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Continents exert a thermal blanket effect to the mantle underneath by locally
accumulating heat and modifying the flow structures, which in turn affects continent
motion. This dynamic feedback is studied numerically with a simplified model of
an insulating plate over a thermally convecting fluid with infinite Prandtl number at
Rayleigh numbers of the order of 106. Several plate–fluid coupling modes are revealed
as the plate size varies. In particular, small plates show long durations of stagnancy
over cold downwellings. Between long stagnancies, bursts of velocity are observed
when the plate rides on a single convection cell. As plate size increases, the coupled
system transitions to another type of short-lived stagnancy, in which case hot plumes
develop underneath. For an even larger plate, a unidirectional moving mode emerges
as the plate modifies impeding flow structures it encounters while maintaining a
single convection cell underneath. These identified modes are reminiscent of some
real cases of continent–mantle coupling. Results show that the capability of a plate
to overcome impeding flow structures increases with plate size, Rayleigh number and
intensity of internal heating. Compared to cases with a fixed plate, cases with a freely
drifting plate are associated with higher Nusselt number and more convection cells
within the flow domain.

Key words: convection in cavities, mantle convection

1. Introduction
Being ubiquitous in nature, thermal convection presents itself in many natural

flows. Warm air rising above solar-heated land or water generates convective cells
that contribute to all weather systems. Large-scale oceanic circulation is also generated
by thermal convection, as cold surface water at high latitudes sinks deep and
flows towards the equator and warm equator water floats towards higher latitudes,
resulting in an overturning circulation. These natural convection events occur in fluid.
Given enough time, thermal convection can even occur in Earth’s solid mantle by
means of solid-state creep (Turcotte & Schubert 2002). In fact, the realization that the
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mantle can exhibit viscous behaviour on a geologic time scale is crucial in conjuring
up mantle convection as the driving force for continental drift, which leads to the
birth of the revolutionary theory of plate tectonics (Schubert, Turcotte & Olson 2001).

Compared to the oceanic lithosphere, the average heat loss through continents is
much lower (Pollack, Hurter & Johnson 1993; Lenardic et al. 2005). The presence
of continents limits local surface heat flux and warms up the underlying mantle,
thus modifying the underlying flow structure, which in turn affects continent motion.
Therefore, continents and the mantle form a strongly coupled dynamic system. This
is analogous to a simplified model of an insulating plate drifting over a thermally
convecting fluid, which has been adopted in laboratory experiments (Elder 1967;
Zhang & Libchaber 2000; Zhong & Zhang 2005; Whitehead, Shea & Behn 2011).
The process was also modelled experimentally by a freely moving heat source over
a thermally convecting fluid (Howard, Malkus & Whitehead 1970; Whitehead 1972).
Simplified though they are, these models capture the essential factors and the basic
mechanisms, in particular, (1) a thermally convecting fluid subject to basal heating;
(2) a plate drifting on top of the fluid; (3) the dynamic feedback between the plate
and the convecting fluid.

In the present study, the emphasis is placed on the dynamic feedback between
a freely drifting plate and the thermally convecting fluid underneath it. How does
a freely drifting plate affect underlying convection and what dynamic states can it
trigger? Replacing the freely drifting plate with a rigid wall sealing the top of the
fluid results in the classic problem of Rayleigh–Bénard convection, for which one
of the key issues is the overall efficiency of heat transport through the fluid (Ahlers,
Grossmann & Lohse 2009). For the present coupled system, we will investigate how
a freely drifting plate affects the overall heat transport efficiency of the fluid as
compared to the case with a fixed plate.

Rather than being a passive drifter, a floating plate moves without requiring
a pre-existing stream in the fluid, as discovered very early through laboratory
experiments (Elder 1967). More recently, laboratory experiments show that a floating
plate over a convecting fluid oscillates periodically between the two end walls of
the fluid domain (Zhang & Libchaber 2000; Zhong & Zhang 2005). This suggests
that low-dimensional behaviour can be restored in turbulent Bénard convection by
introducing a freely moving boundary. As the plate covers an increasing portion of
the top surface, a trapped state starts to appear in which the floating plate stays in
the middle of the flow domain and makes only small excursions in response to the
competition between the two underlying convection cells (Zhong & Zhang 2007a,b).
Nevertheless, the fluid in these experiments is water, the Prandtl number of which
is far from that of the mantle. Furthermore, the aspect ratios of the fluid domain in
these experiments are much smaller than that of the Earth. These differences bring
uncertainty when applying the experimental results to the Earth itself.

Meanwhile, numerical methods utilizing dynamically determined boundary conditions
have captured processes of continent aggregation and dispersion and the simultaneous
development of underlying mantle flow (Gurnis 1988; Lowman & Jarvis 1993, 1995;
Lowman & Gable 1999; Honda et al. 2000; Heron & Lowman 2011). Moreover,
important light has been shed on the long-term dynamic feedback between the plate
and the underlying flow (Gurnis 1988; Zhong & Gurnis 1993; Phillips & Bunge 2005;
Whitehead & Behn 2015). An interesting feature is that time series of plate velocity
had suggested that a plate’s motion varies with its size: very large plates always have
an appreciable velocity, whereas the velocity of small plate is episodic, with low
velocities interrupted by bursts of high velocities (Gurnis 1988; Phillips & Bunge
2005). But the details of this variation and the mechanism underlying this variation
are unclear. More recently, a ‘continental drift convection cell’ has been observed in
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the numerical study of Whitehead & Behn (2015), in which a single convection cell
is always identified underlying the drifting plate, moving with the plate and absorbing
ambient cells on its way. However, the presence of the single cell and the periodic
motion of the plate are only steady for relatively large plates. What happens when
plates are small? It is expected that small plates are less capable of modulating the
underlying mantle flow and should behave more passively. Therefore, plate motion and
the evolution of underlying flow are expected to vary with plate size. But how exactly
plate motion and the associated underlying flow depend on plate size is still unclear.

To answer this question, we numerically simulate the coupled dynamic system
with a mobile plate of a wide range of sizes over a thermally convecting fluid with
infinite Prandtl number. Our results shed light on the above question and reveal three
different coupling modes: namely, the stagnant mode I (SM I), stagnant mode II
(SM II) and the unidirectionally moving mode (UMM) as plate size increases. These
different modes might illustrate, to a certain extent, the variation of continent–mantle
coupling over the convective mantle, as discussed in § 5.

The remainder of the paper is organized as follows: First, the numerical model
and techniques are given in § 2. The evolutions of three distinct coupling modes are
then demonstrated in detail for the two-dimensional (2-D) cases in § 3 and briefly for
the three-dimensional (3-D) cases later in § 4.6. Section 4 presents detailed analysis
on the simulation results. In this section, the variation of plate speed with plate size
is analysed, and a comparison of Nusselt number is made between cases with a
freely moving plate and those with a fixed plate. The variation of plate motion with
Rayleigh number, the effect of internal heating on plate motion, and the evolution of
different modes in three dimensions are also investigated in this section. Finally, a
brief summary and the relation of the identified coupling modes to real geophysical
phenomena are given in § 5.

2. Numerical simulations
Most of the simulations in the present study are performed for the 2-D models, but

some 3-D simulation results are presented in § 4.6. Our numerical model incorporates
several simplifications, as in previous studies (for example, Gurnis 1988; Whitehead
& Behn 2015): a 2-D or a 3-D rectangular geometry, the Boussinesq approximation,
a uniform viscosity for the convecting fluid, and the dropping of the inertia and
advection terms in the momentum equation owing to the large Prandtl number of
the mantle. Here, we focus on revealing the different coupling modes caused by the
‘thermal blanket effect’, which may be obscured when complex Earth-like factors are
considered. Therefore, the ‘thermal blanket effect’ of continents is studied in isolation
and the simulation is conducted in a much reduced system with only the essential
factors. A Cartesian coordinate system is considered, with coordinate components xi
(i= 1, 2 for the 2-D system; i= 1, 2, 3 for the 3-D system), where x2 represents the
vertical coordinate. The velocity components are denoted as ui, and the symbols t, P,
T , and h represent time, pressure, temperature and internal heating rate, respectively.
With the above assumptions, the dimensionless governing equations become:

∂ui

∂xi
= 0 (2.1)

∂2ui

∂xj∂xj
= Ra

∂P
∂xi
− Raδi2T (2.2)

∂T
∂t
+ uj

∂T
∂xj
=

∂2T
∂xj∂xj

+ h, (2.3)
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Ty =  0, non-slip

T = 1, uy = 0, √ = 0

Tx = 0

√x = 0

T = 0, uy = 0, √ = 0 T = 0, uy = 0, √ = 0

u  = 0
Tx = 0

√x = 0
u  = 0

x
y

FIGURE 1. Sketch of the model and specification of boundary conditions for the
2-D cases.

where the symbol δij denotes the Kronecker delta (δij= 1 if i= j, δij= 0 if i 6= j). The
Rayleigh number Ra is defined as Ra= gβ1TD3/(νκ), where g, 1T , D, β, ν and κ
are the acceleration due to gravity, temperature difference between the bottom and the
top of the fluid, the depth of the fluid domain, thermal expansion coefficient, kinematic
viscosity, and thermal diffusivity of the fluid, respectively. The flow can be turbulent
even for infinite Prandtl number, owing to the nonlinearity in the energy equation (2.3).
The average Nusselt number Nu over the bottom surface is defined as

Nu=
q

k
1T
D

, (2.4)

where k is the thermal conductivity and q is the average heat flux at the bottom of the
flow domain. Equations (2.1)–(2.3) are made dimensionless with the following scales:
the coordinate xi scale D, the time t scale D2/κ , the temperature T (relative to the top
surface temperature) scale 1T , the velocity ui scale κ/D, the pressure gradient ∂P/∂xi
scale ρ0gβ1T (ρ0 is the fluid density), the internal heating rate h scale ρ0cpκ1T/D2

(cp is the specific heat). For simplicity, the indicial notation is substituted hereinafter
by the basic Cartesian notation, where x = x1, y = x2, z = x3. Correspondingly, the
velocity components u1, u2, u3 are denoted as u, v, w, respectively. The vertical normal
stress σyy, discussed later, is normalized by ρ0νκ/D2.

The fluid is initially stationary and isothermal (T= 1). The vertical end walls are set
to be adiabatic. The bottom of the chamber is set to be isothermal (T = 1). Cooling
(T = 0) is imposed on top of the fluid. The limited heat flux through the continent
is simplified by setting it to zero at the plate–fluid interface, i.e. the plate bottom, as
also adopted by Whitehead & Behn (2015). All the boundaries of the fluid are set to
be stress-free except the plate–fluid interface, which is set to be non-slip, i.e. flow at
the interface has the same velocity as the plate. A schematic figure of the 2-D model
is shown in figure 1 with the boundary conditions denoted, where variables with a
subscript denote the partial derivatives with respect to the subscript (for example,
uy= ∂u/∂y). For the 2-D models, a 2-D convection domain with an aspect ratio of 8
(W/D= 8, where W and D are the horizontal span and the depth of the fluid domain,
respectively) is considered (figure 1). The plate length L, normalized by D, varies
from 0.25 to 5.

For fluid with infinite Prandtl number, body forces are balanced by viscous forces,
and thus there is no acceleration or net force on any mass element (Gable, O’Connell
& Travis 1991). The plate has no inertia. Therefore, the plate velocity is determined
by setting the net horizontal shear force exerted by the flow on the plate–fluid
interface (plate bottom) to zero. Plate velocity determined this way was first used by
Gable et al. (1991). It ensures energy conservation, neither adding nor subtracting
energy from the convecting system (Lowman & Jarvis 1999). Therefore, plate velocity
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is specified by the integral of flow velocity at the first grid cell below the interface.
Both the flow velocity and the plate position are updated at each time step. When the
plate encounters the end walls, its speed is set to be zero until the net underlying
flow reverses. The governing equations along with the specified boundary and initial
conditions are solved numerically using the finite-volume method. The code has been
used and validated when solving natural convection problems (for example, Mao,
Lei & Patterson 2009, 2010). The SIMPLE scheme (Patankar 1980) is adopted for
pressure–velocity coupling and the QUICK scheme (Leonard 1979) is applied for
spatial derivatives. A second-order implicit scheme is applied for time discretization.

For each run of the 2-D cases, the plate is first fixed in the middle at the top of
the fluid (y = 0) until a quasi-steady-state is reached, and then the plate is set free.
A mesh and time-step dependency test has been conducted for three different meshes,
400× 50, 800× 100, 1200× 150, for the fixed plate case in the 2-D system with a
plate length of L=0.25 and Ra=106 (Appendix). All the meshes were equidistant and
the time step is adjusted so that the Courant–Friedrichs–Lewy (CFL) number remains
the same for different meshes. The averaged Nusselt number Nu at quasi-steady-state
(averaged from t= 0.3 to 0.5) for the three different meshes (from the coarsest to the
finest) is 13.88, 16.66, 17.25. The difference of Nu decreases from 20.0 % between the
former two meshes to 3.5 % between the latter two. In order to ensure the accuracy
of the solutions while keeping the calculation time manageable, the 800× 100 mesh
is used in all the following 2-D simulations with a time step of 5× 10−7.

For the 3-D coordinate system, the axes of x and z lie within the horizontal domain,
and the y axis is also in the direction of the depth as in the 2-D system. A mesh
of 400× 400× 50 was adopted for a 8× 8× 1 fluid domain (8× 8 is the horizontal
dimension and 1 is the depth). Similar to the 2-D cases, there is no net force on
the plate exerted by the fluid to ensure energy conservation of the convecting system.
As a result, the translational movement of the plate in the x–z plane ensures that
there is no net force in the directions of the two horizontal axes, x and z. Therefore,
both the integral of shear stress τxy (proportional to ∂(u − uc)/∂y, where u is the
x-component of fluid speed adjacent the interface and uc is the x-component of the
net plate speed) and the integral of τzy (proportional to ∂(w−wc)/∂y, where w is the
z-component of fluid speed adjacent the interface and wc is the z-component of the
net plate speed) on the interface (plate bottom) are zero. The rotational movement
of the plate in the horizontal plane ensures no net shear force τxz (proportional to
2−1(∂u/∂z− ∂w/∂x)− ωc, where ωc is the angular speed of the plate, the rotational
axis is parallel to the y axis at plate centre) is exerted by the flow on plate bottom.
These conditions uniquely determine the movement of the plate. Three plate sizes,
with horizontal dimensions of 0.5 × 0.5, 1.5 × 1.5 and 2.5 × 2.5 are adopted to
demonstrate the presence of three different modes in three dimensions. The plate is
initially placed at the centre of the top surface of the fluid domain. Different from
the 2-D case, the plate is set free to move from the beginning when the entire flow
is isothermal and stationary. Since 3-D simulation is much more time-consuming than
2-D simulation, a much shorter time series is obtained for the 3-D cases than the
2-D cases.

3. Coupling modes
A plate moves along with the underlying flow when it rides on a single convection

cell; however, the scenario differs remarkably when the leading edge of the plate
encounters impeding flow structures. Three coupling modes are identified and
elucidated below.
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FIGURE 2. Stagnant mode I (SM I) for L= 0.25 at Ra= 106, h= 0. (a,b) Snapshots of
streamlines and temperature for the quiescent duration and the active duration, respectively,
with a sketch of the flow structure of SM I on the right-hand side. The corresponding
times are marked in (c) with red circles and cyan lines. The solid and dashed streamlines
represent anticlockwise and clockwise flows, respectively. (c) Time series of plate centre
location x, plate velocity u, the average temperature T and average normal stress σyy at
plate bottom.

3.1. Stagnant mode I
A small plate is easily trapped when it encounters a downwelling and a counter-
rotating convection cell, as the opposing flows of the two cells converge beneath
the plate (figure 2a,b). The opposing forces exerted by these opposing flows on the
bottom of the plate tend to balance each other by adjusting the plate position. This
is a stable mode, since the plate will be pulled back if it is moved slightly away
from the balanced position. As a result, the plate is trapped for a long time, which
we term stagnant mode I (SM I). For a small plate of L = 0.25, it never shows
significant displacement after being arrested by the downwelling (figure 2c) and the
underlying flow structure remains approximately the same. Nevertheless, the system
shows an alternation of quiescence (figure 2a) and activity (figure 2b). The former
is characterized by a more regular flow structure (figure 2a) and smaller fluctuations
of plate velocity and flow properties with time (figure 2c). Furthermore, during the
quiescent duration, the thermal plumes are striking almost vertically towards the
opposing boundaries (figure 2a). In contrast, they show significant bifurcation and
variation during the active duration (figure 2b).

For a small plate of L= 0.25, the two convection cells underlying the plate do not
show significant variation in size over time. As the plate becomes larger, its capability
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FIGURE 3. Alternation of stagnant mode I (SM I) and velocity bursts for L= 0.5 at Ra=
106, h= 0. (a–g) Snapshots of streamlines and temperature with sketches on the right-hand
side. (h) Time series of plate centre location x, plate velocity u, average temperature T
and average normal stress σyy at plate bottom.

to modify the flow increases. As a result, as L increases to 0.5, the two convection
cells underneath shrink gradually as the two associated hot plumes approach the
plate, which is evident by comparing figure 3(a) with 3(b), and figure 3(d) with 3(e)
(supplementary movie 1 available at https://doi.org/10.1017/jfm.2019.189). Such an
evolution of flow pattern is due to the thermal blanket effect as the plate reduces the
local heat loss and weakens the downwelling. As the two cells shrink, one of them
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eventually vanishes and the remaining one merges with the neighbouring cell of the
same sign (this evolution is evident by comparing figure 3b with 3c, and figure 3f
with 3g), thus the plate rides on a single convection cell and exhibits a burst in
velocity (supplementary movie 1). This process of cell vanishing and merging is
accomplished when one of the two associated hot plumes reaches the plate. As a
result, the bursts in plate velocity are accompanied by evident bursts in temperature
T at plate bottom and alleviations of the extensional (positive) normal stress σyy there
(figure 3h).

3.2. Stagnant mode II
Another stagnant mode, i.e. stagnant mode II (SM II) (supplementary movie 2), starts
to appear at L ∼ 0.75 and gradually becomes dominant at L ∼ 1.5. For L = 1.5, the
plate rides on a single convection cell most of the time (for example, figure 4a,e,h).
However, plate motion can be severely hindered when the leading edge of the plate
encounters a counter-rotating cell and the associated downwelling. As the plate slows
down and becomes stagnant, a new downwelling starts to form at the other end of the
plate and a hot plume develops underneath, initiating two counter-rotating convection
cells underneath and a divergent flow at plate bottom (figure 4b, f, supplementary
movie 2). The two cells underlying the plate together with the neighbouring cells
on each side of the plate form a flow structure that traps the plate, which we term
stagnant mode II (SM II). This is a stable structure, since a minor shift of the plate
position will be inhibited by the opposing flow of the neighbouring cell.

Under the insulating plate, the hot plume grows and the two convection cells expand.
Meanwhile, the neighbouring hot plume on each side of the plate moves towards the
plate. As a result, the two underlying convection cells merge respectively with the
nearest cell of the same sign on each side of the plate at the cost of a counter-rotating
cell, which is evident by comparing figure 4(c) with 4(d), and figure 4( f ) with 4(g)
(supplementary movie 2). This is contrary to the shrinkage of the underlying cells in
SM I. Nevertheless, SM II becomes unstable when the two underlying cells merge
with the neighbouring cells and become large (figure 4d,g), since a small shift of
the plate position will be amplified rather than inhibited as in SM I. One of the
two cells soon becomes dominant in moving the plate and thus the plate rides on a
single cell again (figure 4e,h), ending its stagnant state. Since the downwelling which
initially slows down the plate tends to drag the plate downwards, the decrease in plate
speed u owing to the encounter of downwelling is accompanied by an increase in the
extensional stress σyy at the plate bottom, and a decrease in the average temperature
T there (figure 4i). Conversely, during the stagnant duration, the growth of hot plumes
underneath the plate leads to a gradual increase of T and a decrease of σyy (figure 4i).
As the insulating effect of the plate increases with its size, a larger plate needs a
shorter time to warm up the underlying flow and modify the underlying flow structure.
Therefore, SM II is much shorter-lived than SM I.

3.3. Unidirectional moving mode
As the plate size increases to L = 2.5, the aforementioned two stagnant modes
disappear and the unidirectional moving mode (UMM) emerges (supplementary
movie 3). In this mode, the plate rides most of the time on a single large convection
cell and moves unidirectionally until it encounters the end walls (figure 5), where it is
forced to stop until hot plumes rise up underneath and the net underlying horizontal
flow reverses (figure 5d), similar to that observed by Whitehead & Behn (2015).
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FIGURE 4. The evolution of stagnant mode II (SM II) for L = 1.5 at Ra = 106, h = 0.
(a–h) Snapshots of streamlines and temperature with sketches of flow structure on the
right-hand side. (i) Time series of plate centre location x, plate velocity u, average
temperature T and average normal stress σyy at plate bottom.
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FIGURE 5. The unidirectional moving mode (UMM) for L = 2.5 at Ra = 106, h = 0.
(a–g) Snapshots of streamlines and temperature with sketches of flow structure on the
right-hand side. (h) Time series of plate centre location x, plate velocity u, average
temperature T and average normal stress σyy at plate bottom. Except moments of forced
stop in (d), a single large convection cell is always identified underlying the plate.

the leading edge of the plate encounters a cold downwelling, instead of being stopped
as in the stagnant modes, the plate slows down transiently but continues moving
forwards, taking the cold plume along with it (supplementary movie 3). Meanwhile,
the underlying convection cell merges with the frontal cell of the same sign, at the
cost of a counter-rotating cell, which is evident by comparing figure 5(a) with 5(b),
and figure 5(e) with 5( f ). On the other hand, when the underlying convection cell
becomes large through merging, it disintegrates by forming new hot upwelling near
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FIGURE 6. (a) Plate centre position x and (b) plate velocity u for Ra= 106, h= 0. Time
starts from when the plate is freed. The red horizontal lines denote the maximum range
of plate centre position x.

the trailing edge of the plate, which is evident by comparing figure 5(b) with 5(c),
and figure 5( f ) with 5(g). Such a process of cell merging near the leading edge and
disintegration near the trailing edge continues, resulting in the propagation of a large
convection cell with the moving plate (supplementary movie 3).

A comparison of the average normal stress σyy at the plate bottom among different
cases suggests that as plate size increases, the value of σyy changes from generally
positive to generally negative (figures 2–5), suggesting that the plate transfers from
being dragged down by cold downwelling to being uplifted by hot upwelling. This is
consistent with the generally larger number of hot plumes identified underneath the
larger plate (figures 2–5), which embodies the increase of the thermal blanket effect
with plate size.

4. Analysis on the simulation results
4.1. Variation of plate speed with plate size

It is clear now that plate motion varies significantly with its size. Very small plates
(L 6∼ 0.25) are permanently trapped in SM I with no significant displacement once
being trapped (figure 6, L= 0.25). As plate size increases to L= 0.5, the plate shows
long durations of stagnancy punctuated by short episodes of velocity burst (figure 6).
Excluding the forced stop at the end walls, the duration of stagnancy decreases with
increasing plate size (figure 6). For L> 2.5, the plate shows unidirectional movement
until it encounters the end walls (figure 6a, L= 2.5, 4.0).

An analysis on the time series of plate speed |u| reveals that as a plate becomes
larger, it is less likely to be stagnant and its speed becomes increasingly concentrated
on high values (figure 7a), suggesting its increasing capability to overcome impeding
flow structures and maintain a steady motion. As L increases to 2.5, the probability
of a plate to be stagnant (low speed, for example, |u| < 100) approaches zero
(figure 7a,b), corresponding to the UMM of large plates. The enhanced moving
capability of larger plates is also manifested in the increase of the average plate
speed |u|mean with plate size (figure 7c). The standard deviation of plate speed reaches

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

18
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.189


The dynamics of an insulating plate over a thermally convecting fluid 297

500
|u|

|u| < 50

|u|mean

|u|max

|u| < 100

10000

0.005

Pr
ob

ab
ili

ty
 d

en
sit

y

0.010

0.015

Pe
rc

en
ta

ge
 o

f l
ow

 |u
|

1 2
L

3 40

20

40

60

80

100(a) (b) (c)

|u|

1 2
L

3 40

500

1000

1500

2000
SM I SM

I + II
SM II UMM

4

L = 4

3210
x

-1-2-3-4

0
Excluded

1

D
ep

th

4

L = 3

3210-1-2-3-4

0
Excluded

1

D
ep

th

0.1 0.3 0.5 0.7 0.9
(d)

L = 0.25

L = 0.75
L = 1.0
L = 1.5
L = 2.0
L = 2.5
L = 3.0
L = 4.0

L = 0.50

FIGURE 7. Analysis of plate speed |u| for different plate size L at Ra = 106, h = 0
(a) Probability density of plate speed |u|. (b) Percentage of low plate speed |u| in the time
series of |u|. (c) Mean plate speed |u|mean with the standard deviation denoted by the upper
and lower bars, and the maximum plate speed |u|max. Dashed vertical lines indicate the
rough boundaries between different modes (SM I+ II denotes a transition from SM I to
SM II, where both modes exist). (d) Streamlines and temperature for L= 3 (upper panel)
and 4 (lower panel) when the plate starts to ride on a single convection cell again after
the forced stop at the end wall. The two red lines at the top denote the range of the
end-wall cell. Plate speeds affected by this cell are excluded from the analysis.

a maximum at a plate size of L= 1.5–2 (figure 7c). This is because towards the lower
end of plate size, the plate shows an increasing tendency to be stagnant, and thus the
standard deviation decreases. Towards the upper end, the increasing steadiness of the
unidirectional plate motion also results in a decrease of the standard deviation.

The maximum plate speed is reached at a plate size of L∼ 0.75 (figure 7c). Since
plate speed reflects the average flow speed at the plate–fluid interface, an increase
in plate size has the effect of smoothing out local fluctuations and results in more
steady plate movement. Therefore, as plate size increases, it is less susceptible to local
velocity pulses caused by local flows and thus its maximum speed decreases. On the
other hand, a very small plate (e.g. L= 0.25) is always trapped in SM I, and therefore
its maximum speed is also small. It is worth noting that data at the very initial stage
when the plate is just freed are excluded from the above analysis in order to exclude
the start-up effect. Furthermore, plate speed affected by the artificially forced stop at
the end walls is also excluded, starting from when the plate is forced to stop until it
returns back and rides on a single convection cell again (figure 7d). A comparison of
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FIGURE 8. (a) Time series of Nu at the bottom of the flow domain for Ra=106 and h=0
with fixed and freely moving plates. (b) Time-averaged Nu during the quasi-steady-state at
Ra= 106 for cases with fixed and free plates and their difference (1Nu). (c) Temperature
and streamlines at the quasi-steady-state for cases with a fixed plate. (d) Time-averaged
Nu during the quasi-steady-state for L= 2.5 at different Ra.

the single convection cell underlying different plates suggests that it becomes larger as
plate size increases (figure 7d). For a large plate of L= 4, there is not much room left
for the development of impeding flow structures for the plate (figure 7d). Therefore,
for L = 4, the distribution of plate velocity is much more concentrated on relatively
high values (figure 7a), showing a rather steady plate movement.

4.2. Comparison of Nu with fixed-plate cases
Compared to cases with a fixed plate, the Nusselt number Nu, increases when the
plate is free to move (figure 8a,b). The value of this increase, 1Nu, depends on plate
size L, increasing dramatically with L up to L= 0.75, staying approximately constant
for L ranging from 0.75 to 2.5, and decreasing gradually with L for L>2.5 (figure 8b).
Compared to heat transfer by conduction, the thermal plumes that bring fluid from one
horizontal boundary straightforwardly towards the opposing boundary present a more
efficient means of heat transfer. These thermal plumes are henceforth termed striking
thermals since they strike the opposing boundary, in contrast to those short thermals
that move fast horizontally with the convective flow until uniting with the striking
thermals. Therefore, the presence of a larger number of striking thermals should be
associated with a higher efficiency of heat transfer, and hence larger Nu.

For cases with a fixed plate, Nu decreases dramatically with L up to L= 0.75 and
less abruptly as L continues to increase (figure 8b, blue line). The dramatic decrease
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of Nu corresponds to the dramatic decrease of convection cells from five to two,
or the associated striking thermals from six to three as L increases from 0.25 to 0.75
(figure 8c). As L continues to increase, the number of convection cells (or striking
thermals) becomes constant (figure 8c) and therefore the decrease of Nu with L
becomes less abrupt. For 0.756L6 2.5, only two convection cells, or three associated
striking thermals are present for cases with a fixed plate (figure 8c). However, the
corresponding cases with a freely moving plate have evidently more convection cells
(or striking thermals) (figures 3–5), which lead to a higher efficiency of heat transfer
and therefore higher Nu. For large plates of L>2.5, the convection cell underneath the
moving plate occupies a large portion of the flow domain (for example, figure 7d).
In this case, the space left for the development of other convection cells (or the
associated striking thermals) becomes quite limited and it decreases with increasing L
(figure 7d). Therefore, as L increases, the number of striking thermals for fixed-plate
cases and that for free-plate cases gradually becomes close, and thus 1Nu, the
difference of Nu between cases with free and fixed plates, decreases with L for
L> 2.5. It is expected that 1Nu approaches zero as L approaches the length of the
fluid domain.

For a unit square box, the boundary layer theory has predicted a power-law relation
of Nu being linearly proportional to Ra1/3 (Turcotte & Schubert 2002). Nevertheless,
the present configuration is significantly different from a unit square box, not only
in the horizontal size of the flow domain but also in the top boundary condition.
Therefore, to obtain the Nu–Ra power-law relation (Nu = α Raβ) for the case of
L=2.5, both the exponent β and the coefficient α are set as the fitting parameters. Our
results suggest that the average Nu over the quasi-steady-state scales with Ra0.2831 for
the fixed-plate cases, and Ra0.2565 for the free-plate cases, and therefore the exponents
are much smaller than the theoretical value of 1/3 predicted for a unit square box.

4.3. Variation of plate motion with Ra
For L= 2.5, the plate moves unidirectionally under different Rayleigh numbers until it
encounters the end wall (figure 9a). Nevertheless, for Ra= 2× 105, the plate motion
can still be severely hindered when the plate encounters impeding flow structures
(figure 9b). As Ra increases, the probability of low plate speed (for example, |u|<100)
decreases significantly, approaching zero for Ra > 106 (figure 9c). Therefore, apart
from plate size, the increase of Ra also increases plate capacity to overcome impeding
flow structures. Excluding data affected by the end-wall effect, the mean plate speed
scales relatively well with Ra2/3, which is consistent with the scaling prediction for the
mantle flow (Turcotte & Schubert 2002; Grigné, Labrosse & Tackley 2005). However,
for Ra= 2× 105, the mean plate speed is evidently lower than the scaling prediction
(figure 9d). This is because for this lower Ra, plate movement is often significantly
hindered by impeding flow, which counteracts the main flow that drives the plate
(figure 9b), and therefore the plate speed is lower than the speed of the underlying
flow predicted by the scaling.

4.4. The correlation between plate movement and thermal signals of the flow
The presence of the plate affects the underlying thermal structure, as shown by the
isotherms and streamlines in § 3. Further, plate movement or stagnancy can affect the
thermal signals of the flow. Some of the thermal signals, including the spatial root
mean square temperature Trms, the average temperature T over the flow domain, the
average temperature T i at the plate–fluid interface and the Nusselt number Nu are
shown in figure 10.
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FIGURE 9. Variation of plate motion with Ra for L= 2.5 and h= 0. (a) Time series of
plate centre location x for Ra= 2× 105, 5× 105, 106, 2× 106, 5× 106 from top to bottom.
(b) Time series of the corresponding plate velocity u. (c) Probability density of plate speed
|u|. (d) Time-averaged plate speed |u|mean during the quasi-steady-state, the straight line is
a fit to the value at Ra= 5× 106 and is given by |u|mean = 0.0627 Ra2/3.

For a very small plate of L= 0.25, the quiescent duration (highlighted by the cyan
bands in figure 10a) is characterized by lower plate velocity u, lower Trms and higher
Nu than the active duration (figure 10a). The lower Trms corresponds to the more
regular flow structure during the quiescent duration (figure 2a). The higher Nu during
the quiescent duration corresponds to the more straightforward movement of the
thermals towards the opposing boundaries. The vertically moving thermals during the
quiescent duration bring colder/warmer material to the lower/upper boundary than the
bifurcating and inclining thermals during the active duration (figure 2a,b), resulting
in a higher efficiency of heat transfer, and therefore higher Nu. Over the quiescent
duration, the time series of the average temperature T over the flow domain shows
a general trend of slow increase and is much smoother than over the active duration
(figure 10a). On the other hand, the average temperature T i at the plate–fluid interface
exhibits higher values (suggesting weaker downwellings underneath the plate) during
the active durations, consistent with the snapshots of temperature (figure 2a,b).

To investigate the effect of a very small mobile plate (L= 0.25) on the flow pattern
underneath, we remove the plate (at time t= 0.47) after the coupled system reaches a
quasi-steady-state. It is found that the quasi-steady-state flow pattern for the no-plate
case is similar to the flow pattern for the case with a small plate of L= 0.25, shown
in figure 2(a), in which the flow domain is occupied by five convection rolls of similar
size. Nevertheless, for the no-plate case, the differentiation between the active and the
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FIGURE 10. The response of thermal signals to plate movement for different plate sizes
at Ra= 106, h= 0: time series of plate centre location x, plate velocity u, the spatial root
mean square temperature Trms, the average temperature of the flow domain T , the average
temperature T i over the plate–fluid interface, and the average Nusselt number Nu at the
bottom boundary. (a) L= 0.25, the cyan bands highlight the quiescent durations, the red
line in the time series of Nu shows the result of Nu after the plate is removed at t= 0.47.
(b) L= 0.5, the magenta bands highlight the velocity bursts. (c) L= 1.5, the cyan bands
highlight the durations when the plate slows down and becomes stagnant. (d) L= 2.5, the
cyan bands highlight the durations when the plate slows down at first but retains or even
increases its speed afterwards.

quiescent duration is less noticeable and the fluctuation of flow properties with time is
much smaller, as illustrated by the time series of Nu (red line in figure 10a). Therefore,
rather than being a completely passive tracer, the small plate magnifies the fluctuation
of flow properties during the active duration and lowers the average Nu.

As plate size increases to L= 0.5, the plate experiences long durations of stagnancy
on top of cold downwelling until hot upwelling arrives underneath and brings it a
velocity burst. As the plate alternates between stagnancy and velocity burst, the
thermal signals, including Trms, T , T i and Nu, exhibit consistent trend of variation
over time (figure 10b). Plate velocity burst is associated with a general increase of
Trms, a maximum of T , a burst of T i, and a decrease of Nu (highlighted by the
magenta bands in figure 10b). Since plate velocity bursts happen when hot upwelling
arrives underneath, bursts of plate velocity correspond to bursts of temperature Ti at
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the interface. When the plate experiences a velocity burst, the position of the plate
changes abruptly. Corresponding to this abrupt change, the underlying convection cells
undergo a process of reorganization. During this process, the plume pattern becomes
less regular and the number of convection cells decreases (figure 3b,c). As a result
of flow reorganization, bursts of plate velocity correspond to general increases of Trms
and general decreases of Nu, as highlighted by the magenta bands in figure 10(b).
Shortly after the velocity burst, the plate arrives at another downwelling and becomes
stagnant again. The thermal plumes and the convection cells reorganize to adjust to the
changed plate position. As the process of reorganization goes on, the spatial pattern
of convection cells and the associated plumes becomes more regular and the number
of convection cells increases (figure 3d,e), resulting in a decrease/increase of Trms/Nu.
This process of variation in Trms and Nu persists as the plate alternates between
stagnancy and velocity burst. Since a stagnant plate accumulates heat underneath
more efficiently than a fast moving plate, the burst in plate velocity is associated
with the start of a sharp decrease in the average temperature T (figure 10b). This
decrease persists for a while after the plate reaches a new downwelling. After the
plate sits on top of the downwelling for a sufficiently long time, its thermal blanket
effect becomes evident and the value of T begins to increase with time. As a result,
the average temperature T reaches a maximum around the time when the plate shows
a velocity burst, as highlighted by the magenta bands in figure 10(b).

As plate size increases to L > 1.5, the overall shape of thermal plumes becomes
more irregular and their movement towards the opposing boundary becomes less
straightforward (figures 4 and 5). The alternation between stagnancy (SM II) and
movement becomes less distinct and less differentiable. Further, the duration of
stagnancy (SM II) is much shorter than that of SM I for smaller plates, leaving
a very limited time for the fluid to reorganize and respond to the newly settled
plate position. As a result, the variation of the thermal signals of the fluid with
plate movement becomes less obvious (figure 10c). Nevertheless, a decrease in plate
velocity u and its subsequent stagnation are associated with an evident decrease and
then a subsequent increase in the average temperature T i at the interface (highlighted
by the cyan bands in figure 10c). This corresponding variation in plate velocity u and
T i is consistent with the temporal evolution of the stagnant mode II. The encounter
of cold downwelling at the leading edge of the plate initiates a slowdown of plate
velocity and a decrease in T i, which is evident by comparing figure 4(a) with 4(b), and
figure 4(e) with 4( f ). As the plate slows down, it gradually enters into the stagnant
mode II and nurtures the growth of hot upwelling underneath the plate (figure 4b,c),
resulting in an increase of T i at the interface. This variation of T i after the slowdown
of plate velocity is also observed for the even larger plate case of L = 2.5. As the
thermal blanket effect is enhanced with increasing plate size, the decrease and the
subsequent increase in T i (highlighted by the cyan bands in figure 10d) is completed
in shorter durations for the case of L= 2.5 than for the case of L= 1.5 (figure 10c,d).
Further, the large plate of L= 2.5 slows down when it encounters a cold downwelling,
but the plate soon warms up the downwelling, resulting in the decrease of the spatial
root mean square temperature Trms with decreasing u. Conversely, an increase of
plate velocity from zero, after the forced stop at the end wall, is associated with the
generation of hot thermal plumes underneath the plate (figure 5d), which is reflected
in the increase of Trms as u increases from zero (figure 10d).

4.5. The effect of internal heating on plate movement
Apart from bottom heating at the core–mantle boundary, radioactive decay provides
an essential heating source for the interior of the Earth (Turcotte & Schubert 2002).
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FIGURE 11. The effect of internal heating on plate movement illustrated with a parameter
setting of L = 2.5, Ra = 106, h = 0, 2, 4, 8. (a) Plate centre position x and (b) plate
velocity u for Ra= 106 and L = 2.5 with different internal heating rates, h= 0, 2, 4, 8.
Time starts from when the plate is freed. The red horizontal lines denote the maximum
range of plate centre position x. (c) Probability density of plate speed |u|. (d) Percentage
of low plate speed |u| in the time series of |u|. (e) Time-averaged plate speed |u| during
the quasi-steady-state. Data shown in (d,e) exclude those when plate movement is affected
by the artificially forced stop at the end wall.

To investigate the effect of internal heating on plate movement, simulations were
conducted by applying different intensities of internal heating for the case of L= 2.5
(figure 11). Time series of the plate centre position x and plate velocity u show
increasing steadiness of plate movement as the intensity of internal heating h increases
(figure 11a,b). As h increases, the distribution of plate speed |u| becomes increasingly
concentrated on high values (figure 11c), suggesting an increasing steadiness of plate
movement and an increasing overall plate speed. Meanwhile, as h increases, the
probability and the percentage of low plate speed decrease (figure 11c,d), suggesting
a decreasing likelihood of plate movement being severely hindered by impeding
flow structures. The average plate speed |u| increases with increasing h (figure 11e).
Therefore, plate mobility or its capability to overcome impeding flow structures
increases with increasing internal heating intensity h.

A comparison was also made between one case with h = 0 (no internal heating)
and another one with h = 8 for a small plate size of L = 0.5. Time series of plate
centre position x and plate velocity u show that plate mobility increases significantly
as internal heating is switched on (figure 12a). For h= 8, as a result of the enhanced
plate mobility, the distinction between stagnation and velocity burst becomes less
differentiable in the times series of plate velocity u, and the plate is able to reach the
end walls (figure 12a). Consequently, the probability of plate stagnation (low plate
speed |u|) decreases significantly as h increases from 0 to 8 (figure 12b).
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FIGURE 12. The effect of internal heating on plate movement illustrated with a parameter
setting of L= 0.5, Ra= 106, h= 0, 8. (a) Plate centre position x and plate velocity u for
Ra= 106 with h= 0 (black line) and h= 8 (red dashed line). Time starts from when the
plate is freed. (b) Probability density of plate speed |u|.

4.6. The presence of different modes in three dimensions
To illustrate the presence of different modes in three dimensions, 3-D simulations were
conducted in a 8× 8× 1 (8× 8 is the horizontal dimensional size and 1 is the depth)
convective domain with a square plate of different sizes floating on top of it. Although
the plate is set free to move from the beginning when the entire flow is isothermal
and stationary, it is observed that all of the plates remain stagnant at the initial stage
and only begin to move at a more developed stage.

The addition of a new dimension in space introduces much richer dynamics in
the fluid domain and more possibilities in plate movement. Nevertheless, the three
different coupling modes (SM I, SM II and UMM) revealed in two dimensions are
all identified in three dimensions, and the basic characteristics of the different modes
are consistent with those observed in two dimensions.

For a small plate with a horizontal size of 0.5× 0.5, the plate shows a short episode
of velocity burst when its underlying flow is coherently flowing in one direction, from
a site of hot upwelling towards a site of cold downwelling (figure 13a,d). When the
plate arrives at the site of downwelling, the underlying flow converges underneath the
plate and flows downwards towards the bottom of the fluid domain. The convergence
of flow underneath the plate involves flows in two opposing directions for the 2-D
cases (figures 2a, 3a,e), but involves flows in all horizontal directions for the 3-D case
(figure 13b,c). The coupled system achieves a balance by adjusting the plate position
so that the forces exerted by the underlying flow on the plate are balanced. This is a
stable mode since the plate will be pulled back to the balanced position if it is moved
slightly away from it. Figure 13(b) shows the snapshot of two isothermal surfaces
and streamlines of SM I at an early stage of flow development, while the presence
of SM I at a more developed stage is illustrated in figure 13(c). The convergence of
flow underneath the plate is shown by the streamlines there, and the presence of cold
downwelling at the plate position is demonstrated by the translucent blue isothermal
surface.

For a larger plate with a horizontal size of 1.5 × 1.5, the presence of SM II
is illustrated in figure 14. Figure 14(a) shows the snapshot of isothermal surfaces
and streamlines when the fluid underneath the plate flows almost coherently in one
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FIGURE 13. The evolution of stagnant mode I in three dimensions with a plate
size of 0.5 × 0.5, Ra = 106 and h = 0. The translucent blue and red iso-surfaces
represent isothermal surfaces of 0.25 and 0.8, respectively. The grey lines represent
streamlines around the plate. (a–c) are snapshots of isothermal surface and streamlines.
(a) Corresponds to a time when plate shows velocity burst. (b,c) Correspond to the time
when the plate shows SM I at an early and a more developed stage respectively. (d) Time
series of plate velocity components, u, w and its horizontal speed (u2

+ w2)1/2. The
corresponding times of (a–c) are marked with cyan dots and lines in (d).

direction, nearly parallel to the z axis. It is about to encounter flows in different
directions at its leading edge. As the plate moves ahead, the coherent flow structure
underneath the plate disappears and the plate slows down. This slowing down of
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FIGURE 14. The evolution of stagnant mode II in three dimensions with a plate size
of 1.5 × 1.5, Ra = 106 and h = 0. The translucent blue and red iso-surfaces represent
isothermal surfaces of 0.25 and 0.8, respectively. The grey lines represent streamlines
around the plate. (a–d) Snapshots of isothermal surface and streamlines. (a) Corresponds
to the time when the plate shows velocity burst. (b) Corresponds to the time when plate
begins to show SM II. (c) Corresponds to the time when the SM II is about to end.
(d) Corresponds to the time when the plate shows velocity burst again. (e) Time series of
plate velocity components, u, w and its horizontal speed (u2

+ w2)1/2. The corresponding
times of (a–d) are marked with cyan dots and lines in (e). The grey bands mark the
duration when plate velocity is affected by the end wall, i.e. the plate is not allowed to
penetrate the end wall.
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plate enhances the thermal blanket effect of the plate to the underlying flow and
nurtures the growth of hot thermal plumes underneath the plate. Consequently, a hot
plume starts to rise up underneath the plate (figure 14b), similar to the 2-D case
(figure 4b, f ). The presence of the hot plume underneath the plate gives a divergent
flow structure there, as shown by the streamlines (figure 14b), analogous to the 2-D
case (figure 4b, f ). As the plume grows and the underlying flow evolves with time,
the flow in the direction parallel to the positive x axis starts to become dominant
(figure 14c), and the plate is about to move in the same direction as the dominant
flow. Figure 14(d) shows the termination of SM II, in which the plate rides on a
coherent flow again, almost parallel to the positive x axis. During this evolution of
SM II, the plate changes its direction from originally moving parallel to the z axis
before the stagnation mode to moving parallel to the x axis after the stagnation
mode, as illustrated by the direction of streamlines in figure 14(a,d). This change of
direction is also evident in the time series of velocity components, in which the w
component decreases and the u component increases during the evolution of SM II
(figure 14e).

For an even larger plate with a horizontal size of 2.5 × 2.5, the presence of the
unidirectional moving mode is illustrated in figure 15. The plate is observed to move
almost straightforwardly until it encounters the end wall. Figure 15(a) shows the
snapshot when the plate rides on a coherent flow structure and is about to encounter
impeding flow structure at its leading edge. Hot thermals are observed to rise up at
its trailing edge while cold downwellings occur close to its leading edge, similar to
the pattern of a single underlying convection cell in the 2-D case. When the plate
encounters the downwelling and the associated impeding flow structure at its leading
edge, it slows down but continues its movement forwards, taking the cold downwelling
along with it (figure 15b). As a result, the cold downwelling is observed to dip at
an angle beneath the moving plate, similar to the 2-D case (figure 5b). This slowing
down of plate enhances the thermal blanket effect of plate to the underlying flow and
the underlying flow quickly readjusts by forming new uprising hot plumes which are
observed at a later stage (figure 15c). The underlying flow quickly reorganizes by
merging with the frontal flow of the same direction and disintegrating at the trailing
edge of the plate. As a result of this reorganization, the plate rides on top of a strong
coherent flow again and resumes its fast motion (figure 15c). This process of flow
merging at the leading edge and disintegrating near the trailing edge is consistent
with that observed in the 2-D case (figure 5).

The time series of plate centre position is shown in figure 16. While a small plate
(0.5 × 0.5) remains almost in the same position after a velocity burst, larger plates
(1.5 × 1.5, 2.5 × 2.5) show increased mobility. As the flow develops to a relatively
mature stage, the largest plate (2.5 × 2.5) shows almost a unidirectional movement
until it encounters the end wall. Whereas the medium plate (1.5× 1.5) detours during
its movement, since it is easily affected by the flow structure it encounters and
changes its direction afterwards (figure 14). These characteristics of plate movement
agree with the time series of velocity components (figures 13d, 14e, 15d) and are
consistent with the characteristics of plate motion in the corresponding 2-D cases.

5. Discussions and conclusions

Plate size is revealed to have a strong influence on its motion over a thermally
convecting fluid. A small plate, with a weak capability to modulate the underlying flow,
easily falls into stagnancy when encountering impeding flow structures, whereas a
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FIGURE 15. The unidirectional moving mode (UMM) in three dimensions with a plate
size of 2.5× 2.5, Ra= 106 and h= 0. The translucent blue and red iso-surfaces represent
isothermal surfaces of 0.25 and 0.8, respectively. The grey lines represent streamlines
around the plate. (a–c) Snapshots of isothermal surface and streamlines. (a) Corresponds
to the time when the plate is about to encounter impeding flow. (b) Corresponds to the
time when plate slows down after it encounters downwelling. (c) Corresponds to the
time when the underlying convective flow reorganizes and the plate resumes its velocity.
(d) Time series of plate velocity components, u, w and its horizontal speed (u2

+ w2)1/2.
The corresponding times of (a–c) are marked with cyan dots and lines in (d). The grey
bands mark the duration when plate velocity is affected by the end wall, i.e. the plate is
not allowed to penetrate the end wall.
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FIGURE 16. Time series of plate centre position x, z with three plate sizes of 0.5× 0.5,
1.5× 1.5, 2.5× 2.5, Ra= 106 and h= 0.

large plate (L > 2.5) quickly modifies the impeding flow and moves unidirectionally
along with a single convection cell underneath it. As a plate becomes larger, it
becomes less likely to be stagnant. Two stagnant modes are identified, i.e., SM I
and SM II, characterized by the presence of cold downwelling and hot upwelling
underneath the plate, respectively, corresponding to convergent and divergent
underlying flow, respectively. For Ra = 106, the plate is permanently trapped in
SM I for L 6 0.25. As L increases to 0.5, the plate experiences an alternation of
SM I and velocity bursts. A small plate gradually escapes from SM I as the two
underlying convection cells shrink and the neighbouring hot plumes move towards
it. As L increases to 0.75, SM II starts to appear and this mode becomes dominant
in trapping the plate at L = 1.5. The plate escapes from SM II as the underlying
hot plume grows and the neighbouring hot plumes move towards it. This results in
the merging of underlying convection cells with the neighbouring cells and thus the
enlargement of the two underlying cells, which is contrary to their shrinkage in SM I.
For L > 2.5, the plate moves unidirectionally by quickly modifying impeding flow
structures on its way. As a result, a single convection cell is maintained underneath
the plate, merging with frontal cells of the same direction and disintegrating at the
back as the plate moves ahead. Although the possibilities of plate movement and flow
dynamics in three dimensions are much richer than in two dimensions, the coupling
modes between the plate and the underlying fluid are essentially the same. The three
coupling modes revealed in two dimensions, namely SM I, SM II and UMM, are all
identified in three dimensions.

Although the present simplified model is far from representing Earth itself, the
identified coupling modes are reminiscent of some real Earth cases. While most
continents have been moving from geoid highs to geoid lows along with the
underlying mantle flow since the breakup of Pangaea approximately 170 Myr ago
(Turcotte & Schubert 2002), some have been rather stagnant. One of them is the
African continent, which has been staying roughly stationary in a deep mantle plume
reference frame since the breakup of Pangaea (Burke & Torsvik 2004; Torsvik et al.
2008, 2010). It is being uplifted by a huge mantle plume (hot upwelling) in the
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eastern and southern part (Ebinger & Sleep 1998; Ritsema, van Heijst & Woodhouse
1999), and high velocity anomalies, which correspond to cold downwelling, were
identified near the edge of the continent (Ritsema et al. 1999). This thermal structure
conforms to SM II. The average width of the African continent is ∼1.2D (D is the
mantle depth, which is approximately 2900 km) from the middle towards its southern
part and ∼1.8D in the northern part, both of which fall into the size range for the
occurrence of SM II (figure 6c). Another stagnant continent, Zealandia, i.e. the largely
submerged continent of New Zealand, has been straddling the oceanic subduction site
at the Pacific–Australia plate boundary since its arrival there 25 Ma ago (Sutherland
1999; Cande & Stock 2004). As a subduction site corresponds to cold downwelling,
the thermal structure of the mantle flow underneath Zealandia is reminiscent of SM I.
The average width of Zealandia is approximately 0.4 D, which falls into the size range
for the occurrence of SM I, as suggested by the above simulation results (figure 6c).
Interestingly, these two stagnant continents are associated with extreme elevation
anomalies. Over 90 % of Zealandia is below water (Suggate, Stevens & Te Punga
1978), whereas the southern and eastern African plateau stands more than 1 km above
sea level (Lithgow-Bertelloni & Silver 1998). These elevation anomalies suggest that
Zealandia is being dragged down by cold downwelling, whereas the African continent
is being uplifted by hot upwelling, correlating well with the positive (extensional) and
the negative (compressional) vertical normal stress σyy identified at the plate bottom
for SM I (figure 2g) and SM II (figure 3i), respectively.

The Earth system is much more complex than the present oversimplified model.
Several other factors should be taken into account when applying the present results to
the Earth itself. First, the present study is conducted at a Rayleigh number of Ra=106,
which is still on the lower end of Rayleigh number for mantle convection. For an
estimation of the Rayleigh number for the mantle, the following parameters are taken
from Turcotte & Schubert (2002), a thermal diffusivity of κ= 10−6 m2 s−1, a dynamic
viscosity of µ= 1021 Pa s, a thermal expansion coefficient of β = 3× 10−5 K−1, an
average density of ρ = 4000 kg m−3, a temperature difference of 1T = 2900 K and
a mantle depth of D = 2880 km, resulting in a Rayleigh number of approximately
8×107. Nevertheless, this value is associated with uncertainties, largely because of the
uncertainties in the value of viscosity, which is temperature- and pressure-dependent
and varies significantly with depth (Turcotte & Schubert 2002). While the viscosity
of the upper mantle is of the order of 1021 Pa s (Mitrovica 1996), several geoid
studies, which are reviewed in King (1995), have suggested a viscosity jump by a
factor of approximately 30 for the lower mantle. Using the high viscosity value of the
lower mantle in the calculation of Ra would decrease the above Ra value by a factor
of 30. If the detailed radial profile of viscosity was known, an effective Rayleigh
number could be calculated using the volume average of viscosity. Moreover, for the
layered mantle convection model, a much lower Ra is expected for the upper mantle
convection, as the values of both 1T and the depth of the fluid layer D are much
smaller than those for the whole-mantle convection model. For instance, a value of
2.55× 105 has been estimated by Jarvis & Peltier (1989) as the Rayleigh number for
the upper mantle convection. In fact, a wide range of values, from ∼105 to ∼109, with
most falling into the range 105–108, have been adopted as the Rayleigh number in
numerical simulations of mantle convection induced by bottom heating. The selection
of a relatively low Ra value is sometimes dictated by computational considerations,
since cases with lower Ra are usually less time-consuming. The above discussion of
Ra values is concerned with mantle convection subject to pure bottom heating. On
the other hand, the Rayleigh number defined for mantle convection subject to pure
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internal heating ranges from ∼106 for the upper mantle convection and ∼109 for the
whole mantle convection (Turcotte & Schubert 2002). Since the mantle of the Earth
is subject to both bottom heating and internal heating, further studies on the coupling
modes are worth pursing using a model that adopts both thermal forcings, with a
proportion that is close to the Earth.

Our simulation results for L = 2.5 under various Ra indicate that plates are less
likely to be stagnant as Ra increases. It would be interesting to conduct simulations
at higher Ra and investigate the effect of Ra on the transition of different modes and
the distribution of plate speed. It has been revealed that the horizontal length of the
convection cell increases with Ra (Grigne, Labrosse & Tackley 2007). Therefore, for
cases with larger Ra, it is expected that a plate will travel longer distances before
being impeded and there will be fewer impeding flow structures within the flow
domain.

Second, the present study focuses on the influence of a single continent. In reality,
continents of different sizes are simultaneously modulating the mantle flow and
thus affecting the velocity of each other, and they sometimes break or collide with
each other. Therefore, one must be cautious when applying the present evolution of
different modes to real continents. Nevertheless, SM I provides a possible mechanism
for continent accretion. As it takes a long time for a small continent to escape from
stagnancy by itself, other continents may collide and amalgamate with it before it
generates a velocity burst by itself. Conversely, SM II promotes continent breakup.
In SM II, the evolution of a divergent mantle flow underneath the continent is
analogous to that after continent collision, in which hot plumes develop underneath
the supercontinent and stay underneath it until continent breaks up and disperses away
with the divergent convection flow (Lowman & Jarvis 1993, 1995). Furthermore, the
specified forced stop of a plate at the end of the flow domain is analogous to the
cessation of movement when continents collide. The flow development afterwards is
also characterized by hot plumes rising up underneath the continent and the generation
of a divergent flow (figure 4d). For future investigations, modelling with a periodic
boundary condition at the vertical boundaries is worth pursuing, in which the fluid
and the part of the plate passing through one side of the flow domain automatically
reappear on the opposite side with the same velocity.

In the present study, oceanic regions are differentiated from the continental regions
by a prescribed isothermal free-slip boundary condition. Although this approach is
adopted in many mantle convection studies, since oceanic plate can subduct into the
mantle and is often regarded as an integral part of mantle convection, it neglects the
influence of the rigidity of oceanic plates on mantle convection. In fact, many studies
have shown that the presence of large plates significantly influences the thermal
structure of the mantle (Bunge & Richards 1996; Zhong et al. 2000; Lowman, King
& Gable 2001; Monnereau & Quéré 2001). Rigid plates are revealed to control
the scale or the dominant wavelength of thermal structures (Davies 1988; Zhong
et al. 2000). The structure of rigid oceanic plates lying over the soft asthenosphere
is expected to induce larger convection cells than in the present model. Moreover,
owing to the rigidity of the oceanic plate, continents will encounter higher resistance
during their movement, which needs to be taken into account for a more realistic
representation. Nevertheless, the existence of the different coupling modes revealed
in the present study is unlikely to be affected by the rigidity of oceanic plate.

Results show that an increase in the intensity of internal heating results in an
increased mobility of plate. Therefore, plates will be less stagnant and more mobile in
the early days of Earth’s history when the intensity of internal heating by radioactive
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Mesh 1 2 3 Variation Variation
400× 50 800× 100 1200× 150 1 and 2 2 and 3

Time step 10−6 5× 10−7 3.3× 10−7 — —
Nu (averaged over t= 0.3 to 0.5) 13.88 16.66 17.25 20 % 3.5 %

TABLE 1. Effect of mesh size and time step on the Nusselt number at the bottom of the
flow domain for Ra= 106.

decay was much higher than today (Turcotte & Schubert 2002). The presently
revealed variation of coupling modes with plate size, shown in figure 7(c), is under
the assumption of pure bottom heating and no internal heating. An increase in internal
heating increases plate mobility and therefore will probably lead to a decrease of the
critical plate size of different modes. For example, the UMM appears only when the
plate size is larger than approximately 2.5 for Ra = 106 with pure bottom heating.
However, this value will probably decrease with the switching on of internal heating,
and the appearance of the stagnant modes of SM I and SM II will probably be
limited to smaller plates. Further simulations with internal heating switched on are
worth pursuing to verify this.

Another simplification of the present study is the assumption of a uniform viscosity.
In reality, the viscosity of the mantle is dependent on temperature, pressure and
composition, which leads to a layering of viscosity with lower values in the upper
mantle. The lowest viscosity value is present in the asthenosphere. This layering
of mantle viscosity leads to long-wavelength flow, i.e. large convection cells with
large horizontal extent (Bunge, Richards & Baumgardner 1996, 1997; Bunge &
Richards 1996; Tackley 1996; Zhong et al. 2000; Lenardic, Richards & Busse 2006;
Höink & Lenardic 2008). Consequently, the plate will move longer distances with
the convective flow until it encounters impeding flow structures associated with
downwellings, resulting in a decreased chance of being impeded. Further study of the
coupling modes with a model that gives a closer representation of the Earth is worth
pursuing in the future.
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Appendix. The mesh and time-step dependency test

The parameters of the mesh and time-step dependency test are listed in table 1. The
time series of Nusselt number (Nu) at the bottom of the flow domain is shown in
figure 17 for the three different meshes (400 × 50, 800 × 100, 1200 × 150) for the
fixed-plate case with L = 0.25 and Ra = 106. The difference of Nu decreases from
20.0 % between the former two meshes to 3.5 % between the latter two. Based on
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FIGURE 17. Time series of Nusselt number at the bottom of the flow domain for the
fixed-plate case with L= 0.25 and Ra= 106.

this test, a mesh of 800× 100 is adopted in the present simulations with a time step
of 5× 10−7.
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