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The interface between two miscible solutions in porous media and Hele-Shaw cells
(two glass plates separated by a thin gap) in a gravity field can destabilise due
to buoyancy-driven and double-diffusive effects. In this paper the conditions for
instability to arise are presented within an analytical framework by considering the
eigenvalue problem based on the tools used extensively by Chandrasekhar. The model
considered here is Darcy’s law coupled to evolution equations for the concentrations
of different solutes. We have shown that, when there is an interval in the spatial
domain where the first derivative of the base-state density profile is negative, the
flows are unstable to stationary or oscillatory modes. Whereas for base-state density
profiles that are strictly monotonically increasing downwards such that the first
derivative of the base-state density profile is positive throughout the domain (for
instance, when a lighter solution containing a species A overlies a denser solution
containing another species B), a necessary and sufficient condition for instability
is the presence of a point on either side of the initial interface where the second
derivative of the base-state density profile is zero such that it changes sign. In such
regimes the instability arises as non-oscillatory modes (real eigenvalues). The neutral
stability curve, which delimits the stable from the unstable regime, that follows from
the discussion presented here along with the other results are in agreement with
earlier observations made using numerical computations. The analytical approach
adopted in this work could be extended to other instabilities arising in porous media.

Key words: buoyancy-driven instability, convection in porous media

1. Introduction
The onset of instability of a horizontal interface separating two miscible solutions in

a porous medium has been the subject of investigation in a number of theoretical and
experimental studies. The problem finds application in several fields of natural science
due to its direct relevance in innumerable industrial applications, such as surface and
colloid physical chemistry, soil physics, petroleum engineering and powder metallurgy,
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in addition to its academic interest from a fluid mechanics point of view regarding the
evolution of instabilities and the subsequent nonlinear dynamics (Philip 1970; Huppert
& Sparks 1984; Homsy 1987; Schmitt 1994; Schmitt et al. 2005; Trevelyan, Almarcha
& De Wit 2011; Huppert & Neufeld 2014).

The conditions for the interface between two immiscible fluids with different
densities and viscosities in a porous medium to destabilise and deform into finger-like
structures when subject to a gravitational field or an imposed pressure gradient
were laid out by Saffman & Taylor (1958). This followed from the well-known
Rayleigh–Taylor (RT) instability that occurs when a denser solution overlies a
lighter one, which deforms the interface between them (Manickam & Homsy 1995;
Fernandez et al. 2001, 2002; Martin, Rakotomala & Salin 2002; Gandhi & Trevelyan
2014; Gopalakrishnan et al. 2017; De Paoli, Zonta & Soldati 2019b).

In an initially statically stable system with a less dense solution overlying a denser
solution, the miscible interface separating the two solutions can destabilise due to
differential diffusion of solutes, where the driving energy comes from the component
having the higher or lower diffusivity. When the solute in the denser lower solution
diffuses faster than the solute in the lighter upper solution, a double-diffusive (DD)
instability develops, which triggers a convective motion deforming the interface into
fingers that develop symmetrically across it (Turner 1979; Huppert & Turner 1981;
Green 1984; Huppert & Sparks 1984; Schmitt 1994; Cooper, Glass & Tyler 1997;
Pringle & Glass 2002; Schmitt et al. 2005; Trevelyan et al. 2011; Radko 2013). Apart
from the differential diffusion of solutes such as salt and sugar (for instance), which
result in double diffusion (Pringle & Glass 2002), such phenomena are responsible
for the thermohaline convection observed in oceans, which is triggered due to the
differential diffusion of salt and heat (Schmitt 1994; Schmitt et al. 2005).

Instability also arises when the solute in the lighter upper solution diffuses faster
than the one in the lower denser solution. Regions with locally unstable density
gradients develop over time induced by a differential diffusion effect, and is termed
as diffusive-layer convection (DLC) (Turner & Stommel 1964; Griffiths 1981; Turner
1985; Trevelyan et al. 2011). The faster diffusion of the upper solute towards
the denser lower solution results in a depletion zone above the interface, and an
accumulation below, triggering a convective motion on either side of the initial
interface.

In all the scenarios presented so far, the differential diffusion of the solutes can lead
to non-monotonic density profiles, which significantly influence the flow dynamics
(Trevelyan et al. 2011; Carballido-Landeira et al. 2013; Gopalakrishnan et al. 2018).
The RT instability involving a single species seldom occurs in the various porous
media flows observed in nature and in industrial processes, as double-diffusive effects
usually coexist, due to the difference in the differential diffusion of solutes. This
coupling between diffusive and convective processes can result in a double-diffusive
flux that could be much larger than in a single solutal system (Turner 1985).

The stability, or the instability, of these buoyancy-driven flows has been mainly
addressed using linear base states for the time-evolving density profiles, or by means
of numerical linear stability analyses. In the context of DD instabilities, the limiting
conditions for salt fingering to occur at an interface were provided by Huppert &
Sparks (1984) by considering linear base states. They showed that an infinitesimal
perturbation will develop into fingers when R < τ 3/2, where R is the buoyancy
ratio and τ is the diffusion coefficient ratio (that of heat to that of salt, in this
instance). The buoyancy ratio R expresses the relative solutal buoyancy contribution
of each species to the density profile. Trevelyan et al. (2011) carried out a stability
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analysis of various buoyancy-driven flows in a two-dimensional porous medium and
Hele-Shaw cells. Using a quasi-steady-state approximation, they carried out a linear
stability analysis of time-evolving base-state profiles numerically and mapped out
the various regimes of instability in the (R, τ ) parameter space. The neutral stability
curve obtained numerically was in agreement with that of Huppert & Sparks (1984).
More recently, using analytical methods, the onset conditions for an RT instability to
develop were investigated by Gandhi & Trevelyan (2014), where they used a linear
combination of step functions for the base-state concentration profiles.

In the present work we provide analytically the conditions for instability to develop
in the various aforementioned buoyancy-driven flows in porous media. Specifically,
we address ourselves to this problem and ask: Can we predict whether the interface
separating two miscible solutions inside a vertically oriented two-dimensional porous
medium or a Hele-Shaw cell is stable, or unstable, from the base-state density profile
of the concentrations? Or, alternatively, can we provide the conditions for instability
in these flows?

The analytical approach adopted in the present work has been previously used in the
context of Rayleigh–Bénard convection, instability of shear layers and Taylor–Couette
flows, among other hydrodynamic instabilities (Roberts 1960; Chandrasekhar 1961).
Unlike in the earlier analytical works, where linear base states were considered,
we have used time-evolving base-state profiles to extract information regarding the
stability of the system. For instance, in the parameter space corresponding to τ > 1
and R> 1, Trevelyan et al. (2011) numerically found that the maximum growth rates
were always real, which is confirmed in this study. Specifically, when the base-state
density profiles are strictly monotonically increasing downwards, such that the density
gradient of the base state is positive, we have shown that instability develops if
and only if the second derivative of the base-state density profile is zero at a point
on either side of the initial interface such that it changes sign. In these regimes,
instability arises as stationary modes, with real eigenvalues. Whereas, when there is
an interval in the spatial domain where the first derivative of the base-state density
profile is negative, the instability may develop as a stationary or as an oscillatory
mode (complex eigenvalue). The neutral stability curve obtained analytically is in
agreement with the earlier findings. The fact that the eigenvalues are strictly real in
the context of single-species RT instabilities also follows from the work presented
here.

To this end, the geometry and the governing equations are introduced in § 2, along
with the base-state density profiles in the non-dimensional (R, τ ) plane. In § 3 we
reduce this to a characteristic value problem from which the conditions for instability
can be obtained, which is discussed in § 4. After considering some special cases,
namely single-species RT instability and when τ = 0, the paper finishes in § 5 with
the main conclusions.

2. Geometry and governing equations

We consider a two-dimensional porous medium in which gravity points downwards
and two miscible solutions are in contact along a horizontal interface such as that
sketched in figure 1. The upper solution contains a solute A while the lower solution
contains a solute B, with initial concentrations A0 and B0, respectively. The y-axis
is defined as the horizontal axis where the solutions are initially in contact, and
the x-axis as the vertical one increasing in the downwards direction, such that
x < 0 is the upper region and x > 0 is the lower region. By considering dilute
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FIGURE 1. Sketch of the initial physical problem.

solutions, the diffusion coefficients DA and DB of species A and B, respectively, can
be assumed constant. Moreover, the density varies linearly with the concentrations
as ρ(A, B) = ρ0[1 + αAA + αBB], where ρ0 is the density of the pure solvent, A
and B are the concentrations of the respective species, and αA and αB are their
corresponding solutal expansion coefficients defined as αA = (1/ρ0)∂ρ/∂A and
αB= (1/ρ0)∂ρ/∂B. The dynamics of the buoyancy-driven instabilities of this miscible
interface are described by Darcy’s equation coupled to advection–diffusion equations
for the concentrations A and B. The set of equations governing the system can be
non-dimensionalised by considering the characteristic velocity U= gKαAA0/µ, length
L= DAφ/U and time T= L/U scales, where g is the magnitude of the acceleration
due to gravity, K is the permeability, µ is the dynamic viscosity and φ is the porosity
(taken as 1). The resulting non-dimensional equations read (Trevelyan et al. 2011;
Gopalakrishnan et al. 2018):

∇p=−u+ (A+ RB)îx, (2.1)
∇ · u= 0, (2.2)

At + u · ∇A=∇2A, (2.3)
Bt + u · ∇B= τ∇2B, (2.4)

where p is the pressure, u is the flow velocity, îx is the unit vector in the direction
of gravity, R= αBB0/αAA0 is the dimensionless buoyancy ratio and τ =DB/DA is the
ratio of the diffusion coefficients (Trevelyan et al. 2011; Gopalakrishnan et al. 2018).
The buoyancy ratio R expresses the relative contributions of species B and A to the
dimensional density profile and is also equal to R= (ρB − ρ0)/(ρA − ρ0), where ρA =

ρ0(1+αAA0) and ρB=ρ0(1+αBB0) are the densities of the upper and lower solutions,
respectively. The concentrations are non-dimensionalised using A0 while the density
is scaled as (ρ(A, B)/ρ0 − 1)/αAA0. As initial conditions, we impose in the top layer
(x< 0) A= 1, B= 0, while in the bottom layer (x> 0) A= 0, B= 1, with no velocity
in the entire domain (u= 0). The boundary conditions are A= 1, B= 0 for x→−∞,
and A= 0, B= 1 for x→∞.

In the absence of convection, the base-state concentration profiles, assuming a
domain of infinite height, are given by

Ā(x, t)=
1
2

erfc
(

x
2
√

t

)
, B̄(x, t)=

1
2

erfc
(
−

x
2
√
τ t

)
, (2.5a,b)
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FIGURE 2. Typical base-state density profiles ρ̄(x, t) in the (R, τ ) parameter space. Base-
state density profiles are monotonically increasing in the shaded region.

while the non-dimensional base-state density profile can be constructed as

ρ̄(x, t)= Ā(x, t)+ RB̄(x, t). (2.6)

The base state of our problem follows a diffusive dynamics satisfying (2.3) and (2.4)
with u= 0 along with the initial conditions specified earlier. This is in contrast with
the earlier analytical studies on the stability of buoyancy-driven flows, where linear
base states were considered (Huppert & Sparks 1984; Gandhi & Trevelyan 2014). As
noted in Trevelyan et al. (2011), the density is antisymmetric about x= 0, as ρ̄(x, t)+
ρ̄(−x, t)= 1+R. This also implies that the convective patterns in porous media flows
evolve the same way on both sides of the initial interface (Trevelyan et al. 2011).

The different buoyancy-driven instabilities discussed in § 1, namely the Rayleigh–
Taylor (RT), double-diffusive (DD) and diffusive-layer convection (DLC), can be
obtained depending on the values of parameters R and τ . The RT instabilities
develop when R < 1, as we have a ‘heavy on top of light’ configuration; whereas
for R > 1, the system is initially in a stable stratification (‘light on top of heavy’).
The single-species RT instability occurs when τ = 1 and R < 1, as the diffusion
coefficients are the same. When the solutes diffuse at different rates τ 6= 1, DD and
DLC mechanisms can destabilise the miscible interface. The DD instabilities are at
play when τ > 1, whereas DLC mechanisms develop over time when τ < 1. Indeed,
when R< 1, DD and DLC instabilities are coupled with RT effects. Typical base-state
density profiles corresponding to RT, DD and DLC are shown in figure 2 in the (R, τ )
plane. A more complete description of the various features of the base-state density
profiles pertaining to different instability mechanisms can be found in Trevelyan et al.
(2011).

We now turn our attention to the problem at hand, i.e. to obtain the conditions for
this system to be linearly unstable along with the various features of the instability,
from the base-state density profiles.
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3. Reduction to a characteristic value problem
As the flow is incompressible, we consider the streamfunction ψ formulation, using

u= ψy and v =−ψx, where u= (u, v), thereby satisfying ∇ · u= 0. Taking the curl
of (2.1) and substituting ψ into (2.3) and (2.4), we have the following system of
equations (Trevelyan et al. 2011):

∇
2ψ = Ay + RBy, (3.1)

At +ψyAx −ψxAy =∇
2A, (3.2)

Bt +ψyBx −ψxBy = τ∇
2A. (3.3)

Introducing perturbations in the form of normal modes to the base-state solutions
(which are assumed to vary more slowly than the perturbations) we have

[ψ, A, B] = [0, Ā, B̄] + ε exp(σ t+ iky)[ik−1ψ̂, Â, B̂], (3.4)

where ε is a small parameter, k denotes the wavenumber and the complex frequency
σ (= σr + iσi) is the eigenvalue. The overbars indicate base-state variables. With a
positive growth rate, σr > 0, the perturbation grows exponentially in time and the
system is linearly unstable. While adopting the normal mode approach to describe
any arbitrary disturbance, we have made a quasi-steady-state approximation (QSSA)
by assuming that the base state is varying more slowly than the perturbations (Farrell
& Ioannou 1996). Although there is only one time scale in this problem, T, which
would imply that the base state and disturbances both evolve with this characteristic
time scale, the base state under consideration here smears out diffusively in time, and
hence the QSSA is justified as noted in the earlier works by Tan & Homsy (1986)
and Trevelyan et al. (2011). Here it is pertinent to point out that another approach to
the QSSA has recently been adopted in the works of Kim & Choi (2011), Pramanik
& Mishra (2013) and Hota & Mishra (2018) by using a similarity transformation
(ξ , t), where ξ = x/

√
t, such that the base-state concentration profile does not explicitly

depend on time, and hence can be translated along the flow direction as time passes.
At a time instant near zero, such a self-similar QSSA method is shown to give more
accurate results in comparison to the classical QSSA, though excellent agreement is
observed for later times.

We now consider the base-state solution at a given time t and treat this frozen
profile as though it were steady. Linearising system (3.1)–(3.3) in ε, we obtain

ψ̂xx = k2(ψ̂ + Â+ RB̂), (3.5)

σ Â= Âxx − k2Â+ Āxψ̂, (3.6)

σ B̂= τ(B̂xx − k2B̂)+ B̄xψ̂. (3.7)

If we define L= (D2
− k2), where D= d/dx, we have

Lψ̂ = k2(Â+ RB̂), (3.8)

σ Â=LÂ+ Āxψ̂, (3.9)

σ B̂= τLB̂+ B̄xψ̂. (3.10)

The boundary conditions with respect to which the above equations must be solved
are given by

|Â| = |B̂| = |ψ̂ | = 0, for x=±∞, (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

20
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.201


Instability of buoyancy-driven flows in porous media 892 A13-7

as we have considered an infinite domain with the perturbations decaying at the
corresponding vertical limits.

We have ρ̄ = Ā+ RB̄ (2.6), and consequently ρ̄x = Āx + RB̄x. Multiplying (3.10) by
R gives

σRB̂= RτLB̂+ RB̄xψ̂, (3.12)

and summing with (3.9), we get

σ Â+ σRB̂=LÂ+ RτLB̂+ ρ̄xψ̂. (3.13)

With RB̂= (1/k2)Lψ̂ − Â (from (3.8)), equation (3.13) reduces to

σ Â+ σ [(1/k2)Lψ̂ − Â] =LÂ+ τL[(1/k2)Lψ̂ − Â] + ρ̄xψ̂, (3.14a)
σ

k2
Lψ̂ =LÂ+

τ

k2
L2ψ̂ − τLÂ+ ρ̄xψ̂, (3.14b)[ σ

k2
L−

τ

k2
L2
− ρ̄x

]
ψ̂ = (1− τ)LÂ, (3.14c)

[σL− τL2
− ρ̄xk2

]ψ̂ = k2(1− τ)LÂ. (3.14d)

Using LÂ= σ Â− Āxψ̂ (from (3.9)), equation (3.14d) can be rewritten as

[σL− τL2
− ρ̄xk2

]ψ̂ = k2(1− τ)(σ Â− Āxψ̂), (3.15a)

[σL− τL2
− ρ̄xk2

+ k2(1− τ)Āx]ψ̂ = k2(1− τ)σ Â. (3.15b)

Substituting the expression for ψ̂ from (3.9) (ψ̂ = (σ Â−LÂ)/Āx) in (3.15b), we get

σ 2LÂ− σ [(1+ τ)L2
+ ρ̄xk2

]Â+ τL3Â− k2ζ (x)LÂ= 0, (3.16)

where ζ (x)= Āx(1− τ)− ρ̄x.
The above equation along with the boundary conditions (3.11) constitute a

characteristic value problem, which is indeed a formidable one if it has to be
solved in any direct manner. Fortunately, it will appear that this is not necessary to
obtain the conditions for instability from the characteristics of the base-state density
profile ρ̄(x, t). For this, a method based on a variational principle (Roberts 1960;
Chandrasekhar 1961) can be used, which is described in the following section.

4. Conditions for instability

We multiply (3.16) by Â∗, the complex conjugate of Â, and integrate over the range
of x, the vertical extent of the domain, which gives∫
∞

−∞

σ 2Â∗LÂ dx−
∫
∞

−∞

Â∗σ [(1+ τ)L2
+ ρ̄xk2

]Â dx+
∫
∞

−∞

Â∗(τL3Â− k2ζ (x)LÂ) dx= 0.

(4.1)
It makes sense to write the above integrals, as the operator L = (D2

− k2) is self-
adjoint, implying that it is closed and bounded on R, where R is the extended real
line.

To simplify the terms corresponding to each integral, it is convenient to define the
following:

I1 =

∫
∞

−∞

σ 2Â∗LÂ dx, (4.2)
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I2 =

∫
∞

−∞

−σ Â∗[(τ + 1)L2
+ ρ̄xk2

]Â dx, (4.3)

I3 =

∫
∞

−∞

Â∗(τL3Â− k2ζ (x)LÂ) dx. (4.4)

We have I1, which can be rewritten as

I1 =

∫
∞

−∞

σ 2Â∗(D2
− k2)Â dx (4.5a)

=

∫
∞

−∞

σ 2Â∗D2Â dx−
∫
∞

−∞

σ 2Â∗k2Â dx (4.5b)

= σ 2
[Â∗DÂ]∞

−∞
−

∫
∞

−∞

DÂ∗DÂ dx−
∫
∞

−∞

σ 2
|kÂ|2 dx (4.5c)

=

∫
∞

−∞

−σ 2
|DÂ|2 dx−

∫
∞

−∞

σ 2
|kÂ|2 dx (4.5d)

=

∫
∞

−∞

−σ 2
[|DÂ|2 + |kÂ|2] dx, (4.5e)

since the integrated part vanishes on account of the boundary conditions (3.11). In
a similar manner the integrals corresponding to I2 and I3 can be simplified as (see
appendix A)

I2 =

∫
∞

−∞

−σ [(τ + 1)[(D2
− k2)Â]2 + ρ̄x|kÂ|2] dx, (4.6)

I3=

∫
∞

−∞

−τ [|D(D2
− k2)Â|2+|k(D2

− k2)Â|2] dx+
∫
∞

−∞

k2ζ (x)[|DÂ|2+|kÂ|2] dx. (4.7)

Thus (4.1), which was broken down as I1, I2 and I3, reads as follows:∫
∞

−∞

−σ 2
[|DÂ|2 + |kÂ|2] dx+

∫
∞

−∞

−σ [(τ + 1)[(D2
− k2)Â]2 + ρ̄x|kÂ|2] dx+ · · ·

+

∫
∞

−∞

−τ [|D(D2
−k2)Â|2 + |k(D2

− k2)Â|2] dx+
∫
∞

−∞

k2ζ (x)[|DÂ|2 + |kÂ|2] dx= 0.

(4.8)

Thus we have ∫
∞

−∞

(σ 2X + σY +Z) dx= 0, (4.9)

where

X = [|DÂ|2 + |kÂ|2], (4.10)

Y = [(1+ τ)[(D2
− k2)Â]2 + ρ̄x|kÂ|2], (4.11)

Z = τ [|D(D2
− k2)Â|2 + |k(D2

− k2)Â|2] − k2ζ (x)[|DÂ|2 + |kÂ|2]. (4.12)

Note that the terms X ,Y,Z are real, whereas σ may have real (σr) and imaginary
(σi) parts. If σr is positive, then the system would have perturbations that would grow
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exponentially in time, and is linearly unstable; whereas a negative σr implies that the
system is linearly stable. The perturbations could be oscillatory or stationary, with a
non-zero value of σi corresponding to the former, and σi = 0 to the latter. We now
look for the conditions for instability. Equation (4.9) reads as∫

∞

−∞

[(σ 2
r − σ

2
i + i2σrσi)X + (σr + iσi)Y +Z] dx= 0. (4.13)

Considering the imaginary part, we have∫
∞

−∞

σi(2σrX +Y) dx= 0,∫
∞

−∞

σi(2σr[|DÂ|2 + |kÂ|2] + [(1+ τ)[(D2
− k2)Â]2 + ρ̄x|kÂ|2]) dx= 0.

 (4.14)

If we consider σi 6= 0 (oscillatory modes), the terms in parentheses are strictly positive,
with the exception of the gradient of the base-state density profile ρ̄x, which could be
positive or negative or both within the domain, and σr. For instability, we know that
σr > 0. This implies that there must be a region within the domain where ρ̄x < 0,
which is a sufficient condition for instability.

So we have our first necessary criterion for instability with oscillatory modes: there
must be a region within the domain where ρ̄x < 0. On the contrary, if ρ̄x is positive
throughout the domain, then the system is uniquely unstable to stationary modes such
that σi = 0.

We now look for the conditions for the flow to be unstable when ρ̄x is positive
throughout the domain. Using the expression for ρ̄ (2.6) and differentiating with
respect to x, we have the expression for ρ̄x given by

ρ̄x =
− exp[−x2/4t]

2
√

πt
+

exp[−x2/4tτ ]R
2
√

πtτ
. (4.15)

The density profiles are monotonically increasing downwards when

1 6 τ 6 R2, (4.16)

and ρ̄x is positive throughout the domain (the shaded region in figure 2). For these
parameter settings, the system is unstable to purely real eigenvalues (σi = 0). Using
σi = 0 in (4.13), we have ∫

∞

−∞

(σ 2
r X + σrY +Z) dx= 0, (4.17)

and substituting the expressions for X , Y and Z gives∫
∞

−∞

( σ 2
r [|DÂ|2 + |kÂ|2] + σr[(1+ τ)[(D2

− k2)Â]2 + ρ̄x|kÂ|2]

+ τ [|D(D2
− k2)Â|2 + |k(D2

− k2)Â|2] − k2ζ (x)[|DÂ|2 + |kÂ|2] ) dx= 0. (4.18)

The terms corresponding to X and Y are strictly positive as ρ̄x is positive
throughout the domain. So we now turn our attention to ζ (x) as the remaining
terms are positive. We have

ζ (x)= Āx(1− τ)− ρ̄x, (4.19)
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where Āx is given by

Āx =
− exp[−x2/4t]

2
√

πt
. (4.20)

Using the above, we have

ζ (x)=
exp[−x2/4t]τ

2
√

πt
−

exp[−x2/4tτ ]R
2
√

πt
√
τ

. (4.21)

The second derivative of the base-state density profile is given by

ρ̄xx =
exp[−x2/4t]x

4
√

πt3/2
−

exp[−x2/4tτ ]Rx
4
√

πt3/2τ 3/2
. (4.22)

Using this, the equation for ζ (x) simplifies as

ζ (x)
x

2τ t
= ρ̄xx, (4.23)

ζ (x)=
2τ t
x
ρ̄xx. (4.24)

If ζ (x) is negative throughout the domain, from (4.18) σr < 0 and the system is
linearly stable. For instability, ζ (x) must be greater than zero within some region of
the domain. Thus we have that if ρ̄xx > 0 for x< 0 (above the initial interface) and if
ρ̄xx < 0 for x> 0 (below the initial interface), then σr < 0 and the system is linearly
stable. The instability develops on either side of the interface, which implies that
above the interface (x< 0) there must be region where ρ̄xx < 0 and, correspondingly,
below the interface (x> 0) there must be a region where ρ̄xx > 0. Also, it is important
to note that, at t = 0, ζ (x) = 0, and from this it follows that σr < 0. So the flows
where ρ̄x > 0 throughout the domain are initially linearly stable with the instability
developing in time.

The density profile has an inflection point at the interface corresponding to x= 0, as
we can see from the expression (4.22) that ρ̄xx = 0. Instability, however, requires that
ρ̄xx< 0 above the interface (x< 0) and ρ̄xx> 0 below the interface (x> 0). Since ρ̄x> 0
throughout the domain, above and below the interface, there has to be an additional
point such that ρ̄xx=0 on either side of the domain such that ρ̄xx goes from positive to
negative above the initial interface, and from negative to positive below the interface.
Otherwise it follows from (4.18) that σr < 0. Thus the boundary of stability when
ρ̄x > 0 throughout the domain can be obtained by using ρ̄xx = 0 (for x 6= 0) and is
given by

R> τ 3/2 exp
[(

x2

4t

)(
1
τ
− 1
)]

, (4.25)

where all the eigenvalues in this regime are strictly real. The above function has a
minimum value at x = 0, which gives the limiting boundary for instability beyond
which the flows are linearly stable:

R= τ 3/2. (4.26)

The fact that all the eigenvalues are strictly real in such regimes has been numerically
observed by Trevelyan et al. (2011, p. 52), which follows as a direct consequence
from the discussion presented here. A similar asymptotic limit had been shown by
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FIGURE 3. (a–d) Typical base-state density profiles ρ̄(x, t) at t > 0 for different
combinations of (R, τ ); (e–h) the corresponding first derivatives ρ̄x(x, t) (dotted line) and
second derivatives ρ̄xx(x, t) (continuous line). Parameter settings: (a,e) τ = 8.0, R= 0.50;
(b, f ) τ = 0.80, R= 0.25; (c,g) τ = 0.25, R= 0.75; and (d,h) τ = 0.10, R= 1.25.

Huppert & Manins (1973) by considering linear base states, and is consistent with
the numerical stability analysis carried out by Trevelyan et al. (2011). The result
presented here when the density profiles are monotonically increasing downwards is
qualitatively similar to the Rayleigh criterion observed in the case of shear flows
(Lord Rayleigh 1880; Taylor 1915).

We shall now briefly overview the various base-state density profile configurations
in the (R, τ ) plane to summarise the results. Figure 3(a–c) shows some typical base-
state density profiles for R < 1 (RT instability) whereas figure 3(d) corresponds to
a DLC scenario. The density profiles have a region of x where ρ̄x < 0, which can
be seen in figure 3(e, f ) and they are linearly unstable to stationary or oscillatory
disturbances. It is also interesting to note that the regions corresponding to ρ̄x < 0
include the initial interface x = 0 or are close to it for the scenarios corresponding
to RT instabilities, which is also where the eigenfunctions are localised (Trevelyan
et al. 2011). The second derivatives ρ̄xx may have both positive and negative regions
on either side of the interface or could be either positive or negative, as can be seen
in figure 3(e, f ).

Base-state profiles that are monotonically increasing are shown in figure 4(a–d),
with their corresponding ρ̄x and ρ̄xx in figure 4(e, f ). In all these cases, ρ̄x > 0
throughout the domain. In figure 4(e, f ) we can see that for x < 0 there is a region
where ρ̄xx < 0 and a region where ρ̄xx > 0 for x> 0, or in other words ρ̄xx= 0 at some
location on either side of the interface. In such regimes, maximum growth rates are
real and instability arises as stationary modes. A case corresponding to the asymptotic
stability limit is shown in figure 4(g) beyond which ρ̄xx > 0 above the initial interface
and ρ̄xx < 0 below (see figure 4h).

4.1. Single-species RT instability
The single-species RT instability has recently received renewed attention due to its
potential role in geological carbon dioxide storage (Huppert & Neufeld 2014; Slim

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

20
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.201


892 A13-12 S. S. Gopalakrishnan

x x x x
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

0.5

0

-0.5

0.5

0

-0.5

1.0

0.5

0

-0.5

2

1

0

-1

2.5

2.0

1.5

1.0

0.5

4

2

0

10
8
6
4
2
0

16

12

8

4

0

®

(a) (b) (c) (d)

(e) (f) (g) (h)
®x
®xx

FIGURE 4. (a–d) Base-state density profiles that are monotonically increasing; (e–h)
corresponding ρ̄x(x, t) (dotted line) and ρ̄xx(x, t) (continuous line). Parameter settings: τ =4
and (a,e) R= 2.0, (b, f ) R= 4.0, (c,g) R= 8.0, and (d,h) R= 15.0.

2014; Sardina et al. 2018; De Paoli et al. 2019a). Here we shall briefly discuss the
special case of a single-species system that amounts to considering τ = 1. We have
from (3.14d) [

σ

k2
L−

1
k2
L2
− ρ̄x

]
ψ̂ = 0. (4.27)

The above can be rewritten as

−σ(D2
− k2)ψ̂ + (D2

− k2)2ψ̂ =−ρ̄xk2ψ̂ (4.28)

because L= (D2
− k2). We have

(D2
− k2)(D2

− k2
− σ)ψ̂ =−ρ̄xk2ψ̂. (4.29)

Letting (D2
− k2)ψ̂ = G we rewrite the above equation as

(D2
− k2
− σ)G =−ρ̄xk2ψ̂. (4.30)

Multiplying the above equation by ψ̂∗ (the complex conjugate of ψ̂) and integrating
over the range of x (the vertical extent of the domain) we get∫

∞

−∞

ψ̂∗(D2
− k2
− σ)G dx=−

∫
∞

−∞

ψ̂∗ρ̄xk2ψ̂ dx. (4.31)

Considering the left-hand side of (4.31) we have∫
∞

−∞

ψ̂∗(D2
− k2
− σ)G dx=

∫
∞

−∞

ψ̂∗(D2
− k2)G dx−

∫
∞

−∞

σψ̂∗G dx. (4.32)

As G = (D2
− k2)ψ̂ , equation (4.32) simplifies to∫

∞

−∞

|G|2 dx−
∫
∞

−∞

σψ̂∗(D2
− k2)ψ̂ dx
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=

∫
∞

−∞

|G|2 dx−
∫
∞

−∞

σψ̂∗D2ψ̂ dx+
∫
∞

−∞

σψ̂∗ψ̂k2 dx. (4.33)

Using this in (4.31) gives∫
∞

−∞

[|G|2 + σ(|Dψ̂ |2 + k2
|ψ̂ |2)] dx+ k2

∫
∞

−∞

ρ̄x|ψ̂ |
2 dx= 0. (4.34)

The real and imaginary parts of this equation must vanish separately; and the
vanishing of the imaginary part gives

σi

∫
∞

−∞

[|Dψ̂ |2 + k2
|ψ̂ |2] dx= 0, (4.35)

where σ = σr + iσi. But the quantity inside the brackets is positive definite. Hence

σi = 0. (4.36)

This establishes that σ is real. So we have∫
∞

−∞

[|G|2 + σr(|Dψ̂ |2 + k2
|ψ̂ |2)] dx+ k2

∫
∞

−∞

ρ̄x|ψ̂ |
2 dx= 0, (4.37)

σr =

−k2
∫
∞

−∞

ρ̄x|ψ̂ |
2 dx− |G|2 dx∫

∞

−∞

(|Dψ̂ |2 + k2
|ψ̂ |2) dx

. (4.38)

From the above, we can see that, if ρ̄x is positive throughout the domain, then σr<0
and the flow is linearly stable. Only when there is a region in the base flow profile
where ρ̄x is negative, can we have σr>0, which is a necessary and sufficient condition
for instability in single-species RT flows. Also, the eigenvalues are real and instability
arises as non-oscillatory modes. In these flows, the onset of instability is marked by
a transition from the background state to another steady state with the principle of
exchange of stabilities being valid, which holds if all non-decaying disturbances are
non-oscillatory in time (Chandrasekhar 1961; Davis 1969). It is also interesting to note
that Rayleigh–Bénard convection and Taylor–Couette flow are two other well-known
problems in which σ is real (Chandrasekhar 1961; Davis 1969).

4.2. Immobile species B: τ = 0
We discuss the case τ = 0, which physically corresponds to an immobile species B.
It also provides a good approximation to the case when A diffuses much faster than
B. For τ = 0 from (4.14) we have∫

∞

−∞

σi(2σr[|DÂ|2 + |kÂ|2] + [(D2
− k2)Â]2 + ρ̄x|kÂ|2) dx= 0. (4.39)

As noted earlier, if ρ̄x is positive throughout the domain, then the system could be
unstable only to purely real eigenvalues with σi=0. Otherwise, they could be complex,
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FIGURE 5. Plots of (a,b) Āx (dotted line) and B̄x (continuous line) at t> 0 for R= 0.50.
Parameter settings: (a) τ = 0.10, and (b) τ = 0.001.

and oscillatory instabilities may be present. From (4.15) we can obtain the limit of R
above which ρ̄x is strictly positive, which is given by

Rc = exp
[
−

x2

4t

(
1−

1
τ

)]
√
τ . (4.40)

The gradient at x= 0 is given by

ρ̄x|x=0 =
1

2
√

πt

(
R
√
τ
− 1
)
, (4.41)

which indicates that, as τ→ 0, the function goes to ∞ at x= 0. When τ→ 0, B̄x =

exp[−x2/4tτ ]/(2
√

πtτ), and can be treated as a Dirac delta function δ(x) as

B̄x = B̄x[δ(x)δδ,0 + (1− δδ,0)], (4.42)

where δδ,0 is the Kronecker delta. We have B̄xδ(x) when τ = 0, and B̄x for τ 6= 0. So
(4.39) reads as∫
∞

−∞

σi(2σr[|DÂ|2+|kÂ|2]+ [(D2
− k2)Â]2+[Āx+RB̄x[δ(x)δδ,0+ (1− δδ,0)]]|kÂ|2) dx=0.

(4.43)
For τ = 0 we have∫

∞

−∞

σi(2σr[|DÂ|2 + |kÂ|2] + [(D2
− k2)Â]2 + [Āx + RB̄xδ(x)]|kÂ|2) dx= 0. (4.44)

As Āx < 0 throughout the domain (4.20), the system could be unstable to both
stationary or oscillatory disturbances. Some representative profiles of Āx and B̄x
illustrating τ→ 0 are shown in figure 5.

4.3. Discussion
In this section, we briefly discuss some of the implications of the results obtained
in this study in the context of porous media flows. For the scenarios corresponding
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to a single-species system (τ = 1), and in the double-diffusive regime where density
profiles are monotonically increasing downwards (1 6 τ 6 R2), the instability arises
as stationary modes. Whereas in the remaining (R, τ ) parameter space bounded by
the curve R= τ 3/2, both stationary and oscillatory modes may destabilise the system.
Oscillatory instabilities generally occur when the density gradients are altered due
to both energy and mass transfer across a fluid layer provided both the mechanisms
work in opposition: one of the gradients must induce a stabilising effect and the other
must encourage instability. For instance, the presence of such oscillatory modes can
influence the solidification process of a binary mixture where a porous mushy layer
is formed via double-diffusive effects (Chen, Lu & Yang 1994; Anderson & Worster
1996). The fact that the instability arises as stationary modes in the double-diffusive
regime where the base-state density profiles are monotonically increasing downwards
such that the density gradient is positive throughout the domain may in turn be used
in such solidification processes where oscillatory instabilities are non-desirable.

The density profiles in porous media systems may also be altered due to changes
in temperature and composition as a result of chemical reactions (De Wit 2020).
In the present study, as the stability boundary and the nature of instabilities were
determined based on the characteristics of the density profile, the obtained results
may be used in the context of buoyancy-driven instabilities in reactive systems. Such
chemohydrodynamic flows may be used to tune the spatiotemporal distribution of the
species, thereby providing control over pattern formation in these systems.

5. Concluding remarks

The interface separating two miscible solutions containing different species in
porous media and Hele-Shaw cells can destabilise in the gravity field due to an
unstable density stratification, or due to differential diffusion of the species. The goal
of this study was to obtain the conditions for buoyancy-driven instabilities to arise
from the base-state density profiles using analytical methods. If there is an interval
in the spatial domain where the first derivative of the base-state density profile is
negative (∂ρ̄/∂x < 0), the flows are linearly unstable to stationary or oscillatory
disturbances. This is a sufficient condition for instability in these flows. When the
base-state density profiles are strictly monotonically increasing downwards (16 τ 6R2,
where R is the buoyancy ratio and τ is the diffusion coefficient ratio), with the first
derivative of the density profile positive throughout the domain, instability develops if
and only if the second derivative changes its sign on either side of the initial interface,
or alternatively there is a point where the second derivative of the base-state density
profile is zero on either side of the initial interface. In such regimes the system
is unstable to uniquely stationary disturbances (purely real growth rates). This is
a necessary and sufficient condition for instability when the first derivative of the
base-state density profile is positive throughout the domain. A necessary condition
for oscillatory instabilities in these flows is that there is an interval in the spatial
domain where the first derivative of the base-state density profile is negative. The
asymptotic neutral stability curve (R = τ 3/2) obtained in this analysis is consistent
with earlier studies where linear constant base-state profiles were used, and with
numerical linear stability analyses. The fact that single-species RT instabilities arise
as stationary modes also follows from the study presented in this paper. The analysis
could be extended to another member of the buoyancy-driven instabilities in porous
media, namely the viscous fingering instability, which is being currently investigated
by the author.
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Appendix A. Reduction of the integrals I2 and I3

The expression for I2 reads as

I2 =

∫
∞

−∞

−σ Â∗[(τ + 1)L2
+ ρ̄xk2

]Â dx (A 1)

=

∫
∞

−∞

−σ Â∗(τ + 1)(D2
− k2)2Â dx−

∫
∞

−∞

σ Â∗ρ̄xk2Â dx. (A 2)

The first of the two integrals on the right-hand side of (A 2) can be simplified as∫
∞

−∞

−σ(τ + 1)Â∗(D2
− k2)2Â dx

=

∫
∞

−∞

−σ(τ + 1)Â∗(D2
− k2)(D2

− k2)Â dx

=

∫
∞

−∞

−σ(τ + 1)Â∗D2
[(D2
− k2)Â] dx+

∫
∞

−∞

σ(τ + 1)k2Â∗(D2
− k2)Â dx

=−σ(τ + 1)
[∫

∞

−∞

Â∗D2
[(D2
− k2)Â] dx− k2

∫
∞

−∞

Â∗(D2
− k2)Â dx

]
. (A 3)

After two successive integrations by parts, the first of the two integrals on the right-
hand side of the foregoing equation becomes∫

∞

−∞

Â∗D2
[(D2
− k2)Â] dx = [Â∗D[(D2

− k2)Â]]∞
−∞
−

∫
∞

−∞

DÂ∗D[(D2
− k2)Â] dx

= −

(
[DÂ∗[(D2

− k2)Â]]∞
−∞
−

∫
∞

−∞

D2Â∗[(D2
− k2)Â] dx

)
=

∫
∞

−∞

D2Â∗[(D2
− k2)Â] dx, (A 4)

with the integrated part vanishing on account of the boundary conditions (3.11). Using
the above expression in (A 3) we get∫

∞

−∞

−σ(τ + 1)Â∗(D2
− k2)2Â dx

=−σ(τ + 1)
[∫

∞

−∞

D2Â∗[(D2
− k2)Â] dx− · · · − k2

∫
∞

−∞

Â∗(D2
− k2)Â dx

]
=−σ(τ + 1)

∫
∞

−∞

[(D2
− k2)Â]2 dx. (A 5)
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So expression I2 reads as

I2 =

∫
∞

−∞

−σ [(τ + 1)[(D2
− k2)Â]2 + ρ̄x|kÂ|2] dx. (A 6)

Considering next I3 (4.4) we have

I3 =

∫
∞

−∞

Â∗(τL3Â− k2ζ (x)LÂ) dx (A 7)

=

∫
∞

−∞

Â∗(τ [D2
− k2
]

2
[D2
− k2
]Â− k2ζ (x)(D2

− k2)Â) dx (A 8)

=

∫
∞

−∞

Â∗τ(D2
− k2)2(D2

− k2)Â dx−
∫
∞

−∞

Â∗k2(D2
− k2)ζ (x)Â dx. (A 9)

Let the two integrals in the above equation on the right-hand side be I3a and I3b,
respectively. From the first integral we have

I3a =

∫
∞

−∞

τ Â∗(D2
− k2)2(D2

− k2)Â dx (A 10)

=

∫
∞

−∞

τ Â∗[(D2
− k2)2]D2Â dx−

∫
∞

−∞

τk2Â∗(D2
− k2)2Â dx. (A 11)

Simplifying the first integral on the right-hand side by successive integrations by parts
we have ∫

∞

−∞

τ Â∗[(D2
− k2)]2D2Â dx

=

∫
∞

−∞

τ Â∗D2(D2
− k2)2Â dx (A 12)

= [τ Â∗D(D2
− k2)2Â]∞

−∞
−

∫
∞

−∞

τDÂ∗D(D2
− k2)2Â dx (A 13)

=−

(
[τDÂ∗(D2

− k2)2Â]∞
−∞
−

∫
∞

−∞

τD2Â∗(D2
− k2)2Â dx

)
(A 14)

=

∫
∞

−∞

τD2Â∗(D2
− k2)2Â dx. (A 15)

The expression I3a reads as

I3a =

∫
∞

−∞

τD2Â∗(D2
− k2)2Â dx−

∫
∞

−∞

τk2Â∗(D2
− k2)2Â dx (A 16)

=

∫
∞

−∞

τ(D2
− k2)Â∗(D2

− k2)2Â dx. (A 17)

Let Ŵ = (D2
− k2)Â. The complex conjugate of Ŵ is given by Ŵ∗= (D2

− k2)Â∗. The
expression I3a can be rewritten and simplified as

I3a =

∫
∞

−∞

τŴ∗(D2
− k2)Ŵ dx (A 18)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

20
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.201


892 A13-18 S. S. Gopalakrishnan

=

∫
∞

−∞

τŴ∗D2Ŵ dx−
∫
∞

−∞

τk2Ŵ∗Ŵ dx (A 19)

=

∫
∞

−∞

−τ |DŴ|2 dx−
∫
∞

−∞

τ |kŴ|2 dx (A 20)

=

∫
∞

−∞

−τ [|DŴ|2 + |kŴ|2] dx (A 21)

=

∫
∞

−∞

−τ [|D(D2
− k2)Â|2 + |k(D2

− k2)Â|2] dx. (A 22)

We now turn our attention to I3b, which can be transformed in the manner

I3b = −

∫
∞

−∞

Â∗k2(D2
− k2)ζ (x)Â dx (A 23)

= −

∫
∞

−∞

k2ζ (x)Â∗D2Â dx+
∫
∞

−∞

k4ζ (x)Â∗Â dx (A 24)

=

∫
∞

−∞

k2ζ (x)|DÂ|2 dx+
∫
∞

−∞

ζ (x)k4
|Â|2 dx (A 25)

=

∫
∞

−∞

k2ζ (x)[|DÂ|2 + |kÂ|2] dx. (A 26)

So I3 is given by

I3 =

∫
∞

−∞

−τ [|D(D2
− k2)Â|2 + |k(D2

− k2)Â|2] dx+
∫
∞

−∞

k2ζ (x)[|DÂ|2 + |kÂ|2] dx.

(A 27)
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