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A multifold reduction in the transition Reynolds
number, and ultra-fast mixing, in a

micro-channel due to a dynamical instability
induced by a soft wall
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A dynamical instability is observed in experimental studies on micro-channels of
rectangular cross-section with smallest dimension 100 and 160 µm in which one of
the walls is made of soft gel. There is a spontaneous transition from an ordered,
laminar flow to a chaotic and highly mixed flow state when the Reynolds number
increases beyond a critical value. The critical Reynolds number, which decreases as
the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest
wall used here (in contrast to 1200 for a rigid-walled channel). The instability onset is
observed by the breakup of a dye-stream introduced in the centre of the micro-channel,
as well as the onset of wall oscillations due to laser scattering from fluorescent beads
embedded in the wall of the channel. The mixing time across a channel of width
1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by
a factor of 105 than that for a laminar flow. The increased mixing rate comes at
very little cost, because the pressure drop (energy requirement to drive the flow)
increases continuously and modestly at transition. The deformed shape is reconstructed
numerically, and computational fluid dynamics (CFD) simulations are carried out
to obtain the pressure gradient and the velocity fields for different flow rates. The
pressure difference across the channel predicted by simulations is in agreement with
the experiments (within experimental errors) for flow rates where the dye stream
is laminar, but the experimental pressure difference is higher than the simulation
prediction after dye-stream breakup. A linear stability analysis is carried out using the
parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic
solid, and the simulation results for the mean velocity and pressure gradient from
the CFD simulations are used as inputs. The stability analysis accurately predicts the
Reynolds number (based on flow rate) at which an instability is observed in the dye
stream, and it also predicts that the instability first takes place at the downstream
converging section of the channel, and not at the upstream diverging section. The
stability analysis also indicates that the destabilization is due to the modification of
the flow and the local pressure gradient due to the wall deformation; if we assume a
parabolic velocity profile with the pressure gradient given by the plane Poiseuille law,
the flow is always found to be stable.
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1. Introduction
Flows in many microfluidic devices made of soft materials such as polymer gels

take place through conduits with flexible walls. In these flows, the effect of wall
flexibility on the transition is of fundamental importance with significant technological
implications. In typical microfluidic systems, the flow is laminar because the Reynolds
number is small in channels/tubes of submillimetre dimensions. Mixing takes place
due to molecular diffusion, which is a very slow process. For small molecules in water
with diffusion coefficients of around 10−9 m2 s−1, it takes 103 s to diffuse across a
distance of 1 mm. Such long diffusion times limit the feasibility of micro-scale devices
for rapid synthesis and processing applications. It is of interest to examine whether a
soft wall can enhance mixing by reducing the transition Reynolds number.

Several strategies have been proposed for increasing mixing in micro-reactors. These
can be broadly classified into passive strategies where the flow is steady but the
streamlines are curved, and active strategies where time dependence is introduced
into the flows by external actuation. Passive mixers rely on generating complex flow
pathways with curved streamlines, where fluid elements are stretched and rotated along
different directions in order to increase the area for mixing. These include channels
with repeated bends to curve the streamlines (Liu et al. 2000; Jiang et al. 2004;
Kane et al. 2008), wall grooves to introduce secondary flows (Stroock et al. 2002),
hydrodynamic focusing where inlet streams with very different flow rates come into
contact (Knight et al. 1998; Ganan-Calvo et al. 2011), split-and-recombine strategies
(splitting the inlet into a large number of small streams using channel bifurcations
and then recombining them by an inverse bifurcation) either in parallel (Bessoth, de
Mello & Manz 1999) or in series (Lee et al. 2006), and chaotic advection inside
microdroplets. Active strategies include pressure pulsing (Glasgow & Aubry 2003),
electro-kinetic disturbances induced due to fluctuating electric fields (Bazant & Squires
2004; Posner & Santiago 2006), actuation by acoustic waves (Ahmed et al. 2009) and
micrometre-sized stirring devices (Mensing et al. 2004). In active strategies, there is
additional energy input either by micrometre-sized moving parts or by external fields
such as electric fields and ultrasound. In passive strategies, there is no external energy
input. However, there is an energy cost because the curved streamlines, tortuous paths
in split-and-recombine strategies, or secondary flows due to wall groves, dissipate
additional energy due to fluid friction. This results in a higher pressure difference
for driving the flow in comparison with a straight micro-channel. These strategies
are not amenable to economical scaling-up (or numbering-up) because they involve
complicated micro-machining or micrometre-sized moving parts or actuators. Here, we
demonstrate an experimental realization of ultra-fast mixing in a micro-channel due to
a soft wall. The interaction between the soft wall and the flow results in a dynamical
instability, which induces a transition at a Reynolds number much lower than that for
the transition in rigid-walled tubes and channels.

For the flow through flexible tubes/channels, previous linear stability studies have
shown that the flow does become unstable to infinitesimal disturbances when the
Reynolds number exceeds a critical value which could, for sufficiently soft surfaces, be
lower than that for the rigid tube/channel transition. The mechanism of instability is
not just a modification of the rigid/tube channel instability, but is qualitatively different.
There is an instability even at zero Reynolds number, when the dimensionless number
Vη/GR exceeds a critical value (Kumaran, Fredrickson & Pincus 1994; Kumaran
1995), where η is the fluid viscosity, G is the elasticity modulus of the wall material
and V and R are the characteristic flow velocity and length. The instability is caused
by the shear work at the interface, which transfers energy from the mean flow to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.264


Transition and ultra-fast mixing in a soft-walled micro-channel 409

the fluctuations. The transition Reynolds number does depend on the specific type
of wall material (Thaokar, Shankar & Kumaran 2001; Chokshi & Kumaran 2008;
Gkanis & Kumar 2005; Gaurav & Shankar 2009). Weakly nonlinear studies (Shankar
& Kumaran 2001b; Chokshi & Kumaran 2008) indicate that the low-Reynolds-number
instability is subcritical.

There are two types of instabilities in the high-Reynolds-number limit, the inviscid
and the wall mode instabilities. The effect of viscosity can be neglected in the bulk
of the flow in the high-Reynolds-number inviscid instability (Kumaran 1996; Shankar
& Kumaran 1999, 2000), although there are boundary layers of thickness O(Re−1/2)

smaller than the characteristic dimension where viscous effects are important. The
transition Reynolds number follows the scaling Ret ∝ Σ1/2, where Σ = (ρGR2/η2) is
a dimensionless group dependent on material properties and geometry, but independent
of flow velocity. Here, ρ is the density of the fluid. The transition is caused by the
inertial stresses within the bulk of the flow. In the ‘wall mode’ instability (Kumaran
1998; Shankar & Kumaran 2001a, 2002), there is an energy transfer to perturbations
due to the interfacial shear work, which destabilizes the flow when the Reynolds
number exceeds a critical value. In this case, there is a boundary layer of thickness
Re−1/3 at the wall where viscous effects important, and the transition Reynolds number
obeys the scaling law Ret ∝ Σ3/4. Weakly nonlinear studies have shown that the wall
mode instability is supercritical (Chokshi & Kumaran 2009).

The first experiments on the flow through flexible tubes were carried out by Krindel
& Silberberg (1979). They considered the fluid flow through a tubular bore in a
flexible material (polyacrylamide gel), and measured the pressure drop and flow rate.
It was reported that the drag force in a flexible-walled tube is higher than that for
a laminar flow for Reynolds numbers as low as 700. However, there has been a
subsequent study by Yang et al. (2000), using a simulation method developed by
Sutterby (1965), which suggested that the higher drag force in Krindel & Silberberg
(1979) could be due to a slow convergence of streamlines, rather than a dynamical
instability. The low-Reynolds-number instability in the flow past a soft polyacrylamide
gel was demonstrated by Kumaran & Muralikrishnan (2000) and Muralikrishnan &
Kumaran (2002), and hysteresis and oscillations were also reported by Eggert &
Kumar (2004). Shrivastava, Cussler & Kumar (2008) have reported an enhancement
in the mass transfer coefficient for transport from the surface due to this instability.
The objective in the above-mentioned studies was to verify the viscous instability in
the low-Reynolds-number limit, and these were carried out with viscous fluids such
as glycerol in a rheometer, in order to achieve a low Reynolds number in flows
with a cross-stream length scale of the order of a millimetre. These results are not
directly applicable to microfluidic applications where fluids such as water with very
low viscosity are used because the Reynolds number could be large, and the neglect of
inertial terms in the Navier–Stokes equations is not justified.

A flow instability in a tube of diameter ∼1 mm was shown by the authors (Verma
& Kumaran 2012). A tubular bore in soft polydimethylsiloxane (PDMS) was used for
the study, where the PDMS was prepared with a reduced cross-linker concentration to
obtain a shear modulus as low as 17 kPa. The transition was detected on the basis
of pressure drop measurements, observations of dye-stream breakup as well as wall
oscillations by the laser scattering method. The experiments showed that there is an
instability of the laminar flow to infinitesimal disturbances for a Reynolds number as
low as 500 for tubes of diameter 800 µm and shear modulus 17 kPa. The transition
Reynolds number was lower, by a factor of 10, than that predicted for the wall mode
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instability by linear stability studies. An important observation was related to the
downstream location of the onset of the instability. Downstream from the entrance of
the soft section, there is first a divergence (due to the fixed diameter at the entrance)
and then a convergence (due to the decrease in pressure with downstream distance).
The destabilization of the dye stream was consistently observed in the convergent
section of the tube, while the flow in the divergent section was laminar. It was
suggested that the flow modification due to the convergence of the tube could result in
a mean velocity profile different from the parabolic profile for a cylindrical tube. This
modified velocity profile could be destabilized at a lower Reynolds number than the
parabolic profile.

The study of Verma & Kumaran (2012) is not of direct relevance to microfluidic
applications, since the smallest dimension is ∼1 mm. Moreover, micro-channels of
rectangular cross-section are normally used in microfluidics applications due to the
relative ease of fabrication, and the stability limits for a channel flow cannot be
directly obtained from tube flow experiments. In the case of rigid-walled conduits,
it is known (Drazin & Reid 2004) that the mechanism of instability in a channel
(destabilization due to an internal critical layer) is very different from that in a
tube (where linear stability analysis predicts the flow is stable at all Reynolds
number, but destabilization occurs due to finite-amplitude disturbances). In rigid
channels, the experimental transition Reynolds number is much lower than the
theoretical predictions based on linear stability analysis. Mechanisms such as transient
growth (Trefethen et al. 1993; Schmid & Henningson 1994) have been proposed
for explaining this difference, and efforts have also been made to detect the finite-
amplitude transition threshold in the case of a highly subcritical instability (Hof, Juel
& Mullin 2003).

It is important to re-emphasize that there is destabilization due to a linear instability
to infinitesimal disturbances in the case of conduits with deformable walls (in contrast
to the case of flow through rigid pipes and channels). A second important difference
is the possibility of substantial flow modification due to the deformation. Channels
and tubes deform very differently under an isotropic pressure. The study of Verma &
Kumaran (2012) suggests that tube deformation may be of importance in the transition
process, and the effect of deformation in a tube cannot be easily extrapolated to
predict the effect of deformation in a channel with a soft wall.

This motivates us to examine whether the flexible-wall instability can be realized
in microfluidic applications, and whether this instability could lead to efficient mixing.
The experimental techniques for fabricating the channels and determining the transition
Reynolds number and mixing efficiency are discussed in the next section. The methods
for determining the channel deformation due to an applied pressure gradient are
also discussed. Section 3 contains a discussion of the method for determining the
velocity profile and pressure gradient in the deformed channels using computational
fluid dynamics (CFD) simulations, and the stability analysis of the velocity profiles
using the parallel flow approximation. The experimental results for transition (using
dye-stream experiments and wall oscillations) and mixing (using image analysis of
dye mixing and conductance measurements at the outlet) are presented in § 4. The
computation of the flow profiles and pressure drop, and the linear stability analysis of
these profiles, are carried out in § 5, and the results are compared with experiments.
The main conclusions are presented in § 6.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.264


Transition and ultra-fast mixing in a soft-walled micro-channel 411

Inlets
Electrodes

Outlets

Test section (3.0 cm)Development
section

(0.8 cm)

Pressure port

Outlet

Inlets

Pressure port

Test section (3.0 cm)Development
section

(0.8 cm)

L0 L1 L2 L3

L0 L1 L2 L3

(a)

(b)

FIGURE 1. Schematic of the micro-channel configuration with the Y inlet (a) and the split
inlet (b).

2. Experimental methods
2.1. Micro-channel fabrication

Micro-channels of rectangular cross-section were fabricated in cross-linked PDMS gels
(Sylgard 184, Dow Corning) using soft lithography. The width and length of the
channels are 1.5 mm and 4 cm, while two different heights, h0 = 100 and 160 µm,
were used in the experiments. The channels were prepared with three ‘hard’ walls,
using the standard 10 % catalyst concentration. The fourth wall of the channel was
made soft, with a lower catalyst concentration in order to reduce the modulus of
elasticity. In the following discussion, a distinction is made between hard PDMS,
fabricated using the standard catalyst concentration of 10 % with a shear modulus of
∼0.55 mPa, and soft PDMS, in which the catalyst concentration is varied in order to
alter the shear modulus. The channel is made of two sections, an upstream developing
section of length 0.8 cm with four walls of hard PDMS, to ensure that the flow is fully
developed before the fluid enters the test section of length 3 cm with three walls of
hard PDMS and one wall of soft PDMS. The details of the procedure are provided in
appendix A.

2.2. Channel geometry
Two different channel geometries were used. The first is the Y inlet, shown in
figure 1(a), which is used for the mixing experiments. Here, two symmetric inlet
streams connected to two syringe pumps, merge together at the entrance of the micro-
channel. The flow rates in the two inlets are equal, so that there is no shearing at the
interface. In this configuration, there is a symmetric split outlet as well, so that mixing
of the two streams at the outlet can be measured using conductance measurements. For
this purpose, micro surge tanks were fabricated at the outlet, so that the conductance
in the outlet stream can be directly measured. For the Y inlet, the channel height used
was 100 µm in all cases. The Y inlet channel cannot be easily used for comparison
of the pressure drop with simulations because the surge tanks at the outlet cannot be
easily simulated, or for wall oscillations by laser scattering experiments, because one
of the fluids is coloured. For this purpose, the second split-inlet configuration was
used.
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FIGURE 2. (Colour online) Experimental set-up.

The split-inlet channel, shown in figure 1(b) consists of a central core of the channel,
of width 0.3 mm, connected to one inlet, while the outer flow on the two sides, of
width 0.6 mm each, are split from a second inlet and delivered by symmetric conduits
on the two sides of the core. In our dye-stream mixing experiments discussed later,
the flow through the central inlet is used for inserting the dye stream, while that from
the two sides connected to the split inlet is used for clear fluid. The flow rates in the
syringe pumps connected to the core and split inlets are maintained in the ratio 1:5, so
that the velocities in the three streams at the entrance to the development section are
equal. The split-inlet channels were fabricated with two different channel heights, 100
and 160 µm.

In all cases, the configuration consists of an upstream development section, of length
0.8 cm, with all four walls made of hard gel as described in § 2.1. The development
section is followed by a test section of length 3 cm, in which one of the walls is
made of soft gel. In some channels, as in figure 1, a provision is made for a pressure
port ∼2 mm upstream of the start of the test section. (The pressure port could not
be fabricated exactly at the start of the test section, because there is leakage due to
the deformation of the soft wall discussed below.) Since the outlet of the test section
is open to atmosphere in the split inlet, the pressure measurement at the pressure
port can be used to measure the pressure difference across the test section. We also
fabricate micro-channels without the pressure port, in order to examine whether the
pressure port has any effect on the flow dynamics. As in our earlier experiments on
the flow through a tube (Verma & Kumaran 2012), there was no discernible difference
between the mixing characteristics with and without the pressure port in any of the
experiments reported here.

2.3. Experimental set-up
The set-up for conducting the experiments (figure 2) consists of two syringe pumps
connected to the two inlets of the micro-channel mounted on a glass plate which is
placed with flow axis along the x direction, the y coordinate along the height h0 (100
and 160 µm) and z coordinate along the 1.5 mm width. The pressure port is connected
to a pressure transducer (Druck model PDCR 810), which is connected to a computer
to obtain pressure readings. The mixing of the dye-stream in the channel is monitored
by a microscope and camera (A) with optical axis along the height (y-axis) of the
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channel, as shown in figure 2. The camera B with optical axis along the z direction
(spanwise direction) is used for monitoring the deformation of the channel. The two
inlets of the micro-channel are connected to two syringe pumps C and D, through
which fluid is pumped at the desired rates.

In the experiments with the Y inlet and Y outlet channel, there are surge tanks at
the outlet within which conductance measurements are made, as show in figure 2. In
the experiments with the split inlet channel, the outlet is open to the atmosphere, and
there are no additional attachments at the outlet. The laser shown in figure 2 is for
detecting wall oscillations in the experiments with the split inlet, as discussed in § 2.5.

The pressure gradient across the soft section causes a deformation of the soft
wall which varies with downstream position. The change in cross-sectional area with
streamwise position along the channel results in a change in the flow velocity, since
the flow rate is a constant. This also results in a change in the local Reynolds number
based on the local velocity and height, as discussed in the next section on analytical
methods. For clarity of representation, we use a single Reynolds number based on the
flow rate and the width of the channel in our discussion,

Re= ρQ

Wη
(2.1)

where Q is the flow rate, W is the width of the channel in the z direction (∼1.5 mm)
and not the small dimension h0 in the y direction. For an undeformed channel, the
definition (2.1) is equal to (ρvavh0/η), where vav is the average velocity and h0 is the
height in figure 7(a). The shear modulus of the soft wall is expressed in terms of a
dimensionless parameter Σ which is independent of the flow velocity,

Σ = ρG′h2
0

η2
. (2.2)

2.4. Wall deformation
The application of a pressure drop across the test section also results in a deformation
of the flexible wall, as shown in figure 3. This deformation is monitored by a
microscope and camera (B) whose optical axis is aligned with the width (z-axis) of the
channel, as shown in figure 2. The side view (in the x–y plane in figure 2) is shown
in figure 3(a) for the undeformed channel. The image of the channel deformed due to
the pressure gradient is shown in figure 3(b) for a gel with shear modulus 18 kPa and
at a Reynolds number of 200 for the split inlet geometry. The superposed outline
shows the deformation of the flexible wall. It should be noted that the deformation is
not uniform across the width (z-axis) of the channel. The bottom soft wall is rigidly
bonded to two sidewalls in the spanwise direction made of hard gel, and there is
no deformation at these sidewalls. Therefore, the outline shown in figure 3(b) shows
the maximum deformation at the mid-plane of the channel perpendicular to the z-axis.
Wall deformation was measured for the split-inlet micro-channel, so that the flow
modification due to deformation can be compared with CFD calculations in § 5.

2.5. Detection of wall oscillations
In order to detect motion in the wall, fluorescent microbeads of diameter 150 µm are
incorporated into the soft wall as follows. When the film for the soft wall is cast,
we first prepare a prepolymer layer of thickness 1.5 mm, and partially cure it for
10 minutes. The microbeads are gently spread on this layer. After this, an additional
polymer layer of thickness of 0.5 mm is spread on top of the polymer film. The film
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(a)

(b)

(c)

(d )

FIGURE 3. (Colour online) Side view of the (a) undeformed channel with no flow,
(b) deformed channel with soft wall made using 1.75 % catalyst concentration and shear
modulus 18 kPa, (c) 2.00 % catalyst concentration and shear modulus 25 kPa, and (d) 2.25 %
catalyst concentration and shear modulus 35 kPa all at Re = 222. The Reynolds number is
defined based on the flow rate in (2.1). The scale bar shown in the right of images is 1 mm.
The locations where the height is measured are shown by the horizontal white lines, and the
location x= 0 corresponds to the joint between the hard and soft sections.

of thickness 2 mm is then cured, with the embedded fluorescent microbeads. Owing to
the high viscosity of the prepolymer and the small size of the beads, there is virtually
no settling of the beads. The beads are illuminated by using a He–Ne laser of power
10 mW (model number OEM5R, Aerotech Inc.). The laser beam of thickness ∼1 mm
is directed along the x–y plane at an angle of ∼30◦ to the horizontal, as shown in
figure 2. Most of the laser beam passes through the channel, since the PDMS is
transparent. However, there is scattering off the microbeads embedded in the PDMS
wall, and the light scattered from the microbeads is captured by camera A above the
channel. Owing to the low light intensity scattered from the microbeads, it is necessary
to use a much lower resolution and a lower framing rate while taking images of the
beads, in order to increase the light intensity incident on each pixel. Fluctuations in the
intensity of the laser reflections are used to detect wall oscillations as follows (Verma
& Kumaran 2012).

From the camera images, the intensity of the scattered light at each pixel is recorded
for each frame. This is stored as a rectangular array of dimension 1 6 i 6 100 and
1 6 j 6 50 for image arrays of size 100 × 50 used here. If Iijk is the greyscale value
of the (i, j) pixel in frame k, the time-averaged intensity at each pixel, Iav

ij , is then
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defined as

Iav
ij =

1
K

K∑
k=1

Iijk, (2.3)

where the summation is carried out over all the frames 1 to K. The fluctuation in the
intensity at pixel (i, j) and frame k is

1Iijk = Iijk − Iav
ij . (2.4)

The normalized mean square of the intensity fluctuations, FI , is calculated as

FI =

∑
i,j

(
(1/K)

K∑
k=1

1I2
ijk

)
∑

i,j

(Iav
ij )

2
. (2.5)

It should be noted that while the actual intensity recorded in individual experiments
shows large variations, due to the varying number and size of beads in the field of
view, the normalized mean square of the intensity fluctuations shows relatively little
fluctuations, as shown by the error bars plotted with the results.

2.6. Segregation index from image analysis
The segregation index is determined from image analysis of the four fixed rectangular
regions at four locations along the channel shown in figure 1(a) for the Y inlet
channel. The images used for the image analysis, recorded using camera A in figure 2,
are shown later in figure 12. The greyscale intensity of each pixel, Bij, is determined,
where i and j represent the indices of the pixels in the x and z directions, respectively.
The average greyscale value across the entire channel, Bav, is

Bav = 1
N

∑
i,j

Bij, (2.6)

where N is the total number of pixels used for the averaging. The variance of the
distribution is given by

B̄2 = 1
N

∑
i,j

(Bij − Bav)
2
. (2.7)

The segregation measure based on image analysis, SI , is given by

SI =
√

B̄2

1B
, (2.8)

where 1B is the difference between the pixel intensities of the light and dark regions
in the laminar flow. For a well-mixed fluid, the intensity is uniform across the entire
image, B̄2 is zero, and the segregation index SI is equal to zero. When there is
imperfect mixing of the two streams, B̄2 is greater than zero, and the segregation index
has a maximum of 0.5 for no mixing between the two streams. Similar measures have
been used earlier (Lee, Choi & Park 2010), where they are sometimes referred to as
mixing index or degree of mixing. We prefer to use the term segregation index since
the index is large when there is complete segregation, and zero when there is complete
mixing.
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FIGURE 4. (Colour online) Micro surge tanks (a) for measuring conductivity, and the circuit
used for the resistance probe (b). In (a), the schematic (top) and actual image (second from
top) of the outlet of the channel with elliptical openings (A), the surge tank walls (B) and
surge tank top with holes for electrodes (C); and schematics of the top view (third from top)
and side view (bottom) of the surge tanks.

2.7. Mixing index from outlet concentration
In order to measure the mixing index based on concentration measurements, the Y
outlet for the Y channel shown in figure 1(a) is used. At the outlet, two micro surge
tanks are fabricated, and a pair of electrodes are inserted into each of the surge tanks,
as shown in figure 2. The surge tanks are assembled on top of elliptical openings at
the two outlets, as shown in figure 4(a). The size of the surge tanks, length ∼4 mm,
height ∼2 mm and width ∼2 mm, is such that the pressure drop due to these is small,
while the volume of fluid is large enough so that the conductivity can be measured by
the electrodes. It is important to ensure that the fluid height in the surge tanks does not
change as the flow velocity is increased, since this could affect the conductance path
between the electrodes and consequently the resistance measurements.

Each resistance probe consists of two copper wires separated by a distance of 2 mm
along the length of each outlet, across which the resistance is measured as follows.
The probe is connected in series to a resistor of known resistance, R1 = 500 kΩ , and
connected to a power source with voltage Vs, as shown in figure 4(b). In all of our
measurements, a 12 V DC power supply was used as the power source, and the same
DC power supply was used for both resistance probes, to ensure that the voltages are
the same. The voltage across the known resistors, VTA and VDI , were measured though
the I/O data card (National Instruments NI USB-6009) of the computer.

Before carrying out the concentration measurements, the relationship between the
concentration and the voltages VTA and VDI are obtained by calibration. For this, a
well-mixed solution of known concentration c of tannic acid is injected through both
syringe pumps C and D in figure 2. The voltage VR (VTA or VDI) for the two electrodes
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FIGURE 5. The measured voltage VR as a function of time (a) and the spectrum of the
measured voltage as a function of frequency in Hertz (b) for pure de-ionized water (lower
curve in a, dotted line in b), tannic acid of concentration 2.5 × 10−3 g ml−1 (upper curve in a,
dashed line in b) and tannic acid of concentration 1.25× 10−3 g ml−1 (middle curve in a, solid
line in b).

in figure 4(b) is measured independently, and the calibration curve is obtained for the
voltage VR as a function of the concentration. The raw voltage signal is fluctuating
in time, as shown in figure 5(a). The average voltage, when compared with suitable
calibration as discussed below, gives the average value of the tannic acid concentration.
However, we can obtain further information by taking the power spectrum of the
voltage as shown in figure 5(b). In our frequency spectra, there is a dominant peak at
∼50 Hz, along with higher harmonics, due to the frequency of the input AC power.
We focus attention on frequencies less than 10 Hz, where this peak is not observed,
and where there is no distortion due to the background frequency. The power spectra
of the voltage signals give the frequencies of the concentration fluctuations at the
outlet, and when compared with the spectra for premixed tannic acid solutions of
equal concentration injected in both inlets, serves as an indicator of the quality of
mixing in the channel.

This calibration is carried out prior to each experiment for the variation of
concentration with Reynolds number, and each experiment is carried out three times in
order to obtain the error bars. This is because there is a variation in the mean value of
the voltage for the same concentration in different experiments, due to the sensitivity
of the voltage to small variations in separation between electrodes and to micro surge
tank dimensions. This variation is shown for three different gel samples with the same
wall shear modulus in figure 6(a). Although the difference in voltage between different
samples is small, it is important to calibrate independently for each sample, since
there are relatively large errors due to the small variations in the concentration if an
average calibration curve is used. For a given sample, there is virtually no variation in
the voltage VR with Reynolds number or flow velocity, as shown in figure 6(b). This
indicates that convective effects are not a factor in determining the conductivity of the
solution, and the voltage is determined by the concentration alone.

In the mixing experiments, pure de-ionized (DI) water is injected into one inlet
though pump C, and tannic acid solution of concentration c0 = 2.5 × 10−3 g ml−1 is
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FIGURE 6. Average voltage VR across one of the electrodes in figure 4(b) with tannic acid
concentration cTA for experiments on three different samples with shear modulus 35 kPa for
the soft wall. The symbols in (a) show the results for three different independent samples
to illustrate the sample-to-sample variation in the calibration curve, while the symbols in
(b) show the results for one sample at different flow rates: ©, Re = 67, Q = 0.1 ml s−1; 4,
Re= 111, Q= 0.17 ml s−1; ∇, Re= 200, Q= 0.3 ml s−1; �, Re= 244, Q= 0.37 ml s−1.

injected into the other inlet through pump D. The concentration is measured using
the resistance probe separately in the outlet on the same side as the DI water inlet
(referred to as the DI water outlet) and in the outlet on the same side as the tannic
acid inlet (referred to as the TA outlet). If there is no mixing, the DI water outlet
will contain DI water with concentration 0, and the TA outlet will contain tannic acid
with concentration c0. In the case of complete mixing, the concentration is (c0/2)
in the two outlets. Figure 6 shows that there is a significant increase in the voltage
(from ∼2 to ∼4.2 V) when the tannic acid concentration increases from 10−4 to
1.25 × 10−3 g cc−1, but the variation is much less (from ∼4.2 to ∼4.6 V) when the
tannic acid concentration increases from 1.25 × 10−3 to 2.5 × 10−3 g cc−1. Owing to
this, the variation in the voltage in the DI water outlet is much higher than that in
the TA outlet, and the concentration in the former can be determined more accurately.
Therefore, we determine the concentration in the DI water outlet from the voltage
measurement, and infer that in the TA outlet from mass balance. On the basis of the
outlet concentrations, the mixing index is defined as

MI = cDI

c0/2
, (2.9)

where cDI is the concentration in the DI water outlet. This mixing index will vary
between 0 (for no mixing) and 1 (for complete mixing, where cDI = (c0/2)).

3. Analytical methods
3.1. Flow simulation

In order to make comparisons of the pressure drop across the channel with predictions
from the numerical solutions of the Navier–Stokes equations, it is necessary to
reconstruct the deformed shape of the channel. This reconstruction is carried out
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FIGURE 7. Undeformed (a) and deformed (b) cross-sections of the channel.

(a)

(b)

0.5 mm

FIGURE 8. (Colour online) The side view (a) and the cross-sectional views at different
locations (b) of the reconstructed shape of the channel shown in figure 3(c) in which the soft
wall has shear modulus 25 kPa, and at Reynolds number 244. The scale bar in (a) is 1 mm and
that in (b) is 0.5 mm.

as shown in figure 7. The undeformed cross-section of the channel has width
W = 1.5 mm and height h0 = 100/160 µm, as shown in figure 7(a). Owing to the
deformation, the deformed shape shown in figure 7(b) has a maximum height h0 + h′,
which is obtained from the side view in figure 3. From this, the maximum deformation
h′ is calculated. The deformed bottom wall of the channel in figure 7(b) is obtained
using a cubic fit, from the locations of the points B, C and D, and from the symmetry
condition that the slope is zero at the point C of maximum deformation. The deformed
shape h(x, z) is calculated at each x location, and the deformed bottom wall of the
channel is reconstructed for the numerical simulations.

The reconstructed deformed shape of the channel, obtained from the image in figure
figure 3(c), is shown in figure 8. The side view, in figure 8(a), shows the deformation
at the centre of the channel in the spanwise direction where there is maximum
deformation, while the cross-sectional views in figure 8(b) are reconstructed using the
cubic fit discussed in relation to figure 7.

The ANSYS FLUENT 13.0.0 CFD program was used to calculate the velocity field
and the pressure drop in the deformed channel. The pressure–velocity formulation was
used, and the fluid was modelled using a laminar flow model for a Newtonian fluid.
The computational domain consisted of the entire channel of length 4 cm, including
the hard and soft sections. Zero-velocity boundary conditions are specified on all solid
surfaces for the base steady-state flow (although surface motion is taken into account
in the linear stability analysis discussed in § 3.2). A constant velocity was specified at
the inlet, and a constant pressure condition was specified at the outlet. The specific
velocity profile at the entrance does affect the pressure variation and flow evolution
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FIGURE 9. Schematic diagram showing the configuration and coordinate system for the
linear stability analysis.

in the development section, but we found that there is little effect downstream in the
test section between the pressure port and the outlet (see figure 1b) where the pressure
drop is compared with experiments. The simulation was initialized with zero velocity
everywhere, the system was allowed to evolve until steady state is reached and the
convergence limit was set at 10−4 in the residual for the continuity equation (the
limiting condition in most simulations) or 10−3 for the velocity equations.

The channel was discretized with a spatial resolution of 20 µm, that is, the grid
points in the simulations were separated by 20 µm in all three directions. For the
deformed channel shape shown in figure 8, this required 9.1 × 105 nodes. We have
also carried out simulations with coarser and finer discretization where the separation
was 30 µm (2.7 × 105 grid points) and 15 µm (2.1 × 106 grid points), to check grid
independence. The grid independence is verified in figure 20 for the simulation of the
experimental configurations, and the simulation procedure is validated for a channel
with rectangular cross-section in appendix B.

3.2. Linear stability analysis
The system consists of a pressure-driven flow of an incompressible Newtonian fluid
of density ρ and viscosity η in a rectangular channel with an elastic solid layer at
the bottom and a rigid surface on top, as shown in figure 9. A Cartesian coordinate
system is used, where the flow is in the x direction and the velocity gradient is in the y
direction. We consider a fluid layer of thickness (h0 + h′) equal to the maximum height
of the deformed channel (since we are performing the linear stability analysis along
the centreline in the spanwise direction) occupying the domain 0 < y < h0 + h′. The
fluid layer is bounded by a rigid surface at y= h0 + h′, and the fluid–solid interface at
y = 0. The thickness of the solid layer is defined as H(h0 + h′), where H, the ratio of
the two thicknesses, is determined from the experiments. The viscoelastic solid layer
in the region −H(h0 + h′) 6 y 6 0 is bounded by a rigid surface y = −H(h0 + h′),
and the fluid–solid interface at y = 0. The deformable solid layer is modelled as an
incompressible viscoelastic neo-Hookean solid of density ρ and shear modulus G′.

For simplicity, we assume that the densities of the solid and fluid are equal. The
relative density of the soft polydimethyl siloxane gels synthesized for the experiments,
using cross-linker concentrations lower than those specified by the manufacturer, was
in the range 1.03–1.06; this is lower than the manufacturer-specified value of 1.12 for
the standard gel formulation. Owing to this small difference in densities, it is a good
approximation to assume that densities are equal. Surface tension at the liquid–solid
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interface is neglected because it is small in the experimental system. A dimensionless
ratio of surface tension and elastic stresses is (T/((h0 + h′)G′)), where T is the surface
tension. For a gel which shear modulus of order 104 Pa, surface tension 10−2 N m−1

and h0 + h′ ∼ 100 µm, the ratio (T/((h0 + h′)G′)) is ∼10−2. For simplicity, we also
neglect dissipation in the solid. Solid dissipation does have a significant effect on the
flow stability in the low-Reynolds-number limit, but previous studies have shown that
there is very little effect for Reynolds numbers greater than ∼100. The base flow
configuration and the coordinate system are shown in figure 9.

The method of analysis is identical to that of Gaurav & Shankar (2010), with two
important differences. First, we have a rigid wall at the boundary at y = h0 + h′, in
contrast to Gaurav & Shankar (2010) who had a flexible surface. Secondly, we do
not consider a parabolic flow, as was done by Gaurav and Shankar, but we derive
equations for a general flow profile and pressure variation, assuming only that the
velocity profile is locally parallel. Owing to this, the base state solutions and the
linear stability equations are briefly provided for the present case. Our equations are
restricted to the simple case where there is no solid dissipation, in order to obtain
the lower bound for the transition Reynolds number. The extension to include solid
dissipation is discussed by Gaurav & Shankar (2010).

In the linear stability analysis, we first scale all variables from this point onwards,
so that all equations are non-dimensional in the following analysis and the results. The
appropriate length scale is the maximum height of the deformed channel (h0 + h′),
the cross-stream coordinate is defined as y∗ = (y/(h0 + h′)), the stress is scaled by
the shear modulus G′, σ ∗ij = σij/G′, time is scaled by the ratio of the viscosity and
elasticity (η/G′), t∗ = (tG′/η), the displacement within the solid is scaled by (h0 + h′),
w∗i = wi/(h0+h′), and all velocities are scaled by ((h0+h′)G′/η), v∗i = (viη/G′(h0+h′)).
After scaling, as shown below there are only two dimensionless group in the scaled
equations, the parameter Σ ′ = (ρG(h0 + h′)2/η2) and a scaled mean velocity. The
superscript ∗ is omitted in the following analysis for simplicity, but while discussing
the numerical results later (§ 5), the non-dimensionalization is stated explicitly.

The mass and momentum conservation equations for the fluid are the usual
incompressible Navier–Stokes equations,

∇ ·v= 0 (3.1)

Σ ′
(
∂v
∂t
+ v ·∇v

)
=−∇p+∇2v, (3.2)

where the dimensionless parameter Σ ′ = (ρG′(h0 + h′)2/η2), appears due to the non-
dimensionalization. We use a parallel flow approximation for the base state, where the
velocity v̄x is only a function of the y coordinate.

The displacement field w is the dynamical variable describing the solid deformation.
We use an Eulerian description, where the displacement field is defined in terms of the
unstressed coordinates,

w(X, t)= x(X, t), (3.3)

where x is the location of a material point whose unstressed position is X . The
deformation tensor F is defined as

F =∇Xw. (3.4)

The Cauchy stress tensor, when scaled by the shear modulus G′, is given by

σ =−psI + F · F T, (3.5)
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where ps is the pressure in the solid. For an incompressible solid where the volume is
conserved, the determinant of the deformation tensor is 1,

Det(F )= 1. (3.6)

The momentum conservation equation just states that the rate of change of velocity in
the material is equal to the divergence of the stress,

Σ ′
(
∂2w
∂t2

)
=∇X ·P, (3.7)

where P is Piola–Kirchoff stress tensor defined in indicial notation as

PIJ = F−1
IK σ

e
KJ, (3.8)

where σ e
IJ is the Cauchy stress tensor. Here, we use lowercase subscripts in the indicial

notation for the fluid and uppercase superscripts for the solid to distinguish the two.
Inserting the Piola–Kirchoff stress tensor into the momentum conservation equation
(3.7), we find

Σ ′
∂2wI

∂t2
= ∂(pF−1

JI )

∂XJ
+ ∂FIJ

∂XJ
. (3.9)

In the base state, a unidirectional flow in the x direction is considered, where the
velocity profile is v̄x is a function of y and v̄y = 0. We do not use the quadratic profile
for a fully developed parabolic flow which satisfies the no-slip condition at y = 0 and
y= 1,

v̄x =−∂p

∂x

(
y

2
− y2

2

)
(3.10)

but adopt the velocity profile from the CFD simulations at different streamwise
locations. The fluid–solid interface is flat in the base state with a non-zero
displacement in x direction due to shear stress exerted by fluid at this interface y = 0.
The boundary conditions for the fluid at the fluid–solid interface become vx = 0 and
vy = 0, and the normal and tangential stress balance conditions are τyy = σYY , τxy = σXY ,
respectively, where τij is the stress in the fluid given by Newton’s law of viscosity, and
σIJ is the stress in the solid wall. The boundary conditions for deformable solid wall at
y=−H is w= X because there is no deformation at the rigid surface.

The deformation field in the solid layer is obtained by solving the governing mass
and momentum equations (3.6) and (3.7). From equation (3.6), we find

∂w̄X

∂X

∂w̄Y

∂Y
− ∂w̄Y

∂X

∂w̄X

∂Y
= 1. (3.11)

where the overbars denote variables in the base state. The momentum conservation
equations reduce to

−∂ p̄s

∂X
+ ∂

2w̄X

∂Y2
= 0, (3.12)

−∂ p̄s

∂Y
+ ∂ p̄s

∂X

∂w̄X

∂Y
= 0, (3.13)

with zero displacement conditions at the boundary where the scaled y=−H,

w̄X − X = w̄Y − Y = 0, (3.14)
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and stress boundary conditions at the surface Y = 0,

σ̄YY =−p̄s + 1=−p̄, (3.15)

σ̄XY = ∂w̄X

∂y
= γ̇w, (3.16)

where γ̇w, the strain rate at the wall, is

γ̇w = ∂v̄x

∂y

∣∣∣∣
y=0

. (3.17)

Equations (3.12) and (3.13) can be solved to obtain the displacement field,

w̄X = X − 1
2
∂ p̄

∂X
(H2 − Y2)+ γ̇w(H + Y), (3.18)

p̄s = p̄+
(
∂ p̄

∂x

)2 Y2

2
+ ∂p

∂x
γ̇wY + 1. (3.19)

where p̄, the pressure in the fluid, depends only on the downstream position x.
In the linear stability analysis, small perturbations are imposed on the velocity and

wall displacement fields of the form,

vi = v̄i + ṽi(y) exp(ık(x− ct)), (3.20)
wi = w̄i + w̃i(Y) exp(ık(X − ct)), (3.21)

where k is the wavenumber and c is the wave speed. The wavenumber is real and
wave speed is complex for the temporal stability analysis, while the frequency is real
and wavenumber complex for the spatial stability analysis. The Fourier expansions
in (3.20) and (3.21) are valid only in the parallel flow approximation where the
streamlines are parallel, and when the variation of the mean velocity with streamwise
location is neglected. This requires that the wavelength of the most unstable modes
is smaller than the length scale for the flow development, and the length scale for
variation in the spanwise direction. We examine these assumptions once again while
discussing the numerical results (§ 5). At this point, we derive the linear stability
equations for the general case with complex k and c.

Equations (3.20) and (3.21) are inserted into the fluid conservation equations, and
linearized to obtain the mass conservation equation and the combined Orr–Sommerfeld
equation for the momenta in the x and y directions,

dyṽy + ıkṽx = 0, (3.22)

Σ ′ık(v̄x − c)ṽy+=−dyp̃+ (d2
y − k2)ṽy, (3.23)

Σ ′(ık(v̄x − c)ṽx + ṽydyv̄x)=−ıkp̃+ (d2
y − k2)ṽx. (3.24)

where dy ≡ (d/dy). The pressure can be eliminated by adding ık× (3.23) and (−dy)

times (3.24). After expressing ṽx = −(dyṽy/ ık) from the mass conservation equation,
we obtain

Σ ′(ık(v̄x − c)(d2
y − k2)ṽy − ṽyd

2
y v̄x)= (d2

y − k2)(d2
y − k2)ṽy. (3.25)

The incompressibility condition for the wall material, Det(F)= 1, reduces to

ıkw̃X + dYw̃Y − ∂w̄X

∂Y
ıkw̃Y = 0. (3.26)
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The momentum conservation equations for the wall material are

−Σ ′k2c2w̃X =−ıkp̃s − ∂ p̄s

∂X
dYw̃Y + ∂ p̄s

∂Y
ıkw̃Y + (d2

Y − k2)w̃X, (3.27)

−Σ ′k2c2w̃Y =−dY p̃s − ıkw̃X
∂ p̄s

∂Y
+ ∂ p̄s

∂X
dYw̃X + ıkp̃s

∂ ūX

∂Y
+ (d2

Y − k2)w̃Y . (3.28)

Using the equations for the mean displacement and pressure fields (3.18) and (3.19),
the above equations reduce to

ıkw̃X + dYw̃Y − ıkw̃Y

(
γ̇w + Y

∂ p̄

∂x

)
= 0, (3.29)

−k2c2w̃X =−ıkp̃s − ∂ p̄

∂x
dYw̃Y +

(
γ̇w + ∂ p̄

∂x
Y

)
ıkw̃Y + (d2

Y − k2)w̃X, (3.30)

−k2c2w̃Y = −dY p̃s − ıkw̃X

(
γ̇w + ∂ p̄

∂x
Y

)
+ ∂ p̄

∂x
dYw̃X + ıkp̃s

(
∂ p̄

∂x
Y + γ̇w

)
+ (d2

Y − k2)w̃Y . (3.31)

The boundary conditions at y = 1 are the no-slip conditions, ṽx = ṽy = 0, while the
boundary conditions at Y =−H are the zero displacement conditions, w̃X = w̃Y = 0. (It
is important to note that all lengths have been scaled by (h0 + h′) in the analysis). At
the perturbed interface Y = w̃Y , the velocity and stress continuity conditions are used.
When the interfacial conditions are written in terms of the fields at the unperturbed
interface Y = 0 using an expansion in w̃Y , we obtain,

ṽy =−ıkcw̃Y, (3.32)
ṽx + γ̇ww̃Y =−ıkcw̃X. (3.33)

In the above equation, the second term on the left accounts for the variation in the
mean velocity in the fluid due to the displacement of the surface. For the mean
velocity gradient at the wall, γ̇w, given in (3.17), and the mean displacement fields
given in (3.18) and (3.19), the stress balance equations at the interface are

−p̃f + 2dyṽy =−p̃s + 2dYw̃Y, (3.34)

dyṽx + ıkṽy = dYw̃X + ıkw̃Y + dYw̃Y γ̇w − ıkw̃yγ̇
2
w . (3.35)

The incompressibility conditions (3.22) and (3.29) can be used to express ṽx and w̃X in
terms of ṽy and w̃Y in the (3.35), to obtain

− (ık)−1d2
y ṽy + ıkṽy =−(ık)−1d2

Yw̃Y + ıkw̃Y + 2dYw̃Y γ̇w − ıkw̃yγ̇
2
w . (3.36)

The solution procedure is as follows. The equations for the displacement field,
equations (3.29), (3.30) and (3.31) can be reduced to one equation for the
displacement w̃Y . This resulting displacement equation, along with (3.25) for the
velocity field, are framed as a composite set of equations, along with the boundary
conditions ṽx = ṽy = 0 at y = 1 (top rigid surface), w̃X = w̃Y = 0 at Y = −H (bottom
rigid surface bounding the gel) and the matching conditions at the interface, (3.32),
(3.33), (3.34) and (3.36). Once the solutions to these equations are obtained, the
pressure fields are obtained from (3.24) and (3.30).

The composite system of equations and boundary conditions is solved using the
pseudo-spectral collocation method (Boyd 1989; Weideman & Reddy 2000). The
unknown velocity and displacement fields are expressed as the sum of N Chebyshev
polynomials each, and these are substituted into the governing equations and set to
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zero at (N − 4) Gauss–Lobatto collocation points each in the fluid and the solid, to
obtain a set of (2N − 8) equations. The remaining eight equations are obtained from
the boundary conditions, two for the fluid ṽx = ṽy = 0 at y = 1, two for the solid
w̃X = w̃y = 0 at y=−H, and four matching conditions (3.32), (3.33), (3.34) and (3.36)
at the interface. This provides a 2N × 2N matrix, which can be solved to obtain
the wave speed c for specified Σ ′, flow velocity and wavenumber k. This matrix
eigenvalue problem is solved using the polyeig function in MATLAB, to given 2N
eigenvalues. The spurious eigenvalues are filtered out by increasing the number of
modes N, and checking for convergence. We used a two values of N = 50 and N = 60
to get the convergent results discussed in § 5. The linear stability calculations were
first validated with the results of Gaurav & Shankar (2010) for the parabolic flow in
a channel with flat walls, and found quantitative agreement for the eigenvalues for
that problem. The same eigenvalue search procedure was used for the velocity profiles
predicted by the CFD simulations in our linear stability analysis.

The solution procedure provides the eigenvalues as a function of the wavenumber k
for specified values of v̄x, Σ ′ and the pressure gradients in the mean flow. The value
of Σ ′ is fixed from the experimental results, and the wave speed c is calculated for
increasing v̄x (or Reynolds number). At the transition Reynolds number, the imaginary
part of c passes through zero, indicating neutral modes. It should be noted that even
though the linear stability equations apparently depend only on the parameter Σ ′, there
is also a dependence on the local Reynolds number Re′ = (ρv̄av(h0 + h′)/η) through
the mean velocity and strain rate. In the non-dimensionalization scheme used here, the
scaled mean velocity is defined as v̄∗x = (v̄xη/G′(h0 + h′)). When expressed in terms of
the velocity averaged over the profile v̄av,

v̄av = (h0 + h′)−1
∫ h0+h′

0
dyvx (3.37)

the scaled velocity is v̄∗x = (v̄x/v̄av)(ρv̄av(h0 + h′)/η)(η2/ρG′(h0 + h′)2) =
(v̄x/v̄av)(Re

′/Σ ′). A similar non-dimensionalization can be carried out for the local
wall strain rate γ̇w which appears in the boundary conditions. For this reason, the
results depend on both Re′ and Σ ′.

4. Experimental results
The change in cross-sectional area with streamwise position along the channel

results in a variation in the flow velocity, since the flow rate is a constant. This
also results in a change in the local Reynolds number based on the local velocity
and height, as discussed in the following section. For clarity of representation, we
use a single Reynolds number based on the flow rate and the width of the channel
(2.1). For the soft wall, the shear modulus is expressed in terms of the dimensionless
parameter Σ in (2.2). In our theoretical studies, we have the additional parameters Σ ′

defined after (3.2), and Re′ = (ρv̄av(h0 + h′)/η) based on the local (h0 + h′) instead
of h0, and v̄av which is the average for the velocity profile along the central plane
in the spanwise direction calculated using (3.37). This is because the relevant length
scale for the linear stability analysis along the central plane of the channel in the
streamwise direction is (h0+h′), and the relevant velocity is the average of the velocity
profile in this plane. When the results of the linear analysis are finally compared with
experiments, all results are expressed in terms of the parameters Re and Σ to avoid
confusion.
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(a)

(b)

FIGURE 10. For caption see the next page.

All experiments in § 4.1 are carried out using the split inlet geometry in figure 1(b),
while all experiments in § 4.2 are carried out using the Y inlet geometry in figure 1(a)
so that the outlet stream can also be split into two.

4.1. Dye-stream experiments and wall oscillations
In the dye-stream experiments, coloured dye is pumped in through the central channel
in figure 1(b), while clear water is pumped through the two outer channels. The
images of the dye stream, captured using the camera A in figure 2, are shown in
figure 10 for soft walls with different shear moduli for a channel whose height is
100 µm in the absence of flow. The four images, from left to right, in figure 10 are
centred at locations 0.5 cm upstream, 0.1 cm downstream, 1 cm downstream and 2 cm
downstream of the entrance to the test section.

For the soft wall with shear modulus 18 kPa and Σ = 1.75 × 105, we observe
dye-stream oscillations at a Reynolds number of 178, but the dye-stream breaks up at
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(c)

FIGURE 10. (contd). Images of the dye-stream experiments for a channel of height 100 µm
with soft wall prepared using shear modulus 18 kPa and Σ = 1.75 × 105 (a), shear modulus
25 kPa and Σ = 2.51 × 105 (b) and shear modulus 35 kPa and Σ = 3.80 × 105 (c). The
horizontal dashed lines show the channel boundaries, the vertical dot-dashed line in the
second image from left shows the junction between the hard and soft sections and the outlet at
the top in the second image from the left shows the location of the pressure port. The images
are centred at 0.5 cm upstream, 1 mm downstream, 1 cm downstream and 2 cm downstream
of the junction between the hard and soft sections. The reference length is provided by the
1.5 mm width of the channel.

a Reynolds number of 200. For soft wall with gel with shear modulus 25 kPa and
Σ = 2.51 × 105, there are perceptible oscillations in the dye stream for a Reynolds
number of 244 and the dye stream ruptures at a Reynolds number of 289. In the
case of the soft wall with shear modulus 35 kPa and Σ = 3.80 × 105, perceptible
oscillations in the dye stream are observed at a Reynolds number of 311, although dye
breakup is observed at a Reynolds number of 422. An important observation is that
the instability is first observed not at the expanding section 0.1 cm downstream of the
entrance to the test section (see figure 3), but rather in the contracting downstream
section >2.0 cm downstream of the entrance to the test section. Thus, the flow first
becomes unstable in the downstream contracting section where the deformation is
relatively small, and not at the upstream expanding section which has the maximum
deformation.

Dye-stream experiments were also carried out for the channel for which the
height in the absence of flow is 160 µm for the soft wall with two different shear
moduli, shear modulus 18 kPa and Σ = 4.48 × 105 and shear modulus 25 kPa and
Σ = 6.43 × 105. We were not able to carry out the experiments for catalyst
concentration 2.25 % because the Reynolds number for the destabilization of the dye-
stream turned out to be larger than that achievable using our syringe pumps. For the
gel with shear modulus 18 kPa and Σ = 4.48 × 105, we observe oscillations in the
dye stream at a Reynolds number of 333, and the dye stream breaks up at a Reynolds
number of ∼400. For the gel with shear modulus 25 kPa and Σ = 6.43× 105, the dye
stream shows oscillations at a Reynolds number of ∼356, but complete cross-stream
mixing is not observed even at a Reynolds number of 444. In all cases, the instability
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FIGURE 11. Root mean square of the laser intensity fluctuations as a function of the
Reynolds number for a channel with height 100 µm (a) and 160 µm (b) in the absence of
deformation, in which the soft wall is made of gel with shear modulus: ©, 18 kPa and
Σ = 1.75 × 105; 4, 25 kPa and Σ = 2.51 × 105; ∇, 35 kPa and Σ = 3.80 × 105; and �,
54 kPa and Σ = 5.86× 105.

is first observed in the downstream contracting section of the channel, and not in the
upstream expanding section where there is maximum deformation.

Wall oscillations were measured using laser scattering off microbeads embedded
in the soft wall, as discussed in § 2. The scaled root mean square (r.m.s.) intensity
fluctuation FI , defined in (2.5), is shown as a function of the flow rate and the
Reynolds number in figure 11. Even at low velocity, there is some non-zero value
of FI due to experimental noise. However, we see that there is a sharp and near-
discontinuous change in FI at a specific value of the Reynolds number. This value
of the Reynolds number increases with the shear modulus of the soft wall, and it
coincides with the Reynolds number at which the dye stream becomes unstable in the
dye-stream experiments in figure 10.

4.2. Mixing
The mixing experiments were conducted in a channel with the Y inlet and outlet
shown in figure 1(a). The images of the mixing experiments, captured using camera
A in figure 2, at the locations shown in figure 1(a), are shown in figure 12 for the
soft wall with four different gel shear moduli. Here, clear water is pumped through
one of the inlets, and blue ink is pumped through the other inlet. At relatively low
flow rates or Reynolds number, which are the top two sets of images in the figure,
the flow is well segregated throughout the length of the channel. The two different
streams enter symmetrically, remain distinct throughout the length of the channel and
exit through the two different outlets. As the flow rate is increased, there is a threshold
flow rate (or critical Reynolds number) at which there is a catastrophic breakdown of
the streamlines and vigorous cross-stream mixing, as shown by the third set of images
from the top in each figure. As in the case of the dye-stream experiments, cross-stream
mixing is first observed at a location L2 ∼ 1.5 cm downstream of the entrance of
the test section (third image from left in figure 12). Even when there is vigorous
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cross-stream mixing downstream, there is little or no mixing at the location L1 ∼ 5 mm
downstream from the entrance. As the Reynolds number is further increased, the cross-
stream mixing is enhanced, until there is complete mixing across the entire channel, as
shown by the fourth and fifth sets of images from the top in each of the sub-figures in
figure 12. Even though the mixing is complete at the downstream locations L2 and L3,
there is only partial mixing at the location L1 5 mm downstream of the entrance of the
test section. There is no mixing at the location L0 in the development section 2 mm
upstream of the test section, indicating that the flow through a hard channel does not
mix at this flow rate.

The threshold Reynolds number for the onset of cross-stream mixing is the same
as that in the dye-stream experiments in a micro-channel of height 100 µm in the
previous subsection, which is ∼200 for the softest gel with shear modulus 18 kPa and
Σ = 1.75 × 105, ∼289 for the gel with shear modulus 25 kPa and Σ = 2.51 × 105,
∼311 for the gel with shear modulus 35 kPa and Σ = 3.80 × 105. For the soft wall
with shear modulus 54 kPa and Σ = 5.86 × 105, complete cross-stream mixing is
observed at a Reynolds number of ∼400.

A quantitative measure of segregation based on image analysis, SI is obtained from
the four rectangles at different downstream locations shown in the top set of images in
figure 12; the method of calculation is discussed in the § 2. The segregation index SI

varies between 0.5 (when there is no mixing between the two streams) and 0.0 (when
there is complete mixing).

The segregation index at different locations from image analysis is shown in
figure 13. Here, the error bars show the standard deviation of the variation of the
segregation index with time. There is a clear transition in the segregation index at the
downstream locations L2 and L3 which are 1.5 and 2 cm from the entrance of the test
section from a value near 0.5 to a value close to 0. Even when there is mixing at
locations L2 and L3, figure 13 shows that there is only partial mixing at location L1

5 mm from the entrance of the test section, and there is no mixing at the location L0

which is in the development section.
The results obtained for the segregation index on the basis of image analysis are

in agreement with those obtained using the mixing index (2.9) shown in figure 14.
Here, the error bars show the standard deviation of the fluctuations of the mixing
index with time. There is a sharp, near-discontinuous increase in the mixing index
from a value close to zero, indicating no lateral mixing between the fluid in the
two outlet streams in figure 1(a), to a value close to one, indicating complete lateral
mixing and equal concentrations in the two outlet streams in figure 1(a). The Reynolds
number for the transition is in agreement with that in figure 13 for the decrease in the
segregation index at the downstream locations. At the Reynolds number of ∼200 for
the transition in figures 13 and 14 for the softest gels, the flow velocity is ∼1 m s−1,
and the residence time of the fluid in the channel is ∼30 ms in the test section. Even
within this short residence time, there is near complete mixing across the entire width
of W = 1.5 mm. This is about five orders of magnitude lower than the mixing time
due to diffusion, which is (W2/D) ∼ 103 s if we assume a relatively high value of
D= 10−9 m2 s−1 for the diffusion of small molecules in water.

The intermittency in the mixing is analysed using the Fourier spectra of the
concentration fluctuations, which are shown in figure 5(b). Here, we compare the
spectra obtained at the DI water outlet at different Reynolds numbers. The reference
used is the spectrum obtained when premixed tannic acid of concentration 1.25 g cc−1

is pumped in through both inlets of the Y micro-channel. The reference premixed
tannic acid was pumped at a Reynolds number of 200, but we also verified that there
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(a)

(b)

FIGURE 12. For caption see next page.

is little variation in the spectra for the premixed tannic acid as the Reynolds number is
changed between 40 and 380.

For good mixing, one would expect the frequency spectrum to be the same as that
for premixed tannic acid, while in the case of poor and intermittent mixing, there
would be structure at low frequency in the power spectrum which is not present for
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(c)

FIGURE 12. (Colour online) (contd). Images of flow in a Y micro-channel with dye-stream
injected in one inlet and clear water in the other inlet at different Reynolds numbers. The soft
wall of the micro-channel has shear modulus 18 kPa and Σ = 1.75 × 105 (a), shear modulus
25 kPa and Σ = 2.51× 105 (b), and shear modulus 35 kPa and Σ = 3.80× 105 (c). The width
of the micro-channel is 1.5 mm. From left to right, the images are centred at locations L0, L1,
L2 and L3 in figure 1. The four rectangles in the top set of images are used for image analysis.

premixed tannic acid. The results are shown in figure 15 for the flow in a channel with
soft wall made has shear modulus 18 kPa and Σ = 1.75 × 105. These spectra show
that there is intermittency at low frequency at a Re = 200 where the transition takes
place, as well as at the Re = 244. However, the low-frequency structure disappears at
Re = 289, and the spectrum is indistinguishable from premixed tannic solution when
the Reynolds number is as low as 333. The same qualitative features are observed
for the flow through a channel with soft wall made of shear modulus 25 kPa and
Σ = 2.51 × 105 shown in figure 16. In this case, there is intermittency at Re = 244
and 289, but the spectra are indistinguishable from premixed tannic acid at Re = 333
and 378.

It is important to note that the frequency spectra in figures 15 and 16 do not capture
the frequency of the most unstable mode in the linear stability analysis, which is
discussed in the following section. The linear analysis predicts that the frequency of
the most unstable mode is of the order of 104 Hz, which is outside the range of our
analysis since the data card records at a maximum frequency of 103 Hz. Only the
low-frequency intermittency is measured here in the conductivity experiments.

The pressure difference across the test section is monitored by a side pressure port
shown in figure 1(a). The pressure difference between the pressure transducer and
the outlet is shown as a function of Reynolds number in figure 17. It should be
noted that the pressure results from the channel with the Y inlet cannot be directly
compared with numerical simulations because the surge tanks at the outlet are difficult
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FIGURE 13. The segregation index obtained from image analysis SI , equation (2.8) in § 2,
as a function of flow rate and Reynolds number for four different channels in which the
soft walls with shear modulus 18 kPa and Σ = 1.75 × 105 (a), shear modulus 25 kPa and
Σ = 2.51× 105 (b), shear modulus 35 kPa and Σ = 3.80× 105 (c) and shear modulus 54 kPa
and Σ = 5.86 × 105 (d) and at different downstream locations L0 (©), L1 (4), L2 (∇) and
L3 (�) in figure 1(a).

to simulate accurately. Therefore, while making theoretical comparisons in § 5, we will
use different results obtained for the split flow inlet in figure 1(b) where the outlet is
directly open to atmosphere. The results in figure 17 are used to demonstrate that there
is no discontinuous change in the pressure drop at the transition from the laminar to
well-mixed flow.

The results for a hard-walled channel, obtained using a catalyst concentration of
10 % (G′ = 0.5 mPa), are shown by the × in figure 17. In this case, the pressure
difference increases approximately linearly with the flow rate, as expected for laminar
flow. When the wall is made soft, the pressure difference is much smaller than that
for a rigid walled channel, and it does not increase linearly with flow rate. This
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FIGURE 14. The mixing index obtained from concentration measurements MI , equation (2.9)
in § 2, as a function of flow rate and Reynolds number for four different gels in which the
soft walls with shear modulus 18 kPa and Σ = 1.75 × 105 (©), shear modulus 25 kPa and
Σ = 2.51×105 (4), shear modulus 35 kPa and Σ = 3.80×105 (∇) and shear modulus 54 kPa
and Σ = 5.86× 105 (�).
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FIGURE 15. Frequency spectra of the measured outlet voltage for the flow through a channel
with soft wall with shear modulus 18 kPa and Σ = 2.51 × 105 for (a) Re = 200 (solid
line), Re = 244 (dashed line) and (b) Re = 289 (solid line), Re = 333 (dashed line). In both
panels, the dotted line shows the spectrum obtained when premixed tannic acid of equal
concentration 1.25 g ml−1 is pumped into both inlets.

is due to an increasing deformation of the soft wall of the channel (Gordillo et al.
2004; Gervais et al. 2006; Hardy et al. 2009) with flow rate. The deformation is
significant, as shown in the side view of the undeformed and deformed channels
at different downstream locations for the softest gel, in figure 3. This results in a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.264


434 M. K. S. Verma and V. Kumaran

101

102

10010–1 101 10010–1 101

V
ol

ta
ge

 s
pe

ct
ru

m

100

103
102

101

100

(a) (b)

FIGURE 16. Frequency spectra of the measured outlet voltage for the flow through a channel
with soft wall with shear modulus 25 kPa and Σ = 2.51 × 105 for (a) Re = 244 (solid
line), Re = 289 (dashed line), and (b) Re = 333 (solid line), Re = 378 (dashed line). In both
figures, the dotted line shows the spectrum obtained when premixed tannic acid of equal
concentration 1.25 g ml−1 is pumped into both inlets.
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FIGURE 17. The pressure difference across the length of the channel as a function of flow
rate and Reynolds number for channels of 100 µm height with the Y inlet (figure 1a) with soft
walls that have © shear modulus 18 kPa and Σ = 1.75 × 105, 4 shear modulus 25 kPa and
Σ = 2.51 × 105, ∇ shear modulus 35 kPa and Σ = 3.80 × 105, � shear modulus 54 kPa and
Σ = 5.86× 105, and × a hard wall with shear modulus 0.5 mPa and Σ = 5.4× 106.

significant increase in the cross-sectional area, and a much lower pressure difference
in comparison with a rigid channel of constant cross-section. An important observation
is that the pressure difference increases only gradually as the Reynolds number is
increased, and it does not show a discontinuous increase at the transition Reynolds
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FIGURE 18. The height as a function of streamwise location x for Reynolds number 0 (©),
111 (4), 200 (∇), 289 (C) and 378 (B) for soft walls with shear modulus 18 kPa and
Σ = 1.75× 105 (a,c), and shear modulus 25 kPa and Σ = 2.51× 105 (b,d) for channels with
undeformed height 100 µm (a,b) and 160 µm (c,d). Note that the y-axis is magnified by a
factor of 50 relative to the x-axis.

number. Therefore, near-complete cross-stream mixing is attained at very little cost
in terms of additional pressure drop or energy requirement. This is in contrast to the
laminar–turbulent transition in rigid tubes and channels, which are accompanied by a
sharp and near-discontinuous increase in the pressure difference at transition.

5. Numerical results
5.1. Channel deformation

The detailed analysis of channel deformation, flow modification and the linear stability
analysis is carried out for the channels with the two different heights, 100 and 160 µm,
in the undeformed state. For the channels of height 100 µm in the absence of
deformation, experiments were carried out with soft walls made with four different
shear moduli, 18, 25, 35, 54 kPa, whereas for the channels of height 160 µm in the
absence of deformation, we studied soft walls with two shear moduli, 18 and 25 kPa.
The maximum channel height, h0 + h′ in figure 7, obtained from the side views is
shown at different streamwise locations for different Reynolds number and for the soft
wall with two different shear moduli in figure 18. Here, the location x= 0 corresponds
to the start of the test section, and positive x is downstream into the soft section. As
expected, the deformation in the soft section decreases as the shear modulus of the soft
wall is increased. It is also observed that the deformation in the hard section increases
as the shear modulus of the soft wall is increased, due to the higher pressure in the
hard section. There is a significant deformation from about 100 µm in the undeformed
channel to ∼600 µm at the highest Reynolds number of 378. However, even when the
deformation is large, the slope of the wall is still small; the actual slope is 50 times
smaller than the slope of the lines in figure 18, since the y-axis has been magnified by
a factor of 50 in comparison with the scale on the x-axis. The maximum slope near
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FIGURE 19. The difference in pressure between the streamwise location x and the outlet, as
a function of the streamwise location, for Reynolds number 111 (4), 200 (∇), 289 (C) and
378 (B) for soft walls with shear modulus 18 kPa, and Σ = 1.75 × 105 (dashed line) and
shear modulus 35 kPa and Σ = 2.51 × 105 (solid line) for a channel with height 100 µm
(a) and 160 µm (b) in the absence of deformation; and the pressure difference across the
channel between the pressure transducer and the outlet as a function of Reynolds number for
the soft wall with shear modulus 18 kPa and Σ = 1.75 × 105 (©), shear modulus 25 kPa and
Σ = 2.51×105 (4) and shear modulus 35 kPa and Σ = 3.80×105 (∇) from CFD simulations
(dashed lines) and experiments (solid lines) for channels with height 100 µm (c) and 160 µm
(d) in the absence of deformation. The vertical line in (a,b) shows the location of the pressure
transducer.

the transition point for the soft wall with shear modulus 18 kPa and Reynolds number
200 is 0.09, while that near the transition point for a soft wall with shear modulus
25 kPa and Reynolds number 378 is 0.05.

The maximum height h0 + h′ obtained in figure 18 is inserted into the cubic fit for
the bottom wall shape shown in figure 7(b). This is then used in order to calculate
the pressure variation along the length of the channel using the ANSYS FLUENT
CFD simulation tool discussed in § 3. The results for the variation of the pressure as
a function of the downstream distance along the channel are shown in figure 19(a,b).
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Here, the pressure difference between the streamwise location x and the outlet is
shown as a function of downstream distance x. The location x = 0 in this figure
shows the start of the test section, and the vertical line shows the location of the
pressure transducer. An interesting observation is the adverse pressure gradient in the
test section (x > 0), due to the large expansion in the channel. Despite the large
expansion, the velocity profiles from the CFD simulations, presented in figure 20,
show no evidence of recirculation or reverse flow in the region of adverse pressure
gradient.

The difference in pressure between the pressure transducer and the outlet obtained
from the simulations (figure 19a,b), is compared with the experimental results in
figure 19(c,d). The error bars in the experimental results correspond to the standard
deviation over three independent runs. The error bars in the theoretical pressure
differences are due to the uncertainties in the measurement of the channel height
from the images in figure 3. The minimum length that can be measured from these
images is 5 µm, and so there is an uncertainty of ∼10 µm in the height measurement.
At constant flow rate, the pressure drop is proportional to the inverse of the cube of
the characteristic length, and so the uncertainty in the height results in an uncertainty
of between 5–10 % in the pressure difference. This figure shows that the experimental
and simulation pressures differences are in very good agreement at low Reynolds
numbers. However, for Reynolds numbers higher than those for which a transition is
observed in the dye-stream experiments, the pressure difference from the simulations
is significantly lower than that from the experiments. The Reynolds number at which
the theoretical and experimental pressure drops diverge is about the same as that where
the dye-stream experiments in figure 10 show a breakup of the dye stream; these are
compared in figure 29.

The CFD simulations also provide the detailed velocity profile throughout the
channel. For the linear stability analysis, we focus on the x–z plane in figure 2,
the plane of symmetry in the spanwise direction, whose projections are the vertical
lines in the cross-section figures in figure 8(b). These velocity profiles at different
downstream distances from the entrance of the test section for the wall with shear
modulus 18 kPa and Σ = 1.75 × 105 and at a Reynolds number of 289 based
on the flow rate are shown in figure 20. The actual velocity, obtained at discrete
points from the CFD simulations, is shown by the symbols in figure 20(a). Also
shown in figure 20(a) are the results of simulations with different grid resolutions,
of 15, 20 and 30 µm. It is clear that there is a difference of ∼10 % between the
results for 30 and 20 µm; this is because a grid spacing of 30 µm gives a relatively
coarse grid where there are between 10–20 grid points across the channel. However,
there is very little difference, ∼3 %, between the results for grid resolutions of 20
and 15 µm, indicating grid size independence. The variation in the pressure profiles
(figure 19) is even smaller, only ∼1 %, when the grid resolution is decreased from 20
to 15 µm; the grid dependence is not shown in figure 19 because the different curves
are indistinguishable. Since there is grid size independence below 20 µm, a grid size
of 20 µm is used for all our results.

In figure 20(b), the scaled velocity, which is the velocity divided by its average
value (equation (3.37)) is shown as a function of the scaled height (y/(h0 + h′)), where
h0 and h′ are defined in figure 7 for the deformed channel. The quartic polynomial
fits and the parabolic profile for the fully developed flow in a channel of constant
cross-section are also shown. An important conclusion is that there is no velocity
reversal or recirculation in all of the velocity profiles we have considered so far. So
the dye-stream breakup is not due to velocity reversal or backflow. The velocity profile
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FIGURE 20. The mean velocity profiles for the flow through a channel in which the soft
wall has shear modulus 25 kPa and Σ = 2.51 × 105 for height 100 µm in the absence of
deformation at a Reynolds number based on flow rate of 289, at distances x = −0.1 cm (©),
0.2 cm (4), 1 cm (∇), 2 cm (C), 2.7 cm (B) and at 3 cm (�) from the start of the test section.
The velocity in (m s−1) as a function of the cross-stream distance in the simulation is shown
by symbols in (a) for three different grid sizes, 15 µm (dashed line), 20 µm (solid line) and
30 µm (dotted line). The scaled velocity is shown as a function of the scaled cross-stream
distance in (b) for the grid size of 20 µm. The dotted lines in (b) show the quartic fits used for
the linear stability analysis, and the solid line in (b) is the parabolic velocity profile.

is not very different from a parabolic profile even at the location 0.2 cm into the test
section, where figure 8(a) shows that the deformation is a maximum. However, there
are systematic differences. As expected, the velocity profile has a higher curvature at
the centre than the parabolic profile in the diverging section of the channel, and is
more plug-like with a lower curvature at the centre in the converging section. As we
see in the next section, the small differences in the profile have a significant effect on
the growth of perturbations.

The velocity profiles at different spanwise locations are shown at different
downstream locations in figure 21. To place the figure in context, recall that the
width of the channel in the spanwise direction is 1.5 mm, and the central plane
(whose projection is the vertical line in the cross-sections in figure 8b) is 0.75 mm
distant from either wall. The velocity profiles in figure 21 are shown at different z
locations separated by 100 µm from the central plane in the spanwise direction. These
figures show that at a relatively upstream locations 1 cm from the entrance, there is
a significant slowing down as the distance from the central plane increases, and the
maximum velocity at a distance of z = ±300 µm is about one half of the value at the
central plane z = 0. However, at the downstream locations x = 2, 2.7 and 3.0 cm from
the inlet, there is relatively little variation of the velocity in the spanwise direction.
In these cases, the channel width and the maximum velocity at z = ±300 µm are not
more than ∼10 % lower than that at z = 0, while the maximum velocity and channel
width at z=±600 µm (150 µm from the wall) are not more than 50 % of that at z= 0.
Thus, the spanwise velocity variations are small in the downstream converging section
within a region of width ±300 µm from the central plane.
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FIGURE 21. The mean velocity profiles for the flow through a channel in which the soft
wall has shear modulus 25 kPa and Σ = 2.51 × 105 for a channel with height 100 µm in the
absence of deformation at a Reynolds number based on flow rate of 289, at different spanwise
locations z = 0 (©), z = ±100 µm (4), z = ±200 µm (∇), z = ±300 µm (C), z = ±400 µm
(B), z = ±500 µm (�), z = ±600 µm (∗), z = ±700 µm (×) and at different downstream
locations x= 1.0 cm (a), x= 2.0 cm (b), x= 2.7 cm (c) and x= 3.0 cm (d) from the entrance
to the test section.

Based on the mean velocity profiles, it is possible to define a local Reynolds number
Re′ = (ρvav(h0+h′)/η) for the velocity profiles shown in figure 20 where vav is defined
for each velocity profile using (3.37), and h0 and h′ are defined in figure 7. This is
a local Reynolds number at the centreline shown in figure 3, and is different from
the Reynolds number based on the flow rate in (2.1). The local Reynolds number is
shown as a function of downstream position for different flow rates in figure 22. The
local Reynolds number Re′ is always larger than that based on the flow rate, because
a larger velocity at the centreline shown in figure 8(b) is necessary to compensate for
the slowing-down near the sidewalls in the z direction. The local Reynolds number at
the location of maximum expansion could be as high as 2.5 times Re for a channel
with height 100 µm in the absence of deformation, although it is not as large for a
channel with height 160 µm in the absence of deformation, due to the smaller relative
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FIGURE 22. The local Reynolds number based on velocity profiles at the central plane of
the channel in the spanwise direction as a function of downstream distance x for a channel
with height 100 µm (a) and 160 µm (b) in the absence of deformation for Re = 154 (©),
Re = 200(4) Re = 244(∇), Re = 289 (C), Re = 333 (B) and Re = 378 (�) for a channel
with height 100 µm (a) and 160 µm (b) in the absence of deformation for the soft wall
with shear modulus 18 kPa and Σ = 1.75 × 105 (solid line), shear modulus 25 kPa and
Σ = 2.51× 105 (dashed line) and shear modulus 35 kPa and Σ = 3.80× 105 (dotted line).

deformation in the latter case. However, at the downstream locations for x > 2 cm,
where the instability is first observed, the local Reynolds number is not more than 1.5
times Re.

5.2. Linear stability analysis
Before proceeding to solve the linear stability equations derived in § 3.2 to obtain
the transition Reynolds number, it is important to examine the assumptions made in
deriving this equation. The first assumption is that there is no velocity variation along
the streamwise direction. This is valid only if the length scale for the velocity variation
is larger than the wavelength of the unstable modes. Our analysis indicates that the
most unstable modes have a wavenumber k of O(1) when scaled by the inverse of
the height of the undeformed channel h0. The flow development length scales as ratio
of the channel height and the wall slope, (h0/α). The ratio of the wavelength of
perturbations and the flow length scale is, therefore, (kα), where k is scaled by the
channel height. The slope α be estimated from the maximum deformation in figure 18.
The slope is quite large in the upstream diverging section for 0 6 x 6 0.2 cm, where
the height increases by ∼500 µm. However, both the experiments and the linear
analysis applied at this location indicate that the flow is stable. Of more relevance
is the downstream converging section, where the height decreases by ∼50 µ m over
a distance of ∼2.5 cm, and the slope is 0.02 or less. Consequently, the ratio of the
wavelength of perturbation and the slope of the velocity profile is ∼0.02 or less in the
downstream converging section where perturbations are unstable, indicating that the
neglect of the streamwise velocity variation is a good approximation in this region.

The justification for the nearly parallel flow approximation is as follows. If the
channel wall has a small angle of inclination α, there is an error O(α) in the linear
stability analysis when we assume a parallel flow, because the wall inclination has
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been neglected. However, the modification of the mean velocity profile and pressure
gradient are O(Re α), where Re is the Reynolds number. In our case, the transition
Reynolds number varies in the range 200–400, while the slope of the wall is ∼0.02
or less in the downstream converging section. Therefore, it is a good approximation to
retain terms of O(Re α) which result in the mean velocity and pressure modification,
and neglect terms of O(α) in the parallel flow approximation.

The strongest approximation made here is that of two-dimensional flow, which
implies there are no variations in the spanwise direction. The width of the channels
used is 1.5 mm, and two different heights, 100 and 160 µm, were used for the
undeformed channel. So the ratio of width to height is between 9.5 and 15. When
there is flow, the channel height increases because the soft wall deforms. At the
downstream section where the instability is first observed (2.0 cm from the entrance
of the test section) and for a Reynolds number of 289, the 100 µm channel height
expands to ∼300 µm, and the 160 µm channel height expands to ∼350 µm. So the
ratio of width and length is still ∼5 for the smaller channel and 4 for the larger
channel. We show later that the wavenumbers scale with the channel height, so the
spanwise extent of the channel is significantly larger than the perturbation wavelength.
Another concern is the assumption of a two-dimensional flow with no spanwise
variations. As shown in figure 21, there is a significant variation of the velocity profile
with spanwise position at the upstream locations <1 cm from the entrance of the test
section. However, at downstream locations >2 cm from the entrance, there is less than
10 % the velocity profile within a region of thickness ±300 µm from the central plane.
Therefore, there is a central region of thickness 600 µm where the velocity is nearly a
constant at the downstream locations where our stability analysis shows that the flow
becomes unstable.

The linear stability analysis is used to determine the transition Reynolds number,
where both k and ω in (3.20) and (3.21) are real at different downstream locations.
These could be obtained by a temporal analysis, where we set a real k and then
determine the Reynolds number where c is also real, or by a spatial analysis, where
we set a real ω (kc) and determine the Reynolds number at which k is real. For
the neutral modes, there is no difference in the predictions of the wavenumber and
frequency between the local spatial and temporal analysis, provided the parallel flow
approximation is valid. Gaster (1962) has shown that the frequency and growth rates
for the temporal stability problem are related to the frequency and spatial amplification
rates for the spatial stability problem near the neutral stability curve for a given
wavenumber and Reynolds number. The frequencies in the two cases are nearly equal,
the difference being quadratic in the growth rate. The ratio of the temporal and spatial
growth rates is equal to the group velocity of the waves. In our present analysis, it is
easier to identify the neutral stability curve by solving for real k.

It should be noted that in all of our results, we find that the least stable modes are
propagating downstream, with a positive wave velocity and a positive group velocity.
This is in agreement with the previous study of Gaurav & Shankar (2010) and with
earlier studies, where the most unstable modes were found to propagate downstream
for high Reynolds number. The analysis of Gaster (1962) also shows that near the
neutral curve, the ratio of the temporal and spatial growth rates is equal to the group
velocity of the waves. Therefore, just above the transition Reynolds number, growing
modes for the temporal problem imply downstream travelling and amplifying spatial
modes for the spatial problem.

The mean velocity profiles obtained as in figure 20, and the pressure profiles
obtained as in figure 19, are used as inputs for the linear stability calculations.
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FIGURE 23. The imaginary part ci of the wave speed c, scaled by (G′h0/η), for the least
stable/most unstable solution as a function of the scaled wavenumber h0k for a channel with
height 100 µm in the absence of deformation, with soft wall made with shear modulus 25 kPa
and Σ = 2.51 × 105 for Re = 244, at different downstream locations x = −0.1 cm (©),
0.2 cm (4), 1.0 cm (∇), 2.0 cm (C), 2.7 cm (B) and 3.0 cm (�). In (b), the high wavenumber
behaviour is magnified.

Equations (3.25), (3.29), (3.30) and (3.31), along with boundary conditions (3.32),
(3.33), (3.34) and (3.36), are solved to obtain the cr and ci, the real and imaginary
parts of the wave speed. The solutions for the wave speed is determined for a
given wavenumber k, to obtain the spectrum. The solution for c with the largest
imaginary part (least stable or most unstable mode) is then plotted as a function of the
wavenumber k for each downstream location. The results for a channel with soft wall
made with shear modulus 25 kPa and Σ = 2.51 × 105 at a Reynolds number of 244
for a channel with height 100 µm in the absence of deformation, is shown in figure 23.
This figure shows that the velocity profile at only one location, the channel exit at
x = 3.0 cm, has an unstable solution, while the velocity profiles at all other locations
are stable. There are some features of the high wavenumber behaviour of ci which
are common to all of the results obtained here, which are shown in the magnified
figure 23(b). In all cases, ci first increases, passes through a maximum, decreases a
little and then increases again to asymptote to the k-axis in the high k limit. The value
of ci at the intermediate maximum is negative for x 6 2.7 cm, but it becomes positive
x= 3.0 cm. In all cases, we observe that it is the intermediate local maximum at finite
k, which is initially negative, that crosses the k-axis and becomes positive as the flow
rate is increased. Therefore, in the following results, the magnitude and wavenumber
of the local maximum are analysed as a function of downstream position and flow
velocity.

The local maximum value of ci in figure 23 is plotted as a function of downstream
location for different Reynolds numbers in figure 24. These figures show that ci is
largest at the downstream end of the channel, and lowest at the location x = 0.2 cm
where the deformation and local Reynolds number are largest. As the Reynolds
number is increased, the velocity profile becomes unstable at progressively upstream
locations. This is in agreement with experimental observations that the instability is
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FIGURE 24. The maximum value of ci, scaled by (G′h0/η) as a function of downstream
distance x for a channel with height 100 µm (a) and 160 µm (b) in the absence of
deformation for a flow with Re = 111 (©), Re = 156 (4), Re = 200 (∇), Re = 244 (C),
Re = 289 (B) and Re = 333 (�), in which the soft wall is made with shear modulus 18 kPa
and Σ = 1.75 × 105(—), shear modulus 25 kPa and Σ = 2.51 × 105(− − −) and shear
modulus 35 kPa and Σ = 3.80× 105(· · ·).

first observed more than 2.0 cm downstream of the entrance to the test section, where
the channel is converging. The dye stream is observed to be laminar in the diverging
section at the entrance of the channel.

The eigen-functions for the velocity perturbations in the fluid and the displacement
field in the gel wall, shown in figure 25 provide insight into the destabilizing
mechanism. The salient characteristic of the wall-mode eigenfunctions, which is the
confinement of the velocity perturbations in the region close to the interface, is clearly
observed in figure 25(a). This clearly confirms that the destabilizing mechanism in the
present case is the wall mode instability due to the shear work done at the fluid–solid
interface, and not due to Reynolds stresses in the bulk of the fluid, as expected for
the inviscid instability. Theoretically, in the wall mode instability, perturbations are
confined to a layer of thickness Re−1/3 at the wall. This magnitude is in agreement
with the results in figure 25, where we see that the wall layer thickness is ∼0.15
times the channel height at a Reynolds number of 289. However, the Reynolds
number is too small to be able to recover the asymptotic scaling law (Shankar &
Kumaran 2001a, 2002). There is also confinement of the displacement perturbations
in the solid to a thin layer near the surface, as shown in figure 25(b). This is
due to a different reason, which is the relatively large thickness of the solid layer
in comparison to the fluid layer. The soft gel wall in our experiments is 2 mm in
thickness, which is significantly larger than the undeformed fluid layer (100 µm), as
well as the wavelength of the unstable modes. So the solid layer is effectively like an
infinite medium, in which the depth of penetration of the perturbations is set by the
wavelength. Owing to this, the displacement perturbations are confined to a relatively
thin zone near the surface.

The results of the linear stability analysis can be quantitatively related to
experimental results. For a channel with height 100 µm in the absence of deformation,
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FIGURE 25. The real parts of the eigenfunctions for the fluid velocity perturbation
Φv = (ṽx/ṽx|y=0) (a), and the wall displacement field Φw = (w̃X/w̃X|Y=0) (b), as a function
of the distance from the fluid–solid interface scaled by the fluid thickness (h0 + h′) (a) and
solid thickness H(h0 + h′) (b) for a channel with height 100 µm in the absence of deformation
and for the soft wall with shear modulus 18 kPa and Σ = 1.75 × 105 and Re = 244 (dashed
line), shear modulus 25 kPa and Σ = 2.51× 105 and Re= 289 (solid line) and shear modulus
35 kPa and Σ = 3.80 × 105 and Re = 333 (dotted line) for the most unstable mode ci at the
location x = 2 cm (©) and 3.0 cm (4) from the inlet of the channel. In both parts, ṽx and
w̃X are divided by their value at the wall y = 0. Scaled this way, the imaginary parts of the
eigenfunctions are smaller by a factor 10−2 in comparison with the real parts, and so they
are not explicitly shown. The displacement and velocity fields are shown only up to a scaled
distance of 0.4, from the interface since they decay to zero beyond this point.

for the soft wall made with shear modulus 18 kPa and Σ = 1.75 × 105, the value of
ci first becomes positive at the outlet x = 3.0 cm for Re = 156, while the ci becomes
positive within the channel at x = 2.0 cm for Re = 244. In experiments, the instability
of the dye stream is first observed at a Reynolds number of 178, and there is breakup
of the dye stream at Re = 200. For the soft wall with shear modulus 25 kPa and
Σ = 2.51 × 105, ci at the exit x = 3.0 cm becomes positive for Re = 200, while that
at x = 2.0 cm becomes positive for Re = 289. In experiments, we observe that the
dye stream breaks up for Re = 244. For the soft wall with shear modulus 35 kPa and
Σ = 3.80 × 105, the flow becomes unstable at the exit at Re = 244, and the flow
at x = 2 becomes unstable at Re = 333. In the experiments, the dye stream becomes
unstable at Re = 289 and there is complete breakup of the dye stream at Re = 333.
Thus, there is a clear correlation between the growth of perturbations predicted by the
linear stability analysis and the breakup of the dye stream in experiments.

It is important to note that the unstable modes shown in figure 23 are obtained
only when the modification to the mean velocity profile in figure 20 and the pressure
gradient from the CFD simulation shown in figure 19 are incorporated in the linear
stability analysis. Whereas there is not much modification of the mean velocity profile
as shown in figure 20, there is a substantial modification of the pressure profiles. The
actual pressure gradient (dp/dx), scaled by (G′/h0) at different downstream locations
from the CFD simulations are compared with the theoretical prediction obtained from
the local average velocity and height assuming using the plane Poiseuille law in
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FIGURE 26. The scaled pressure gradient, (−(dp/dx)/(G′/h0)), as a function of streamwise
location x for Reynolds number 111 (©), 200 (4), 244 (∇), 289 (C), 333 (B) and 378 (�),
for soft walls with shear modulus 18 kPa and Σ = 1.75 × 105 (a) and shear modulus 35 kPa
and Σ = 3.80 × 105 (b) for a channel with height 100 µm in the absence of deformation.
The solid lines show the actual pressure gradient from the CFD simulations in the deformed
channel and the dashed lines show the theoretical prediction from the plane Poiseuille law
for a parallel flow with the same average flow rate and channel height as the actual velocity
profile in figure 20.

figure 26. Clearly, the modification in the pressure gradient is significantly higher than
that in the velocity profile. In the expanding section, the pressure gradient becomes
negative due to the decelerating flow. In contrast, in the downstream converging
section, the pressure gradient is higher than that for a parabolic flow with the same
profile as that in figure 20. In agreement with earlier predictions (Shankar & Kumaran
1999), the linear stability results show that flow in the diverging section is more stable
than the parabolic flow, whereas that in the converging section is more unstable than
the parabolic flow.

To investigate the effect of modification in the flow profile and pressure gradient on
the instability, we have carried out a set of linear stability calculations using:

(a) the parabolic approximation for the mean velocity instead of the quartic
approximation; and

(b) the parabolic approximation for the velocity profile with the pressure and velocity
related by the plane Poiseuille law.

The results of the linear stability analysis for the highest Reynolds number of 378 used
here are shown in figure 27 for soft walls with three different shear moduli. When the
parabolic fit is used for the velocity profile and the pressure gradient from the CFD
simulations is used, we find that the system does become unstable, but the growth rate
is smaller than that when the quartic fit is used. In contrast, when the parabolic fit is
used for the velocity profile and the Poiseuille law is used for the pressure–velocity
relationship, we find that the flow is always stable. Thus, we find that it is essential
to include the modification of the pressure gradient due to deformation in order to
predict an instability; perturbations are always stable for the parabolic flow with linear
pressure gradient obtained from the plane Poiseuille law when the local Reynolds
number is used. Use of a quartic approximation does amplify the growth rates, but the
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FIGURE 27. The imaginary part ci of the wave speed c for the least stable/most unstable
solution, scaled by (G′h0/η), as a function of the scaled wavenumber h0k for a channel with
height 100 µm in the absence of deformation in which the soft wall is made with shear
modulus 18 kPa and Σ = 1.75 × 105 (a), shear modulus 25 kPa and Σ = 2.51 × 105 (b) and
shear modulus 35 kPa and Σ = 3.80× 105 (c) for Re= 378 at different downstream locations
1.0 cm (∇), 2.0 cm (C) and 3.0 cm (�). The solid and dashed lines show the results for
the pressure gradient from the CFD code and the quartic and parabolic approximations for
the velocity profiles, respectively, and the dotted line shows the results when the parabolic
approximation is used for the velocity profile and the plane Poiseuille law is used to calculate
the pressure gradient.

flow does become unstable even when a parabolic fit is used for the velocity profile
when the actual pressure gradient from CFD simulations is used.

The wavenumber of the most unstable perturbation is shown in figure 28(a).
Note that the undeformed channel height is used for scaling the wavenumber in
our linear stability analysis. The wavenumber k decreases as ci increases, but it
varies in a relatively small range between 0.5 and 2.0. Thus, the most unstable
modes have wavelength comparable with the channel height. Figure 28(b) shows
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FIGURE 28. The scaled wavenumber h0kmax at which ci is a maximum (a,c), and the
negative of the scaled frequency −(ωmax/(G′/η)) of the least stable/most unstable mode
(b,d) as a function of downstream location for Re = 111 (©), Re = 156 (4) Re = 200 (∇),
Re = 244 (C), Re = 289 (B) and Re = 333 (�) for a soft wall with shear modulus 18 kPa
and Σ = 1.75× 105 (solid line), shear modulus 25 kPa and Σ = 2.51× 105 (dashed line) and
shear modulus 35 kPa and Σ = 3.80 × 105 (dotted line) for a channel with height 100 µm
(a,b) and 160 µm (c,d) in the absence of deformation.

the frequency of the least stable/most unstable perturbation scaled by (G′/η). The
scaled frequency is ∼2 × 10−3, which implies that the dimensional frequency is
2× 10−3 × (G′/η)∼ 3.6× 104 s−1 for the softest wall with shear modulus 18 kPa and
η = 10−3 kg m−1s−1. Clearly, these are very high-frequency perturbations which will
be a challenge to observe experimentally, even with high-speed imaging.

An important issue is whether it is possible that the dye-stream oscillations
downstream could be due to perturbations becoming unstable upstream, and being
convected before the growth is apparent. Experimentally, this is not the case because
we see a rather abrupt breakup of the dye stream, and there is no evidence of
sinusoidal waves in the dye stream slowly increasing in amplitude until it reaches the
downstream converging section. The resolution of our camera is 1280×960 pixels, and
the area imaged is ∼3 mm. Consequently, along the smallest dimension, our resolution

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.264


448 M. K. S. Verma and V. Kumaran

Re

102

103

105 106

FIGURE 29. The Reynolds number for: ©, breakup of the dye stream (figure 10);
∇, detection of wall oscillations in laser scattering (figure 11); C, underestimation of
experimental pressure by CFD prediction (figure 19c,d); B, positive ci at the downstream
end x= 3.0 cm (figure 24); and �, positive ci at location x= 2 cm (figure 24) as a function of
the parameter Σ = (ρG′h2

0/η
2). The open and filled symbols are the results from the channel

with height 100 µm and 160 µm in the absence of deformation, respectively.

is ∼3 µ m. We will be unable to resolve disturbances only if they are less than 3 µ
m over a channel width of 1.5 mm. In practice, we find are able to resolve distances
to within ±5 µm accurately. This gives a lower bound amplitude of ∼1 % for our
detection capability; if the disturbance is less than this, we will not be able to detect
it. So our detection threshold is sufficiently small that there will not be large regions
where disturbances can grow undetected.

The spatial growth rate of disturbances can be examined theoretically from the
group velocity. The temporal and spatial growth rates are related through the group
velocity of the waves (Gaster 1962) through the relation

krci|T
ki|S =−

∂ω

∂kr
(5.1)

where T denotes the temporal stability problem and S the spatial stability problem, and
ω is the frequency of the most unstable modes at transition. The group velocity on the
right-hand side of (5.1) can be estimated as 10−3(G′h0/η), because the frequency
in figure 28 is 10−3(G′h0/η) in scaled units and the wavenumber is O(1). For
G′ ∼ 10 kPa, h0 ∼ 100 µm and η ∼ 10−3 kg m−1 s−1, the wave speed is ∼1 m s−1,
which is comparable with the mean flow velocity. The imaginary part of the wave
speed can be estimated as ci ∼ 10−6(Gh0/η) from figure 24 and kr ∼ h−1

0 from
figure 28. From this, we find that the spatial growth rate ki ∼ 102 m−1. Thus, the
length scale for the spatial growth of perturbations is 1 cm, and disturbances cannot
grow undetected over a distance of 2 cm from the upstream diverging section to the
downstream converging section.

The experimental results of the previous section are compared with the results of the
linear stability analysis in figure 29, where the transition Reynolds number is shown as
a function of the parameter Σ = (ρG′h2

0/η
2), where h0 is the height of the undeformed

channel. There is close agreement between the results for the breakup of the dye

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.264


Transition and ultra-fast mixing in a soft-walled micro-channel 449

stream and onset of wall oscillations in experiments, as well as the Reynolds number
at which there is a divergence between the pressure difference across the channel in
the experiments and CFD simulations. The experimental results are bounded, above
and below, by the theoretical Reynolds number for instability at the outlet x = 3.0 cm
and the location x = 2.0 cm, respectively. The experimental dye stream and wall
oscillation data for the channel with undeformed height 160 µm are also shown in
figure 29. The dashed line, which shows the power law Re = 0.09725Σ5/8, provides a
good fit for the present data as well, although it must be cautioned that we do not have
data for even a decade variation in Σ . The Σ5/8 scaling law was obtained in Verma
& Kumaran (2012) by recognizing that when there is a small inclination α at the wall,
the flow modification is proportional to Reα. The velocity gradient near the wall was
related to the Reynolds number and the angle of inclination in the limit Reα � 1,
and α was related to the pressure gradient and the shear modulus. These qualitative
arguments apply in the present configuration as well and, therefore, a scaling law of
the form Re ∝ Σ5/8 is expected. Our numerical analysis shows that the Re versus Σ
relationship can be predicted quantitatively on the basis of flow simulations and linear
stability analysis.

6. Conclusions
The important conclusions of the present study are as follows.

(a) The experiments on the breakup of a dye stream in a micro-channel with one
soft wall have demonstrated that it is practically feasible to trigger a dynamical
instability in microfluidic devices at a Reynolds number much lower than the
transition Reynolds number of ∼1200 in rigid channels.

(b) The instability is tunable, and the transition Reynolds number decreases as the
shear modulus of the soft wall is decreased. The transition Reynolds number is
∼200 for the walls with the lowest shear modulus in the experiments.

(c) In experiments, it has been demonstrated that the Reynolds number for the breakup
of the instability coincides with the onset of wall oscillations detected by laser
scattering off fluorescent beads in the wall.

(d) From conductance spectra measurements, we find that the quality of mixing
between the two streams is close to that for premixed solutions at Reynolds
number as low as 300 for the soft walls with the lowest shear modulus used here.

(e) The deformed shape of the channel was recorded from the experiments and
reconstructed, and flow simulations were carried using Fluent CFD package. The
pressure drop predicted by the simulations was close to the experimental pressure
drop when the flow is laminar, but the experimental pressure drop was significantly
higher than the simulation prediction after dye-stream breakup.

(f ) The velocity profiles and pressure gradient from the simulations were used in a
linear stability analysis for the flow past a flexible wall using the parallel flow
approximation. The predictions for the Reynolds number and streamwise location
of the instability are in quantitative agreement with experimental observations.

(g) From the linear stability calculations we find that the flow first becomes unstable
in the downstream converging section of the channel where the slope of the wall is
relatively small, and not in the upstream diverging section where the deformation
and the local Reynolds number are largest.

(h) The modification of the parabolic profile and the pressure gradient due to the
convergence of the channel is necessary for destabilizing the flow. Linear stability
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calculations indicate that the flow is stable for Reynolds numbers up to 1000 for a
parabolic flow with the pressure gradient given by the plane Poiseuille law.

Thus, detailed comparison of experimental results and theoretical calculations with
no fitted parameters has demonstrated unambiguously that the dye-stream breakup is
due to a dynamical instability due to dynamical interaction between the fluid and the
soft wall. The transition Reynolds number is fortuitously decreased due to the natural
deformation of the soft wall, and the resulting change in the velocity profile and
pressure gradient.

The present work is the first demonstration of ‘soft mixing’ in a micro-channel:
the practical realization of a dynamical instability to reduce the transition Reynolds
numbers. This could have significant implications for the flow past soft surfaces
in, for example, the cardiovascular system where the conduits are made of soft
materials. This could also be important in enhancing mixing in microfluidic devices,
where slow mixing due to molecular diffusion in a laminar flow has been an
obstacle in developing efficient lab-on-a-chip technologies. This instability mechanism
provides a new strategy for enhancing mixing which has the advantages of passive
strategies (no moving parts) and active strategies (spontaneous wall motion due to a
dynamical instability of the base flow) at very little additional pressure drop or energy
requirement. Owing to the catastrophic breakup of the base laminar flow, the mixing
efficiency is much higher than that for passive strategies. For the flow velocities or up
to 1 m s−1 used here, we find complete mixing for a residence time of only ∼30 ms
in a channel of length 3 cm, which is five orders of magnitude lower than that for
molecular diffusion across a width of 1.5 mm.

We have also developed a framework which involves the prediction of the laminar
flow and pressure gradient in a deformed channel, and the use of linear stability
analysis to predict the threshold Reynolds number and downstream location of the
instability. When coupled with a solid-mechanics framework for predicting wall
deformation, it is possible to develop a systematic first-principles strategy for analysing
flow in biological systems with soft walls. This can also be used for the design
of low-cost microfluidic devices which use soft walls to transcend the technological
barrier of mixing due to molecular diffusion in laminar flows in microfluidic devices.
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Appendix A. Fabrication
The three ‘hard walls’ of the channel are cast using the standard PDMS soft

lithography procedure. A negative of the channel is fabricated on a silicon wafer
using SU8 photoresist, the prepolymer is poured onto this negative and cross-linked
by standard procedures (Verma & Kumaran 2012). After cross-linking, the polymer is
peeled off to provide an open channel, as shown in figure 30(a). The fourth wall of the
channel was prepared separately as a film of thickness 2 mm, as shown in figure 30(b).
This wall consists of two parts, one made of hard gel for the flow development section
and the second made of soft gel for the test section. These two sections cannot be
made separately and joined, since this results in a variation in the thickness at the joint.
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FIGURE 30. Cross-sectional view of the preparation of PDMS stamp using SU-8 lithography
and its bonding onto the soft film to form the channel (a) and side view of fabrication of soft
film, addition of catalyst to form hard section and its bonding with hard PDMS stamp to form
the channel (b).

Instead, we first mix the monomer with catalyst of the concentration required for the
soft section. The mixture is cast in the form of a film of thickness 2 mm on a glass
plate, as shown in the top two figures in figure 30(b). After casting the film, additional
catalyst is poured only in the developing section, so that only the developing section
becomes hard, while the test section (where there is no additional catalyst) is soft, as
shown in the third figure from top in figure 30(b). After fabrication of the two parts,
the hard section shown as prepared in figure 30 is pressed onto the soft film, after
a thin film of pre-polymer is added at the junction to bond the two sides, as shown
in the bottom figure in figure 30(b). The entire assembly is then cured to obtain a
micro-channel which has a development section with four hard walls and a test section
with three hard walls and one soft wall.

The variation of the shear and compression moduli with catalyst concentration was
determined as follows. At the time of making the soft wall, an additional slab of gel
with the same catalyst concentration of size 2 cm × 2 cm and thickness 2 mm was
prepared. This slab was placed on the bottom plate of the parallel plate geometry in
an AR 1000N rheometer. The top plate was lowered until contact is made with the
gel, and the storage and loss modulus were determined as a function of the frequency
of oscillations using standard software. The compression modulus was determined
by lowering the top plate and measuring the increase in the normal stress with
compression. The spectrum of the storage modulus G′(ω) is shown as a function
of frequency in figure 31(a). The loss modulus has also been measured in order to
characterize the gel completely, and the magnitudes were similar to those calculated
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FIGURE 31. The storage modulus as a function of frequency (a) for gels with catalyst
concentration 1.75 % (©), 2.00 % (4), 2.25 % (∇) and 2.50 % (�); and (b) the plateau
storage modulus G′ (©) and the compression modulus K (∇) as a function of catalyst
concentration. The error bars in (b) are over measurements for three independent samples
with the same catalyst concentration.

earlier in Verma & Kumaran (2012). The average shear modulus is calculated by
averaging over the plateau in the frequency range between 100 and 400 Hz in the
spectra. The dependence of the average shear modulus (with error bars over three
independent samples) and the compression modulus on the catalyst concentration is
shown in figure 31(b). The compression modulus is found to be higher than the
shear modulus by more than a factor of 10, indicating that the resistance to shear
deformation is much smaller than that to volumetric compression or expansion. Thus,
the gel can be considered an incompressible medium to a good approximation, and
it can be parameterized by just the shear modulus alone. This enables us to use the
constitutive relations for an incompressible solid in the following analytical methods
section to carry out the linear stability analysis.

Appendix B. Validation of CFD procedure
Here, the simulation procedure is validated for a rectangular cross-section with

length 4 cm, width 1.5 mm and height 100 µm, which corresponds to the dimensions
of the undeformed channel. The configuration and coordinate system are shown in
figure 32(a). A plug flow velocity profile is specified at the inlet, and a constant
pressure is specified at the outlet in all the simulations. The grid spacing in the
simulations, which is 20 µm in all directions, is the same as that used in § 5 for the
deformed channel. The results for the velocity profiles were obtained at four cross-
sections separated by 1 cm each. These were found to be identical to within less than
0.2 %, indicating that the flow is fully developed. The profiles of the velocity scaled
by the average velocity (ratio of flow rate and cross-sectional area) in the cross-section
1 cm from the entrance at different spanwise locations are shown in figure 32(b).
These results are compared with the results obtained by a separation-of-variables
procedure for the fully developed flow in a channel of rectangular cross-section, where
40 basis functions (sine functions in the cross-stream direction) were used in the
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FIGURE 32. The elevation (top) and plan (bottom), not to scale, of the channel used for
validation (a); the profiles of the velocity scaled by the average velocity at a Reynolds number
of 300 based on the flow rate equation (2.1) at a distance 1 cm from the inlet (b) at different
spanwise locations, © along the central plane at location A in (a) which is 750 µm from
the wall, 4 at location B 150 µm from the wall, ∇ at location C 50 µm from the wall, C at
location D 30 µm from the wall and B at location E 10 µm from the wall; and (c) the pressure
difference across the channel as a function of the Reynolds number. In (b), the symbols are
the simulation results and the lines are the results obtained using the separation-of-variables
procedure for a fully developed flow in the channel. In (c), the solid line is the simulation
result and the dashed line is the result obtained using the separation-of-variables procedure for
a fully developed flow in the channel.

expansion for the velocity. There is very good agreement to within 1 %, between the
simulations and analytical results even at a location 150 µm from the wall. Closer to
the wall, there is a difference of ∼2 % at a distance of 50 µm from the wall, ∼3.5 %
at a distance of 30 µm from the wall and ∼12 % at a distance of 10 µm from the wall.
The difference in the velocity profiles at a distance of 10 µ form the wall is expected,
because the distance from the wall is equal to one half of the grid spacing. When
the distance from the wall is greater than the grid spacing, the results in figure 32(b)
shows that there is excellent agreement between the simulations and analytical results.
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The pressure difference across the channel from the simulations is compared with
the theoretical results for a fully developed flow obtained by separation of variables
in figure 32(c). Here, too, it is found that there is excellent agreement between the
theoretical and simulation results, thereby confirming that the flow dynamics is well
captured using a grid spacing of 20 µm for this configuration.
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