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Abstract In this paper we consider the problem of explicitly finding canonical ideals of one-dimensional
Cohen—Macaulay local rings. We show that Gorenstein ideals contained in a high power of the maximal
ideal are canonical ideals. In the codimension 2 case, from a Hilbert—Burch resolution, we show how
to construct canonical ideals of curve singularities. Finally, we translate the problem of the analytic
classification of curve singularities to the classification of local Artin Gorenstein rings with suitable
length.
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1. Introduction

Let (R, m) be a one-dimensional Cohen—Macaulay local ring with maximal ideal m for
which there exists a canonical module wg; this is the case, for instance, if R is the quotient
of a local Gorenstein ring. Recall that R possesses a canonical ideal (more precisely, the
canonical module wr of R exists and is contained in R) if and only if the total ring of
fractions of the m-adic completion of R is Gorenstein [13, Satz 6.21]. See [4, Chapter 3]
for the basic properties of canonical modules and canonical ideals.

The question that motivates this paper is, can we explicitly describe canonical ideals?
Recall that Boij [3] addressed this problem for projective zero-dimensional schemes. A
second question that we consider is, can we use canonical ideals for the analytic classi-
fication of singularities? In this paper we study these questions in the one-dimensional
case.

The contents of this paper are as follows. In §2 we show that Gorenstein ideals con-
tained in a high power of the maximal ideal are canonical ideals (see Proposition 2.3).
In the codimension 2 case, and following [3], from a Hilbert—Burch resolution we show
how to construct canonical ideals for curve singularities (see Proposition 2.8). In this
section we recall how to ‘explicitly’ describe the canonical module by using Rosenlicht’s
regular differential forms [20, Chapter IV, §3.9]. This strategy is very useful in the case
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of branches and especially in the case of monomial curve singularities. In § 3 we address
the problem of the analytic classification of curve singularities. We show canonical ideals
I € O(x,0), where X is a curve singularity, for which we compute the multiplicity and
the socle degree of the Artin Gorenstein quotient O(x o)/I (see Proposition 3.4). In The-
orem 3.5, we translate the problem of the analytic classification of curve singularities X
to the classification of local Artin Gorenstein rings O(x g)/I of suitable length.

Notation. Let (R, m) be a one-dimensional Noetherian local ring with maximal ideal
m and residue field k = R/m. If I is a m-primary ideal of R, we denote by HF}(n) =
Length(R/I™™1) the Hilbert-Samuel function of I. Hence, there exist integers eg =
(I) > 1 and e, (I) such that HP}(n) := eg(I)(n + 1) — ey (I); this is the Hilbert-Samuel
polynomial of I, i.e. HF}(n) = HP}(n) for n > 0. The integer eo(I) is the multiplicity
of I. We denote by HF%(n) = length (1" /I"t") the zeroth Hilbert-Samuel function of
I. Then, HPY(n) = eo(I) for n > 0 and the postulation number of I is the least integer
pn(7) such that HFY(n) = HPY(n) for all n > pn(I). We set HF%, = HF?, , HPY, = HP! |
1 = 0,1, and pn(R) = pn(m). If M is an Artm R-module, we define the socle degree
s(M) of M as the last integer ¢ such that m'M # 0. The socle of M is by definition the
R-submodule soc(M) = (0 :py m) of M.

Next we recall some basic facts regarding curve singularities. Let (X, 0) be a reduced
curve singularity of (C",0) = Spec(O(cn 0y), i.e. Ocn,0) = Clz1,...,2,] and (X,0) =
Spec(Ox,0)), where O(x;, 0) = Ocn 0 /Ix is a one- dlmenelonal reduced ring with maximal
ideal mx. We write HFX = HFO and HPY = HP}, We assume that n is the

(X,0) (x,0)°
embedding dimension of (X, 0), Wthh is equivalent to saying that my /m% is isomorphic

as a C-vector space to the homogeneous linear forms of P = C[Xy,..., X,]. Hence, all
elements x € my /m% define an element in the quotient O(x,0) that we will denote again
by z. Let

v: X = Spec(O(x,0)) = (X,0)

be the normalization of (X,0), where O(x ¢ is the integral closure of O(x ¢y on its full
ring tot(O(x,0y) of fractions. The singularity order of (X, 0) is 6(X) = dimc(Ox/Ox 0))-
We denote by C the conductor of the finite extension v*: O(x o) = O(x,0) and by ¢(X)
the dimension of O(x ¢y/C. Let

—1
wix,0) = Exto 0 (Ox,0), 926 o )

be the dualizing module of (X, 0). We can consider the composition morphism of O(xg)-
modules
Yx: $2x,0) = Ve Ewx — Wx,0)-

Let d: O(x,0) — 2x,0) be the universal derivation. We then have a C-map yxd
that we also denote by d: O(x,0) —+ w(x,0)- The Milnor number of (X,0) is u(X) =
dime (w(x,0)/dO(x,0)) [6]. Notice that (X,0) is non-singular if and only if u(X) = 0 if
and only if 6(X) = 0 if and only if ¢(X) = 0.

In the following result we collect some basic results on p and other numerical invariants
that we will use later on.
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Proposition 1.1. Let (X, 0) be a reduced curve singularity of embedding dimension n.
Then the following statements hold.

(i) p(X)=20(X)—r+ 1, where r is the number of branches of (X,0).

(i1) It holds that

and e1(X) < (EO(QX)) _ (n;l)

(iii) If X is singular, then §(X) 4+ 1 < ¢(X) < 26(X) and ¢(X) = 20(X) if and only if
O(x,0) Is a Gorenstein ring.

Proof. (i) See [6, Proposition 1.2.1]. (ii) See [6, Proposition 1.2.4 (i)] and [9,10,17].
(iii) See [20, Proposition 7, p. 80] and [2]. O

2. Canonical ideals

The first aim of this section is to find conditions on an m-primary ideal I to be a canonical
ideal.

Lemma 2.1. Let (R,m) be a one-dimensional Cohen-Macaulay local ring and let I
be an m-primary ideal of R. Let x € m be a parameter of R.

(i) If R/z™I is a Gorenstein ring for some n > 1, then R/I is a Gorenstein ring and
("I :g m) =2a"(I :r m).

(ii) Assume that I C xR. If R/I is a Gorenstein ring, then R/x™I is a Gorenstein ring
for all n > 1.

Proof.
(i) The short exact sequence
0— R/T*S R/a" — R/a"R — 0
yields the exact sequence
0 — Hompg(R/m,R/I) z, Hompg(R/m,R/x"1) — Homg(R/m,R/z" R)

of socles, which shows that

"

Hompg(R/m, R/I) = Homg(R/m, R/x"I)

because Homp(R/m, R/I) # 0 and Lengthy(Hompg(R/m, R/x"I)) = 1. Hence,
R/I is a Gorenstein ring.
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(ii) Let a € (a™I :g m). Then, since za € "I C "1 R, we get a € 2™ R, which shows
that w((2™I :g m)/a"I) = 0, where w: R/z"I — R/xz"™R denotes the canonical
epimorphism. Hence, we get the isomorphism

Homp(R/m, R/I) = Homp(R/m, R/x"I)
in the exact sequence
0 — Hompg(R/m, R/I) ~ Homp(R/m, R/2"I) — Homp(R/m, R/2"R)

of socles. Thus, Lengthp(Hompg(R/m, R/x"I)) = 1, so that R/2™I is a Gorenstein
ring for all n > 1.

]

Proposition 2.2. Let I be an m-primary ideal of R. Then I is a canonical ideal of R
if and only if there exists a parameter € m of R such that R/xI is a Gorenstein ring.

Proof. We have only to prove the if part. Let @ be the total ring of fractions of R.
Since HL, (I) = Q/I, it suffices to see that Lengthr(I :o m)/I = 1. Let a € (I :¢g m).
Then, since za € I C R and (za)m C zI, we have

za € (zI :g m) = z(I :g m)
(see the proof of Lemma 2.1 (i)). Hence, I C (I :g m) C (I :g m), so that
Lengthp(I :g m)/I = Lengthp(I :p m)/I =1
as wanted. O

In the next result we prove that an m-primary Gorenstein ideal contained in a high
power of the maximal ideal is a canonical ideal. Notice that this result cannot be extended
to any m-primary Gorenstein ideal. Let R be a one-dimensional Cohen—Macaulay local
ring of Cohen—Macaulay type 2 and embedding dimension b > 3, for example, R =
E[t>,t%,¢7]. Then the maximal ideal is a Gorenstein ideal minimally generated by b > 3
elements. Since the minimal number of generators of a canonical ideal is the Cohen—
Macaulay type of R, m is not a canonical ideal.

Corollary 2.3. Let x € m and assume that m" ™' = xm” for some r > 0. Let I be

an m-primary ideal of R such that I C m"*!. If R/I is a Gorenstein ring, then I is a

canonical ideal of R, whence tot(R) is a Gorenstein ring.

Proof. Since we have that I € m"t! C zR, the assertion follows from Lemma 2.1
and Proposition 2.2. O

Remark 2.4. Recall that pn(R) < eg(R) — 1 [16, Proposition 12.14]. Hence, if
I € m® () is an m-primary ideal such that R/I is a Gorenstein ring, then [ is a canon-
ical ideal.
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The last result points out that a basic problem in commutative algebra is to find
methods to construct Gorenstein ideals. We know that complete intersection ideals are
Gorenstein; by a result of Serre, in codimension 2, being Gorenstein is equivalent to being
a complete intersection; in codimension 3, Gorenstein ideals are the ideals generated by
the Pfaffians of skew-symmetric matrixes [5]. In Proposition 2.8 we show how to construct
canonical ideals, which are Gorenstein, from a Hilbert-Burch resolution. On the other
hand, notice that if I is a canonical ideal and y € m is a non-zero divisor of R, then y'I,
t > 1, is a canonical ideal as well, but the length of R/yI is not under control. In fact,
for all t > 1 we have [16, Theorem 12.5],

Lengthr(R/y'I) = Lengthp(R/I) + Length (I /y'I)
= Lengthp(R/I) +t Lengthr(R/(y))
> Lengthp(R/I) + teg(R).
In the next result we find canonical ideals for which we compute the multiplicity or
the socle degree; in the second part we take ¢t > 4u(X) + 1, where (X,0) is a reduced

curve singularity, because we have to consider a large ¢ in Theorem 3.5. See Example 2.7
for an explicit application of the next result.

Proposition 2.5. Let (X,0) be a reduced curve singularity.

(i) Let z be a degree t > 2u(X) + 1 superficial element of Ox o). Then the Ox o)-
module zw(x g is a canonical ideal of (X,0) such that Ox o)/2w(x,0) is a Goren-
stein ring of colength teg(X) — 26(X).

(ii) Fort > 4u(X)+ 1 the socle degree of O x 0)/2w(x,0) is at most
eo(X)(t —2u(X) — 1) +26(X) + e1(X) + 2(1 —r).
This number is bounded from above by 6(X)(4eq(X) + 3).

(iii) If (X,0) is Gorenstein, then Ox ) is a canonical ideal and for every superficial
element z of degree t > 1, 20 x o) Is a canonical ideal.

Proof. (i) Since Ox ) is a one-dimensional reduced ring, we know that w(x g is
a sub-Ox g)-module of tot(O(x,)) [4, Proposition 3.3.18]. Let us consider the perfect
pairing [20, Chapter IV]

v.0x _ wWx,0

Xc

Owx0)  vf2x
Fxa— Zrespi(Fa)

i=1

and notice that for all A € R it holds that

n(AF,a) = Z resy, (AFa) = n(F, Aa).
i=1
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Hence, since m®X) annihilates the quotient v,Ox/ O(x,0), we get that mX) annihi-
lates the quotient LU(X’O)/V*.QX, too. Hence, mC(X)w(X’O) C v 25 = 1v,.Ox. Again, since
m Xy, 05 C O(x,0), We get mQC(X)w(Xﬁo) C O(x,0)- On the other hand, the epimor-
phism of O(x ¢)-modules
Y(x,0) Y(x,0)
Ox,0d0x,0)  v«f2%

assures us that m“(X)w(Xm C 1,25 = 1,.0x. Hence, m*X)p, 05 C O(x,0) and
m#(X)J’_C(X)W(X’O) C Ox,0)-
Let us consider the sequence
mtw(X,o) C Ox,0) CvO0x = 2% Cw(x,0)-

From the perfect pairing from the beginning of the proof, we get dimc(w(x,0)/O(x,0)) =
26(X). Since z is a degree t > 2u(X) superficial element of Ox ¢,

dime (wix,0)/2w(x,0)) = teo(X)

(see [16, Theorem 12.5]). From this identity and Proposition 1.1, we get the first part of
the claim.

(ii) We have the following inequality for ¢ > 4u(X) + 1:

O 2u(X)+1
s<(X’O) ) = s<m ) +2p(X) + 1

2W(x,0) 2W(x,0)
m2,u(X)+1

< Length ( ) +2u(X)

2W(X,0)

Ox.0) Ox.0)

From Proposition 1.1 and the first part of this result, we obtain

S<O(X70)) < (teo(X) — 20(X)) — (eo(2u(X) + 1) — e1(X)) + 2u(X)
ZW(XQ)

= eo(X)(t — 2u(X) — 1) + 20(X) + e1(X) + 2(1 — 7).

From Proposition 1.1 we obtain that the socle degree is bounded from above by
0(X)(4deo(X) + 3).

(iii) Since any superficial element is a non-zero divisor, we get the claim. O

Recall that it is possible to give an ‘explicit’ description of w(x gy by using Rosenlicht’s
regular differential forms (see [20, Chapter IV, §3.9] and [6, §1]). This strategy is very
useful in the case of branches, especially in the case of monomial curve singularities.
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We denote by 2¢(p.) the set of meromorphic forms in X with at most a single pole
in the set {p1,...,p,}. Then Rosenlicht’s differential forms are defined as follows: w& 0)
is the set of v, (), a € 2%(p.), such that for all F' € Ox ),

T

Z res,, (Fa) = 0.

i=1

Notice that we have a mapping that we also denote by
dRZ O(Xp) — OJ(X)O) — Z/*.QX — w&jo).

¢
In [1, Chapter VIII, §1] it is proved that w(Xyo)%wggo) and dg = ¢d, where d: O(x o) —
w(x,0)- From now on we assume that (X,0) is a branch, i.e. 7 = 1. Let t € tot(O(x o)) be a
uniformizing parameter of (X, 0); this means that O(x gy = C[t]. We can consider O(x )
as a sub-C-algebra of C[t] and then we may assume that there exists a parametrization

of (X,0),
xr1 = tnl,
{ITZ:fZ(t), 7;:2,...,’[17
with n1 = eg(X) and valy(f;) = n1, ¢ = 2,...,n. Here, val; denotes the valuation with

respect to ¢ that is defined in tot(O(x,g)). Notice that the conductor C of the extension
O(x,0) C O(x,0) is, in particular, an ideal of O(x ) = C[t], so it is generated by ¢°.

For any subset N of tot(O x g)) we denote by I'y the set of rational numbers val;(a)
for all @ € N \ {0}. We assume that I'y contains the zero element.

The following result is well known. We include it here for the reader’s convenience
(see [11, Example 2.1.9]).

Proposition 2.6. Let (X,0) be a branch. It holds that I, ,, C Z\ (—I'x — 1) and,
in particular, I, , C —c+ N and there exists a € w(x o) such that valy(a) = —c. If

(X,0) is a monomial curve singularity, then I, , = Z\ (=I'x —1).

Proof. Every a € w(x ) can be written o = t"g(t) dt with n € Z and g(t) € C[t] an
invertible series. Then, for all F' = t"g(t) € O(x ) with g(t) € C[t] an invertible series,
we get that reso(aF’) = 0. In particular, this implies that n+m # —1,son € Z\(—I'x—1).
Let us consider an element o = t"g(t) dt € wx o) with g(t) € C[t] an invertible series
with n < —c¢ — 1. Since —n — 1 > ¢, we get t™ "1 ¢ O(x,0) and then a contradiction:
valy(at™""1) = —1. The differential o = ¢t~ dt belongs to w(x ¢y and val;(a) = —c.

Let us assume now that (X, 0) is a monomial curve singularity and let n be an integer of
Z\ (=I'x —1). Consider the differential v = ¢" dt: we only have to prove that o € w(x ¢).
Let us consider F' = Zi>0aiti, a power series with coefficients a; € C, ¢ > 0. Since (X, 0)
is monomial, we get that F' € Ox o) if and only if for all a; # 0 it holds that ¢ € I'x. If
a & wx,0), then there exists ' € Ox o) such that reso(af') = a_,_1 # 0. This implies
that —n — 1 € I'x, which is in contradiction to the hypothesis n ¢ —I'xy — 1. O
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Example 2.7. Let us consider the monomial curve X with parametrization x; = ¢4,
29 = t7, 3 = t°. Then, ey = 4, ¢ = 11 and § = 6. Then, wyx is the C-vector space
spanned by t1, 77, ¢76 ¢4 73, ¢t72, " n > 0, and the quotient wx /dOx o) admits
as C-vector space base the cosets defined by t=11, ¢+=7, ¢=6 ¢4 73 ¢72 1, ¢, 2, t4,
t5, t9. Notice that pu(X) = 12 = 2§(X). From Proposition 2.5 we obtain that z¢wy is a
canonical ideal of X, a > 101. On the other hand, t'5wy = (71, 3) is a canonical ideal
as well.

The next step is to find explicit canonical ideals from the resolution of O(x o) when X
is a reduced curve singularity of (C3,0). By the Hilbert-Burch theorem, we know that
there exists a minimal free resolution of O(x o) as an Ocs g)-module [7],

vl M.
0= Ofga'g) = Ofea ) = Oes,0) =+ Orx0) = 0,

where M is a v X (v — 1) matrix with entries belonging to the maximal ideal O(cs o) and
I'x is minimally generated by the maximal minors of M. The canonical module of O(x o)
is minimally generated by v—1 elements. Following [3,15], we consider a (2v—1) x (2v—1)

block-matrix
A M
My =
4 (MT 0 )

where A = (a;)ij=1,..0 1S & v X v skew-symmetric matrix. Notice that M, is also a
skew-symmetric matrix and, by the main result of [5], we have a complex

Pf(Ma)" w1l M v_1 PHM
0— O(Csp) —>( 4) O(Q(Cg,’[l)) =4 0(2@37(1)) —>( 4) O(Csﬁ) — 0y = 0(63,0)/IA — 0,

where I4 is the ideal generated by the Pfaffians Pf(M4) of M,4. This complex is exact if
and only if Iz is a height 3 ideal and if this is the case, O4 is a Gorenstein ring [5].
Proposition 2.8.

(i) Let Abeavxv skew—symm%trjc m%trix such that I4/Ix is an mx-primary ideal
of Ox,0) and I4/Ix C mﬁ(n( o)t ppen I4/Ix is a canonical ideal of (X,0).

(ii) For all t > pn(O(x o)) there exists a v x v skew-symmetric matrix A with entries
of order at least t such that I4/Ix is a canonical ideal of O x ¢).

Proof. (i) This is a consequence of [5] and Corollary 2.3.

(ii) The ideal I4 is generated by the Pfaffians of M4 and these elements take the
following form (see [15]).

(1) F; = (=1)"+=D@=2/2 det(M;), i = 1,...,v, where M; is the matrix removing the
1th row of M.

(2) Fio = Yicicjeo (-1 DO 20, 5 det(Mijr), v+1 < k<20 =1, My, is
the matrix removing the 4, j rows of M and the k column of M.

https://doi.org/10.1017/50013091514000418 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091514000418

On the canonical ideals of one-dimensional Cohen—Macaulay local rings 85

Notice that Fy,..., F, is a system of generators of Ix. Hence, I4/Ix is generated by the
cosets of F}, in (’)(X,o), v+1<k<2v—1.

Let m: O(cs,0) — Ox,0) be the natural projection. Let Jx be the ideal generated
by the 2 x 2 minors of the v x 3 matrix Jacx whose ith row is the gradient vector
VF; = (0F1/0x1,0F/0x3,0F/0x3),i=1,...,v. The image 7(Jx) is the Jacobian ideal
of X. Since the (X, 0) is an isolated curve singularity, we have that 7(Jx) is mx-primary,
so m im(Jx) = Ix + Jx is (x1, 22, x3)-primary.

On the other hand, it is easy to prove that

Ix+Jx CK=(F;1<i<wv;det(M;;r);1<i<j<viv+1<k<20—-1),

so K is an (z1, %2, r3)-primary ideal.

Assume that det(M; ;1) is a zero divisor of Ox gy for all 1 <i < v, 1 <4< j < v,
v+1 <k <2v-1. Let py,...,pm be the set of minimal primes of O(x o). Then p; # mx,
i=1,...,m,and K/Ix C p1U---Upy. Since K/Ix is an m-primary ideal of Ox o),
there is an integer w such that

w . K
(21, 22,23)" C—— Cp1U - Upp.
Ix
Hence, every element of (x1,z2,23)" is a zero divisor of O(x ¢y, but this is not possible
because O(x ) is a Cohen-Macaulay ring. We have proved that there exist integers
1<i<v,1<i<j<v,v+1<k<2v—1such that det(M; ;) is a non-zero divisor
in O(X,O)-
Let x € m \ m? be a non-zero divisor of O(x,0)- Let us consider the skew-symmetric
matrix such that
a; j = xpﬂ(o(x,o))’

aa,B:Ov Oé<ﬁ, (a7ﬂ)7é(l7.])

Then Fj, = +2P*Ox.0) det(M; ;1) is a non-zero divisor of O(x ). Hence, I4/Ix is an
m-primary ideal of O(x ¢y contained in mP(Ox.0)+1 By (i), we obtain that I4/Ix is a
canonical ideal of O(x ). O

Example 2.9. Let us consider a monomial curve singularity X with parametrization
(t™, "2 ¢"3) such that ny < ng < ng and ged(ny, n2,n3) = 1. Then, eg(X) = ny and

O(x,0) = C[t",t"2,t"] C O(x,0y = C[t].
The ideal I'x is generated by
73,1 _T3,2 T1,2 _T1,3 72,1 12,3

Fy=a 2y — 2, Fh=xy"xy " —2 and F3=uxz""23" — 232,

where r; ; > 0 and ¢; > 0 is the least integer such that c¢;n; = Z#j rini, t = 1,2,3
[12]. We assume that X is not a complete intersection, so r; ; > 0. We then have that
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€1 =721+ 7T31,C =7T12+732,C3 =7"13+723 and F, F5, F3 are the maximal minors
of a matrix

2,1 71,2
Iy 2
— 73,2 72,3
M= |z, T
1,3 73,1
T3 L1

(see [18]). Then the matrix M4 takes the form

0 a2 —a13 | 270wyt
—ai,2 0 a3 .’1?;22 .%‘22’3
Mpa=C= < A _| M ) = ai,3 —a32 0 xgt? xtt
-M7 | 0
1,71"2 1 lﬂ"a,z xgl 3 0 0
—1’;1'2 _mgzs _x?l”s,l 0 0

with a; ; € mP*(Ocx.0) Then I4/Ix is a canonical ideal generated by the cosets in O x o)

of ag 3mi;+ai,3ma;+aiams;, i = 1,2, if one of these two elements is a non-zero divisor

of O(x,0) (see Proposition 2.8 (ii)). For instance, we can take a3 = xllm(x) and a; ;j =0

for (4,7) # (2,3), and so (x{2’1+pll(x),xllm(X)x;l'Q) is a canonical ideal of X.

3. Canonical ideals and the classification of curve singularities

In this section we translate the classification of curve singularities to the classification of
local Artin Gorenstein rings by means of the quotients with canonical ideals.

First we have to define what generic means in our context. We denote by S; the
C-vector space of forms of degree t of Cz1,...,z,].

Proposition 3.1.

(i) For allt > 2u(X) + 1 there exists a non-empty Zariski open set Uy(X) of S, such
that the following hold.

(1) For all z € Uy(X), z € O(x o) is a degree t superficial element and non-zero
divisor.

(2) For all z1, 25 € Up(X),
1 1
HE o oy /2100x.00 = B O(x,0) /220(x.0) -

(3) For every degree t superficial element y € O(x ) and for every z € Uy(X), it
holds that for all n > 0,

1 1
HFO(x,o)/flw(x,o) (n) < HFO(X,O)/Z/UJ(X,O) (n).

(ii) For all z € Uy(X) and t > 4u(X) + 1, the socle degree and the length of
O(x,0)/2w(x,0) are constant and analytic invariants of (X,0) and satisfy

3(O(x,0)/Zw(x,0)) < €o(X)(t —2u(X) — 1) +26(X) + er(X) +2(1 — 1),
Length(O(x,0)/2w(x,0)) = eo(X)t —26(X).
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Proof. (i) From [19, Proposition 3.2], there exists a non-empty Zariski open set Wy C
Si such that z € O(x,) is a degree ¢ superficial element and non-zero divisor. From
Proposition 2.5 (i) we know that for all z € Wy we have Length(Ox 0)/2w(x,0)) = ¢ with
£ = teg(X) — 20(X), so HFb(x,m/Ew(x,o) (n) = ¢ for all n > ¢. Hence, we only have to
consider n < £. Let us consider the upper semi-continous function

For each n = 1,...,¢, let W,, be a non-empty Zariski open set W,, C Wy such that
on(z) = min{o,} for all z € W,,. We set Uy(X) = Wy N---NW,. From the definition of
U(X), it is easy to get (2) and (3).

(ii) From (2) we deduce that the socle degree and the length of Ox o)/2w(x o) are con-
stants for all ¢ > 2u(X)+1 and z € Uy(X). The upper bounds come from Proposition 2.5.
Let ¢: (X1,0) — (X2,0) be an analytic isomorphism between two reduced curve singu-

larities. Let @y : 7ntX1 / mgzl — n”LtX2 / mé}';l be the C-vector space isomorphism induced
by . Since ¢y (U(X1)) N Uy (X2) # 0, we get the last part of the claim. O

We write £(X) = eo(X)(4u(X) + 1) — 26(X). Notice that this is the length of the
quotients O(X,Q)/EUJ(X’()) for z € U4/1,(X)+1(X)~

Definition 3.2. The least socle degree of the quotients O(x )/l is denoted by
o(X). Here, I range over the set of canonical ideals I C O(x ) with I C m2(X)+1
and Length(Ox 0)/1) = ¢(X). A canonical ideal I is called deep if I C m2(X)+1
Length(O(x,0y/I) = £(X) and s(O(x,0)/I) = o(X). Notice that from Proposition 3.1,
deep canonical ideals exist and that o(X) is an analytic invariant.

Remark 3.3. If (X,0) is non-singular, then we can take ¢ = 1 in the last identity of
Proposition 3.1; in fact, we have s(O(x,0)/2Ox,0)) = s(k) = 0. If (X,0) is Gorenstein,
then we can take as canonical ideal the whole ring I = O(x ). Then we have that
x € O(x ) is a degree one superficial element such that

@ @
s<w>:s<w>+t_60m+l

mtO(Xﬁ) xeo(X)—lo(Xvo)

and Length(O(x 0)/2'O(x,0)) = eo(X)t for all t > eo(X) — 1.

Given a non-negative integer ¢, we denote by Hilbfcnp) the Hilbert scheme of length ¢
subschemes Z of (C™,0). We denote by [Z] the closed point of Hilbfcnm defined by Z.
From the universal property of Hilbfcn,o) we deduce tklat any analytic isomorphism
¢: (C",0) — (C",0) induces a C-scheme isomorphism ¢: Hilbfcn’o) — Hilbfcn,m such
that ¢([Z]) = [¢(Z)]. Given a canonical ideal I of a reduced curve singularity (X, 0), we
denote by (X,0); the zero-dimensional scheme Spec(Ox o)/I). We know that (X,0)r is
an Artin Gorenstein scheme [4, Proposition 3.3.18]. It is well known that two canonical
ideals are isomorphic [4, Theorem 3.3.4]. In the one-dimensional case one can prove more:

if Iy and I are canonical ideals, there exist non-zero divisors y1,y2 € O(x ) such that
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y111 = yoI> [16, Theorem 15.8]. Notice that from the proof of this result we obtain that
for all z € U;(X) there exists integer a and a regular element y such that 2“1 = yzw(x o)-
The ideals I; and I3 are isomorphic as O(x g)-modules, but, in general, they are not ana-
lytic isomorphic. Since K; = xtw( x,0) is a canonical ideal for all £ > 1 with z a degree 1
superficial element, the Hilbert function of O(x )/ K; varies with ¢.

Proposition 3.4. There exists a non-empty subscheme Can(X,0) of the Hilbert
scheme Hilbfgf)o) whose closed points correspond to zero-dimensional Gorenstein schemes
(X,0)r C (C™,0) of length ¢(X) and such that I C m?é‘(x)ﬂ is a deep canonical ideal.

Proof. Notice that by Proposition 2.5, there exist canonical ideals I C m
colength ¢(X). Hence, the set of closed points of Hilbfgf’)o) corresponding to such a
canonical ideal is non-empty. Conversely, by standard arguments on the semi-continuity
of the dimension of k-vector spaces, there exists a sub-scheme of Hilbfgf)o) such that its
closed points correspond to the quotients O(x ¢)/I, where we have that TcC mif(X)H.
Since O(x o) is a one-dimensional Cohen-Macaulay ring, I is a faithful maximal Cohen—
Macaulay O x g)-module. Hence, from [4, Proposition 3.3.13] we obtain that I is a canon-
ical ideal if and only if I is a type 1 Cohen—Macaulay O(x g)-module. Since the Cohen—

Macaulay type is a positive upper semi-continuous function, we get the claim. O

2u(X)+1 o

Theorem 3.5. Given reduced singularities (X;,0), i = 1,2, the following conditions
are equivalent.

(i) There exists an analytic isomorphism ¢: (C",0) — (C",0) such that ¢(X1,0) =
(X2a 0)

(ii) There exists an analytic isomorphism ¢: (C",0) — (C",0) inducing a C-scheme
isomorphism ¢: Can(X;,0) — Can(Xo,0).

(iii) There exists an analytic isomorphism ¢: (C",0) — (C™,0) and [(X1,0);] €
Can(X1,0) such that [¢((X1,0)7)] € Can(X2,0).

Proof. Given an integer s > 1 we denote by (X,0)s the Artin scheme defined by
O(x,0)/m%. The implications (i) == (ii) == (iii) are trivial. Assume that there
exist [(X1,0);] € CangXl,O) such that [¢((X1,0)7)] € Can(Xs,0). If p(X;1) < pu(Xa),
then, since I C miy X +1, we obtain that (#(X1,0))2u(x)+1 = (X2,0)2,(x,)+1- From
the main result of [8, Theorem 6], we obtain that there exists an analytic isomorphism
p: (C™,0) = (C™,0) such that p¢(X7,0) = (X2,0). If u(Xs) < p(X1), then we consider
(07 1(X2,0))2u(x5)+1 = (X1,0)2,(x5)+1- Again, from the main result of [8, Theorem 6],
we get (i). O

An instance of Matlis duality is Macaulay’s inverse system: given a Gorenstein Artin
algebra B of socle degree s, the Macaulay inverse system of B is a polynomial of degree s
that encodes several algebraic properties of B (see [14]). In the next result we find
canonical ideals I C O(x o), with suitable socle degree, as the first step in considering
the inverse system of a curve singularity.
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Proposition 3.6. For all z € Uy, (x)+1(X), z € U1(X) and a > 0 it holds that

@ @)
s (3(70) —14s 7(X70) .
20 (x,0) TZW(X,0)
In particular, for suitable integer a we have

S(O(“)> = 6(X)(4eo(X) + 3).

TE2(X,0)

Proof. The proof of the first identity is standard. The second follows from Proposi-
tion 2.5 (ii) and Proposition 1.1. O

Notice that from the last result we can attach to a curve singularity (X,0) an Artin
Gorenstein local ring Bx = O(x,0)/7"2w(x,0) With socle degree §(X)(4eo(X)+3). Conse-
quently, we can attach to a curve singularity the Macaulay’s inverse system £ x of Bx that
is a degree 0(X)(4eg(X) + 3) polynomial. Hence, the algebraic and geometric structure
of X is encoded in the polynomial £x. The development of this fact will be considered
elsewhere.

Example 3.7. Let us consider the monomial ring R = k[t*,t7, %] of Example 2.7. In
this case the polynomial £x has degree 144. The explicit computation of this polynomial
seems to be very hard, but we can consider a more friendly canonical ideal. Notice that
R = k[z1, v9, 23] /I with I = (2} —zox3, 23 — 2323, 23 —2123), and J = tY%wx = (21, 73)
is a canonical ideal. Since z74(x1, x3) C m?*(X)*! the analytic type of X is determined
by the analytic type of the Artin Gorenstein algebra B = R/x3*(x1,x2) [8]. The ring B
has Hilbert function {1,3,4(23) 2 1} so that B is of multiplicity 99 and socle degree 26,
and the inverse system is the degree 26 polynomial:

310870812155904002 zox3" + 427447366714368002525 + 28496491114291200027 525

+ 14248245557145600x1 x3°x5 + 34195789337149440025 2525 + 284964911142912025 2:2°
+ 64764752532480022 23222 + 854894733428736002 2525 + 2137236833571840028 2325
+ 237233525760023 25 + 47494151857152005 x93 + 142482455571456002 ] w525

+ 4317650168832025 3 25 4 178103069464320025 2525 + 6784878836736021 z02]

+ 42405492729600x) 2523 + 43176501688320x1 w525 4 9423442828821 21"

+ 3598041807360x1 2x5 x5 + 1976946048014 25 4 3953892096021 32723

+ 197694604802 % 2325 + 1235591280215 w522 4 484545621 x5

+ 170016021 2923 + 8500823 w3 w3 + 2422322 + 2342,
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