient for our purposes to de-
scribe the principles of a single formalized language, to indicate how the
Theory of Sets could be written in this language, and then to show how
the various branches of mathematics, to the extent that we are concerned
with them in this series, fit into this framework. (Bourbaki, 1970, p. 9)

Bourbaki’s initial impulse was thus to rebuild the whole edifice of mathematics within a
foundational framework consisting of a formalized version of the theory of sets.

Of course, carrying out such a project faces some daunting practical difficulties. Bour-
baki acknowledges this and puts forward some solutions to make the project feasible:

If formalized mathematics were as simple as the game of chess, then
once our chosen formalized language had been described there would
remain only the task of writing out our proofs in this language, just as
the author of a chess manual writes down in his notation the games he
proposes to teach, accompanied by commentaries as necessary. But the
matter is far from being as simple as that, and no great experience is
necessary to perceive that such a project is absolutely unrealizable: the

9 For a discussion of Bourbaki’s theory of sets, see Anacona, Arboleda, & Pérez-Fernandez (2014).
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tiniest proof at the beginning of the Theory of Sets would already require
several hundreds of signs for its complete formalization. Hence, from
Book I of this series onwards, it is imperative to condense the formalized
text by the introduction of a fairly large number of new words (called
abbreviating symbols) and additional rules of syntax (called deductive
criteria). By doing this we obtain languages which are much more man-
ageable than the formalized language in its strict sense. Any mathe-
matician will agree that these condensed languages can be considered
as merely shorthand transcriptions of the original formalized language.
(Bourbaki, 1970, p. 10)

Bourbaki thus adopts a strategy for abbreviating or condensing formal proofs which is
similar to Mac Lane’s and which is based on the introduction of higher-level rules of
inference called deductive criteria.

In order to precisely state what deductive criteria are, we shall first recall a few technical
aspects of the foundational framework developed in the Théorie des Ensembles (Bour-
baki, 1970). First of all, Bourbaki begins with the definition of a formalized language
by introducing an alphabet, defined as a set of signs, and by considering assemblies,
which are sequences of signs from the alphabet—what we now call ‘formulas’. Among the
assemblies that are formed according to a specified set of rules—what we now call ‘well-
formed formulas’—Bourbaki distinguishes between the terms, which represent objects,
and the relations, which represents assertions (Bourbaki, 1970, p. 20). Bourbaki defines
then the notion of a demonstrative text or proof in a theory 7, which follows essentially
the definition of a formal proof in a Hilbert proof system (Bourbaki, 1970, p. 25). Bourbaki
finally defines the notion of a theorem in T as a relation that appears in a proof in T
(Bourbaki, 1970, p. 25).

We now have all the elements to state precisely what a deductive criterion is for Bour-
baki: a deductive criterion is a rule, that takes the form of a schema, and which states that if
such and such relations are theorems in a theory T, then another relation is also a theorem
in 7. Two representative examples of deductive criteria are the followings: '’

C1 (Syllogism). Let A and B be relations in a theory 7. If A and A = B
are theorems in 7, then B is a theorem in 7. (Bourbaki, 1970, p. 25)

C61 (Principle of Induction). Let R|n| be a relation in a theory 7 (where
n is not a constant of 7). Suppose that the relation

R|0] and (Vn)((n is an integer and R|n]) = R|n+ 1))
is a theorem in 7. Under these conditions the relation
(Vn)((n is an integer) = R|n])
is a theorem in 7. (Bourbaki, 1970, p. 168)

It is important to notice that a deductive criterion is a meta-theorem, and thereby requires a
proof in the meta-theory. Such deductive criteria correspond thus to what we call in modern
terminology ‘derived rules of inference’.

10 Bourbaki (1970) introduces in total 63 deductive criteria.
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Thus, Bourbaki’s solution to abbreviate formal proofs is essentially the same as the one
proposed by Mac Lane, for it consists in introducing higher-level rules of inference—the
deductive criteria—which allow to abbreviate or condense formal proofs by writing them
under the form of lists of such higher-rules of inference together with their arguments.
Such a strategy, together with the use of abbreviating symbols and the so-called abus de
langage, allows to represent mathematical proofs within this formal framework in the way
they are commonly presented in ordinary mathematical practice. Furthermore, the meta-
mathematical machinery developed by Bourbaki assures that, to every such condensed or
abbreviated proof, corresponds a formal proof or demonstrative text as defined in (Bour-
baki, 1970, p. 25). These two important points are expressed clearly in the following
passages:

We shall therefore very quickly abandon formalized mathematics, but
not before we have carefully traced the path which leads back to it.
The first “abuses of language” thus introduced will allow us to write the
rest of this series (and in particular the Summary of Results of Book
I) in the same way as all mathematical texts are written in practice,
that is to say partly in ordinary language and partly in formulae which
constitute partial, particular, and incomplete formalizations, the best-
known examples of which are the formulae of algebraic calculation.
(Bourbaki, 1970, p. 11)

Thus, written in accordance with the axiomatic method and keeping
always in view, as it were on the horizon, the possibility of a complete
formalization, our series lays claim to perfect rigour: a claim which is not
in the least contradicted by the preceding considerations, nor by the need
to correct errors which slip into the text from time to time. (Bourbaki,
1970, p. 12)

It is now easy to understand the formulation of the standard view as expressed in the
Bourbaki’s quote reported in the introduction. From Bourbaki’s perspective, in order for
the mathematician to evaluate the correctness or rigor of a mathematical proof, it suffices
for him to verify that each mathematical inference in the mathematical proof corresponds
to a legitimate application of a higher-level rule of inference—i.e., a deductive criteria.
The meta-mathematical machinery developed in the Théorie des Ensembles allows then to
give a precise sense to the idea that the mathematician “is content to bring the exposition
to a point where his experience and mathematical flair tell him that translation into formal
language would be no more than an exercise of patience (though doubtless a very tedious
one)” (Bourbaki, 1970, p. 8): insofar as the validity of each higher-level rules of inference
is established through a meta-mathematical argument assuring that such rules preserve
the notion of ‘theoremhood’ as defined by Bourbaki, one is ensured that if an ordinary
mathematical proof can be written under the form of a list of application of higher-rules
of inference together with their arguments, then there necessarily exists a formal proof
corresponding to it which can be obtained by replacing each such application by the
sequence of inferences it abbreviates. Producing such a formal proof is a task that is,
however, beyond the reach of any human being.

2.3. Wrapping up. Although Mac Lane and Bourbaki offered the first formulation
of the standard view, their primary objectives were not to provide a characterization of
mathematical rigor as a quality of mathematical proof, nor did they have the intention to
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promote a direct use of formal proofs in ordinary mathematical practice. Their respective
goals lay elsewhere: Mac Lane aimed to develop a richer analysis of the structure of
mathematical proofs within the field of mathematical logic, while Bourbaki aimed to secure
the foundations of his mathematical treatise by developing a meta-mathematical machinery
allowing to reach the highest level of rigor practically attainable by maintaining a certain
epistemological relation between the standards of formal proof and the way proofs are
written in the treatise.

For these reasons, and as we have just seen, the standard view as expressed by Mac Lane
and Bourbaki is better conceived as a consequence of their respective enterprises. More
specifically, the view follows from two central tenets common to the general approaches
adopted by Mac Lane and Bourbaki towards their respective goals, namely:

1. Judgments of the validity of mathematical inferences in mathematical practice can
be conceived as relying on higher-level rules of inference that are generated from
lower-level rules of inference and propositions from background knowledge;

2. These higher-level rules of inference can ultimately be generated from the set of
rules of inference and axioms of a formal deductive system adequate to serve as the
foundations of mathematics.

The connection with mathematical practice is then to be found in the first tenet, which
contains a view on how mathematical inferences in mathematical proofs are judged to
be valid in mathematical practice, and which thereby presupposes a certain descriptive
account of mathematical rigor. Although all the elements of such an account are present
in substance in the work of Mac Lane and Bourbaki, those elements are embedded in
technical developments, making it hard to understand why Mac Lane and Bourbaki see in
their works a descriptive account of mathematical rigor, and a fortiori to identify what this
account could consist in.

As we mentioned in the beginning, our first step in providing a precise formulation of
the standard view will be to specify the descriptive part of the standard view. This task
amounts then to reconstructing the descriptive account of mathematical rigor potentially
present in the work of Mac Lane and Bourbaki. Before we can do so, however, it will be
useful to reflect on what exactly is to be expected of a descriptive account of mathematical
rigor.

§3. Preliminaries: How to formulate a descriptive account of mathematical rigor.
A descriptive account of mathematical rigor shall provide a characterization of the process
by which mathematical proofs are judged to be rigorous in mathematical practice, i.e., by
which the quality of being rigorous is attributed to mathematical proofs in mathematical
practice. We shall refer to this process as verification, and say that a mathematical proof
has been verified whenever it has successful undergone this verification process. Any
descriptive account of mathematical rigor shall then take the form of the following schema:

A mathematical proof P is rigorous
=
P can be verified by a typical agent in mathematical practice M, using the resources
commonly available to the agents engaged in M.

Since a mathematical proof is a composite entity consisting of a sequence of elementary
steps of deduction—as mentioned in the previous section, we shall refer to these ele-
mentary steps as mathematical inferences—verifying a mathematical proof amounts to
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verifying all the mathematical inferences that comprise it. The previous schema becomes
then:

A mathematical proof P is rigorous aq
(=4
Every mathematical inference 7 in P can be verified by a typical agent in mathematical
practice M, using the resources commonly available to the agents engaged in M.!!

From this perspective, providing a characterization of mathematical rigor amounts to iden-
tifying the process by which mathematical inferences are verified—i.e., judged to be valid—
in mathematical practice. At this stage, we can refine further the above schema by observ-
ing that, when faced with the task of verifying a mathematical inference in a mathematical
proof, a typical agent is often led to introduce intermediate steps of deduction between the
premisses and the conclusion. This is a very common and banal observation, one which is
for instance described by Yehuda Rav in the following passage:

In reading a paper or monograph it often happens—as everyone knows
too well—that one arrives at an impasse, not seeing why a certain claim
B is to follow from claim A, as its author affirms. [...] Thus, in trying
to understand the author’s claim, one picks up paper and pencil and tries
to fill in the gaps. After some reflection on the background theory, the
meaning of the terms and using one’s general knowledge of the topic,
including eventually some symbol manipulation, on sees a path from A
to A1, from Ay to As, ..., and finally from A, to B. (Rav, 1999, p. 14)

To integrate this aspect, we introduce the notion of immediate mathematical inference: a
mathematical inference is immediate for a given agent if she can evaluate it as valid without
introducing intermediate steps of deduction. This suggests decomposing the process of
verifying a mathematical inference into two phases: the first phase consisting in decom-
posing the mathematical inference into a sequence of immediate mathematical inferences;
the second phase consisting in verifying each immediate mathematical inference in the
sequence.'? With respect to a mathematical practice M, if we denote by D4 the set of
processes available to the agent to decompose a mathematical inference into a sequence of
immediate mathematical inferences, and by V4 the set of processes available to the agent
to evaluate immediate mathematical inferences, we obtain the following schema:

' 1t is assumed here that all the premisses involved in the mathematical inferences of P are
legitimate, that is, they are either conclusions of previous inferences, mathematical propositions
from background knowledge, or assumptions to be discharged later on in P. If a premiss does
not fall into one of these three categories, then it should be considered as the conclusion of a
mathematical inference.

It should be noted that, in practice, an additional process is usually preceding these two phases
in the verification of a mathematical inference, which consists in identifying the premisses of the
considered mathematical inference. This process is necessary insofar as in written mathematical
proofs, premisses of mathematical inferences are sometimes left implicit, in which case it is left
to the agent to recover them. Although this process of premiss identification is essential to the
verification of mathematical inferences in mathematical proofs, we shall not attempt to analyze it
further since it is not directly connected to the issues we are primarily concerned with. Throughout
this paper, we shall thus assume that, whenever an agent is engaging into the verification of a
mathematical inference, she has previously identified all its relevant premisses.

12
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A mathematical proof P is rigorous aq
=
For every mathematical inference I in P, there exist'> D € Dyqand Vy, ..., V, € Yy
such that (1) D(I) = {[1, ..., I,) and (2) V;(1;) = valid for all i € [1, n].

We shall refer to this schema as the DV schema, and to Dpq and Vg as the sets of
decomposition and verification processes.

It is my contention that any descriptive account of mathematical rigor shall take the form
of a specification of the DV schema, i.e., of a specification of the sets of decomposition
and verification processes. In order to specify the descriptive part of the standard view, we
shall, in the next section, specify the DV schema associated to it, i.e., identify the sets of
decomposition and verification processes associated to the standard view.

§4. The standard view of mathematical rigor: Descriptive part. We are now in
a position to specify the descriptive part of the standard view, i.e., to provide a precise
formulation of the descriptive account of mathematical rigor embedded in the standard
view—in the terminology introduced at the beginning, this amounts to characterizing what
it means for a mathematical proof to be rigorousp. As we have just seen, any descriptive
account of mathematical rigor shall take the form of a specification of the DV schema. To
specify the descriptive part of the standard view amounts then to specifying the DV schema
associated to it, a schema that takes the following form:

A mathematical proof P is rigorousp
S
For every mathematical inference I in P, there exist D € D* and Vi, ..., V,, € V* such
that (1) D(I) = (Iy, ..., I,) and (2) Vi(I;) = valid for all i € [1,n].'*

where D* and V* correspond to the sets of decomposition processes and verification pro-
cesses associated to the standard view. As we noted in §2, although Mac Lane and Bourbaki
seem to see in their works a descriptive account of mathematical rigor, this account is
nowhere made explicit as such. Our task in this section will be to reconstruct this account,
by specifying the sets of processes D* and V*, and this based on the core elements of the
standard view as originally conceived by Mac Lane and Bourbaki.

4.1. The set of decomposition processes D*. A decomposition process is called for
whenever a mathematical agent encounters a mathematical inference in a mathematical
proof that she cannot judge to be valid without introducing intermediate steps of deduction
between the premisses and the conclusion. As an illustration of this phenomenon, consider,
for instance, the following mathematical proof of the irrationality of +/2 taken from the
fourth edition of Hardy and Wright’s An Introduction to the Theory of Numbers (Hardy &
Wright, 1975, pp. 39-40):

THEOREM 4.1 (Pythagoras’ Theorem). ~/2 is irrational.

13 There is here a computational content in the phrase ‘there exist’, for we shall assume that, if there
exist such D € Dy, and Vq,...,V, € Vg, a typical agent engaged in M should be able to
identify them.

14 For readability reasons, we will omit from now on references to the considered mathematical
practice M. One should nonetheless keep in mind that the sets D* and V*, as well as the quality
of being rigorousp, are always relative to a given mathematical practice M.
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Proof. The traditional proof ascribed to Pythagoras runs as follows. If +/2 is rational,
then the equation

a® =2p°
is soluble in integers a, b with (a, b) = 1. Hence a“ is even, and therefore a is even. If

a = 2c, then 4¢? = 2b2, 2¢* = b%, and b is also even, contrary to the hypothesis that
(a,b) = 1. O

2

For the beginning college student in number theory following Hardy and Wright’s book,
many mathematical inferences in this proof will appear immediate, insofar as they concern
elementary properties of the natural numbers which are normally already known from high-
school mathematics. However, one mathematical inference might not appear so immediate,
namely the one with premiss “a” is even” and conclusion “a is even”. In this case, the
student will engage into a decomposition process in order to introduce intermediate steps
of deduction between the premiss and the conclusion, that is, a sequence of immediate
mathematical inferences which will allow her to verify that the conclusion “a is even”
indeed follows from the premiss “a” is even”. As we already saw, this phenomenon of
“filling in the details’ is almost always present when a mathematical agent is verifying a
mathematical proof.

What is the nature of these decomposition processes? First of all, notice that we can
represent any mathematical inference in a mathematical proof in the following way:

Py,....P, = C

where Py, ..., P, are the premisses of the inference, and C its conclusion. As remarked
by Avigad (2008, p. 333), whenever a mathematical agent cannot verify immediately a
mathematical inference of the form Py, ..., P, = C, she is facing a situation identical
to the one of proving the mathematical proposition “if Py, ..., P,, then C”. In the above
example, the student not able to verify the mathematical inference with premiss “a? is
even” and conclusion “a is even” is then facing the task of proving the mathematical
proposition “if a” is even, then a is even”. It follows that the decomposition process

required to turn the mathematical inference Py, ..., P, = C into a sequence of immediate
mathematical inferences is identical to the proof search process required to prove the
mathematical proposition “if Py, ..., P,, then C”. Decomposition processes are therefore
proof search processes.

There are, however, restrictions on which proof search processes can be admitted as
decomposition processes. Such restrictions are necessary to avoid that mathematical proofs
that are patently underdeveloped be counted as rigorous by our characterization—e.g., if a
certain mathematical inference in a mathematical proof corresponds to the application of
a lemma that would take a few days to prove by a typical mathematical agent, we would
not want this mathematical proof to qualify as rigorous. These restrictions correspond to
the conditions under which it is considered admissible to leave what Fallis (2003) has
called enthymematic gaps in written mathematical proofs. According to Fallis, the main
reason why mathematicians leave enthymematic gaps in written mathematical proofs is to
facilitate communication:

The point of publishing a proofin a journal or presenting it at a conference
is to communicate that proof to other mathematicians. [...] Somewhat
surprisingly, the most efficient way for the mathematician to do this is not
by laying out the entire sequence of propositions in excruciating detail.
Instead, the mathematician just tries to include “sufficient information
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so that the informed reader (or hearer) could reconstruct a perfect proof
from the enthymeme” (Lehman, 1980, p. 35). [. .. ] His readers can simply
“fill in the missing assumptions from the common store of background
knowledge” (Lehman, 1980, p. 36). (Fallis, 2003, p. 55)13

Based on the constraints for leaving enthymematic gaps in written mathematical proofs, we
can identify two conditions for a proof search process to count as a decomposition process.
First, the proof search process should be part of the common background knowledge of
the mathematical agents engaged in the considered mathematical practice, so that the
agent leaving an enthymematic gap in a mathematical proof is assured that the gap can
be filled in by her peers. Second, the proof search process should be susceptible to fill
in the enthymematic gap in a ‘reasonable amount of time’, otherwise the mathematical
proof would contain an inadmissible gap that should be eliminated by providing additional
intermediate steps of deduction, in which case the proof should not be counted as rigorous.
This leads to the following specification of the set of decomposition processes D*:

The set of decomposition processes D* is given by the set of proof search
processes which are (1) part of the common background knowledge of
the agents engaged in mathematical practice M and (2) susceptible to
prove mathematical propositions in a reasonable amount of time.

It should be noted that this specification of D* is independent of the specifics of the
standard view, and is very likely to be part of any characterization of rigor as a quality
of mathematical proofs. The heart of the standard view is rather to be found in the set of
verification processes V* that we now turn to.

4.2. The set of verification processes V*. On pain of infinite regress, the process of
decomposition that the agent is engaged in while evaluating the validity of a mathematical
inference must stop at some point. This happens precisely when the agent reaches imme-
diate mathematical inferences, that is, inferences that can be judged to be valid without
decomposing them into further mathematical inferences. We shall now say how immediate
mathematical inferences are judged to be valid according to the standard view, that is, we
shall specify the set of verification processes V*.

As we saw in §2, the solution put forward by Mac Lane and Bourbaki rests on the
introduction of higher-level rules of inference (henceforth, hl-rules). In our reconstruction,
a hl-rule is entirely determined by its inference schema, which is a pair composed of a
premiss schema and a conclusion schema consisting, respectively, of a set of schemas for
the premisses and a schema for the conclusion. Here, a schema is a template or pattern
composed of placeholders and of symbols from the vocabulary of the language of the
mathematical practice M, together with some specifications on how the placeholders are
to be filled in to generate mathematical propositions in the language of M, propositions
which are then called instances of the schema.'® As an illustration, the inference schema

15" A similar statement is made by Bourbaki: “Sometimes we shall use ordinary language more loosely,
by voluntary abuses of language, by the pure and simple omission of passages which the reader
can safely be assumed to be able to restore easily for himself, and by indications which cannot be
translated into formalized language and which are designed to help the reader to reconstruct the
complete text” (Bourbaki, 1970, p. 11).

More generally, Corcoran (2014) defines a schema as consisting of two things: (1) a template-text
or schema-template which is “a syntactic string composed of significant words and/or symbols
and also of blanks or other placeholders”, and (2) a side condition which specifies “how the blanks

16
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for modus ponens is given by:
P, P—> 0 = 0,

where P and Q are placeholders for mathematical propositions, while the inference schema
for mathematical induction can be given by:!’

HQO), HX) > HX+1) = H(Y),

where H is a placeholder for an expression involving an arbitrary variable ranging over N,
and X and Y are placeholders for arbitrary variables ranging over N. We shall then say that
an immediate mathematical inference is valid whenever it corresponds to an instance of a
hl-rule. This means that to each hl-rule R is associated a verification process Vg defined
by:!8

Vr(I) = valid < [ is an instance of the hl-rule R.

The set of verification processes V* associated to the standard view is thus composed of
all the verification processes associated to the hl-rules that the typical agent engaged in
mathematical practice M possesses.

Characterizing the set V* amounts then to specifying the set of hl-rules that a typical
agent engaged in M possesses. To this end, our proposal is to characterize V* as the set of
hl-rules that a typical agent in M has acquired in the course of the common training she
received in order to qualify as a proper member of M.!? Our approach will then consist
in providing a simple, idealized model of such a training—that we shall refer to as the
training model—and in characterizing the set of verification processes V* as the set of
hl-rules the agent possesses once her training has been completed.

In the training model, we shall represent the situation of the agent at time ¢ of her training
by the pair (K;, R;) where K; is the set of mathematical propositions representing the
mathematical knowledge that the agent possesses at time ¢, and R; is the set of hl-rules
that the agent possesses at time #. The initial situation of the agent—at the beginning of her
training—is represented by the pair (Ko, Ro), while the final situation of the agent—once
her training has been completed—is represented by the pair (KT, Rt), the set of verification
processes V* being then given by the set of hl-rules R. In order to complete the description
of the training model, we now need to specify (1) the initial situation (Kq, Rp), and (2) the
processes by which K; and R, can be augmented, i.e., how the agent passes from (K;, R;)
to (K41, Ry 1).

The initial situation (Ko, Rg) corresponds to the ordinary situation that any mathematical
student finds herself at the beginning of her training in mathematical practice M. Kg is the
set of mathematical propositions that the agent is accepting without proof at the beginning
of her training. To figure out what Ky is for a given mathematical practice, it suffices
to identify the various mathematical propositions that the student is required to accept
without proof, a task that can be carried out concretely by simply looking at some of the

(placeholders, variables or ellipses) are to be filled to obtain instances”. Notice that our notion of
inference schema corresponds exactly to what Corcoran (2014) calls an argument-text schema.

17 There are different ways one could model the hl-rule corresponding to mathematical induction in
mathematical practice. One could, for instance, add universal quantifiers for the second premiss,
or for the conclusion, or both.

18 Tn the following, we shall often identify a hl-rule with its associated verification process, and talk
freely of hl-rules as verification processes.

19" On the importance of taking into account the mathematical training of the agents when analyzing
how proofs are judged to be rigorous in mathematical practice, see also Tatton-Brown (2019).
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typical textbooks in the considered mathematical practice. For instance, the mathematical
student taking an introductory course in number theory at the university level is typically
required to accept without proof some informal versions of the Peano axioms, some basic
propositions of naive set theory, and maybe various elementary properties of the natural
numbers known from elementary school and high-school mathematics. Sometimes, one
witnesses some variations with respect to the set of propositions that the student is required
to accept at the outset. A typical example is given by trainings in mathematical analysis,
where some textbooks might require the student to accept without proof all the elementary
properties of N, Q, R, and C, while others might only require to accept the Peano axioms,
and establish all such elementary properties through proofs (e.g., Landau, 1930). Modulo
such variations, it is, nevertheless, relatively easy to identify the mathematical propositions
that are accepted without proof in a typical training in mathematical practice M, and this
is what the set of mathematical propositions K represents. We shall refer to K as the sets
of primitive axioms of the agent.

Ry is the set of rules of inference that the agent is equipped with at the beginning of her
training. Usually, the set of rules of inference R that the agent is allowed to use from
the start of her training is not made explicit in the course of a mathematical training,
but is rather considered to be a form of know-how that the learning agent is supposed
to grasp by observing and mimicking her trainer’s proof practice, and by practicing it
herself through exercises that are in turn criticized and corrected by the trainer. Some
textbook authors, however, do take specific care of providing an explicit training in the
practice of mathematical proofs. For instance, Rosen (2012) dedicates a whole chapter
of his book to teach the basics of mathematical proofs, while other have written entire
books aiming to teach specifically the writing and reading of mathematical proofs (see,
e.g., Velleman, 2006; Solow, 2014; Chartrand et al., 2018). It is not hard, however, to
identify the rules of inference that an agent is required to accept at the beginning of her
training for those are essentially basic rules of elementary logical reasoning necessary
to reason with mathematical propositions, that is, rules of inference for reasoning with
the various propositional connectives, as well as rules of inference for reasoning with
quantified mathematical propositions, together with various combinations of those. We
shall refer to Ry as the sets of primitive rules of inference of the agent.

We shall now say how the set of mathematical propositions K, that the agent possesses
at time 7 can be augmented. This is straightforward:

Whenever an agent in situation (K;, R;) at time ¢ has derived a mathemat-
ical proposition C from a set of mathematical propositions Py, ..., P, €
K through a sequence of applications of hl-rules from Ry, and by eventu-
ally using additional mathematical propositions from K;, she is entitled
to add C to her set of mathematical propositions K;.

If the agent chooses to do so, she is then brought in a situation at time ¢ 4+ 1 in which
K:+1 := K; U {C}. We shall then say that the agent has acquired a proof certificate for C.
Furthermore, the agent can always add a definition to the set K, at any time .

Finally, it remains to say how the set of hl-rules R, that the agent possesses at time 7 can
be augmented. Mac Lane (1935) has a simple answer to this issue, which is expressed in
the following passage:

In general, whenever a group of elementary processes of proof occurs
repeatedly in the course of many proofs, it is desirable to formulate
this group of steps once for all as a new process. Much of the ordinary
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education in mathematics consists in training students to recognize such
processes at a glance, and as whole, rather than as composite. (Mac Lane,
1935, p. 123)

In the terminology introduced in this section, Mac Lane’s solution of how a new hl-rule
can be added to R; at time ¢ can be formulated as follows:

Whenever an agent in situation (K;, R;) at time ¢ has derived a mathemat-
ical proposition C from a set of mathematical propositions Pq, ..., P,
through a sequence of applications of hl-rules from R;, and by eventually
using additional mathematical propositions from K;, she is entitled to
add to her set of hl-rules R; the new rule:

Py,...,P, = C

where Pi,...,P,,C correspond to the mathematical propositions
Py, ..., P,, Cin which the free variables xi, ..., x; occurring in them
are replaced by the place-holders X1, . . ., Xi of the same type.

If the agent chooses to do so, she is then brought in a situation at time ¢ + 1 in which
Ri+1 = R, U {Py,..., P, = C}. We shall then say that the agent has acquired a rule
certificate for the new rule Py, ..., P, = C.

It is interesting to observe that, through this process, many theorems and definitions
can easily be turned into hl-rules.?’ As an illustration, consider again the mathematical
inference with premiss “a” is even” and conclusion “a is even” from Hardy and Wright’s
proof, and imagine now that the authors would have established the following lemma prior
to presenting the proof of the irrationality of v/2:

Vn (n* is even — niseven) (L)

If the agent at time ¢ is such that L € K;, then she can turn L into a hl-rule by first deriving
the conclusion “x is even” from the premiss “x” is even” in the following way:

P x%iseven

I; x%iseven — xiseven V-elimination from L

C xiseven modus ponens  from I

and then adding the following hl-rule to R;:
X?iseven = X iseven

where X is a placeholder for an expression denoting a natural number. If the agent would
possess the above hl-rule, she will then be in a situation to recognize the mathematical
inference with premiss “a? is even” and conclusion “a is even” as immediately valid, for
this mathematical inference is an instance of the above rule.

Similarly, a definition such as the following definition of even number:

Vn (n is even <> Jk such that n = 2k) (D)

can be turned into a hl-rule by first deriving the conclusion “x = 2y” from “x is even” in
the following way:

20 For a recent technical implementation of this idea, see the deductive system proposed by Sieg &
Walsh (2018) in their ‘natural formalization’ of the Cantor-Bernstein Theorem (Sieg & Walsh,
2018, sec. 3).
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P xiseven

I} xiseven — dk such that x = 2k V-elimination from D
I, Fksuch that x = 2k modus ponens from P and [
C x=2 J-elimination from I

and then adding the following hl-rule to R;:
Xiseven = X =2Y

where X and Y are placeholders for expressions denoting natural numbers. If the agent
would possess the above rule, she will then be in a situation to recognize as immediately
valid the mathematical inference with premiss “a is even” and conclusion “a = 2¢”.

To sum up, the set of verification processes V* is given by the set of hl-rules that a
typical agent in M has acquired in the course of her training in M. The training model
just developed provides then the necessary elements to entirely characterize the set of
verification processes V*.

4.3. Concluding remarks. By providing a full specification of the sets of processes
D* and V*, we have specified entirely the DV schema associated to the standard view, and
we have thereby reached a precise formulation of the descriptive part of the standard view.
It is important to stress that the descriptive account of mathematical rigor embedded in
the standard view does not appeal either to the notion of formal proof, or to the one of
routine translation. As a consequence, one can perfectly endorse this descriptive account,
without endorsing the standard view, i.e., without endorsing either the normative part of
the standard view, or the conformity thesis. Furthermore, the specifications of the sets of
processes D* and V* being themselves independent from each other, one can accept either
of these two components while rejecting the other. This means that this descriptive account
of mathematical rigor can thus be considered by itself, independently from its role and
presence in the standard view of mathematical rigor, and is as such of independent value
and interest.

§5. The standard view of mathematical rigor: Normative part. We shall now spec-
ify the normative part of the standard view, i.e., characterize what it means for a mathe-
matical proof to be rigorousy. As stated in the introduction:

A mathematical proof P is rigorousy
=4
P can be routinely translated into a formal proof.

Our main task in this section will be to specify this characterization by providing a precise
conception of the notion of routine translation central to it. This raises two main questions:
How does the translation proceed? How should the term routine be interpreted?
Regarding the first question, our proposal is to think of the routine translation as a
sequence of successive translations between proofs at different levels of granularity. More
specifically, we will consider four levels of granularity, and will conceive of the routine
translation as a sequence of three successive translations from the coarsest to the finest
level of granularity. Regarding the second question, we shall interpret the term ‘routine’ as
being equivalent to the term ‘algorithmic’ (or ‘mechanical’, ‘automatic’), which is, I con-
tend, the intended meaning of the term in Mac Lane’s and Bourbaki’s original conceptions
of the standard view. Thus, we shall conceive of the routine translation as an algorithmic
procedure that takes as input an ordinary mathematical proof and turns it into a full formal
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proof, and we shall specify it by providing the algorithmic procedures corresponding to the
three successive translations composing it.

5.1. Four levels of granularity. The routine translation takes as input mathematical
proofs as commonly presented in the ordinary mathematical texts of a given mathematical
practice. This is the coarsest level of granularity we shall consider, and we shall refer to it
as the vernacular level:

Vernacular level: A vernacular-level proof P is a sequence of inferences as commonly
presented in the ordinary mathematical texts of mathematical practice M.

As we saw in §3, the inferences of a vernacular-level proof cannot always be directly
verified by a typical agent in a given mathematical practice, in which case the agent enters
into some decomposition processes in order to turn every such inference in the proof into a
sequence of immediate inferences. The second level of granularity we shall consider is the
one at which a proof is only composed of immediate inferences, and every mathematical
proposition used as a premiss is either the conclusion of a previous inference, a mathemat-
ical proposition from background knowledge, or an assumption to be discharged later on,
a level of granularity we shall refer to as the higher level:

Higher level: A higher-level proof Py is a sequence of inferences such that (1) every
inference in Pp| is an instance of an hl-rule in R, and (2) every mathematical
proposition occurring as a premiss of an inference in Py, is either the conclusion of
a previous inference in Pp|, a mathematical proposition from K, or an assumption
to be discharged later on in Pp.%!

In the previous section, we characterized immediate inferences as corresponding to
instances of higher-level rules of inference, and we explained in the training model how
higher-level rules of inference can be generated from primitive rules of inference and
axioms. The third level of granularity is the one at which a proof is only composed of
inferences licensed by primitive rules of inference, and every mathematical proposition
used as a premiss is either the conclusion of a previous inference, a primitive axiom, or
an assumption to be discharged later on, a level of granularity we shall refer to as the
intermediate level:

Intermediate level: An intermediate-level proof Pj is a sequence of inferences such
that (1) every inference in Pj is an instance of a primitive rule of inference in Ry,
and (2) every mathematical proposition occurring as a premiss of an inference in Pj
is either the conclusion of a previous inference in Pj, a primitive axiom from Ko, or
an assumption to be discharged later on in Pjj.?

Finally, the last and finest level of granularity we shall consider is the one of for-
mal proof—which is the level of granularity at which proofs are yield by the routine
translation—a level we shall refer to as the lower level:

21 Recall that K and R refer respectively to the set of mathematical propositions that the agent
knows and the set of hl-rules that the agent possesses once she has completed her training in the
considered mathematical practice.

22 Recall that Ko and Ry refer respectively to the set of mathematical propositions that the agent
knows and the set of hl-rules that the agent possesses at the very beginning of her training in the
considered mathematical practice.

https://doi.org/10.1017/51755020319000443 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020319000443

430 YACIN HAMAMI

Lower level: A lower-level proof P is a sequence of inferences such that (1) every in-
ference in P is an instance of a rule of inference in Rr, and (2) every mathematical
proposition occurring as a premiss of an inference in Py is either the conclusion of
a previous inference in P), an axiom from Kr, or an assumption to be discharged
later on in Py.

Here T' designates a formal deductive system adequate to serve as the foundations of
mathematics, and Rr and Kr designate respectively the rules of inference and axioms
of T'.

We shall then conceive of the routine translation as an algorithmic procedure that takes
as input a proof at the vernacular level, and yields as output a translation of it at the lower
level, and which consists in a sequence of three successive translations: first from the
vernacular level to the higher level, then from the higher level to the intermediate level,
and finally from the intermediate level to the lower level. We now turn to the specifications
of the three algorithmic procedures corresponding to these three translations.

5.2. Three successive translations. The first translation, from the vernacular level
to the higher level, corresponds exactly to the first phase of the process that a typical
mathematical agent engages in when judging the rigor of a mathematical proof, namely the
decomposition of each inference in the proof that cannot be verified directly into a sequence
of immediate mathematical inferences. The algorithmic procedure 7y, n corresponding to
this translation consists thus, for each such inference, in first identifying a decomposition
process that would turn the inference into a sequence of immediate inferences, then carry-
ing out this decomposition process, and finally replacing the inference in the proof by the
outcome of the decomposition process:

Algorithmic procedure Ty_n): For each inference I in P which is not immediate, the
algorithmic procedure 7y|_,p proceeds in three steps:

1. It identifies a decomposition process D € D* such that (1) D(I) =
(I, ..., 1I,) and (2) there exist Vi, ..., V, € V* such that V;(I;) = valid for
all i € [1, n],

2. It decomposes I into the sequence of inferences (I, ..., I,) using the decom-
position process D,

3. Itreplaces I in P by the sequence of inferences (/y, ..., I,).

The second translation, from the higher level to the intermediate level, exploits the
way hl-rules in Rt and mathematical propositions in Kt are generated in the training
model from primitive rules of inference in Rg and primitive axioms in Kq. The algorith-
mic procedure Tp_sj corresponding to this second translation consists then in keeping
unpacking the hl-rules and the mathematical propositions in the proof into the more basic
components they were built from, and this up to the point where only remain primitive
rules of inference, primitive axioms, and assumptions to be discharged, a procedure that
can be described as follows:

Algorithmic procedure Tn—j: The algorithmic procedure 7n_j proceeds in two
steps:

1. It keeps replacing each application of a hl-rule in Py by the sequence of ap-
plications of hl-rules in its rule certificate, and each mathematical proposition
in Py by the sequence of applications of hl-rules in its proof certificate, until
all inferences in Py are instances of primitive rules of inference from Ry and
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all mathematical propositions occurring as premisses of inferences in Py are
either definitions, conclusions of previous inferences, primitive axioms from
Ko, or assumptions to be discharged,

2. Itkeeps replacing each occurrence of a defined expression in the mathematical
propositions of Py by its definition, until all mathematical propositions in P
only contain primitive expressions from the language of Ky, and then with-
draw from Py all mathematical propositions that correspond to definitions.

The third translation, from the intermediate level to the lower level, is there to bridge
the gap between the primitive rules of inference and primitive axioms, and the rules of
inference and axioms of the formal deductive system I'. The algorithmic procedure Tji_ |
corresponding to this third translation can be described as follows:

Algorithmic procedure Ty : The algorithmic procedure 7Tj_, proceeds in three
steps:

1. It replaces each mathematical proposition in Pj by its translation into the
formal language of I" where each primitive expression is replaced by its
definition in I,

2. It replaces each occurrence in Pj of a primitive axiom from K¢ by a proof of
itin I,

3. Tt replaces each application in P; of a primitive rule of inference from Ry by
a corresponding sequence of applications of rules of inference in I".

Do we have any reason to believe that such an algorithmic procedure could exist? Regard-
ing step 1, although few attempts have been made to provide an explicit algorithmic pro-
cedure for translating mathematical propositions in the vernacular mathematical language
into formulas of a formal language, there does not seem to be any obstacle present here
that could prevent to do so since, as Wiedijk (2008) remarks: “Writing text in a stylized
formal language is easy” (Wiedijk, 2008, p. 1414).23 Regarding step 2, that any primitive
axiom from Ko—i.e., any mathematical proposition accepted without proof in the various
branches of contemporary mathematics—can be represented and proved within a formal
deductive system adequate to serve as the foundations of mathematics is something that is
known at least since the beginning of the twentieth century, as Hilbert wrote in 1920 with
respect to Zermelo’s axiom system for set theory:

The theory which results from the development of the consequences of
this axiom system encompasses all mathematical theories (like number
theory, analysis, geometry), in the sense that the relations which obtain
between the objects of these mathematical disciplines are represented
in a perfectly corresponding way by relations which obtain within a
subdomain of Zermelo’s set theory. (Hilbert, 2013, p. 292)

3 According to Wiedijk (2008), it is for this reason that “it is not important to have proof assistants
be able to process existing mathematical texts” (Wiedijk, 2008, p. 1414). This might explain
why few efforts have been invested to develop technologies in order to translate vernacular
mathematical language into formal ones, the cost of doing so compared to the potential low gain
that could result from it might simply not be worth the effort.
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Regarding step 3, given that the set of primitive rules of inference Ry amounts to basic
rules of elementary logical reasoning, it ought to be possible to translate any application
of these rules into corresponding sequences of applications of rules of inference in Rr,
involving eventually further formulas that could be derived in I.

But the best reason we have to believe that such an algorithmic procedure as 7jj_, could
exist is that, in fact, procedures of this kind do exist. More specifically, the main proof
assistants currently used in the field of formal verification possess the necessary resources
to convert any intermediate-level proof Pj—where each mathematical proposition in Pj has
been replaced by its translation into the formal language of the considered proof assistant—
into a lower-level proof P within the formal deductive system they are built on, as Avigad
notices:

To date, a substantial body of definitions and theorems from undergrad-
uate mathematics has been formalized, and there are good libraries for
elementary number theory, real and complex analysis, point-set topol-
ogy, measure-theoretic probability, abstract algebra, Galois theory, and
so on. (Avigad, 2018, p. 685)

Of course, one will need to supplement any intermediate-level proof P; with further
instructions to obtain a proof script that can be verified by such proof assistants. But given
that all that is required for steps 2 and 3 of 7j_, is the ability to replace any primitive
axiom from Kq by a proof of it in I' and any application of a primitive rule of inference
in Ry into a corresponding sequence of applications of rules of inference in I, it suffices
to provide once and for all a proof script that can verify any primitive axiom from K and
that can turn any primitive rule of inference in Ry into a rule of the considered system, in
order to obtain an algorithmic procedure able to carry out the steps 2 and 3 of Tj_ .

Having defined the algorithmic procedures 7y ni, Thi—sil> and Tjj_ |, we now possess all
the elements to define precisely the notion of routine translation.

5.3. The routine translation. The routine translation®* is given by the algorithmic
procedure RT consisting of the composition of the three algorithmic procedures Tyj_pl,
Thi—il» and Tij_, that is:

T T~>' T
RT: P X' py i3 Py 2 py or RT = T © Tniil © Tvi=hl-

This allows us to state precisely what it means to say that a mathematical proof P can
be routinely translated into a formal proof in terms of the capacity of the algorithmic
procedure RT to succeed in turning the mathematical proof P into a formal proof:2>

2 T am talking here about ‘the’ routine translation, but it would be better to talk about a family
of routine translations, as there could be many variations at the level of the three algorithmic
procedures Tyl_shl> Thi—il» and Tj_. For instance, in the algorithmic procedure Tyj_ps
different choices could be made regarding the decomposition processes used to decompose the
various inferences under consideration, and of course the algorithmic procedure 7jj_, | is entirely
dependent on the formal deductive system I' one is adopting. What matters for the present
discussion is the general structure of this routine translation, not its specific implementations.
To say that a mathematical proof P can be routinely translated into a formal proof is an existential
statement, and should be interpreted as saying that there exists a routine translation able to
turn P into a formal proof. In this reconstruction of the normative part of the standard view, I
am specifying this existential statement by exhibiting the routine translation that, I think, the
proponents of the standard view have in mind.

25
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P can be routinely translated into a formal proof
(==
RT would succeed in translating P into a formal proof.

Insofar as RT is the composition of the three algorithmic procedure 7yi_shi, Thi—sil, and
i1, we can specify the second part of this equivalence further as follows:

RT would succeed in translating P into a formal proof
(=1
Tui—ni would succeed in translating P into a higher-level proof Py,
and Tp— il would succeed in translating Py, into an intermediate-level proof Pj,
and T would succeed in translating Pj into a lower-level proof Py.

‘We thus obtain that:

P can be routinely translated into a formal proof
(=1
Tul—ni would succeed in translating P into a higher-level proof Py,
and Tp— il would succeed in translating Py, into an intermediate-level proof Pj,
and Tj— would succeed in translating Pj into a lower-level proof Py.

This completes our specification of the normative part of the standard view, that is, our
characterization of what it means for a mathematical proof P to be rigorousy. We can now
turn to the examination of the last component of the standard view: the conformity thesis.

§6. The standard view of mathematical rigor: Conformity thesis. The conformity
thesis relates the descriptive part and the normative part of the standard view, and states
that, for any mathematical proof P:

P isrigorousp = P is rigorousy.

In this section, we will show that this implication holds for the accounts of what it means
for a mathematical proof P to be rigorousp and rigorousy developed in the two previous
sections.

Let P be a mathematical proof and let us assume that P is rigorousp. We want to show
that P is rigorousy. To this end, we will argue that the successive application of the three
algorithmic procedures 7Tyi_shi, Thi—il> and 7j_ would succeed in turning P into a formal
proof.

Since P is rigorousp, we have that for every mathematical inference / in P, there exist
D e D and Vy,...,V, € V*suchthat (1) D() = ([, ..., 1,) and (2) V;(I;) = valid for
all i € [[1, n]), and furthermore that a typical agent in mathematical practice M would be
able to identify such decomposition processes for each I in P. It follows from this that the
first step of Ty, would succeed in identifying suitable decomposition processes for all
the inferences in P that are not immediate, the second step would succeed in decomposing
these inferences into sequences of immediate inferences since decomposition processes
are algorithmic procedures, and finally the third step would succeed in replacing them in P
by their decompositions. Furthermore, the proof Py yielded by 7y is indeed a higher-
level proof, since all its inferences are immediate, and all the premisses of its inferences
are either conclusions of previous inferences, mathematical propositions from background
knowledge, or assumptions to be discharged later on in Py. Thus, Tyj_,n would succeed in
translating P into a higher-level proof Py.
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Since Py is a higher-level proof, this means that Py, is a sequence of inferences such that
(1) every inference in Py is an instance of an hl-rule in Rt, and (2) every mathematical
proposition occurring as a premiss of an inference in Pp is either the conclusion of a
previous inference in Pp, a mathematical proposition from Kr, or an assumption to be
discharged later on in Ppy. Since P is rigorousp, the process by which the pair (R, Kr) is
obtained is the one described in the training model, and so we can replace each application
of a hl-rule in Py by the sequence of applications of hl-rules in its rule certificate, and
each mathematical proposition in Py by the sequence of applications of hl-rules in its
proof certificate. In doing so, we obtain a proof in which all inferences are instances of
hl-rules from R, and all mathematical propositions occurring as premisses of inferences
are either definitions, conclusions of previous inferences, mathematical propositions from
K;, or assumptions to be discharged, and this for some ¢t < T. Such a process can be
repeated up to a point where all inferences in the proof are instances of primitive rules of
inference from R and all mathematical propositions occurring as premisses of inferences
are either definitions, conclusions of previous inferences, primitive axioms from Ko, or
assumptions to be discharged. Furthermore, since this process would consist of at most
T iterations, we are assured that it will terminate. It follows from this that the first step
of Thi—i would succeed. In the proof resulting from this first step, we can then replace
each occurrence of a defined expression in the mathematical propositions of the resulting
proof by its definition, and repeat this process until all mathematical propositions in the
proof only contain primitive expressions from the language of Ky. We can finally withdraw
from the proof all mathematical propositions that correspond to definitions, for all these
definitions would have been turned into tautologies by the process just described. The
proof Py yielded by 7hi_j is then an intermediate-level proof, since all its inferences are
instances of primitive rules of inference, and all the premisses of its inferences are either
conclusions of previous inferences or primitive axioms. Thus, Tn_j would succeed in
translating Py, into an intermediate-level proof Pj.

Since Pj is an intermediate-level proof, this means that Pj is a sequence of inferences
such that (1) every inference in Pj is an instance of a primitive rule of inference in Ry, and
(2) every mathematical proposition occurring as a premiss of an inference in Pj is either
the conclusion of a previous inference in Pj, a primitive axiom from Ky, or an assumption
to be discharged later on in Pj. We have already argued in the previous section that one
could specify the algorithmic procedure 7j_, in such a way that it would be able to turn
any intermediate-level proof Pj into a lower-level proof Pj. It follows from this that such
a specified algorithmic procedure 7j_,;j would succeed in translating Pj into a lower-level
proof Pj.

We have argued that 7y, would succeed in translating P into a higher-level proof Py,
that 7n—j would succeed in translating Py into an intermediate-level proof Pj, and that
Tii—1 would succeed in translating Pj into a lower-level proof Pj. This means that RT
would succeed in translating P into a formal proof, and that P can be routinely translated
into a formal proof. We have thus shown that, for any mathematical proof P, P is rigorousp
= P isrigorousy, namely that the conformity thesis holds for the accounts of what it means
for a mathematical proof P to be rigorousp and rigorousy developed in the two previous
sections.

This completes our reconstruction of the standard view of mathematical rigor, thus
providing us with a precise formulation of it. We are now in a position to engage in a
thorough evaluation of the standard view, a task that we will undertake in the two following
sections by examining, in turn, the arguments against and in favor of it.
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§7. The arguments against the standard view. The standard view has been heavily
criticized in the literature. In this section, we will examine the main arguments that have
been advanced against the standard view in light of the formulation of it proposed in the
three previous sections.

One of the first rejections of the standard view comes from John A. Robinson who, after
having restated the standard view in its common form, wrote the following:

This explanation of the rigorousness of rigorous unformalized proofs
amounts to saying that informal proofs really are, so to speak, no more
than sketches or outlines of formal proofs. But on closer examination this
view seems unsatisfactory, and is rejected by most mathematicians.

In actual mathematical work, formal proofs are rarely if ever used. More-
over, the unformalized proofs which are the common currency of real
mathematics are judged to be rigorous (or not) directly, on the basis of
criteria which are intuitive and semantic—not simply based on syntac-
tic form alone. Although construction of a corresponding formal proof is
rarely in practice undertaken, one sometimes attempts it anyway, if only
for the sake of the exercise, or perhaps for the sake of submitting it to a
computer proof-checking system. Formalization of a given informal proof
then often turns out to be surprisingly difficult. The translation from in-
formal to formal is by no means merely a matter of routine. In most cases
it requires considerable ingenuity, and has the feel of a fresh and sepa-
rate mathematical problem in itself. In some cases the formalization is so
elusive as to seem to be impossible. (Robinson, 1997, p. 54)

In this passage, Robinson advances three reasons to reject the standard view. First, he
notices that formal proofs are rarely used in ordinary mathematical practice. To my knowl-
edge, no ones has ever contested this, and the standard view does not say or imply that
mathematicians are or ought to use formal proofs in practice, so this does not constitute a
reason to reject it.

Second, Robinson claims that judgments of the rigor of ordinary mathematical proofs
are based, in practice, on ‘intuitive’ and ‘semantic’ criteria, and not only on ‘syntactic’
ones. For this to constitute a reason to reject the standard view, one would need to (1)
define what is meant by the properties of being ‘intuitive’ and ‘semantic’, (2) provide an
argument that judgments of rigor in practice are based on criteria that have these properties,
and (3) explain why this would prevent the conformity thesis from holding, that is, why if a
mathematical proof is judged to be rigorous based on ‘intuitive’ and ‘semantic’ criteria, it
might not or could not meet the normative requirement that it be routinely translatable into
a formal proof. Fleshing out these three points is a necessary condition for this to constitute
a potential reason to reject the standard view.

The third reason is the most interesting one. It can be reformulated as follows: (Py)
the standard view says that if a mathematical proof is rigorous, then it can be routinely
translated into a formal proof, but (P;) when one tries to carry out concretely such a
translation, this turns out to be “surprisingly difficult” and “by no means merely a matter
of routine”, so this means that (C) there is something problematic with the implication in
P;. This argument, however, rests on a confusion on what the term ‘routine’ means. One
can distinguish at least two senses in which a process could be qualified as routine: in the
first sense, a process is routine if it consists in an algorithmic procedure, in which case
routine is synonymous with the terms ‘algorithmic’ or ‘mechanical’; in the second sense,
a process is routine if performing it does not present any difficulty. In the above passage,
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Robinson uses the term routine in the second sense, as witnessed by his juxtaposition of
the ideas that translation from informal to formal is “surprisingly difficult” and “by no
means merely a matter of routine”. If the term ‘routine’ in P; and P, is interpreted in the
second sense, then the conclusion of the argument indeed holds. But the intended meaning
of the term ‘routine’ as it appears in the standard view, and so as it appears in Py, is that
of the first sense, not the second one, as we established in §5. If we interpret the term
‘routine” in Py and P, respectively in the first and second sense, then we have that P and
P> holds but that C does not follow from them. The reason is that a process can be routine
in the first sense but not in the second one. To see this, it suffices to think of any particularly
complicated algorithm which would be particularly hard to perform, such as the one used in
the proof of the four color theorem. Indeed, this is precisely how Bourbaki sees the matter
with respect to the process of routine translation when he says that the mathematician is
“content to bring the exposition to a point where his experience and mathematical flair tell
him that translation into formal language would be no more than an exercise of patience
(though doubtless a very tedious one)” (Bourbaki, 1970, p. 8), for he recognizes that
although such a translation “would be no more than an exercise of patience”—which is the
case of any algorithmic procedure—carrying it out concretely would turn out to be “very
tedious”.

In a review of contemporary philosophical developments on the nature and significance
of mathematical proofs, Detlefsen addresses the issue of the relation between rigor and
formalization, and provides the following argument against the standard view:

Mathematical proofs are not commonly formalized, either at the time
they’re presented or afterwards. Neither are they generally presented in
a way that makes their formalizations either apparent or routine. This
notwithstanding, they are commonly presented in a way that does make
their rigor clear—if not at the start, then at least by the time they’re
widely circulated among peers and/or students. There are thus indica-
tions that rigor and formalization are independent concerns.

This is not the common view, however. On that view, nonformalized
proofs are typically close enough to formalized proofs to make the fact
of formalizability clear and the remaining work of formalization routine.
(Detlefsen, 2009, p. 17)

This argument has the following structure: (P;) mathematical proofs are not “presented
in a way that makes their formalizations either apparent or routine”, but (P,) they are
“presented in a way that does make their rigor clear”, so (C) “rigor and formalization are
independent concerns”. One can identify three issues with this argument.

First, the argument presupposes a reading of the standard view as providing a descriptive
account of mathematical rigor. According to this interpretation, what the standard view
is saying is that judging whether a mathematical proof is rigorous amounts to judging
whether it can be formalized, that is, whether it can be translated into a formal proof. If
one adopts such a descriptive reading, then the argument does provide a reason to reject
the standard view, for if the rigor of a mathematical proof can be judged from an ordinary
presentation of it while its formalizability cannot, then surely judging a mathematical
proof as rigorous cannot be based on a judgment of its formalizability. However, as we
mentioned at the beginning, the standard view cannot be meaningfully read as providing
a descriptive account of mathematical rigor, and as we can see from our reconstruction,
the standard view does not require that mathematical agents be able to judge directly from
an ordinary presentation of a mathematical proof whether it can be formalized. Indeed,
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Bourbaki himself recognizes that “the tiniest proof at the beginning of the Theory of Sets
would already require several hundreds of signs for its complete formalization”, so it is
hard to see how, under these conditions, he could hold a view requiring that mathematical
agents be able to judge the formalizability of mathematical proofs directly from their
presentations.

Second, the argument interprets the term ‘routine’ as being synonymous to the terms
‘apparent’ or ‘clear’. This is not, however, the intended interpretation of the term as it
appears in the standard view. Rather, as we saw in the previous sections, the term ‘routine’
should be interpreted as being equivalent to ‘algorithmic’ or ‘mechanical’. Under this
interpretation, translation of a mathematical proof into a formal proof could perfectly be
routine while it might neither be apparent nor clear that such a translation could be carried
out.

Third, the argument presupposes that the only possible connection between rigor and
formalization necessarily passes by the capacity to judge rigor and formalizability directly
from the ordinary presentation of mathematical proofs. There are, however, other ways to
establish such a connection. As we have seen in the previous sections, the standard view
achieves a connection between rigor and formalization through a tripartite combination of
a descriptive account of mathematical rigor, a normative account of mathematical rigor,
and a philosophical thesis relating the two.

In §5 of his article on the nature of informal proofs, Larvor (2012) identifies several rea-
sons to reject the standard view. One is particularly directed at Mac Lane’s own formulation
of the view:

Saunders Mac Lane, reflecting on mathematical rigour, claimed that,
“In practice, a proof is a sketch, in sufficient detail to make possible a
routine translation of this sketch into a formal proof.” (Mac Lane, 1986,
p- 377). By ‘formal proof’, Mac Lane means a proof that is not content-
dependent: “...the test for the correctness of a proposed proof is by
formal criteria and not by reference to the subject matter at issue” (Mac
Lane, 1986, p. 378; emphasis added). However, the proofs that mathe-
maticians create and deploy typically make inferences that exploit local
features of the subject-matter in hand. Euclid’s proof of the infinitude of
primes employs the fact that if a natural number m (> 1) divides another,
n, it cannot divide n 4 1. (Larvor, 2012, p. 724)

There are two issues with this argument. First, the argument interprets Mac Lane as saying
that, in practice, the correctness of mathematical proofs is assessed by “formal criteria”
in a similar way as the correctness of formal proofs are. But the second quote of Mac
Lane is talking about formal proofs, and is part of a paragraph discussing the standard of
absolute rigor; it is not about the criteria used to assess the correctness of mathematical
proofs in practice, that is, the “sketches” discussed in the first quote. Indeed, as we saw
in §2, Mac Lane does not consider that the verification of mathematical proofs in practice
is similar to the verification of formal proofs. Rather, he considers that the verification of
proofs in practice proceeds via “well-recognized general rules” (Mac Lane, 1979, p. 65)—
what we have called higher-level rules of inference or hl-rules. Second, such hl-rules do
rely sometimes (indeed often) on the “local features of the subject-matter in hand”, in the
sense that some (indeed most) hl-rules have a restricted scope of application. To see this, it
suffices to consider, for instance, the hl-rule X2 is even = X is even that we saw in §4—in
the context of Hardy and Wright’s proof of the irrationality of ~/2—and which can only be
applied to an expression denoting a natural number (another typical example is the hl-rule
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corresponding to mathematical induction). This is also exactly what is happening with the
example of Euclid’s proof of the infinitude of primes used to illustrate the argument, for
what is at stake in this case is simply the use of the hl-rule:

X > 1, Xdivides Y = X does not divide Y + 1

where X and Y are placeholders for expressions denoting natural numbers, and which
is also a hl-rule with a restricted scope of application. In sum, the observation that the
verification of mathematical inferences in mathematical proofs can sometime “exploit local
features of the subject-matter in hand” is perfectly compatible with the standard view as
reconstructed here.

Another reason to reject the standard view advanced by Larvor (2012) has to do with the
notion of routine translation:

Philosophers of mathematical practice have had plenty to say about the
short-comings of the view that ‘real’ proofs are sketches of derivations.
One of the lessons of Lakatos (1976) is that translating a mathematical
argument into a more formal idiom transforms it. By the time it is fully
formalised [...], it is no longer the same piece of reasoning. Such trans-
lations are not ‘routine’ (to pick up Mac Lane’s word); rather, traduttore,
traditore. (Larvor, 2012, p. 725)

What this argument is saying is that the translation of a mathematical proof into a formal
proof cannot be routine because such a translation “transforms” the mathematical argument
in the mathematical proof one is starting with, and as a consequence the result “is no
longer the same piece of reasoning”. The argument presupposes then an interpretation of
the term ‘routine’ according to which a routine translation should necessarily preserve
the reasoning under consideration. However, this is not the intended meaning of the term
‘routine’ as it occurs in the standard view, and there are no requirements in the standard
view that a routine translation of a mathematical proof into a formal proof should preserve
the reasoning under consideration (at least in the sense of ‘preserve’ that matters for this
argument). It may be that the argument originates from an interpretation of the notion of
translation as being similar to a linguistic translation for which the primary requirement is
precisely that the translation preserves the meaning of the sentences under consideration.
But the notion of translation in the standard view is quite different from the one of linguistic
translation. As noted by Burgess (2015), who reports a metaphor originally proposed by
the mathematician and computer scientist Gil Kalai, a better analogy would be with the
process of compilation, that is, with the ‘translation’ of a computer program written in a
high-level programming language into machine language.

In another contribution, Larvor has proposed an argument against the standard view
which he considers to be independent of what can be said, from a psychological or soci-
ological perspective, on “how human mathematicians individually and collectively come
to understand and confirm proofs” (Larvor, 2016, p. 402), i.e., “independent of questions
about human cognitive and social functioning” (Larvor, 2016, p. 403). The argument is
presented as follows:

Let P be a mathematician’s proof for a theorem C. Then it follows from
the Derivation Recipe model that P is not as it stands (before any trans-
lation) a proof of C, but is rather an argument to convince the reader
that:
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C’: there is a suitable formal system S such that g y, where y is the
formula in S corresponding to C.

For the sake of clarity: this is not what proponents of the Derivation
Recipe model say; rather it is what the Derivation Recipe model amounts
to once we recognise that the existence of a suitable derivation is itself a
mathematical claim. The Derivation Recipe model requires that P must
be, as it stands, before any translation, a compelling, rigorous argu-
ment (epistemically equivalent to a proof) of a mathematical conclusion,
namely, C’. [...]

How can P work as a proof of C'? If it is just a recipe for a derivation,
this would initiate an obvious regress. So, the Derivation Recipe picture
must be that P, gappy, informal and intuitive as it may be, is an adequate
proof of the mathematical claim C’, whereas it is not an adequate proof
of the mathematical claim C. (Larvor, 2016, p. 403)

As I analyze it, this argument works in two steps: first, it starts from two premisses stating
that (P) according to the standard view, for P to be a proof of C, P must be an argument
for C’ and (P,) C’ is a mathematical conclusion, and derives from them the conclusion
that (C) according to the standard view, for P to be a proof of C, P must be a proof of C’;
second, it observes that the conclusion C is absurd, because it leads either to an infinite
regress, or to the strange claim that P would be an adequate proof of C’ but not an adequate
proof of C. From our formulation of the standard view, the issue with this argument is that
P, is too strong. More specifically, what Py is saying, in the terminology we introduced, is
that for being able to judge a mathematical proof P as being rigorousp, i.e., as a rigorous
mathematical proof from the point of view of mathematical practice, a mathematical agent
must first establish that P is rigorousy. But in our formulation, establishing that P is
rigorousy is not a necessary requirement for judging P as being rigorousp, and it is indeed
not a requirement at all. On the contrary, the standard view works the other way around:
it is by judging P as rigorousp and by holding the standard view that one can come to the
judgment that P is rigorousy, and thus obtain a ground for C’. Thus, our formulation of the
standard view does not lead to the infinite regress pointed out by Larvor, a regress which
would prevent mathematical agents to ever be able to judge a proof as being rigorous in
mathematical practice.

In a paper discussing the notions of informal proofs, mathematical rigor, and mathemat-
ical knowledge, Antonutti Marfori (2010) provides several arguments against the standard
view. Many of them are similar to the ones just discussed, and so will not be tackled again
here. One argument is, however, quite different from the previous ones in that it is social
in nature:

[T]he large convergence of the mathematical community on what makes
for an adequate proof looks as mysterious as the success of mathematical
practice in the light of the consideration that formalisation is seldom
appealed to in order to resolve controversies. This indicates that formal-
isation and rigour are independent concerns of mathematicians, and that
there must be some notion of informal rigour that normatively governs
practitioners’ work. (Antonutti Marfori, 2010, p. 267)

This argument rightly observes that mathematicians usually converge quite quickly in their
judgments of whether a purported proof constitutes or not a rigorous mathematical proof
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for a given mathematical proposition. But for this to appear as mysterious, and thus to
constitute a challenge for the standard view, one needs to adopt a descriptive reading of the
standard view, that is, a reading in which formalization would play a role in the process by
which mathematical proofs are judged to be rigorous in practice. As we have repeatedly
emphasized, such a descriptive reading should be rejected. Indeed, in our reconstruction,
the notion of formalization does not play a role in how the standard view conceives of
the verification of mathematical proofs in practice (see §4). Now, does it follow from
this sociological fact that “formalisation and rigour are independent concerns”? What
our reconstruction shows is that these are concerns that can be separated, as witnessed
by our separation between the descriptive part—which does not appeal to the notion of
formalization—and the normative part of the standard view. But it does not follow from
this that one cannot hold a view relating the two. In particular, this does not prevent the
two to be connected via the conformity thesis as it is the case our reconstruction of the
standard view. Finally, it should be noted that our reconstruction agrees perfectly with
the idea that “there must be some notion of informal rigour that normatively governs
practitioners’ work™. Indeed, the descriptive part of the standard view precisely aims to
capture the mechanisms that govern judgments of rigor in practice, and thus constitutes
a potential candidate for an account of informal rigor as advocated by Antonutti Marfori
(2010).

Tanswell (2015) has developed a general argument against what he calls ‘derivationist’
views, i.e., views for which “the rigour and correctness of informal proofs is taken to be
dependent (in some sense) on associated formal proofs” (Tanswell, 2015, p. 296). The
argument is directed at one particular derivationist view, that of Azzouni (2004), where
informal proofs are taken to ‘indicate’ formal proofs, but is meant to be a challenge to any
derivationist view. The heart of the argument goes as follows:

[According to derivationist views] it is the underlying formal proofs that
are meant to be ensuring the rigour and correctness of informal proofs,
but if there are multiple different formal proofs simultaneously being
depended upon this undermines the effectiveness of the explanation the
derivation-indicator account gives. For example, what is there then to
stop an informal proof from corresponding to both one correct and one
incorrect formal proof? [...] Once it is conceded that there are multiple
different, non-equivalent, formal proofs underlying some informal proof,
we can immediately ask why it is these particular ones that are selected
and what ensures that it is only correct and rigorous formal proofs that
are picked out. (Tanswell, 2015, p. 302)

The argument is based on an obvious requirement of any derivationist view, namely that
the dependence relation of informal proofs on formal proofs be specified. Now, if any
informal proof would always depend on one, and only one, formal proof, then there would
be no issues in determining the dependence relation. But as Tanswell rightly points out,
when one is engaging in actually turning an informal proof into a formal one—e.g., with
the help of a proof assistant—one realizes that there are often different ways to proceed,
which would result in different and non-equivalent formal proofs—Tanswell refers to this
phenomenon as ‘overgeneration’. It follows that derivationist views ought to address the
two key questions mentioned in the above quote, namely (1) “why it is these particular
[formal proofs] that are selected” and (2) “what ensures that it is only correct and rigorous
formal proofs that are picked out”. In other words, what derivationist views shall provide
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is “an explanation of how exactly the informal proof can be used to pick out some formal
proof or proofs” (Tanswell, 2015, p. 298). Insofar as the standard view qualifies as a
derivationist view in Tanswell’s sense, and furthermore fully embraces the overgeneration
phenomenon, it is directly concerned by these requirements and shall provide answers
to the questions just raised. But, as it turns out, a large part of our reconstruction of the
standard view was indeed directed to these questions. In particular, the standard view
provides a direct explanation as to how an informal proof ‘picks’ specific formal proofs:
the specific formal proofs to be picked are precisely those that can be obtained by routinely
translating the initial informal proof. Insofar as the notion of routine translation has been
entirely specified in §5, this provides a direct answer to question (1). It also provides an
answer to question (2) since, as we saw in §6, a routine translation, when applied to an
informal proof that has (correctly) been judged to be rigorous in practice, necessarily
yields a (correct) formal proof. Thus, the standard view, in its present reconstruction, is
not concerned by the overgeneration problem.

The absence of a precise formulation of the standard view in the literature was a major
obstacle to a proper assessment of its strengths and weaknesses. Our reconstruction of
the view has made it possible in this section to carry out a more fine-grained evaluation
of the main arguments that have been advanced against it. From the perspective of our
own formulation of the standard view, the main arguments proposed against it rests on
one or more of the following misinterpretations of the view: (1) a confusion on the mean-
ing of the term ‘routine’; (2) a reading of the standard view as providing a descriptive
account of mathematical rigor; (3) a presupposition that any connection between rigor
and formalizability necessarily passes by a direct judgment of these qualities from the
ordinary presentation of mathematical proofs; (4) an interpretation of the standard view as
stating that the rigor of mathematical proofs in practice is assessed by formal criteria; (5)
an interpretation of the standard view as requiring that for judging a proof to be rigorousp,
an agent must first establish that the the proof be rigorousy; (6) an assessment that the
standard view does not specify the dependence relation between an ordinary mathematical
proof and the formal proof that could be obtained through a routine translation. It should be
noted that these interpretations were perfectly legitimate given the previous formulations
of the standard view available in the literature. As we mentioned in §2, it is not surprising
that the standard view has been left underspecified since the view was only a consequence
of the projects pursued by Mac Lane and Bourbaki, and that these two authors did not have
as a primary objective to provide a characterization of mathematical rigor as a quality of
mathematical proof. Finally, the fact that the arguments reported here are found wanting
does not mean, of course, that our formulation of the standard view is immune to any
criticism. It shows, however, that the standard view, when properly construed, is more
robust than previously thought.

§8. An argument in favor of the standard view. Although the standard view is
endorsed by many philosophers and logicians and is almost considered as an orthodoxy
among contemporary mathematicians, it is surprisingly hard to find an articulated defense
of it in the literature and to pinpoint arguments specifically advanced to support it.2® This
might be explained by the absence of a precise formulation of the standard view, which

26 Hersh (1997) holds this against the standard view. While examining the assertion that “Any correct
practical proof can be filled in to be a correct theoretical proof” (Hersh, 1997, p. 154), Hersh
observes that this assertion is “commonly accepted”, but he remarks that he has seen “no practical
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makes it hard to figure out how exactly the view is supposed to be defended, and what is to
be expected of arguments aiming to support it. The reconstruction of the view provided in
this work allows to overcome this difficulty, making it possible to identify more precisely
what is required to defend it. In the previous sections, we have specified what it means for
a mathematical proof to be rigorousp and rigorousy, and we have already argued for the
conformity thesis. But for the standard view to succeed in what it has been designed for—
i.e., to establish a tie between the practice and the ideal of proof—there is still a central
element that needs to be argued for, namely that the descriptive account of mathematical
rigor embedded in the standard view—what we have called the descriptive part of the
standard view—is indeed a faithful model of how mathematical proofs are judged to be
rigorous in practice. This claim is particularly hard to argue for, since it is essentially an
empirical claim about mathematical practice.?’ Yet, an indirect argument for it can still be
provided on the basis of an approach originally proposed by Mark Steiner (1975). The aim
of this section is to construct this argument.

In his book entitled Mathematical Knowledge, Steiner undertakes an analysis of the
concept of “knowing a proof” (Steiner, 1975, chap. 3, sec. 3). He proposes the following
characterization:

[A] mathematician is said to know a proof of S, if, working with a
logician who supplies no premises, he could produce a formal proof of
P (i.e., the wff which expresses S) [...]. (Steiner, 1975, p. 100)

The logician acts here as a “midwife” (Steiner’s term) whose task is “to make explicit
only those premises and arguments that were implicit in the mathematician’s initial [proof
of ST’ (Steiner, 1975, pp. 100-101). To this end, the logician engages in a specific dialogue
with the mathematician. This dialogue should be epistemically conservative in the sense
that it should not import or reveal “more knowledge than the mathematician had before”
(Steiner, 1975, p. 101). Once all the required information has been made explicit through
this dialogue, to obtain a formal proof the logician must then pursue by translating the
propositions of the informal argument into the considered formal language and by provid-
ing the logical steps omitted by the mathematician. The key issue here is to set rightly the
“power” of the logician, for as Steiner emphasizes:

If [the logician] is dull, his failure should not be laid at the doorstep of
the mathematician’s alleged ignorance. On the other hand, we cannot
envision a superhuman, because such a being would discover a com-
pleted proof despite the ignorance of the mathematician. (Steiner, 1975,
pp- 101-102)

For Steiner, this logician should be such that he is “brillant at analysis and symbolic ma-
nipulation” but “lacks mathematical creativity” (Steiner, 1975, p. 102). The mathematician
is then said to know a proof of § if the logician succeeds in finding a formal proof of P (the
formal translation of S) through the procedure just described.

The approach adopted by Steiner can be adapted to extract an important datum regarding
rigor judgments of mathematical proofs in mathematical practice. To do so, we will now
introduce a similar dialogue as the one imagined by Steiner, but this time the partici-

or theoretical argument for it, other than absence of counterexamples” (Hersh, 1997, p. 154).
Hersh concludes that “It may be true” but that “It’s a matter of faith” (Hersh, 1997, p. 154).

27 We will come back to this issue in the conclusion.
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pants in the dialogue will not be a mathematician and a logician but two mathematicians.
This dialogue can be construed as a game in which one mathematician—the defender—
aims to defend her claim that a certain mathematical proof P is rigorous while the other
mathematician—the challenger—aims to challenge this claim. The game takes the form
of a sequence of questions asked by the challenger and answered by the defender, each
question being immediately followed by a potential answer to it. The game starts with the
defender putting the mathematical proof P “on the table”, the proof being then expanded
with the answers provided by the defender. At stage s, the challenger can ask two different
types of questions regarding the proof P on the table: she can challenge a premiss of an
inference / in P, by asking “How do you know this premiss of /?”, or she can challenge
an inference / of P, by asking “How do you know that the conclusion of / follows from
its premiss(es)?”. Similarly to the dialogue imagined by Steiner, the answers of the de-
fender should be epistemically conservative, in the sense that the defender cannot draw
or verify new inferences to answer the questions of the challenger and can only appeal
to knowledge she had before her claim that P is rigorous, otherwise the defender could
simply verify P in the course of the dialogue. In other words, the defender can only report
knowledge acquired, and actions taken, prior to her claim that P is rigorous. Furthermore,
to avoid that the game enters into an infinite loop, we should add as a constraint that the
challenger cannot challenge twice the same premiss or inference, that is, each answer from
the defender should be either fully accepted or fully rejected by the challenger. If at some
point it happens that the defender cannot answer a question asked by the challenger, then
the game stops and the challenger wins the game. The idea here is that the challenger
has revealed through the dialogue a failure in the defender’s verification of P, forcing the
defender to give up her initial claim that P is rigorous.?® If the game is pursued up to a
stage s in which each premiss involved in the inferences in P; is either a definition, the
conclusion of a previous inference, a primitive axiom, or an assumption to be discharged
later on in Py, and each inference in Py is an instance of a primitive rule of inference, then
the game stops and the defender wins the game. The idea here is that the challenger is then
forced to accept all the inferences in Py, and as a consequence is forced to grant the claim
to the defender that the proof P is rigorous. We will refer to this game as the rigor game
associated to P.*°

Now, it seems plain that the following implication holds: if a mathematician has properly
judged a mathematical proof P to be rigorous, then she possesses a winning strategy against
the challenger in the rigor game associated to P. This dialogical implication, as we shall
call it, should be considered as a datum from the perspective of mathematical practice, for
it simply embeds the obvious claim that if a mathematician cannot answer at least one of
the challenges put forward by the challenger, then this means that either she has used a

28 Of course, the defender might restore later on her claim that P is rigorous by engaging into further
verification.

The structure of these rigor games is, of course, reminiscent of the games and dialogues developed
and studied in the contexts of game-theoretical semantics (Hintikka & Sandu, 1997), dialogical
logic (Keiff, 2011), the dialogical account of deduction proposed by Dutilh Novaes (2016), and
the prover-skeptic dialogues introduced by Sgrensen & Urzyczyn (2006). Notice, however, that
the use of the rigor games here is of a very different nature than in these other works: the point
is not to define or characterize notions such as truth, validity, deduction, or proof, but rather to
reveal certain features of the process of verification that the defender has previously carried out
and which serves at the basis of her claim that the mathematical proof P under consideration is
rigorous.

29
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premiss that she is not able to prove, or she has made an inference that she is not able to
justify, and in both cases this reveals a failure in her verification of P. If this implication is
correct, being able to satisfy this implication constitutes a requirement that any descriptive
account of mathematical rigor shall meet in order to be acceptable.

The descriptive account of mathematical rigor embedded in the standard view does meet
this requirement. To see this, first assume that a mathematician has properly judged a
mathematical proof P to be rigorousp and consider a given stage s in the rigor game
associated to P. Since the defender has judged P to be rigorousp, she can answer all
the possible challenges that the challenger can put forward at stage s: if the challenge
concerns a premiss of an inference in Py, then in the case where the premiss is a definition,
the conclusion of a previous inference, or an assumption to be discharger later on in
Py, the defender can simply points this out, and otherwise the defender can reply that
she possesses a proof certificate for this premiss, and she can then update the proof Pg
with the corresponding sequence of inferences—i.e., applications of hl-rules—she used
to establish it; if the challenge concerns an inference of Py, then the defender can reply
that she possesses a rule certificate for the hl-rule R she used to carry out this inference,
and she can then update the proof Ps with the sequence of inferences—i.e., applications
of hl-rules—she previously used to acquire the hl-rule R.>* The defender possesses then
a winning strategy against the challenger in the rigor game associated to P. It is thus
noticeable that the descriptive account of mathematical rigor embedded in the standard
view provides a clear picture of what the winning strategy in the dialogical implication
could consist in, and this should be taken as a piece of evidence in support of the claim
that it is a faithful model of how mathematical proofs are judged to be rigorous in practice.
But this only constitutes an indirect argument for this claim insofar as nothing prevents the
possibility that an alternative descriptive account of mathematical rigor would satisfy as
well the dialogical implication.

Interestingly, the dialogical implication can be exploited to yield a direct argument in
favor of the standard view. To see this, it suffices to notice that whenever a mathematician
possesses a winning strategy against the challenger in the rigor game associated to P, she
then has the capacity to turn P into what we have previously called an intermediate-level
proof, that is, a proof in which every inference is an instance of a primitive rule of inference
and every premiss is either the conclusion of a previous inference, a primitive axiom, or
an assumption to be discharged (see §5.1). Assuming that the computational power of a
human mathematician does not exceed the one of a Turing machine, this means that there
exists an algorithmic procedure able to turn any rigorous mathematical proof P into an
intermediate-level proof. Together with the considerations provided in §5.2, one can then
conclude that there exists an algorithmic procedure able to turn P into a lower-level proof,
that is, into a formal proof. This means that one can directly obtain from the dialogical
implication a ground for the view that whenever a mathematical proof P has been judged
to be rigorous, it can be routinely turned into a formal proof. However, from the perspective
of the epistemology of mathematics, this argument is not entirely satisfying for it does not
tell us what rigor in mathematical practice is, nor what rigor judgments amount to. The
argument merely identifies a high-level property of the notion of rigor as used in practice,
and exploits it to provide a ground for the existence of an algorithmic procedure able to
turn any rigorous mathematical proof into a formal proof. However, if one only wants to
make sure that whenever a mathematical proof has been judged to be rigorous in practice it

30 The definitions of the notions of proof certificate and rule certificate were provided in §4.2.
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indeed meets the normative condition that it can be routinely translated into a formal proof,
then this argument is sufficient by itself. This direct argument might then be the reason why
the standard view enjoys such a widespread acceptance in mathematical practice.

The argument in favor of the standard view provided here is based on what we have
called the dialogical implication which can be considered as a datum from mathematical
practice. This is only an indirect argument, as nothing prevents an alternative descriptive
account of mathematical rigor to also satisfy the dialogical implication. A direct argument
in favor of the standard view can be obtained from the dialogical implication, but this
argument treats the process by which proofs are judged to be rigorous in practice as a ‘black
box’. From an epistemological perspective, a more satisfying argument shall provide direct
empirical support for the empirical claim that the descriptive account of mathematical rigor
embedded in the standard view is indeed a faithful model of how proofs are judged to be
rigorous in practice.

§9. Conclusion. The aim of this paper was to provide a precise formulation and a
thorough evaluation of the standard view of mathematical rigor. Our reconstruction has
revealed that the standard view is the combination of three components:

1. A certain conception of the mechanisms by which mathematical proofs are judged
to be rigorous in mathematical practice, according to which mathematical inferences
are first decomposed into immediate mathematical inferences via certain proof search
processes, and immediate mathematical inferences are then verified using higher-
level rules of inference. This is the descriptive part of the standard view.

2. A certain conception of what it means to say that a mathematical proof P can be
routinely translated into a formal proof, where the notion of routine translation is
conceived as the combination of three successive translations turning a mathemat-
ical proof provided at the vernacular level into one at the lower-level—i.e., into a
formal proof—and where the term ‘routine’ is interpreted as being equivalent to
‘algorithmic’. This is the normative part of the standard view.

3. A philosophical appraisal of the relation between the mechanisms involved to judge
the rigor of mathematical proofs in practice and the ideal standards of formal proof—
i.e., of the relation between the descriptive part and the normative part of the stan-
dard view—according to which whenever a mathematical proof has been judged
to be rigorous in mathematical practice, it can be routinely translated into a formal
proof. This is the conformity thesis.

Taken together, these three components provide a precise formulation of the standard view,
one which can support a detailed evaluation of its strengths and weaknesses. In the previous
two sections, we have examined the main arguments against and in favor of the standard
view that can be found in the literature. All the arguments advanced against the standard
view that we have examined were found wanting, and most of them were found to originate
in what we consider to be misinterpretations of the standard view. We have then constructed
an argument in favor of the standard view which aims to support a claim necessary for the
standard view to work, namely that the descriptive part of the standard view is indeed
a faithful model of how mathematical proofs are judged to be rigorous in practice. This
argument provides support for this claim, but it is only an indirect argument insofar as it
may be compatible with alternative accounts of how proofs are judged to be rigorous in
practice.
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Two main conclusions can be drawn from the present study. First, the standard view—in
its present reconstruction—is more robust to criticisms than it has been suggested by the
various papers which have opposed it. This is, of course, not to say that the standard view
is immune to any challenge. Indeed, one interest of the precise formulation provided here
is to open the way to a detailed scrutiny of the standard view so as to identify its eventual
drawbacks and weaknesses.

Second, the standard view is still in need of further support, given that the dialogical
argument only provides partial support for it. The element of the standard view which is the
most open to criticisms, and which requires further evidence to support it, is the descriptive
part. The crucial point to acknowledge here is that the descriptive part is, ultimately, an
empirical claim, since it is a claim concerning the mechanisms by which mathematical
proofs are judged to be rigorous in practice.' In this respect, the descriptive part needs to
be supported by empirical evidence. What are the proper forms of empirical evidence to
do so remains to be determined. But the corresponding empirical inquiry can be conducted
along two paths, aiming, respectively, to confirm or to refute the standard view. In the
first case, the objective will be to provide empirical evidence that the way mathematical
agents verify proofs in practice conforms to the mechanisms proposed in the descriptive
part. In the second case, the objective will be to identify cases of mathematical inferences
for which it can be argued, based on empirical evidence, that either the verification of
these mathematical inferences in practice cannot follow the mechanisms provided by the
descriptive part, or that an alternative descriptive account of mathematical rigor—to be
specified—is superior to the one provided by the descriptive part.

We mentioned at the beginning that the raison d’étre of the standard view was to provide
a tie between the practice and the ideal of proof. As Bourbaki put it:

If formalized mathematics were as simple as the game of chess, then
once our chosen formalized language had been described there would
remain only the task of writing out our proofs in this language [...]. But
the matter is far from being as simple as that, and no great experience
is necessary to perceive that such a project is absolutely unrealizable:
the tiniest proof at the beginning of the Theory of Sets would already
require several hundreds of signs for its complete formalization. (Bour-
baki, 1970, p. 10)

We shall therefore very quickly abandon formalized mathematics, but
not before we have carefully traced the path which leads back to it.
(Bourbaki, 1970, p. 11)

Thus, written in accordance with the axiomatic method and keeping
always in view, as it were on the horizon, the possibility of a complete
formalization, our series lays claim to perfect rigour [...]. (Bourbaki,
1970, p. 12)

If it can be shown that this tie cannot be maintained for some mathematical practices,
then this would have for direct consequence to force a revision of the contemporary ideal
of proof. Investigating the mechanisms by which mathematical proofs are judged to be

31 Important empirical studies on how mathematicians evaluate and validate mathematical proofs
have already been carried out by mathematics education researchers, see in particular Weber
(2008), Inglis & Alcock (2012), and Inglis, Mejia-Ramos, Weber, & Alcock (2013).
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rigorous in various mathematical practices, and eventually identifying thereby some chal-
lenges for the standard view of mathematical rigor, shall then remain a topic of primary
importance for the philosophy of mathematics.
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