
Combinatorics, Probability and Computing (2014) 23, 386–411. c© Cambridge University Press 2014

doi:10.1017/S0963548314000157

Robust Analysis of Preferential

Attachment Models with Fitness

STEFFEN DEREICH and MARCEL ORTGIESE

Institut für Mathematische Statistik, Westf. Wilhelms-Universität Münster,

Einsteinstraße 62, 48149 Münster, Germany

(e-mail: Steffen.Dereich@wwu.de)

Received 10 May 2013; revised 29 January 2014; first published online 24 February 2014

The preferential attachment network with fitness is a dynamic random graph model. New

vertices are introduced consecutively and a new vertex is attached to an old vertex with

probability proportional to the degree of the old one multiplied by a random fitness. We

concentrate on the typical behaviour of the graph by calculating the fitness distribution of a

vertex chosen proportional to its degree. For a particular variant of the model, this analysis

was first carried out by Borgs, Chayes, Daskalakis and Roch. However, we present a new

method, which is robust in the sense that it does not depend on the exact specification

of the attachment law. In particular, we show that a peculiar phenomenon, referred to as

Bose–Einstein condensation, can be observed in a wide variety of models. Finally, we also

compute the joint degree and fitness distribution of a uniformly chosen vertex.

2010 Mathematics subject classification: Primary 05C80

Secondary 60G42, 90B15

1. Introduction

Preferential attachment models were popularized by Barabási and Albert [1] as a possible

model for complex networks such as the world wide web. The authors observed that a

simple mechanism can explain the occurrence of power law degree distributions in real

world networks. Often networks are the result of a continuous dynamic process: new

members enter social networks or new web pages are created and linked to popular old

ones. In this process new vertices prefer to establish links to old vertices that are well

connected. Mathematically, we consider a sequence of random graphs (random dynamic

network ), where new vertices are introduced consecutively and then connected to each

old vertex with a probability proportional to the degree of the old vertex. As proved

rigorously by Bollobás, Riordan, Spencer and Tusnády [5], this rather simple mechanism

leads to networks with power law degree distributions and thus offers an explanation for

their occurrence.
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There are many variations of the classic model to address different shortcomings: see,

for example, [13] for an overview. For example, a more careful analysis of the classical

model shows that one can observe a ‘first to market’ advantage, where from a certain point

onwards the vertex with maximal degree will always remain maximal: see, for example,

[10]. Clearly, this is not the only possible scenario observed in real networks. One possible

improvement is to model the fact that vertices have an intrinsic quality or fitness, which

would allow even younger vertices to overtake old vertices in popularity.

Introducing fitness has a significant effect on the network formation. In particular, it may

provoke condensation effects as indicated in [4]. The first mathematically rigorous analysis

was carried out in [6] for the following variant of the model. First every (potential) vertex

i ∈ N is assigned an independent identically distributed (say μ-distributed) fitness F (i).

Starting with the network G1 consisting of the single vertex 1 with a self-loop, the network

is formed as follows. Suppose we have constructed the graph Gn with vertices {1, . . . , n}.
Then we obtain Gn+1 by

• insertion of the vertex n + 1 and

• insertion of a single edge linking up the new vertex to the old vertex i ∈ {1, . . . , n} with

probability proportional to

F (i) degGn
(i), (1.1)

where degG(i) denotes the degree of vertex i in a graph G.

Borgs, Chayes, Daskalakis and Roch [6] compute the asymptotic fitness distribution

of a vertex chosen proportional to its degree. This limit distribution is either absolutely

continuous with respect to μ (‘fit-get-richer phase’) or has a singular component that puts

mass on the essential supremum of μ (‘condensation phase’ or ‘Bose–Einstein phase’).

In the condensation phase a positive fraction of mass is shifted towards the essential

supremum of μ.

The model introduced above can be obtained from a particular branching process,

a Crump–Mode–Jagers process, by a random time change: see [3]. This allows them to

derive the results in [6] via a classical almost sure limit theorem of Nerman [17] combined

with a domination argument. Related techniques are also essential in [6], which leads to

severe restrictions on the model specifications. This is in strong contrast to the intuition

of physicists, which suggests that explicit details of the model do not have an impact.

The aim of this article is to present a new robust approach that allows us to deal

with general preferential attachment models with fitness. In particular we include models

where new vertices connect to a random number (or a fixed number larger than one) of

old vertices. In our analysis the crucial problem is to show convergence of the random

normalization. In the specific model above, the normalization is obtained by summing the

weights in (1.1).

In general, preferential attachment models feature a normalization which guarantees

that the number of edges established by new vertices is of constant order. In most

models convergence of the normalization is a direct consequence of its definition. For

instance, in classical preferential attachment the normalization is deterministic: see [5].

One exception is that of preferential attachment networks with sublinear weight functions.
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For a particular variant, these are again time-changed Crump–Mode–Jagers processes and

the analysis can be based on the Nerman result: see [21]. Once the convergence of the

normalization has been established, the remaining analysis is robust with respect to the

model specification: see, for example, [12, 7, 14, 8].

Our approach is based on a bootstrapping argument. The idea is to start with a bound

θ on the normalization, from which we deduce a new bound T (θ). Then, by a continuity

argument, we deduce that the correct limit of the normalization is a fixed point of T . We

stress that the mapping T is new and has not yet appeared in the physics literature on

complex networks with fitness. This is the basis for showing convergence of the asymptotic

fitness and degree distribution.

For the model with fitness, our proofs show that the condensation effect can be

observed irrespective of the fine details of the model. The phenomenon of Bose–Einstein

condensation seems to have a universal character; for an overview of further models

see [11]. The precise analysis of the dynamics in a closely related model are carried out

in [9].

2. Definitions and main results

We consider a dynamic graph model with fitness. Each vertex i ∈ N is assigned an

independent μ-distributed fitness F (i), where μ is a compactly supported distribution on

the Borel sets of (0,∞). We call μ the fitness distribution.

We measure the importance of a vertex i in a directed graph G by its impact

impG(i) := 1 + indegree of i in G.

For technical reasons, we set impG(i) := 0 if i is not a vertex of G.

The complex network is represented by a sequence (Gn)n∈N of random directed

multigraphs without loops that is built according to the following rules. Each graph

Gn consists of n vertices labelled by 1, . . . , n. The first graph consists of the single vertex 1

and no edges. Further, given Gn, the network Gn+1 is formed by carrying out the following

two steps:

• insertion of the vertex n + 1,

• insertion of directed edges n + 1 → i for each old vertex i ∈ {1, . . . , n} with intensity

proportional to

F (i) · impGn
(i). (2.1)

Note that this is not a unique description of the network formation. We still need to

clarify the explicit rule for how new vertices connect to old ones. We will do this in terms

of the impact evolutions: for each i ∈ N, we consider the process I (i) = (I (i)
n )n∈N defined by

I (i)

n := impGn
(i).

Since all edges point from younger to older vertices and since in each step all new edges

attach to the new vertex, the sequence (Gn)n∈N can be recovered from the impact evolutions

(I (i) : i ∈ N). Indeed, for any i, j, n ∈ N with i < j � n, there are exactly

ΔI (i)

j−1 := I (i)

j − I (i)

j−1
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links pointing from j to i in Gn. Note that each impact evolution I (i) is monotonically

increasing, N0-valued and satisfies I (n)
n = 1 and I (i)

n = 0 for i > n. Moreover, any choice

for the impact evolutions with these three properties describes uniquely a dynamic graph

model. We state the assumptions in terms of the impact evolutions. For a discussion of

relevant examples, we refer the reader to Examples 2.2 and 2.3 below.

Assumptions. Let λ > 0 be a parameter and define

F̄n :=
1

λn

n∑
i=1

F (i) I (i)

n =
1

λn
〈F , In〉,

where In := (I (i)
n )i∈N.

We assume that the following three conditions are satisfied:
(A1)

E[ΔI (i)

n |Gn] =
F (i) I (i)

n

nF̄n

,

(A2) there exists a constant Cvar such that

Var(ΔI (i)

n |Gn) � Cvar
E[ΔI (i)

n |Gn],

(A3) conditionally on Gn, for i �= j, we assume that ΔI (i)
n and ΔI (j)

n are non-positively

correlated.

By assumption the essential supremum of μ is finite and strictly positive, say s. Since

the model will still satisfy assumptions (A1)–(A3) if we replace F (i) by F̃ (i) = F (i)/s, we

can and will assume without loss of generality that
(A0)

ess sup(μ) = 1.

In the following, if we omit the domain of integration, we will always mean that any

integral is taken over the interval (0, 1]. Moreover, if we condition on Gn as in assumptions

(A1)–(A3), we always mean that the corresponding σ-algebra contains the information

about the fitness F (i) of vertices i = 1, . . . , n, but not for i > n.

Remark 2.1. Assumptions (A1)–(A3) guarantee that the total number of edges in Gn is

of order λn: see Lemma 3.2.

Let us give two examples that satisfy our assumptions.

Example 2.2 (Poisson outdegree (M1)). The definition depends on a parameter λ > 0. In

model (M1), given Gn, the new vertex n + 1 establishes for each old vertex i ∈ {1, . . . , n}
an independent Poisson-distributed number of links n + 1 → i with parameter

F (i) I (i)
n

n F̄n

.

Note that the conditional outdegree of a new vertex n + 1, given Gn, is Poisson-distributed

with parameter λ.
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Example 2.3 (fixed outdegree (M2)). The definition relies on a parameter λ ∈ N denoting

the deterministic outdegree of new vertices. Given Gn, the number of edges connecting

n + 1 to the individual old vertices 1, . . . , n forms a multinomial random variable with

parameters λ and (
F (i) I (i)

n

λn F̄n

)
i=1,...,n

, where F̄n =
1

λn

n∑
i=1

F (i) I (i)

n .

The model (M2) with λ = 1 is the one analysed in [6].

We analyse a sequence of random measures (Γn)n∈N on (0, 1] given by

Γn :=
1

n

n∑
i=1

I (i)

n δF (i) ,

the impact distributions. These measures describe the relative impact of fitnesses. Note

also that, up to normalization, Γn is the distribution of the fitness of a vertex chosen

proportional to its impact.

Theorem 2.4. Suppose that assumptions (A0)–(A3) are satisfied. If∫
f

1 − f
μ(df) � λ,

we let θ∗ � 1 denote the unique value with∫
f

θ∗ − f
μ(df) = λ

and otherwise set θ∗ := 1. We have

lim
n→∞

F̄n = θ∗, almost surely

and we distinguish two regimes.

(i) Fit-get-richer phase. Suppose that∫
f

1 − f
μ(df) � λ.

(Γn) converges, almost surely, in the weak∗ topology to Γ, where

Γ(df) :=
θ∗

θ∗ − f
μ(df).

(ii) Bose–Einstein phase. Suppose that∫
f

1 − f
μ(df) < λ.

(Γn) converges, almost surely, in the weak∗ topology to Γ, where

Γ(df) :=
1

1 − f
μ(df) +

(
1 + λ −

∫
1

1 − f′ μ(df′)

)
δ1(df).

https://doi.org/10.1017/S0963548314000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000157


Robust Analysis of Preferential Attachment Models with Fitness 391

Remark 2.5. In particular, the two phases can be characterized as follows. In the fit-get-

richer phase, that is, if ∫
f

1 − f
μ(df) � λ,

then the limit of (Γn) is absolutely continuous with respect to μ. However, in the Bose–

Einstein phase, that is, if ∫
f

1 − f
μ(df) < λ,

then the limit of (Γn) is not absolutely continuous with respect to μ, but has an atom

in 1. The explanation for this phenomenon is that a positive fraction of newly incoming

edges connects to vertices with fitness that is ever closer to the essential supremum of the

fitness distribution μ, which in the limit amounts to an atom at the essential supremum.

If μ itself has an atom in its essential supremum, that is, if μ({1}) > 0, then∫
f

1 − f
μ(df) = ∞,

so we are always in the fit-get-richer phase and θ∗ > 1.

Next, we restrict our attention to vertices with a fixed impact k ∈ N. For n ∈ N we

consider the random measure

Γ(k)

n :=
1

n

n∑
i=1

1l{I(i)
n =k}δF (i) ,

representing – up to normalization – the random fitness of a uniformly chosen vertex

with impact k.

To prove convergence of (Γ(k)
n ), we need additional assumptions. Indeed, so far our

assumptions admit models for which vertices are always connected by multiple edges, in

which case there would be no vertices with impact 2.

We will work with the following assumptions:

(A4) For all k ∈ N,

sup
i=1,...,n

1l{I(i)
n =k} n| P(ΔI (i)

n = 1|Gn) − F (i)I (i)
n

n F̄n

| → 0, almost surely.

Further, we impose a stronger assumption on the correlation structure:

(A5) Given Gn, the collection {ΔI (i)
n }ni=1 is negatively quadrant dependent in the sense that

for any i �= j, and any k, � ∈ N,

P(ΔI (i)

n � k; ΔI (j)

n � �|Gn) � P(ΔI (i)

n � k|Gn)P(ΔI (j)

n � �|Gn).

Remark 2.6. Note that both Examples 2.2 and 2.3 also satisfy these additional as-

sumptions. Assumption (A4) guarantees together with assumption (A1) that the expected

conditional increment of I (i)
n is dominated by the case that exactly one new vertex connects
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to i. Assumption (A5) is obviously stronger than non-positive correlation (A3), but it is

still satisfied in most natural model specifications.

Theorem 2.7. Suppose that assumptions (A0)–(A5) are satisfied, and let θ∗ ∈ [1,∞) be

defined as in Theorem 2.4. Then we have that, almost surely, (Γ(k)
n ) converges in the weak∗

topology to Γ(k), where

Γ(k)(df) :=
1

k + θ∗

f

θ∗

f

k−1∏
i=1

i

i + θ∗

f

μ(df). (2.2)

The theorem immediately allows us to control the number of vertices with impact

k ∈ N. Let

pn(k) :=
1

n

n∑
i=1

1l{I(i)
n =k} = Γ(k)

n ((0, 1]).

Corollary 2.8. Under the assumptions of Theorem 2.7, we have that

lim
n→∞

pn(k) =

∫
1

k + θ∗

f

θ∗

f

k−1∏
i=1

i

i + θ∗

f

μ(df), almost surely.

Outline of the article. Section 3 starts with preliminary considerations. In particular, it

introduces a stochastic approximation argument which, among other applications, has

also appeared in the context of generalized urn models: see, for example, the survey

by Pemantle [19]. Roughly speaking, key quantities are expressed as approximations

to stochastically perturbed differential equations. The perturbation is asymptotically

negligible, and we obtain descriptions by differential equations that are typically referred

to as master equations.

Section 4 is concerned with the proof of Theorem 2.4. Here the main task is to prove

convergence of the random normalization (F̄n). This goal is achieved via a bootstrapping

argument. Starting with an upper bound on (F̄n) of the form

lim sup
n→∞

F̄n � θ, almost surely,

we show in Lemma 4.2 that this statement remains true when replacing θ by

T (θ) := 1 +
1

λ

∫
θ − 1

θ − f
f μ(df). (2.3)

For the proof of Theorem 2.4, we will iterate the argument to obtain convergence of the

normalization to the largest fixed point of T , which we will denote by θ∗. Moreover, we

see that θ∗ > 1 if and only if ∫
x

1 − x
μ(dx) > λ,
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which corresponds to the fit-get-richer phase. In this case, if in addition μ({1}) = 0, T

also has the fixed point 1. But one can check that only the larger fixed point θ∗ is stable.

However, in the condensation phase, T has only a single fixed point, that is, θ∗ = 1, which

in that case is also stable. See also Figure 1 for an illustration.

Section 5 is concerned with the proof of Theorem 2.7. The proof is based on stochastic

approximation techniques introduced in Section 3. In our setting these differential

equations are non-linear because of the normalization F̄n. However, since we can

control the normalization by Theorem 2.4, in the analysis of the joint fitness and degree

distribution, we arrive at linear equations (or more precisely inequalities) for the stochastic

approximation. The latter then yield Theorem 2.7 via an approximation argument.

3. Preliminaries

We first recall the general idea of stochastic approximation, which goes back to [20] and

can be stated, for example, for a stochastic process (Xn)n�0 taking values in R
d. Then,

(Xn)n�0 is known as a stochastic approximation process if it satisfies a recursion of the

type

Xn+1 − Xn =
1

n + 1
F(Xn) + Rn+1 − Rn, (3.1)

where F is a suitable vector field and the increment of R corresponds to an (often

stochastic) error. In our setting, we could, for example, restrict to the case when μ is

supported on finitely many values {f1, . . . , fd} ⊂ (0, 1], and let

Xn(k) =
1

n

n∑
i=1

I (i)

n 1l{F (i)=fk}

denote the proportion of vertices that have fitness fk weighted by their impact. Then, one

can easily calculate the conditional expectation of Xn+1(k) given the graph Gn up to time

n. Indeed, as we will see in the proof of Proposition 4.1, under our assumptions we obtain

that

E[Xn+1(k) − Xn(k) |Gn] =
1

n + 1

(
μ({fk}) +

fk

F̄n

Xn(k) − Xn(k)

)
.

Therefore, we note that Xn = (Xn(k))
d
k=1 satisfies

Xn+1(k) − Xn(k) =
1

n + 1

(
μ({fk}) +

fk

F̄n

Xn(k) − Xn(k)

)
+ Rn+1(k) − Rn(k),

so that Xn = (Xn(k))
d
k=1 satisfies an equation of type (3.1), provided we take

Rn+1(k) − Rn(k) = Xn+1(k) − E[Xn+1(k)|Gn],

which defines a martingale, for which we can employ the standard techniques to show

convergence.

Provided that the random perturbations are asymptotically negligible, it is possible to

analyse the random dynamical system by the corresponding master equation

ẋt = F(xt).
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There are many articles exploiting such connections, and an overview is provided by

Benäım [2]. The connection to general urn models is further explained by Pemantle [19].

In preferential attachment models, these techniques only seem to have been used directly

in the work of Jordan (see, e.g., [15, 16]), covering only the case of finitely many fitness

values completely. More generally, the resulting differential equation is closely related

to what is known as the master equation in heuristic derivations: see, for example, [18,

chapter 14].

However, in our setting this method is not directly applicable. First of all, we would

like to consider arbitrary fitness distributions (i.e., not restricted to finitely many values),

and secondly, the resulting equation is not linear, because of the appearance of the

normalization F̄n. The latter problem is addressed by using a bootstrapping method (as

described in the Introduction). However, this leads to an inequality on the increment,

rather than an equality as in (3.1). Fortunately, the resulting vector field F has a very

simple structure and so we can deduce the long-term behaviour of (Xn)n�0 by elementary

means; the corresponding technical result is Lemma 3.1. By using inequalities, we also

gain the flexibility to approximate arbitrary fitness distribution by discretization.

In order to keep our proofs self-contained, we will first state and prove an easy special

case of the technique adapted to our setting.

Lemma 3.1. Let (Xn)n�0 be a non-negative stochastic process. We suppose that the follow-

ing estimate holds:

Xn+1 − Xn � 1

n + 1
(An − BnXn) + Rn+1 − Rn, (3.2)

where

(i) (An) and (Bn) are almost surely convergent stochastic processes with deterministic limits

A,B > 0,

(ii) (Rn) is an almost surely convergent stochastic process.

Then we have that, almost surely,

lim sup
n→∞

Xn � A

B
.

Similarly, if instead, under the same conditions (i) and (ii),

Xn+1 − Xn � 1

n + 1
(An − BnXn) + Rn+1 − Rn,

then almost surely

lim inf
n→∞

Xn � A

B
.

Proof. This is a slight adaptation of Lemma 2.6 in [19]. Fix δ ∈ (0, 1). By our assumptions,

almost surely, we can find n0 such that, for all m, n � n0,

An � (1 + δ)A, Bn � (1 − δ)B, |Rm − Rn| � δ.
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Then, by (3.2), we have that, for any m > n � n0,

Xm − Xn �
m−1∑
j=n

1

j + 1
(Aj − BjXj) + |Rm − Rn|

�
m−1∑
j=n

1

j + 1
((1 + δ)A − (1 − δ)BXj))︸ ︷︷ ︸

=:Yj

+δ.

(3.3)

Let

C :=
(1 + δ)A

(1 − δ)B
.

For each index j � n0 with Xj � C + δ, we have that

Yj � −B(1 − δ)δ/(j + 1).

Since the harmonic series diverges, by (3.3) there exists m0 � n0 with Xm0
� C + δ.

Next, we prove that for any m � m0 we have Xm � C + 3δ provided that n0 is chosen

sufficiently large (i.e., 1
n0+1

(1 + δ)A � δ). Suppose that Xm > C + δ. We choose m1 to be

the largest index smaller than m with Xm1
� C + δ. Clearly, m1 � m0 and an application

of estimate (3.3) gives

Xm � Xm1
+ Ym1

+ δ � C + 2δ +
1

m1 + 1
(1 + δ)A � C + 3δ =

(1 + δ)A

(1 − δ)B
+ 3δ.

Since δ ∈ (0, 1) is arbitrary, we get that, almost surely,

lim sup
n→∞

Xn � A

B
.

The argument for the reverse inequality works analogously.

As a first application of Lemma 3.1, we can show that the total number of edges

converges if properly normalized.

Lemma 3.2. Almost surely, we have that

lim
n→∞

1

n

n∑
i=1

I (i)

n = 1 + λ.

Proof. Define

Yn :=
1

n

n∑
i=1

I (i)

n .
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Then we calculate the conditional expectation of Yn+1 given Gn, using that In+1
n+1 = 1 by

definition, that is,

E[Yn+1|Gn] =
1

n + 1

( n∑
i=1

E[I (i)

n+1|Gn] + 1

)

= Yn +
1

n + 1

(
1 +

n∑
i=1

E[ΔI (i)

n |Gn] − Yn

)

= Yn +
1

n + 1
(1 + λ − Yn),

where we used assumption (A1) on the conditional mean of ΔI (i)
n and the definition of F̄n.

Thus we can write

Yn+1 − Yn =
1

n + 1
(1 + λ − Yn) + Rn+1 − Rn, (3.4)

where we define R0 = 0 and

ΔRn := Rn+1 − Rn = Yn+1 − E[Yn+1|Gn].

Therefore, Rn is a martingale and Rn converges almost surely if we can show that

E[(ΔRn)
2|Gn] is summable. Indeed, first using (A3), which states that impact evolutions of

distinct vertices are non-positively correlated, we can deduce that

E[(ΔRn)
2|Gn] � 1

(n + 1)2

( n∑
i=1

E[(ΔI (i)

n − E[ΔI (i)

n |Gn])
2|Gn] + 1

)

� 1

(n + 1)2

(
Cvar

n∑
i=1

E[ΔI (i)

n |Gn] + 1

)

� 1

(n + 1)2
(Cvar λ + 1),

which is summable.

Hence, we can apply both parts of Lemma 3.1 together with the convergence of (Rn)

to obtain the almost sure convergence limn→∞ Yn = 1 + λ.

Later on, we will need some a priori bounds on the normalization sequence.

Lemma 3.3. Almost surely, we have that

1

λ

∫
x μ(dx) � lim inf

n→∞
F̄n � lim sup

n→∞
F̄n � 1 + λ

λ
.

Proof. For the lower bound, notice that by definition I (i)
n � 1, and therefore

lim inf
n→∞

F̄n = lim inf
n→∞

1

λn

n∑
i=1

F (i)I (i)

n � lim inf
n→∞

1

λn

n∑
i=1

F (i) =
1

λ

∫
x μ(dx).
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For the upper bound, one can use that the F (i) � 1 and combine with

lim
n→∞

1

n

n∑
i=1

I (i)

n = 1 + λ,

which we proved in Lemma 3.2.

4. Proof of Theorem 2.4

The central bootstrap argument is carried out at the end of this section. It is based on

Lemma 4.2. Before we state and prove Lemma 4.2, we prove a technical proposition which

will be crucial in the proof of the lemma.

Proposition 4.1.

(i) Let θ � 1. If

lim sup
n→∞

F̄n � θ, almost surely,

then for any 0 � a < b � 1 we have

lim inf
n→∞

1

n

n∑
i=1

1l{F (i)∈(a,b]}I (i)

n �
∫

(a,b]

θ

θ − f
μ(df),

almost surely.

(ii) Let θ > 0. If

lim inf
n→∞

F̄n � θ, almost surely,

then for any 0 � a < b < θ ∧ 1 we have

lim sup
n→∞

1

n

n∑
i=1

1l{F (i)∈(a,b]}I (i)

n �
∫

(a,b]

θ

θ − f
μ(df),

almost surely.

Proof. (i) First we prove that, under the assumptions of (i), for 0 � f < f′ � 1 we have

lim inf
n→∞

1

n

n∑
i=1

1l{F (i)∈(f,f′]} I (i)

n � θ

θ − f
μ((f, f′]), almost surely. (4.1)

Fix 0 � f < f′ � 1 and let

Xn := Γn((f, f
′]) =

1

n

∑
i∈In

I (i)

n ,

where for notational convenience we let

In := In((f, f
′]) := {i ∈ {1, . . . , n} : F (i) ∈ (f, f′]}.
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We will show (4.1) with the help of the stochastic approximation argument explained

in Section 3, and stated formally in Lemma 3.1. We need to provide a lower bound

for the increment Xn+1 − Xn. Using assumption (A1), we can calculate the conditional

expectation of Xn+1:

E[Xn+1|Gn] =
1

n + 1

∑
i∈In

E[I (i)

n+1|Gn] +
1

n + 1
P(F (n+1) ∈ (f, f′])

= Xn +
1

n + 1

(∑
i∈In

E[ΔI (i)

n |Gn] − Xn + μ((f, f′])

)

= Xn +
1

n + 1

(∑
i∈In

F (i)I (i)
n

nF̄n

− Xn + μ((f, f′])

)
.

Hence, rearranging yields

E[Xn+1|Gn] − Xn � 1

n + 1

(
μ((f, f′]) −

(
1 − f

supm�n F̄m

)
Xn

)
.

Thus, we can write

Xn+1 − Xn � 1

n + 1

(
μ((f, f′]) −

(
1 − f

supm�n F̄m

)
Xn

)
+ Rn+1 − Rn,

where Rn is a martingale defined via R0 = 0 and

ΔRn := Rn+1 − Rn = Xn+1 − E[Xn+1|Gn].

If we can show that Rn converges almost surely, then Lemma 3.1 together with the

assumption that lim supn→∞ F̄n � θ shows that

lim inf
n→∞

Xn � θ

θ − f
μ((f, f′]),

which is the required bound (4.1).

The martingale convergence follows if we show that E[(ΔRn)
2|Gn] is summable. Indeed,

ΔRn =
1

n + 1

∑
i∈In

(
I (i)

n+1 − E[I (i)

n+1|Gn]
)

+
1

n + 1

(
1l{F (n+1)∈(f,f′]} − μ((f, f′])

)
.

The second moment of the last expression is clearly bounded by

1

(n + 1)2
μ((f, f′]),

which is summable, so we can concentrate on the first term. Now, we can use (A3), the

non-positive correlation of ΔI (i)
n , and then (A2), (A1) and the definition of F̄n to estimate
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the conditional variance to deduce that

1

(n + 1)2
E

[(∑
i∈In

(I (i)

n+1 − E[I (i)

n+1|Gn])

)2∣∣∣Gn

]

=
1

(n + 1)2
E

[(∑
i∈In

(ΔI (i)

n − E[ΔI (i)

n |Gn])

)2∣∣∣Gn

]

� 1

(n + 1)2

∑
i∈In

Var(ΔI (i)

n |Gn)

� 1

(n + 1)2
Cvar

∑
i∈In

F (i)I (i)
n

nF̄n

� 1

(n + 1)2
Cvarλ.

The latter is obviously summable, so Rn converges almost surely.

Note that the assertion (i) follows from (4.1) by a Riemann approximation. We partition

(a, b] via a = f0 < · · · < f� = b with an arbitrary � ∈ N. Then it follows from (4.1) that

lim inf
n→∞

1

n

n∑
i=1

1l{F (i)∈(a,b]}I (i)

n �
�−1∑
k=0

θ

θ − fk
μ((fk, fk+1]), almost surely,

and the right-hand side approximates the integral up to an arbitrary small constant.

(ii) It suffices to prove that for 0 � f < f′ < θ ∧ 1 we have

lim sup
n→∞

1

n

n∑
i=1

1l{F (i)∈(f,f′]} I (i)

n � θ

θ − f′ μ((f, f′]), almost surely. (4.2)

This is completely analogous to part (i) using Lemma 3.1. Then the statement (ii) follows

as above by a Riemann approximation.

The next lemma takes the lower bound on the impact distribution obtained in

Proposition 4.1 to produce a new upper bound on the normalization. For θ > 1 we

set

T (θ) := 1 +
1

λ

∫
θ − 1

θ − f
f μ(df). (4.3)

Lemma 4.2.

(i) Let θ > 1. If

lim sup
n→∞

F̄n � θ, almost surely, (4.4)

then

lim sup
n→∞

F̄n � T (θ), almost surely.

(ii) Let θ > 0 and suppose that

lim inf
n→∞

F̄n � θ, almost surely. (4.5)
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We have, almost surely,

lim inf
n→∞

F̄n �
{

T (θ) if θ > 1,

θ + θ
λ

(
1 − μ((0, θ))

)
if θ ∈ (0, 1].

Remark 4.3. If we define

T (1) := 1 +
1

λ
μ({1}),

then it follows by dominated convergence that

lim
θ↓1

T (θ) = lim
θ↓1

(
1 +

1

λ

∫
(0,1]

θ − 1

θ − f
f μ(df)

)

= 1 + lim
θ↓1

1

λ

∫
(0,1)

θ − 1

θ − f
f μ(df) +

1

λ
μ({1}) = T (1).

In particular, the lower bound in part (ii) of Lemma 4.2 is continuous at θ = 1.

Proof of Lemma 4.2. (i) Fix θ > 1 and assume that (4.4) holds. Define a measure ν on

(0, 1] via

ν(df) :=
θ

θ − f
μ(df).

Further, set ν ′ := ν + ((1 + λ) − ν((0, 1]))δ1. Using first that, by Lemma 3.2,

lim
n→∞

1

n

n∑
i=1

I (i)

n = 1 + λ, almost surely,

and secondly the assumption (4.4) so that we can apply Proposition 4.1(i), we deduce that,

for every t ∈ (0, 1), almost surely,

lim sup
n→∞

1

n

n∑
i=1

1l{F (i)∈(t,1]}I (i)

n = 1 + λ − lim inf
n→∞

1

n

n∑
i=1

1l{F (i)∈(0,t]}I (i)

n

� 1 + λ − ν((0, t]) = ν ′((t, 1]).

(4.6)

This allows us to compute a new asymptotic upper bound for (F̄n). Letting m ∈ N, observe

that, almost surely,

F̄n =
1

λn

n∑
i=1

F (i) I (i)

n � 1

λn

n∑
i=1

1

m

m−1∑
j=0

1l{F (i)>j/m} I (i)

n

=
1

λm

m−1∑
j=0

1

n

n∑
i=1

1l{F (i)>j/m} I (i)

n ,

so that by (4.6)

lim sup
n→∞

F̄n � 1

λm

m−1∑
j=0

ν ′((j/m, 1]), almost surely.
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The latter expression tends with m → ∞ to the integral

1

λ

∫
f ν ′(df)

and we finally get that, almost surely,

lim sup
n→∞

F̄n � 1

λ

∫
f ν ′(df).

It remains to show that the latter integral is equal to T (θ) as defined in (4.3). Indeed,

using that μ is a probability measure so that∫
θ

θ − f
μ(df) =

∫
f

θ − f
μ(df) +

∫
θ − f

θ − f
μ(df) =

∫
f

θ − f
μ(df) + 1,

it follows from the definition of ν ′ that

1

λ

∫
f ν ′(df) =

1

λ

(
1 + λ −

∫
θ

θ − f
μ(df) + θ

∫
f

θ − f
μ(df)

)

= 1 +
1

λ

∫
θ − 1

θ − f
f μ(df) = T (θ),

as claimed.

(ii) Fix θ > 0 and assume that (4.5) holds. Let θ′ ∈ (0, θ) if θ � 1 and set θ′ = 1 if θ > 1.

Then, consider the (signed) measures νθ′ and ν ′
θ′ defined by

νθ′(df) :=
θ

θ − f
1l{f∈(0,θ′]} μ(df)

and

ν ′
θ′ := νθ′ + (1 + λ − νθ′((0, 1]))δθ′ .

As above we use the assumption (4.5) and conclude with Proposition 4.1 that for t < θ′,

almost surely,

lim inf
n→∞

n∑
i=1

1l{F (i)∈(t,1]}I (i)

n � 1 + λ − νθ′ ((0, t]) = ν ′
θ′ ((t, 1]). (4.7)

We proceed as above and observe that, for any m ∈ N,

F̄n =
1

λn

n∑
i=1

F (i)I (i)

n � 1

λn

n∑
i=1

θ′

m

m−1∑
j=1

1l{F (i)> j
m θ

′}I
(i)

n

=
θ′

λm

m−1∑
j=1

1

n

n∑
i=1

1l{F (i)> j
m θ

′}I
(i)

n

which by (4.7) yields that, almost surely,

lim inf
n→∞

F̄n � θ′

λm

m∑
j=1

ν ′
θ′((

j
m
θ′, 1]).
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Since m ∈ N is arbitrary, we get that, almost surely,

lim inf
n→∞

F̄n � 1

λ

∫
(0,θ′]

f ν ′
θ′ (df) =

1

λ

(
θ′(1 + λ) − θ

∫
(0,θ′]

θ′ − f

θ − f
μ(df)

)
. (4.8)

We distinguish two cases. If θ � 1, we use that the latter integral is dominated by μ((0, θ′])

and let θ′ ↑ θ to deduce from (4.8) that

lim inf
n→∞

F̄n � θ +
θ

λ

(
1 − μ((0, θ))

)
, almost surely.

If θ > 1, we have defined θ′ = 1, so that νθ′ = ν and ν ′
θ′ = ν ′ (for ν, ν ′ defined in part (i))

and, by the same calculation as at the end of part (i), the right-hand side of (4.8) is equal

to T (θ).

Finally, we can prove Theorem 2.4, where we first show that the normalization converges

using a bootstrap argument based on Lemma 4.2. Then, we use the bound on the impact

distribution obtained in Proposition 4.1 to show convergence of the impact distribution.

Proof of Theorem 2.4. (i) Fit-get-richer phase. Assume that θ∗ � 1 is the unique value

such that ∫
f

θ∗ − f
μ(df) = λ.

We will first show that lim supn→∞ F̄n � θ∗ using a bootstrap argument and then show

that the impact distributions converge. Finally, we will deduce the full convergence of F̄n

from the convergence of the impact distributions.

For the asymptotic upper bound on the normalization F̄n, suppose that θ∗∗ is the

smallest value in [θ∗,∞) with

lim sup
n→∞

F̄n � θ∗∗, almost surely. (4.9)

Such a value exists due to Lemma 3.3.

We prove that θ∗∗ = θ∗ by contradiction. Suppose that θ∗∗ > θ∗. We apply Lemma 4.2

and get that

lim sup
n→∞

F̄n � T (θ∗∗), almost surely, (4.10)

where we recall that T is defined in (4.3) as

T (θ) = 1 +
1

λ

∫
θ − 1

θ − f
f μ(df), for θ > 1,

and we set

T (1) := 1 +
1

λ
μ({1}).

Now we note that T is continuous on [θ∗, θ∗∗]. For the case θ∗ = 1, we refer to

Remark 4.3 and observe that then by definition of θ∗ necessarily μ({1}) = 0, so that
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T (1) = 1. Moreover, T is differentiable on (θ∗, θ∗∗) with derivative

T ′(θ) =
1

λ

∫
f(1 − f)

(θ − f)2
μ(df), for θ ∈ (θ∗, θ∗∗).

For θ > θ∗ � 1, we thus obtain

T ′(θ) � 1

λ

∫
f

θ − f
μ(df) < 1, (4.11)

where for the last inequality we used that θ > θ∗ and θ∗ satisfies∫
f

θ∗ − f
μ(df) = λ

by definition. Also, by definition θ∗ is a fixed point of T . Therefore, by the mean value

theorem,

T (θ∗∗) = T (θ∗) + T ′(θ)(θ∗∗ − θ∗) < θ∗∗

for an appropriate θ ∈ (θ∗, θ∗∗). Together with (4.10), this contradicts the minimality

of θ∗∗.

We now turn to the convergence of the measures Γn, which we recall are defined by

Γn =
1

n

n∑
i=1

I (i)

n δF (i) .

Note that the measure Γ defined by

Γ(df) :=
θ∗

θ∗ − f
μ(df)

has total mass 1 + λ, since by definition of θ∗ and the fact that μ is a probability measure,

Γ((0, 1]) =

∫
θ∗

θ∗ − f
μ(df) =

∫
θ∗ − f

θ∗ − f
μ(df) +

∫
f

θ∗ − f
μ(df) = 1 + λ.

Here, we have implicitly used that if θ∗ = 1, by definition∫
f

1 − f
μ(df) < ∞,

so that all occurring integrals are well-defined. By Lemma 3.2,

Γn((0, 1]) =
1

n

n∑
i=1

I (i)

n

tends to 1 + λ, almost surely, so that one can apply the portmanteau theorem to prove

convergence of (Γn). Let

D =
⋃
n∈N

2−n
Z ∩ [0, 1]

denote the dyadic numbers on [0, 1]. We remark that the number of dyadic intervals (a, b]

with endpoints a, b ∈ D is countable so that, by Proposition 4.1, there exists an almost

sure event Ω0, such that, for all dyadic intervals (a, b],

lim inf
n→∞

Γn((a, b]) � Γ((a, b]) on Ω0.
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Now let U ⊂ (0, 1) be an arbitrary open set. We approximate U monotonically from within

by a sequence of sets (Um)m∈N, with each Um being a union of finitely many pairwise

disjoint dyadic intervals as above. Then, for any m ∈ N, we have

lim inf
n→∞

Γn(U) � lim inf
n→∞

Γn(Um) � Γ(Um) on Ω0,

and by monotone convergence it follows that lim infn→∞ Γn(U) � Γ(U) on Ω0. As noted

above, the total masses also converge, that is, limn→∞ Γn((0, 1]) = Γ((0, 1]) almost surely,

so that we can conclude from the portmanteau theorem for finite measures that

Γn ⇒ Γ, almost surely.

Since

F̄n =
1

λ

∫
f Γn(df),

we deduce that, almost surely,

lim
n→∞

F̄n =
1

λ

∫
f Γ(df) = θ∗.

(ii) Bose–Einstein phase. Suppose that∫
f

1 − f
μ(df) < λ,

so that by definition θ∗ = 1. We start as in (i). Let θ∗∗ denote the smallest value in [1,∞)

with

lim sup
n→∞

F̄n � θ∗∗, almost surely.

As in the first part of (i), a proof by contradiction proves that θ∗∗ = 1. The only

modification is that we use that ∫
f

θ∗ − f
μ(df) < λ

in the justification of (4.11). Also, we use that in this case necessarily μ({1}) = 0, and

therefore by Remark 4.3 with T (1) := 1 the mapping T is continuous on [1,∞).

Next, let θ∗∗ denote the largest real in (0, 1] with

lim inf
n→∞

F̄n � θ∗∗, almost surely. (4.12)

By Lemma 3.3, such a θ∗∗ exists and we assume that θ∗∗ < 1. By Lemma 4.2, the inequality

(4.12) remains valid for

θ∗∗ +
θ∗∗
λ

(
1 − μ([0, θ∗∗))

)
.

Since ess sup μ = 1, this expression is strictly greater than θ∗∗, contradicting the maximality

of θ∗∗. Hence,

lim
n→∞

F̄n = 1, almost surely.
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Therefore, by Proposition 4.1 we have for 0 � a < b < 1

lim
n→∞

Γn((a, b]) =

∫
(a,b]

1

1 − f
μ(df) = Γ((a, b]), almost surely,

and, hence by Lemma 3.2 for 0 � a < 1,

lim
n→∞

Γn((a, 1]) = 1 + λ − lim
n→∞

Γn((0, a]) = Γ((a, 1]), almost surely.

The rest of the proof is in line with the proof of (i).

5. Proof of Theorem 2.7

The proof is achieved via a stochastic approximation technique as discussed in Section 3.

Proof of Theorem 2.7. We prove Theorem 2.7, which claims that, for each k = 1, 2, . . . ,

the measure

Γ(k)

n :=
1

n

n∑
i=1

1l{I(i)
n =k}δF (i)

converges almost surely in the weak* topology to Γ(k) defined by

Γ(k)(df) :=
1

k + θ∗

f

θ∗

f

k−1∏
i=1

i

i + θ∗

f

μ(df).

We prove the statement via induction over k. The proof of the initial statement (k = 1) is

similar to the proof of the induction step, and we will come back to it at the end.

Induction step. Let k ∈ {2, 3, . . . }, and suppose that the statement is true when replacing

k by any value in 1, . . . , k − 1. We fix f, f′ ∈ [0, 1] with either μ({f, f′}) = 0 or f′ = 1 and

μ({f}) = 0. Suppose that μ((f, f′]) > 0, and consider the random variables

Xn := Γ(k)

n ((f, f′])

for n ∈ N. We claim that

lim inf
n→∞

Γ(k)

n ((f, f′]) = lim inf
n→∞

Xn �
(k − 1)

∫
(f,f′] xΓ(k−1)(dx)

θ∗ + kf′ , (5.1)

which we will show by applying Lemma 3.1.

In the first step we derive a lower bound for the increments of (Xn) that is suitable for

the application of Lemma 3.1.

We restrict our attention to vertices with fitness in (f, f′] and let

In := In((f, f
′]) := {i ∈ {1, . . . , n} : F (i) ∈ (f, f′]}.
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Note that since by definition I (n+1)

n+1 = 1 < k, we can ignore the corresponding term in the

definition of Xn+1 and thus obtain

E[Xn+1|Gn] =
1

n + 1

∑
i∈In

k∑
�=1

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn)

= Xn +
1

n + 1

∑
i∈In

( k−1∑
�=1

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn)

− 1l{I(i)
n =k}P(ΔI (i)

n �= 0|Gn)

)
− Xn

n + 1
(5.2)

� Xn +
1

n + 1

[∑
i∈In

( k−1∑
�=1

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn)

− 1l{I(i)
n =k}

(
P(ΔI (i)

n �= 0|Gn) − F (i)k

nF̄n

))
−

(
1 +

f′k

F̄n

)
Xn

]
.

Hence, we can write a lower bound on the increment of (Xn) as

Xn+1 − Xn � 1

n + 1
(An + BnXn) + Rn+1 − Rn,

where we define

An :=
∑
i∈In

( k−1∑
�=1

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn) − 1l{I(i)
n =k}

(
P(ΔI (i)

n �= 0|Gn) − F (i)k

nF̄n

))
,

Bn := 1 +
f′k

F̄n

,

Rn :=

n∑
i=1

(Xi − E[Xi|Gi−1]),

with G0 the empty graph. By Lemma 3.1, the claim (5.1) follows immediately if we can

show that, almost surely,

(i) lim
n→∞

An =
k − 1

θ∗

∫
(f,f′]

xΓ(k−1)(dx),

(ii) lim
n→∞

Bn = 1 +
f′k

θ∗ ,

(iii) lim
n→∞

Rn exists.

(5.3)

Observe that by the assumption that μ((f, f′]) > 0, the limit of An is strictly positive.

(i) Convergence of An. We write

An =

k−1∑
�=1

A(�)

n − A′
n
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for

A(�)

n :=
∑
i∈In

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn), � ∈ {1, . . . , k − 1},

A′
n :=

∑
i∈In

1l{I(i)
n =k}

(
P(ΔI (i)

n �= 0|Gn) − F (i)k

nF̄n

)
,

and show convergence for each of the terms, where we will see that only the limit of A(k−1)
n

will be non-zero.

Indeed, for � = k − 1,

|A(k−1)

n − k − 1

F̄n

∫
(f,f′]

xΓ(k−1)(dx)|

=

∣∣∣∣∑
i∈In

1l{I(i)
n =k−1}P(ΔI (i)

n = 1|Gn) − k − 1

F̄n

∫
(f,f′]

xΓ(k−1)(dx)

∣∣∣∣
� sup

i=1,...,n
1l{I(i)

n =k−1}n

∣∣∣∣P(ΔI (i)

n = 1|Gn) − (k − 1)F (i)

n F̄n

∣∣∣∣
+

k − 1

F̄n

∣∣∣∣
∫

(f,f′]
x dΓ(k−1)

n (dx) −
∫

(f,f′]
xΓ(k−1)(dx)

∣∣∣∣,
and the former term tends to zero due to assumption (A4) and the latter term tends to

zero by the induction hypothesis. Here, we use the assumption hat Γ(k−1) puts no mass

on f and f′ or that f′ = 1, so that we can apply the portmanteau theorem. Combined

with the fact that under assumptions (A0)–(A3) Theorem 2.4 implies that limn→∞ F̄n = θ∗

almost surely, we obtain

lim
n→∞

A(k−1)

n =
k − 1

θ∗

∫
(f,f′]

xΓ(k−1)(dx), almost surely. (5.4)

Now, for � ∈ {1, . . . , k − 2}, we have by assumption (A1) that

A(�)

n =
∑
i∈In

1l{I(i)
n =�}P(ΔI (i)

n = k − �|Gn) � sup
i=1,...,n

1l{I(i)
n =�}nP(ΔI (i)

n � 2|Gn)

� sup
i=1,...,n

1l{I(i)
n =�}nE[ΔI (i)

n 1l{ΔI(i)
n �2}|Gn]

(A1)
= sup

i=1,...,n
1l{I(i)

n =�}n|F (i)I(i)
n

nF̄n
− P(ΔI (i)

n = 1|Gn)|,

(5.5)

which by assumption (A4) converges to 0 almost surely.

For the final term, we have that

|A′
n| �

∑
i∈In

1l{I(i)
n =k}

∣∣∣∣P(ΔI (i)

n �= 0|Gn) − F (i)k

nF̄n

∣∣∣∣
�

∑
i∈In

1l{I(i)
n =k}

∣∣∣∣P(ΔI (i)

n = 1|Gn) − F (i)k

nF̄n

∣∣∣∣ + sup
i=1,...,n

nP(ΔI (i)

n � 2|Gn),

(5.6)

where the two terms on the right-hand side converge to 0 by assumption (A4) for the

first term and by the same calculation as in (5.5) using assumptions (A1) and (A4) for the
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second term. Combining (5.4)-(5.6), we have shown that (An) converges to the expression

claimed in (5.3).

(ii) The convergence of (Bn) follows immediately from limn→∞ F̄n = θ∗, almost surely,

which holds by Theorem 2.4 under assumptions (A0)–(A3).

(iii) Convergence of the remainder term (Rn). We first show that we can write the process

(Rn) as the sum of two martingales. Indeed, we find that for any i ∈ {1, . . . , n},

1l{I(i)
n+1=k} = 1l{I(i)

n+1=k,I(i)
n �k} = 1l{I(i)

n+1�k,I(i)
n �k} − 1l{I(i)

n+1>k,I(i)
n �k}

= 1l{I(i)
n =k} + 1l{I(i)

n+1�k,I(i)
n <k} − 1l{I(i)

n+1>k,I(i)
n �k}.

Therefore, an increment of Rn is equal to

ΔRn := Rn+1 − Rn = Xn+1 − E[Xn+1|Gn]

=
1

n + 1

∑
i∈In

(
1l{I(i)

n+1=k} − P(I (i)

n+1 = k|Gn)
)

= ΔM (1)

n − ΔM (2)

n ,

where M (1)
n and M (2)

n are martingales defined by

M (1)

n+1 := M (1)

n +
1

n + 1

(∑
i∈In

1l{I(i)
n <k,I(i)

n+1�k} − E

[∑
i∈In

1l{I(i)
n <k,I(i)

n+1�k}|Gn

])
,

and

M (2)

n+1 := M (2)

n +
1

n + 1

(∑
i∈In

1l{I(i)
n �k,I(i)

n+1>k} − E

[∑
i∈In

1l{I(i)
n �k,I(i)

n+1>k}|Gn

])
, (5.7)

both starting in 0. Since both martingales are the same up to a shift of parameter k, we only

have to show that either converges almost surely for fixed k ∈ N. We will show that M (2)

converges by showing that its quadratic variation process converges almost surely. Indeed,

we will show that E[(ΔM (2)
n )2|Gn] is almost surely summable, where ΔM (2)

n := M (2)

n+1 − M (2)
n .

First using assumption (A5), that is, the conditional negative quadrant dependence of

ΔI (i)
n , we find that

E[(ΔM (2)

n )2|Gn]

� 1

(n + 1)2

∑
i∈In

E

[(
1l{I(i)

n �k,I(i)
n+1>k} − P

(
I (i)

n � k, I (i)

n+1 > k|Gn

))2∣∣∣Gn

]

� 1

(n + 1)2

∑
i∈In

1l{I(i)
n �k}P(ΔI (i)

n � 1|Gn)

� 1

(n + 1)2
sup

i=1,...,n
n1l{I(i)

n �k}

∣∣∣∣P(ΔI (i)

n � 1|Gn) − F (i)I (i)
n

nF̄n

∣∣∣∣ +
λ

(n + 1)2
,

where we used the definition of F̄n in the last step. By the same calculation as in (5.6),

assumptions (A1) and (A4) guarantee that the first term converges to 0, so that the whole

expression is indeed almost surely summable.

This completes the proof of (i)–(iii) in (5.3) and therefore the claim in (5.1) holds.
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Completing the induction step. We recall that by (5.1), we have shown that, for any

f, f′ ∈ [0, 1] with f < f′ and either μ({f, f′}) = 0 or f′ = 1 and μ({f}) = 0, we have

almost surely

lim inf
n→∞

Γ(k)

n ((f, f′]) �
(k − 1)

∫
(f,f′] xΓ(k−1)(dx)

θ∗ + kf′ , (5.8)

We can drop the assumption that μ((f, f′]) > 0, since the statement holds trivially in that

case. We now pick a countable subset F ⊂ [0, 1] that is dense such that for each of its

entries f we have μ({f}) = 0 or f = 1. Since F is countable there exists an almost sure

set Ω0 on which (5.8) holds for any pair f, f′ ∈ F with f < f′. Suppose now that U is an

arbitrary open set. By approximating the set U from below by unions of small disjoint

intervals (f, f′] with f, f′ ∈ F, analogous reasoning to the proof of Proposition 4.1 shows

that

lim inf
n→∞

Γ(k)

n (U) � (k − 1)

∫
U

x

θ∗ + kx
Γ(k−1)(dx)

on Ω0. The proof of the converse inequality, namely that, almost surely, for any closed A,

we have

lim sup
n→∞

Γ(k)

n (A) � (k − 1)

∫
A

x

θ∗ + kx
Γ(k−1)(dx),

is established analogously. We thus obtain that Γ(k)
n converges almost surely, in the weak∗

topology to Γ(k) given by

Γ(k)(dx) =
(k − 1)x

kx + θ∗ Γ(k−1)(dx) =

k∏
�=2

(� − 1)x

�x + θ∗ Γ(1)(dx).

Initializing the induction. To complete the argument, we still need to verify the statement

for the initial choice k = 1. As before, we fix f, f′ ∈ [0, 1] with μ({f, f′}) = 0, μ((f, f′]) > 0.

Then, we define Xn := Γ(1)
n ((f, f′]) and we set

In := In((f, f
′]) := {i ∈ {1, . . . , n} : F (i) ∈ (f, f′]}.

Then, it follows that, since I (n+1)

n+1 = 1 by definition,

E[Xn+1|Gn] =
1

n + 1

∑
i∈In

P(I (i)

n+1 = 1|Gn) +
1

n + 1
P(F (n+1) ∈ (f, f′])

= Xn +
1

n + 1

[
−

∑
i∈In

1l{I(i)
n =1}P(ΔI (i)

n �= 0|Gn) − Xn + μ((f, f′])

]
.

Thus, in analogy to the induction step, one can show that

Xn+1 − Xn � 1

n + 1
(An − BnXn) + Rn+1 − Rn,

where An → μ((f, f′]) and Bn → 1 + f′/θ∗ and Rn+1 − Rn = Xn+1 − E[Xn+1|Gn]. The re-

mainder term Rn can then be decomposed as M (1)
n − M (2)

n + In as above, with M (1)
n = 0, M (2)

n
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defined as in (5.7), and the additional term defined by

In =
1

n

(
1l{F (n)∈(f,f′]} − P(F (n) ∈ (f, f′])

)
.

We have already seen that M (2) converges. Moreover, an elementary martingale argument

(for i.i.d. random variables) shows that
∑

n∈N
In is finite almost surely. Therefore, by

Lemma 3.1 we can deduce that

lim inf
n→∞

Xn � θ∗

θ∗ + f′ μ((f, f′]).

Repeating the same approximation arguments as before, we obtain that Γ(1) converges

almost surely in the weak* topology to Γ(1) given by

Γ(1)(dx) =
θ∗

θ∗ + x
μ(dx),

which completes the proof by induction.
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