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Abstract

Gut and Stadmüller (2021, 2022) initiated the study of the elephant random walk with
limited memory. Aguech and El Machkouri (2024) published a paper in which they
discuss an extension of the results by Gut and Stadtmüller (2022) for an ‘increasing
memory’ version of the elephant random walk without stops. Here we present a formal
definition of the process that was hinted at by Gut and Stadtmüller. This definition is
based on the triangular array setting. We give a positive answer to the open problem in
Gut and Stadtmüller (2022) for the elephant random walk, possibly with stops. We also
obtain the central limit theorem for the supercritical case of this model.
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1. Introduction

In recent years there has been a lot of interest in the study of the elephant random walk
(ERW) since it was introduced in [15]; see the excellent thesis [13] for a detailed bibliography.
The standard ERW is described as follows. Let p ∈ (0, 1) and s ∈ [0, 1]. We consider a sequence
X1, X2, . . . of random variables taking values in {+1, −1} given by

X1 =
{

+1 with probability s,

−1 with probability 1 − s;
(1.1)

{Un : n ≥ 1} a sequence of independent random variables, independent of X1, with Un having
a uniform distribution over {1, . . . , n}; and, for n ∈N := {1, 2, . . .},

Xn+1 =
{

+XUn with probability p,

−XUn with probability 1 − p.
(1.2)

The ERW {Wn} is defined by Wn =∑n
k=1 Xk for n ∈N.
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2 R. ROY ET AL.

Gut and Stadmüller [9, 10] studied a variation of this model as described in [9, Section 3.2];
[1] also studied a similar variation of the model as described in [1, Section 2]. We present
the two different formalizations of models given in [1, 10]; our work is based on the first
formalization.

1.1. Triangular array setting

Consider a sequence {mn : n ∈N} of positive integers satisfying

1 ≤ mn ≤ n for each n ∈N. (1.3)

Let X1, X2, . . . be the sequence defined by (1.1) and (1.2). We define a triangular array of ran-
dom variables {{S(n)

k : 1 ≤ k ≤ n} : n ∈N} as follows. Let {Y (n)
k : 1 ≤ k ≤ n} be random variables

with

Y (n)
k =

{
Xk for 1 ≤ k ≤ mn,

X(n)
k for mn < k ≤ n,

(1.4)

where, for mn < k ≤ n,

X(n)
k =

{
+XUk,n with probability p,

−XUk,n with probability 1 − p.
(1.5)

Here, Un := {Uk,n : mn < k ≤ n} is an independent and identically distributed (i.i.d.) collection
of uniform random variables over {1, . . . , mn}, and {Un : n ∈N} is an independent collec-
tion. Finally, for 1 ≤ k ≤ n let S(n)

k := ∑k
i=1 Y (n)

i . We note that for fixed n ∈N, the sequence

{S(n)
k : 1 ≤ k ≤ n} is a random walk with increments in {+1, −1}. However, the sequence {S(n)

n :
n ∈N} does not have such a representation. We study properties of the sequence {Tn : n ∈N}
given by

Tn := S(n)
n . (1.6)

The process {Tn : n ∈N} was called the ERW with gradually increasing memory in [10], where

lim
n→∞ mn = +∞. (1.7)

1.2. Linear setting

In this setting the ERW W ′
n+1 := W ′

n + Zn+1 is given by the increments

W ′
1 = Z1 =

{
+1 with probability s,

−1 with probability 1 − s,

Zn+1 =
{

+ZVn with probability p,

−ZVn with probability 1 − p,

where Vn is a uniform random variable over {1, . . . , mn}, and {Vn : n ∈N} is an independent
collection.

Remark 1.1. We note here that the dependence structure in the definitions of Tn and W ′
n are

different and as such, results obtained for Tn need not carry to those obtained for W ′
n. The
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error in [1, Theorem 2 (3)] is due to the use of the linear setting for their equation (3.20), while
working in the triangular array setting. In particular, there is a mistake in the expression of M∞
on [1, p. 14], which was fixed in the subsequent corrigendum. Their results in the corrected
version agree with the results obtained here, although the methods used are different; this paper
also provides additional results not obtained by them.

In the next section we present the statement of our results, and in Sections 3 and 4 we prove
the results. In Section 5 and thereafter we study similar questions about the ERW with stops
and present our results.

2. Results for the ERW in the triangular array setting

Before we state our results, we give a short synopsis of the results for the standard ERW
{Wn} [3, 4, 6–8, 11, 14]. Let α := 2p − 1.

• For α ∈ (−1, 1) i.e. p ∈ (0, 1),

lim
n→∞

Wn

n
= 0 almost surely (a.s.) and in L2. (2.1)

• For α ∈ (−1, 1
2

)
, i.e. p ∈ (0, 3

4

)
,

Wn√
n

d→ N

(
0,

1

1 − 2α

)
as n → ∞, (2.2)

lim sup
n→∞

± Wn√
2n log log n

= 1√
1 − 2α

a.s. (2.3)

• For α = 1
2 , i.e. p = 3

4 ,

Wn√
n log n

d→ N(0, 1) as n → ∞, (2.4)

lim sup
n→∞

± Wn√
2n log n log log log n

= 1 a.s. (2.5)

• For α ∈ ( 1
2 , 1

)
, i.e. p ∈ ( 3

4 , 1
)
, there exists a random variable M such that

lim
n→∞

Wn

nα
= M a.s. and in L2, (2.6)

where E[M] = β/�(α + 1), E[M2] > 0, P(M 
= 0) = 1, and

Wn − Mnα

√
n

d→ N

(
0,

1

2α − 1

)
as n → ∞. (2.7)

Our first result improves and extends [10, Theorem 3.1].

Theorem 2.1. Let p ∈ (0, 1) and α = 2p − 1. Assume that {mn : n ∈N} satisfies (1.3), (1.7), and

γn := mn

n
, lim

n→∞ γn = γ ∈ [0, 1]. (2.8)
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(i) If α ∈ (−1, 1
2

)
, i.e. p ∈ (0, 3

4

)
, then

γnTn√
mn

d→ N

(
0,

{γ + α(1 − γ )}2

1 − 2α
+ γ (1 − γ )

)
as n → ∞. (2.9)

(ii) If α = 1
2 , i.e. p = 3

4 , then

γnTn√
mn log mn

d→ N

(
0,

(1 + γ )2

4

)
as n → ∞. (2.10)

(iii) If α ∈ ( 1
2 , 1

)
, i.e. p ∈ ( 3

4 , 1
)
, then

lim
n→∞

γnTn

(mn)α
= {γ + α(1 − γ )}M a.s. and in L2, (2.11)

where M is the random variable in (2.6). Moreover,

γnTn − M{γn + α(1 − γn)}(mn)α√
mn

d→ N

(
0,

{γ + α(1 − γ )}2

2α − 1
+ γ (1 − γ )

)
as n → ∞.

(2.12)

Remark 2.1. If α = γ = 0 then the right-hand side of (2.9) is N(0,0), which we interpret as
the delta measure at 0. Our result (2.12) differs from [1, Theorem 2 (3)]; the reason for this is
given in Remark 1.1.

The next theorem concerns the strong law of large numbers and its refinement.

Theorem 2.2 Let p ∈ (0, 1) and α = 2p − 1. Assume that {mn : n ∈N} satisfies (1.3), (1.7), and
(2.8). Then

lim
n→∞

Tn

n
= 0 a.s. (2.13)

Actually, we obtain the following sharper result: If c ∈ (max
{
α, 1

2

}
, 1
)

then

lim
n→∞

γnTn

(mn)c
= 0 a.s. (2.14)

3. Proof of Theorem 2.1

Throughout this section we assume that (1.3), (1.7), and (2.8) hold.

Proof. Let Fn be the σ -algebra generated by X1, . . . , Xn. For n ∈N, the conditional
distribution of Xn+1 given the history up to time n is

P(Xn+1 = ±1 |Fn) = #{k = 1, . . . , n : Xk = ±1}
n

· p + #{k = 1, . . . , n : Xk = ∓1}
n

· (1 − p)

= 1

2

(
1 ± α · Wn

n

)
.

For each n ∈N, let G(n)
mn =F∞ := σ ({Xi : i ∈N}) = σ ({X1} ∪ {Ui : i ∈N}) and

G(n)
k := σ ({Xi : i ∈N} ∪ {X(n)

i : mn < i ≤ k}) = σ ({X1} ∪ {Ui : i ∈N} ∪ {Ui,n : mn < i ≤ k})
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for k ∈ (mn, n] ∩N. From (1.5), we can see that the conditional distribution of X(n)
k for k ∈

(mn, n] ∩N is given by

P(X(n)
k = ±1 | G(n)

k−1) = 1

2

(
1 ± α · Wmn

mn

)
.

(This corresponds to [10, (2.2)].) From this we have that

E[X(n)
k |F∞] = α · Wmn

mn
(3.1)

for each k ∈ (mn, n] ∩N, and

E[Tn − Wmn |F∞] =
n∑

k=mn+1

E[X(n)
k |F∞] = α(n − mn) · Wmn

mn
. (3.2)

We introduce

An := E[Tn |F∞], Bn := Tn − An. (3.3)

Noting that

An = Wmn +E[Tn − Wmn |F∞] = Wmn

γn
· {γn + α(1 − γn)}, (3.4)

we have

γnTn = γn(An + Bn) = cnWmn + γnBn, (3.5)

where cn = cn(α) := γn + α(1 − γn).
First, we prove Theorem 2.1(i). Assume that α ∈ (−1, 1

2

)
. By (3.4) and (2.2),

γnAn√
mn

= cnWmn√
mn

d→ {γ + α(1 − γ )} · N

(
0,

1

1 − 2α

)
as n → ∞.

In terms of characteristic functions, this is equivalent to, for ξ ∈R,

E

[
exp

(
iξγnAn√

mn

)]
→ exp

(
−ξ2

2
· {γ + α(1 − γ )}2

1 − 2α

)
as n → ∞. (3.6)

Now we turn to {Bn}. Unless specified otherwise, all the results on {Bn} hold for all
α ∈ (−1, 1). Since, for each n ∈N, X(n)

k for k ∈ (mn, n] ∩N are independent and identically
distributed under P( · |F∞), so

Bn =
n∑

k=mn+1

{X(n)
k −E[X(n)

k |F∞]} (3.7)

is a sum of centered i.i.d. random variables. The conditional variance of X(n)
k for

V[X(n)
k |F∞] =E[(X(n)

k )2 |F∞] − (E[X(n)
k |F∞])2

=

⎧⎪⎨
⎪⎩

0 for k ∈ [1, mn] ∩N,

1 − α2 ·
(

Wmn

mn

)2

for k ∈ (mn, n] ∩N.
(3.8)
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We have

V

[
γnBn√

mn
|F∞

]
= (γn)2

mn
· (n − mn) ·

{
1 − α2 ·

(
Wmn

mn

)2}
= γn(1 − γn) ·

{
1 − α2 ·

(
Wmn

mn

)2}
,

(3.9)

which converges to γ (1 − γ ) as n → ∞ a.s. by (2.1). Based on this observation, we prove the
following result.

Lemma 3.1. For γ ∈ [0, 1],

E

[
exp

(
iξγnBn√

mn

)
|F∞

]
→ exp

(
−ξ2

2
· γ (1 − γ )

)
as n → ∞ a.s. (3.10)

Proof. Because Bn is the sum (3.7) of centered i.i.d. random variables under P( · |F∞), by
(3.8) we have

E

[
exp

(
iξγnBn√

mn

)
|F∞

]
=
[

1 − ξ2γn

2n
·
{

1 − α2 ·
(

Wmn

mn

)2}
+ o

(
γn

n

)]n−mn

as n → ∞ a.s.

Note that γn/n → 0 and (γn/n) · (n − mn) = γn(1 − γn) → γ (1 − γ ) as n → ∞. Now (3.10)
follows from this together with (2.1). �

From (3.5), (3.6), and (3.10), together with the bounded convergence theorem, we can see
that

E

[
exp

(
iξγnTn√

mn

)]
=E

[
exp

(
iξγnAn√

mn

)
·E
[

exp

(
iξγnBn√

mn

)
|F∞

]]

converges to

exp

(
−ξ2

2
· {γ + α(1 − γ )}2

1 − 2α

)
· exp

(
−ξ2

2
· γ (1 − γ )

)

as n → ∞. This gives (2.9).
The proof of Theorem 2.1(ii) is along the same lines as that of (i), and is actually simpler.

Assume that α = 1
2 . As cn

( 1
2

)= (1 + γn)/2, from (3.4) and (2.4) we have

γnAn√
mn log mn

= cnWmn√
mn log mn

d→ 1 + γ

2
· N(0, 1) as n → ∞.

Also, from (3.9) and (2.1), we have

E

[(
γnBn√

mn

)2]
= γn(1 − γn)

{
1 − α2 ·E

[(
Wmn

mn

)2]}
→ γ (1 − γ ) as n → ∞. (3.11)

This implies that γnBn/
√

mn log mn → 0 as n → ∞ in L2. By Slutsky’s lemma, we obtain
(2.10).

Finally, we prove Theorem 2.1(iii). Assume that α ∈ ( 1
2 , 1

)
. By (3.4) and (2.6),

γnAn

(mn)α
= cnWmn

(mn)α
→ {γ + α(1 − γ )}M (3.12)
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as n → ∞ a.s. and in L2. Noting that γnBn/(mn)α → 0 as n → ∞ in L2, by (3.11) we obtain the
L2-convergence in (2.11). From (4.2), which will be proved in the next section, the almost-sure
convergence in (2.11) follows. To prove (2.12), by (3.5) we have

γnTn − cn · M · (mn)α = cn{Wmn − M · (mn)α} + γnBn. (3.13)

Note that M is F∞-measurable. Using (2.7), (3.10), and (3.13), we obtain (2.12) similarly to
the proof of (2.9). �

4. Proof of Theorem 2.2

In this section we assume that (1.3), (1.7), and (2.8) hold.

Proof. First we give almost-sure bounds for {Bn}.
Lemma 4.1 For any α ∈ (−1, 1) and γ ∈ [0, 1],

lim sup
n→∞

γnBn√
2γn(1 − γn)mn log n

≤ 1 a.s. (4.1)

In particular, for any c ∈ ( 1
2 , 1

)
,

lim
n→∞

γnBn

(mn)c
= 0 a.s. (4.2)

Proof. Note that |X(n)
k −E[X(n)

k |F∞]| ≤ 1 for each 1 ≤ k ≤ n. For λ ∈R, it follows from
Azuma’s inequality [2] that

E[ exp (λγnBn) |F∞] =E

[
exp

(
λγn

n∑
k=mn+1

{
X(n)

k −E[X(n)
k |F∞]

}) |F∞

]

≤ exp ((λγn)2(n − mn)/2),

and

P(|γnBn| ≥ x) ≤ 2 exp

(
− x2

2γn(1 − γn)mn

)
for x > 0.

Taking x = √
2(1 + ε)γn(1 − γn)mn log n for some ε > 0, we have

∞∑
n=1

P(|γnBn| ≥
√

2(1 + ε)γn(1 − γn)mn log n) ≤
∞∑

n=1

2

n1+ε
.

This, together with the Borel–Cantelli lemma, implies (4.1). To obtain (4.2) note that, for
c ∈ ( 1

2 , 1
)
,

2γn(1 − γn)mn log n

(mn)2c
= 2(1 − γn) log n

n(mn)2c−2
≤ 2(1 − γn) log n

n2c−1
→ 0 as n → ∞,

where we used 2c − 2 < 0 < 2c − 1 and mn ≤ n. �

We now prove (2.14) in Theorem 2.2. Equation (2.13) is readily derived from (2.14). For
the case α ∈ (−1, 1

2

)
, from (2.3) and (3.4) we have

lim sup
n→∞

γnAn√
2mn log log mn

≤ γ + α(1 − γ )√
1 − 2α

a.s.
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For the case α = 1
2 , from (2.5) and (3.4) we have

lim sup
n→∞

γnAn√
2mn log mn log log log mn

≤ 1 + γ

2
a.s.

By (4.2), if α ∈ (−1, 1
2

]
then (2.14) holds for any c ∈ ( 1

2 , 1
)
. As for the case α ∈ ( 1

2 , 1
)
,

almost-sure convergence in (2.11) follows from (3.12) and (4.2). Thus, (2.14) holds for any
c ∈ (α, 1). �

5. The ERW with stops in the triangular array setting

Let s ∈ [0, 1], and assume that p, q, r ∈ [0, 1) satisfy p + q + r = 1. We consider a sequence
X1, X2, . . . of random variables taking values in {+1, 0, −1} given by

X1 =
{

+1 with probability s,

−1 with probability 1 − s;
(5.1)

{Un : n ≥ 1} a sequence of independent random variables, independent of X1, with Un having
a uniform distribution over {1, . . . , n}; and, for n ∈N,

Xn+1 =

⎧⎪⎨
⎪⎩

XUn with probability p,

−XUn with probability q,

0 with probability r.

(5.2)

The ERW with stops {Wn} is defined by Wn =∑n
k=1 Xk for n ∈N. Note that if r = 0 then it is

the standard ERW defined in Section 1. Hereafter we assume that r ∈ (0, 1).
The ERW with stops was introduced in [12]. To describe the limit theorems obtained in [5],

it is convenient to introduce the new parameters α := p − q and β := 1 − r, where β ∈ (0, 1)
and α ∈ [ − β, β]. Let 
n be the number of moves up to time n, i.e.


n :=
n∑

k=1

1{Xk 
=0} =
n∑

k=1

X2
k for n ∈N.

It is shown in [5] that

lim
n→∞


n

nβ
= 
 > 0 a.s. and in L2, (5.3)

where 
 has a Mittag–Leffler distribution with parameter β. We turn to the central limit
theorem for {Wn} in [5].

• For α ∈ [ − β, β/2),

Wn√

n

d→ N

(
0,

β

β − 2α

)
as n → ∞. (5.4)

• For α = β/2,

Wn√

n log 
n

d→ N(0, 1) as n → ∞. (5.5)
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• For α ∈ (β/2, β], there exists a random variable M such that

lim
n→∞

Wn

nα
= M a.s. and in L2 (5.6)

and
Wn − Mnα

√

n

d→ N

(
0,

β

2α − β

)
as n → ∞, (5.7)

where P(M > 0) > 0.

Next, we define the sequence {Tn} as in (1.6); however, Y (n)
k and X(n)

k of (1.4) and (1.5) are
defined with {Xi} as in (5.1) and (5.2) instead of (1.1) and (1.2). We call this the ERW with
stops in the triangular array setting.

Our first result of this section is an extension of [10, Theorem 4.1]. We note here that [10]
allows X1 to take value 0 with probability r, unlike this paper. As such they have an extra δ0 in
their results for the case γ = 0.

Theorem 5.1. Let β ∈ (0, 1) and α ∈ [ − β, β]. Assume that {mn : n ∈N} satisfies (1.3), (1.7),
and (2.8).

(i) If α ∈ [ − β, β/2) then

γnTn√

mn

d→ N

(
0,

β{γ + α(1 − γ )}2

β − 2α
+ βγ (1 − γ )

)
as n → ∞. (5.8)

(ii) If α = β/2 then

γnTn√

mn log 
mn

d→ N(0, {γ + β(1 − γ )/2}2) as n → ∞. (5.9)

(iii) If α ∈ (β/2, β] then

lim
n→∞

γnTn

(mn)α
= {γ + α(1 − γ )}M in L2, (5.10)

where M is the random variable in (5.6). Moreover,

γnTn − M · {γn + α(1 − γn)} · (mn)α√

mn

d→ N

(
0,

β{γ + α(1 − γ )}2

2α − β
+ βγ (1 − γ )

)
as n → ∞. (5.11)

Remark 5.1. Unlike the results in [10], we have a random normalization in the results above.
This is because we consider the general case γ ∈ [0, 1]. We can obtain the L4-convergence in
(5.10) using Burkholder’s inequality as in [1, (3.15)].

We also consider the process {�n : n ∈N} defined by �n := ∑n
k=1{X(n)

k }2 for n ∈N. The
next theorem is an improvement of [10, Theorem 4.2].

Theorem 5.2. Under the same conditions as in Theorem 5.1, we have

lim
n→∞

γn�n

(mn)β
= {γ + β(1 − γ )}
 in L2, (5.12)

where 
 is defined in (5.3).
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The strong law of large numbers and its refinement can also be obtained for the ERW with
stops.

Theorem 5.3 Under the same conditions as in Theorem 5.1, we have (2.13). In addition, (2.14)
holds for c ∈ (max

{
α, 1

2

}
, 1
)
.

Remark 5.2. Assume that β ∈ ( 1
2 , 1

)
. As a by-product of the proof of Theorem 5.3, we can

prove the a.s. convergence in (5.12). The a.s. convergence in (5.10) is valid for α ∈ ( 1
2 , β

]
.

6. Proof of Theorem 5.1

Proof. Noting that p = (β + α)/2 and q = (β − α)/2, for n ∈N we have

P(Xn+1 = ±1 |Fn) = #{k = 1, . . . , n : Xk = ±1}
n

· p + #{k = 1, . . . , n : Xk = ∓1}
n

· q

= 1

2

(
β · 
n

n
± α · Wn

n

)
.

For k ∈ (mn, n] ∩N, we have

P
(
X(n)

k = ±1 | G(n)
k−1

)= 1

2

(
β · 
mn

mn
± α · Wmn

mn

)
, (6.1)

P
({X(n)

k }2 = 1 | G(n)
k−1

)= β · 
mn

mn
. (6.2)

From (6.1), we see that (3.1) and (3.2) continue to hold in this setting. Defining {An} and {Bn}
by (3.3), we note that they satisfy (3.4) and (3.5).

We prepare a lemma about {Bn}.
Lemma 6.1. Under the assumption of Theorem 5.1:

(i) For α ∈ [ − β, β] and ξ ∈R,

E

[
exp

(
iξγnBn√


mn

)
|F∞

]
→ exp

(
−ξ2

2
· βγ (1 − γ )

)
as n → ∞ a.s., (6.3)

E

[
exp

(
iξγnBn√


mn log 
mn

)
|F∞

]
→ 1 as n → ∞ a.s. (6.4)

(ii) If α ∈ (β/2, β] then γnBn/(mn)α → 0 as n → ∞ in L2.

Proof. Note that E[Bn |F∞] = 0. By (6.1) and (6.2),

V[X(n)
k |F∞] = β · 
mn

mn
− α2 ·

(
Wmn

mn

)2

for k ∈ (mn, n] ∩N. As in (3.9), we have

V[Bn |F∞] = (n − mn) ·
{
β · 
mn

mn
− α2 ·

(
Wmn

mn

)2}
= 1 − γn

γn
·
{
β
mn − α2 · W2

mn

mn

}
.

(6.5)
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From this,

V

[
γnBn√

mn

|F∞
]

= γn(1 − γn) ·
{
β − α2 · (mn)β


mn

·
(

Wmn

(mn)(1+β)/2

)2}
. (6.6)

For any β ∈ (0, 1) and α ∈ [ − β, β], we show that

lim
n→∞

Wmn

(mn)(1+β)/2
= 0 a.s. (6.7)

Indeed, if α ∈ [ − β, β/2) then

lim sup
n→∞

Wn√
2nβ log log n

=
√

β


β − 2α
a.s. (6.8)

by [5, (3.5)]. If α = β/2 then

lim sup
n→∞

Wn√
2nβ log n log log log n

=√
β
 a.s. (6.9)

by [5, (3.13)]. If α ∈ (β/2, β] then Wmn/(mn)α → M as n → ∞ a.s. by (5.6), and (1 + β)/2 > α

since 2α − β ≤ β < 1. In any case we have (6.7). Since (mn)β/
mn → 1/
 as n → ∞ a.s. by
(5.3), we see that (6.6) converges to βγ (1 − γ ) as n → ∞ a.s., and

V

[
γnBn√


mn log 
mn

|F∞
]

→ 0 as n → ∞ a.s.

By a similar computation to Lemma 4.1, we obtain (6.3) and (6.4) in (i).
Next, we consider (ii). By (6.5),

E

[(
γnBn

(mn)α

)2]
= γn(1 − γn) ·

{
β · E[
mn ]

(mn)2α
− α2 · E[(Wmn )2]

(mn)1+2α

}
.

From [5, (A.6)], E[(Wn)2] ∼ n2α/{(2α − β)�(2α)} as n → ∞. On the other hand, from [5,
(4.4)] we can see that E[
n] ∼ nβ/�(1 + β) as n → ∞. Noting that β < 2α, we have (ii). �

Assume that α ∈ [ − β, β/2). By (3.4) and (5.4), we have

γnAn√

mn

= cnWmn√

mn

d→ {γ + α(1 − γ )} · N

(
0,

β

β − 2α

)
as n → ∞.

Combining this and (6.3), we can prove (5.8) by the same method as for (2.9). Next, we
consider the case α = β/2. By (3.4) and (5.5), we have

γnAn√

mn log 
mn

= cnWmn√

mn log 
mn

d→ {γ + α(1 − γ )} · N(0, 1) as n → ∞.

This together with (6.4) gives (5.9). As for the case α ∈ (β/2, β], by (3.4) and (5.6),

γnAn

(mn)α
= cnWmn

(mn)α
→ {γ + α(1 − γ )}M as n → ∞ a.s. and in L2.

Now (5.10) follows from Lemma 6.1(ii). The proof of (5.11) is almost identical to that of
(2.12): use (3.5), (5.7), and (6.3). �
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7. Proof of Theorem 5.2

Proof. Put A′
n := E[�n |F∞] and B′

n := �n − A′
n. Using (6.2), we can see that γnA′

n =
cn(β)
mn , which together with (5.3) imply

γnA′
n

(mn)β
= cn(β)
mn

(mn)β
→ {γ + β(1 − γ )} · 
 as n → ∞ a.s. and in L2.

As for B′
n, again by (6.2) we can see that

V

[(
γnB′

n

(mn)β

)2

|F∞
]

= (γn)2

(mn)2β
·

n∑
k=mn+1

V[{X(n)
k }2 |F∞]

= (γn)2

(mn)2β
· (n − mn) · β · 
mn

mn
·
(

1 − β · 
mn

mn

)
,

E

[(
γnB′

n

(mn)β

)2]
= βγn(1 − γn)

(mn)β
·E
[


mn

(mn)β
·
(

1 − β · 
mn

mn

)]
.

Since β < 1 and 
mn/(mn)β converges to 
 in L2 by (5.3), we have

E

[

mn

(mn)β
·
(

1 − β · 
mn

mn

)]
=E

[

mn

(mn)β

]
− β

(mn)1−β
·E
[(


mn

(mn)β

)2]
→E[
] as n → ∞.

Noting that β > 0, this shows that γnB′
n/(mn)β → 0 as n → ∞ in L2, which completes the

proof. �

8. Proof of Theorem 5.3

Proof. The proof of Lemma 4.1 is based on the fact that |X(n)
k −E[X(n)

k |F∞]| ≤ 1. Thus,
{Bn} for the ERW with stops in the triangular array setting also satisfies (4.2) for any c ∈( 1

2 , 1
)
. If α ∈ [ − β, β/2] then, from (3.4), (6.8), and (6.9), we can see that γnAn = o(nc) for

any c ∈ (β/2, 1). If α ∈ (β/2, β] then (3.4) and (5.6) imply that γnAn = o(nc) for any c ∈ (α, 1).
In any case, (2.14) holds for c ∈ (max

{
α, 1

2

}
, 1
)
. �
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