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Abstract

Selective logging has been widely employed as a management practice in tropical forests due to
its reduced impact on biodiversity. However, by altering microclimatic conditions, logging
could affect soil fauna responsible for nutrient cycling and the long-term dynamic of the forest.
We investigated how selective logging affected termite species richness, composition, and the
distribution of species in trophic groups, as well as the natural response of termites to gradients
of soil conditions. Termites and edaphic variables were sampled in 32 permanent plots in
southern Amazonia. Plots were subject to selective logging for 10–31 years before termite sam-
pling. Time post-management was associated with changes in termite species composition, and
wood-feeding termites were more abundant in recently logged areas. Nevertheless, most of the
variation in termite species richness and composition can be attributed to the natural variation
in soil clay content. Moreover, soil-dweller species, a vulnerable group strongly linked to soil
decomposition, were present in all plots. These results suggest that the impact of selective log-
ging on termite communities might be milder compared with other types of disturbance. It is
likely that the decomposition process performed by termites, and consequently long-term eco-
system functioning, is preserved under selective logging.

Introduction

Selective logging became one of the main forest management practices in the last decades, and
the method is thought to have a relatively low short-term impact on biodiversity (Sabogal et al.
2006). However, tropical forest degradation alters forest structure, species composition, and suc-
cessional processes, causing impacts that may last for several years or even decades (Blanc et al.
2009). In the long run, in addition to the effects on predators and herbivores, selective logging
could still have major impacts on forest dynamics by affecting the soil fauna responsible for
nutrient cycling and ecosystem functioning. Decomposing organisms, such as termites, are
the main drivers of nutrient cycling and are important for the maintenance of the vegetation
structure in tropical forests over long periods (Jouquet et al. 2011).

Even though forest management has a low impact on vegetation structure (Silva 1996), the
fundamental processes such as canopy-gap dynamics, predation, and carbon storage will be
altered or disrupted (Laurence et al. 2002). In tropical regions, ectotherms have a low tolerance
to changes in temperature (Sunday et al. 2011), and even slight temperature increases can have a
major impact on the survival and reproduction of these organisms (Walther et al. 2002).
Moreover, the reduction in soil moisture is likely to have a strong impact on animals adapted
to high levels of soil moisture (Oberst et al. 2019), such as soil-dweller species that have a unique
role in the decomposition of soil organic matter (Lavelle et al. 1997). Therefore, by changing
microclimatic conditions, selective logging may alter the decomposition process by altering
the abundance and diversity of the soil fauna.

Termites are among the most abundant animals in tropical forests (Fittkau & Klinge 1973)
and play an important role in nutrient cycling and the dynamics of organic matter (Griffiths
et al. 2019; Lavelle et al. 1997). Near forest borders, the higher sunlight incidence and the reduc-
tion in moisture alter the composition of termite species (Dambros et al. 2013). For example,
areas as far as 90 m from roads are dominated by generalist wood-feeding termites, and com-
pared with the intact forest, these areas have fewer species specialized in the decomposition of
soil organic matter (Dambros et al. 2013). These results suggest that even minor changes in
microclimatic conditions, such as those observed in managed areas, can have an impact on
the distribution of termite species.
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In addition to the direct impact of management on termite
communities, disturbances could also alter the response of termites
to the natural variation in soil conditions (Dambros et al. 2013).
Many termite species use soil to build nests (Pie et al. 2004), which
are used to precisely control microclimatic conditions inside the
nest (Hu et al. 2012). Because only highly tolerant species survive
under disturbance regimes, specialists tend to be impacted most
(biotic homogenization; McKinney & Lockwood 1999). Forest dis-
turbance may reduce the natural variation in termite species com-
position that occurs along the environmental gradient of soil
granulometry because only species that build specific types of nests
can survive. However, the impact of logging on the reduction of
species turnover along gradients has not been investigated.

We analyzed how termite species richness, abundance, the
taxonomic and trophic composition changed in an experiment
of selective logging analyzing how this management strategy
affected the composition of termites along natural environmental
gradients. We hypothesized that: (1) selective logging reduces the
diversity of termites, especially the diversity of species that inhabit
the soil, and (2) the removal of habitat specialists homogenizes
communities along the natural gradient of soil granulometry.

Material and methods

Study area

The study was conducted in Claudia, Mato Grosso state, Brazil.
The region is characterized by dry Amazonian forests (Ferreira
et al. 1999), which correspond to approximately 10% of the
Amazonian biome. The climate in the region is classified as moist
and warm (Am in the Köppen scale) with two marked seasons: a
rainy season from September to April and a dry season from May
to August. The mean precipitation is 2200 mm, and the mean
annual temperature is 24°C (Vourlitis et al. 2002).

The region is considered as a transition forest among Cerrado
and Semideciduous Forests (Brasil 1979), and the vegetation is rap-
idly disappearing due to high deforestation rates caused by live-
stock activity (Kunz et al. 2008). The deforestation process
created amosaic of areas in the landscape with several types of land
uses and regeneration regimes, from old impacted forests to
recently impacted (Wang et al. 2019).

Sampling design and data collection

Data collection was performed in three units, denominated as
‘modules’ distant 20 km from one another. The modules are
located in forests with different management histories (selective
cutting of wood). Module I is located in an area that has been man-
aged for 10 years previous to termite sampling (2002), module II
for 17 years (1995), and module III for 31 years (1981). Modules I
and II were installed in a continuous forest area, whereas module
III was installed in a forest section surrounded the west and the east
by plantations, being connected to a single large area of native
vegetation.

In each module, termite sampling was conducted in several
plots following the method used in the Biodiversity Research
Program (PPBio). PPBio uses a standardized survey in permanent
grids of plots, which allows for rapid and long biodiversity mon-
itoring in Amazonia (Magnusson et al. 2005). Modules I and II are
formed by grids composed of six Northeast-southwest and two
northwest-southeast 1 km equidistant tracks, forming a rectangle
of 12 km2. Each kilometer along the northwest-southeast tracks has
a transect of 250 m, resulting in 12 plots in each of these modules.

Module III has the same sample design as the first two but has only
eight plots because of the forest fragment small size (Figure S1 in
Supplementary material). Plots of all modules were installed
according to the criteria stipulated by Magnusson et al. (2005), fol-
lowing relief level curves to minimize soil variation within the
plots. This procedure reduces soil and elevation variation and
ensures that the data will not be directly influenced by variation
in these factors. All plots were installed at a distance of at least
200 m from the forest edge to avoid edge effects. This minimum
distance is much higher than the edge effect previously reported
for termites (Dambros et al. 2013) and other groups (Forman &
Alexander 1998).

Termites were sampled in the 31 plots (12 in module I, 11 in
module II, and 8 in module III), following a modification of the
protocol proposed by Jones & Eggleton (2000). Each plot was sub-
divided into five sections of 5× 2m spaced 50m apart, totaling 155
sections. This division into sections allows detecting trophic
groups and species to associate species composition with the envi-
ronment (Dambros et al. 2020). The sampling effort in each section
was 1 hour/person of active search. Sampling was carried out in
August, September, and October 2010 and August 2011. These
months are characterized by the end of the dry period and the
beginning of the rainy season in the region.

Termites were collected manually with entomological tweezers
and pickaxes, which were used to dig the ground and to break
larger trunks. In each section, all possible termite habitats were sur-
veyed for termites, such as soil, dead wood, nests (epigeal, hypo-
geal, and arboreal up to 2 m height), foraging galleries, plant
roots, animal feces, fallen fruits, and litter. The collected material
was conditioned in plastic collecting bottles containing 70% EtOH.
The individual colonies were screened in the laboratory and iden-
tified using identification keys (Constantino 1999) and compared
with the material deposited at the Museum of Zoology of the
University of São Paulo (MZUSP). All material was stored in
80% EtOH and deposited in the Entomological Collection of the
Biological Collection of the Southern Amazon maintained by
the Biodiversity Studies Center of the Mato Grosso (NEBAM-
UFMT/Sinop) and MZUSP.

In each plot, we measured variables related to soil, canopy
cover, litter volume, and time post-management. Soil samples were
taken with the aid of a Dutch survey (Moulatlet & Emilio 2011).
The samples presented a depth of 0–10 cm and were arranged
in six points distant at 50 m each. The sampling design allowed
a homogenization of the plot, resulting in a single composite sam-
ple. Four canopy readings were performed every 50 m (north,
south, east, and west) using a concave spherodensiometer
(Concave-Model 1C-Forest Densiometers). The readings were
performed between 9 a.m. and 2 p.m. Moreover, we collected litter
volume (liters) at five points every 50 m in the plot. The litter con-
tained in an area of 1 m2 was collected and compressed three times
in a graduated bucket, using wood press launched at a distance of
1.5 m from the bucket. For the analyses, we used the mean value of
the five measures of volume per plot. Finally, we obtained the time
post-management of each plot through an interview with the own-
ers of the areas. These areas have been left without other disturb-
ances since the time post-management.

Data analysis

Because sections were not independent of each other due to the
short distance between them, we used data at the plot (i.e., transects
of 250 m each) and used plots as sampling units in all analyses. The
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relative frequency of each species in each section within a transect
was used as a proxy for abundance in each plot. As the total of sec-
tions per transect was five, the maximum frequency that each spe-
cies was bounded between zero and five. Species richness was
measured as the number of species found in each plot.

The functional composition was measured as the change in the
distribution of species in trophic groups. Termite species were cat-
egorized into trophic groups (Constantino 1999; Roisin & Leponce
2004): (I) wood-feeders: species that feed on dead wood; (II)
humus-feeders: species that feed on mineral soil and humus;
(III) litter-feeders: species that feed on leaf and small woody litter;
and (IV) intermediary-feeders: species that feed on largely decayed
wood that has become soil-like. Termites inhabiting and feeding in
distinct substrates, such as soil, litter, and wood, are likely to
respond differently to disturbances (Ackerman et al. 2009).

Differences in species composition between plots were mea-
sured by the Jaccard dissimilarity index. We applied a Principal
Component Analysis (PCoA) to summarize the dissimilarity
values in two ordination axes. The first two axes captured
20% of the variation in the Jaccard dissimilarity index. Each
additional axis increased the variance explained by less than
8%. The two ordination axes were used as response variables
in statistical models. The Jaccard index considers only species
presence/absences in transects, not species abundances.
Because termites are modular organisms, tallying the number
of individuals to calculate abundance might overestimate the
abundance of species with larger colonies. Although we
obtained occurrence frequency in sections within transects,
the Jaccard index is more sensitive to rare species than indexes
weighted by abundance (Jost 2007). These species are the most

Figure 1. Partial regression analysis testing the effect of soil clay content and time post-management on species richness (A and B) and composition variation (C and F).
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likely to be affected by changes in the environment. Therefore,
we only used metrics based on the presence/absence data for the
species composition analyses.

To evaluate the association between soil clay content, time post-
management, litter volume and canopy cover (predictor variables)

and termite abundance, species richness, and species composition
(response variables), we used multiple linear regression. These
regression models were run for all species and using each trophic
group separately. In addition to the multiple regression models
using the PCoA axes of species composition, we also investigated

Table 1. Coefficients of the association of environmental predictor variables with termite species richness, overall abundance (occurrence frequency), and species
composition on multiple regression models. Species composition was measured as the first two ordination axes of a Principal Coordinate Analysis (PCoA) using the
pairwise Jaccard similarity index. R2 represents adjusted values.

Time post-management Soil clay content Canopy height Litter F df R2

Species richness (S) −0.21 −0.68** 0.37 −0.26 4.515 26 0.32**

Abundance −0.33 −0.69** 0.49* −0.21 4.425 26 0.31**

Composition (PCoA1) 0.29 0.02 −0.02 −0.06 0.722 26 ˜0

Composition (PCoA2) 0.38* 0.66** −0.12 0.11 4.395 26 0.31**

**p< 0.01.
*p< 0.05.

Figure 2. Presence and absence of each termite species along the soil clay content gradient (A) and time post-management (red: 10, black: 17, yellow: 31) (B).
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changes in species composition against the predictor variables
using a Redundancy Analysis (RDA), which uses the raw species
counts instead of the Jaccard similarity matrix.

All analyses were performed using the Vegan (Oksanen
et al. 2018) and Betapart (Baselga et al. 2017) packages in R
(R Development Core Team).

Results

We observed a total of 72 species in the three studied modules. The
17-year post-management area had the highest species richness (55
species compared with 43–44 species in the 10 and 31 years post-
management modules; Table S1 in Supplementary material).
Species richness and abundance were lower in areas of high soil
clay content (Figure 1A; Table 1), but there was no evidence of
change in species richness with time post-management in multiple
regression models (Figure 1B; Table 1). Species richness was pos-
itively related to species abundance (Figure S1 in Supplementary
material).

Changes in termite species composition were associated with
both soil clay content and time post-management, as measured
by the second PCoA ordination axis (Figure 1C–F, Table 1) and
the RDA analysis (p< 0.01; Figure S2 in Supplementary material).
Therefore, termite species replaced each other along these gra-
dients (Figure 2).

Concerning trophic groups, litter-feeders represented the ter-
mite group with the lowest species richness in all post-manage-
ment treatments (Figure 3). Humus and wood-feeding termites
were the groups with the highest species richness, and the contri-
bution of each of these groups changed over time – the most spe-
cies-rich termite group after 10 and 31 years of management was
humus-feeding termites, whereas in the areamanaged 17 years ago,
the termite group with the highest species richness was the wood-
feeding group (Figure 3).

When species richness was correlated against predictor varia-
bles separately for each trophic group, time post-management, soil
clay content, and leaf-litter were associated with a decrease in
wood-feeding termite species richness (partial regression model:

when the effect of other variables is removed; Table S2 in
Supplementary material). However, we have not detected effects
of soil clay content, time post-management, canopy cover, or
leaf-litter on termite species richness for other groups.

Discussion

In contrast to expectations of an effect of selective logging on can-
opy openness, time post-management (minimum 10 to maximum
31 years) was not associated with termite richness or abundance.
Instead, we found the percentage of soil clay to be strongly asso-
ciated with termite abundance, species richness, and composition.
These results may indicate that the medium and long-term impact
of selective logging on the termite community is low and does not
change the response of species to natural environmental gradients.
It is possible that the 10-year interval is enough for the forest to
recover and that it is not possible to detect this impact over longer
periods.

Wood-feeding termites were the group with the highest diver-
sity 17 years post-management. These termites may have high
richness after selective logging because the fall of entire trees,
branches, and leaves increases food availability (Sizer et al.
2000). A similar increase of wood-feeding termites is also observed
in agroforests (Ackerman et al. 2009), where vegetation cover is
dissimilar to the natural environment, but the availability of wood
increases. These results suggest that restricted logging impacts
resource availability, but has a minor impact on the delicate
response of termites to microclimatic conditions. The soil-feeding
termites were not associated with time post-management or with
changes in canopy cover. Several soil-feeding termite species are
highly specialized and occur only when environmental conditions
are favorable (Eggleton et al. 2002). The change in vegetation cover
is generally associated with reduced soil moisture (Dambros et al.
2013), which impacts the abundance of species sensible to drought
(Dambros et al. 2013; Okwakol 2000).

Although species composition changed as a function of time
post-management, the temporal turnover of termite species was
less pronounced than the natural spatial turnover along the soil

Figure 3. Total termite species richness of each trophic
group per time post-management (10, 17, and 31).
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clay gradient. Clay is used by many species to build nests (Jouquet
et al. 2011) and is associated with vegetation structure (e.g., palm
density; Costa et al. 2009), which causes turnover in termite species
composition (Dambros et al. 2017). In highly disturbed areas, the
natural variation in species composition tends to be relatively weak
because species with narrow environmental requirements (special-
ists) are replaced by species with broader requirements (general-
ists; Mckinney & Lockwood 1999). We have not observed this
drastic change from specialist to generalist species in disturbed
areas. Even in recently logged areas (10 years), we observed species
and trophic groups common to pristine environments (e.g., humus
consumers; Ackerman et al. 2009). More importantly, the soil clay
gradient continued to be the main factor responsible for changes in
species composition between plots. These results may indicate that
selective logging management was unable to homogenize the soil
biota, differently from observation in highly disturbed areas
(Ackerman et al. 2009).

Termites are among the most abundant animals in tropical for-
ests and are the main decomposers of plant material in these
regions (Eggleton et al. 1996). While termites in high abundance
can rapidly decompose organic material, the high diversity of spe-
cies in several trophic groups allows most of the decomposition
chain to occur (Griffiths et al. 2019). In one extreme, wood-feeding
termites decompose dry and recently fallen trees and branches; in
the other extreme, soil-feeding termites decompose organic matter
already incorporated into the soil (Donovan et al. 2001). Themain-
tenance of termites in high abundance and diversity observed in
this study suggest that most of the decomposition process is likely
to be preserved.

Although time post-management influences species composi-
tion, this effect is weak compared with the natural variation in
composition along the soil clay gradient. These results suggest that
forest management with selective logging has a much lower impact
on species diversity than observed by road construction (Dambros
et al. 2013), burning (Dawes-Gromadzki 2007), conversion of areas
to pastures (Bandeira & Vasconcellos 2002), or agroforestry
(Ackerman et al., 2009). Also, all decomposition groups, including
those most vulnerable and responsible for maintaining soil fertility
(Dibog et al. 1999), were found 10 years post-management. The
soil fauna is largely responsible for organic matter decomposition
(Lavelle et al., 1997), and the maintenance of the high abundance
and species diversity in managed areas may indicate that selective
logging has a low long-term impact on nutrient cycling and
decomposition.
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