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Abstract

For a polynomial f (x) ∈Q[x] and rational numbers c, u, we put fc(x) := f (x) + c,
and consider the Zsigmondy set Z( fc, u) associated to the sequence { f n

c (u) − u}n�1, see
Definition 1·1, where f n

c is the n-st iteration of fc. In this paper, we prove that if u is a
rational critical point of f , then there exists an M f > 0 such that M f � maxc∈Q{#Z( fc, u)}.

2020 Mathematics Subject Classification: 11B37 (Primary) 37F10, 11A41 (Secondary).

1. Introduction

For every polynomial f (x) ∈Q[x] and α ∈Q we put fα(x) := f (x) + α. Therefore, fα
can be considered as a one-parameter family of polynomials. For every u ∈Q we write

S f,u := {c ∈Q | { f n
c (u) − u}n�1 is infinite},

where f n
c is the nth iteration of fc. In particular, if u = 0, we put S f := S f,0.

We denote by valp(−) the p-adic valuation of Q normalized by valp(p) = 1. In keep-
ing with the terminology of [5], for every polynomial f (x) ∈Q[x], u ∈Q and n � 1
we say that p is a primitive prime divisor of f n(u) − u if valp( f n(u) − u) > 0 and
valp( f k(u) − u)� 0 for all 1 � k < n.

Definition 1·1. The Zsigmondy set of the sequence { f n(u) − u}n�1 is defined by

Z( f, u) := {n � 1 | f n(u) − u has no primitive prime divisor}.
The primary application of bounds on the Zsigmondy set is towards understanding arbo-

real Galois representations associated to iteration of rational maps over number fields. It was
first studied by Bang [1] and Zsigmondy [9]. Since then, there have been quite a few research
papers on characterising/bounding Zsigmondy sets of various sequences in various settings,
e.g., Carmichael [2], Schinzel [8], Rice [7], Ingram–Silverman [5], Doerksen–Haensch [3],
Gratton–Nguyen–Tucker[4], Krieger [6], etc.

In this paper, we are interested in the size of the Zsigmondy set of a sequence obtained
from the critical orbit of polynomials with rational coefficients of degree d � 2. We denote
by � the set of finite primes of Z and reserve p for a prime number.

We first state our main theorem.
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THEOREM 1·2. For every polynomial f ∈Q[x] of degree d � 2 with a critical point
u ∈Q there is a constant M f > 0, depending only on f (independent of c ∈Q), such that

#Z( fc, u)� M f

for every c ∈ S f,u.

It is worth mentioning that Rice [7] was the first to prove the finiteness of Z( f, 0) for each
individual polynomial f (x) �= xd . In [3], Doerksen–Haensch prove Theorem 1·2 for the case
that f (x) = xd , u = 0 and c ∈Z, which is generalised by Krieger in [6] to every c ∈Q, see
[6, theorem 1.1]. Our contribution is to prove Theorem 1·2 for general polynomials which
are not necessary to be monic nor integer. As we consider polynomials f that are more
complicated than xd , we did not aim to get the sharpest uniform bound M f .

Definition 1·3. A polynomial g(x) ∈Q[x] is called x2-divisible if it has degree d � 2 and
is of the form

g(x) = ud xd + · · · + u2x2 ∈Q[x].
At the last section we will prove that the following theorem implies Theorem 1·2.

THEOREM 1·4. Given an x2-divisible g(x) ∈Z[x] of degree d � 3 there is a constant
Mg > 0, depending only on g, such that

#Z(gc, 0)� Mg

for every c ∈ Sg.

Note that one can give an explicit expression of the lower bound Mg when combining the
decomposition of Sg in Proposition 2·2 with Propositions 3·3, 3·4, 3·7 and 3·8.

This paper is inspired by Krieger’s work in [6]. We generalise her result from the special
polynomial f (x) = xd to arbitrary polynomials in Q[x]. We first address the difficulties of
this generalisation as follows.

The first difficulty is from dealing with the non-monic case, in which the denominator
f n
c (c) is no longer always equal to dn’s power of the denominator of c. To deal with it, we

introduce a factorisation of an integer with respect to the leading term ud of f , see (2·9),
which allows us to focus on the major factor of the denominator of f n

c (c).
The second difficulty is from the critical points of large multiplicities. Due to this reason,

some arguments in [6] do not work for our case. For example, Krieger uses Mahler’s theorem
to control | f n

c (c)| by | f n−1
c (c) − f −1

c (0)|. However, this estimation might not be enough
when f n−1

c (c) is very close to a critical point with large multiplicity. It forces us to control
| f n

c (c)| in Proposition 2·11 by | f n−N
c (c) − f −N

c (0)| for some relatively large N > 1.

2. Introduction of Proposition 2·2 and some estimates

We split this section into two parts. In the first part, we introduce our main tech-
nical result Proposition 2·2, whose proof will be given in Section 3, and prove that it
implies Theorem 1·4. In the second part, we focus on estimating ln |An|, which appears
in Proposition 2·2.

Let us first set conventions and introduce some notation.
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(1) We set N := {1, 2, . . . } to be the set of natural numbers and for every n ∈N we denote
by [n] the finite set {1, 2, . . . , n}.

(2) We denote by � the set of finite primes of Z and reserve p for a prime number. For
every n ∈Z\{0} the sum

∑
p|n and the product

∏
p|n are taken over all its distinct

prime factors whose number is denoted by ω(n).

We will always write an x2-divisible g(x) ∈Z[x] by g(x) = ud xd + · · · + u2x2 ∈Z[x], and
define its length by

Lg := 1 +
d−1∑
i=2

|ui |/|ud |.

For every x2-divisible g(x) ∈Z[x], c ∈Q and n � 0 we write the (n + 1)th iteration
gn+1

c (0) as

gn+1
c (0) = gn

c (c) := An

Bn
,

where Bn > 0, An are coprime and both depend on g and c. Clearly, we have c = gc(0) =
A0/B0.

Definition 2·1. For an x2-divisible g(x) ∈Z[x] and a set S in Sg we call that g has rapidly
increasing numerators on S if there exists an integer N > 0 such that for every c ∈ S there
is a finite set Jc with #Jc � N such that for every n /∈ Jc we have

ln |An| >
∑
p|n

ln
∣∣An/p

∣∣ . (2·1)

We now state our main proposition, which is followed by the proof of Theorem 1·4.

PROPOSITION 2·2 (Main Proposition). Every x2-divisible g(x) ∈Z[x] has rapidly increas-
ing numerators on Sg.

Proof of Theorem 1·4 in assuming Proposition 2·2. By [6, lemma 2.3 and corollary 2.4], if
n ∈Z(gc, 0), then An | ∏p|n An/p and hence

ln |An|�
∑
p|n

ln
∣∣An/p

∣∣ .
Together with Proposition 2·2, this completes the proof.

The naive idea of proving Proposition 2·2 is to give a lower bound for ln |An| and an
upper bound for

∏
p|n |An/p| such that the lower bound is always greater than the upper

bound when n is large enough. Consider that

ln |An| = ln Bn + ln |gn
c (c)|. (2·2)

It is sufficient for us to control ln Bn and ln |gn
c (c)|.

2·1. Upper bounds for ln Bn and ln |gn
c (c)|

LEMMA 2·3. Given any x2-divisible g(x) ∈Z[x] and c ∈Q, for every n � 0 we have:
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(1) ln Bn � dn ln B0;
(2) ln |gn

c (c)|� dn ln
(

2|ud | max
{|c|, 4Lg

} )
.

Proof. (1) Since gn
c (c) can be written as A′

n/Bdn

0 for some A′
n ∈Z, we have Bn|Bdn

0 .
(2) It is enough to prove

|gn
c (c)|� (2|ud |) dn−1

d−1

(
max

{|c|, 4Lg

} )dn

, for all n � 0.

For n = 0, we have |g0
c (c)| = |c|�max

{|c|, 4Lg

}
.

Assume that the desired inequality holds for some n � 0 and temporarily denote its right
side by Tn . Then we have

|gn+1
c (c)|� |ud ||gn

c (c)|d +
d−1∑
i=2

|ui ||gn
c (c)|i + |c|� |ud |(Tn + Lg)T d−1

n

� |ud | · 2Tn · T d−1
n = (2|ud |) dn+1−1

d−1

(
max

{|c|, 4Lg

} )dn+1

.

The proof follows by induction.

2·2. A lower bound for ln Bn

Consider that

An+1

Bn+1
= gn+1

c (c) = gc

(
An

Bn

)
=

d∑
i=2

ui
Ai

n

Bi
n

+ A0

B0
. (2·3)

LEMMA 2·4. Given any x2-divisible g(x) ∈Z[x] and c ∈Q, for every n � 0 if p ∈ I (Bn),
then we have

(i) p ∈ I (Bn+1) and
(ii) valp(Bn+1) = dvalp(Bn) − valp(ud).

Proof. Note that for every n � 0 we have

valp

(
ud Ad

n

Bd
n

)
= valp(ud) + dvalp(An) − dvalp(Bn), (2·4)

valp

(
ui Ai

n

Bi
n

)
� (1 − d)valp(Bn), i = 2, . . . , d − 1, (2·5)

valp(
A0

B0
)�−valp(B0). (2·6)

Therefore, if p ∈ I (Bn), then we have valp(An) = 0 and

valp

(
ud Ad

n

Bd
n

)
< (1 − d)valp(Bn)� valp

(
ui Ai

n

Bi
n

)
(2·7)

for every 2 � i � d − 1. Note that the term on the right-hand side of this inequality does not
exist for the case d = 2.

We now prove this lemma by induction.
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For n = 0 we have valp(B0) > valp(ud). Combined with (2·3) and (2·7), this implies

valp

(
A1

B1

)
= valp

(
ud Ad

0

Bd
0

)
= valp(ud) − dvalp(B0) < −valp(ud)

and hence p ∈ I (B1).
Now we assume that this lemma holds for every 0 � k � n.
(1) If p �∈ I (B0), we have

valp(B0)� valp(ud) < valp(Bn).

Combined with (2·3) and (2·7), this implies

valp

(
An+1

Bn+1

)
= valp

(
ud Ad

n

Bd
n

)
= valp(ud) − dvalp(Bn) < −valp(ud) (2·8)

and hence p ∈ I (Bn+1).
(2) If p ∈ I (B0), then by induction, we have p ∈ I (Bn) and

valp(Bn) = dnvalp(B0) − valp(ud)

n−1∑
i=0

di � valp(B0).

Combining (2·3) with (2·7), we also obtain (2·8). This completes the induction.

For every a ∈Z we denote

I (a) := {p ∈ � | valp(a) > valp(ud)},
and put

â :=
∏

p∈I (a)

pvalp(a). (2·9)

When I (a) is empty, we put â := 1. Note that we always have

|a|� |udâ|. (2·10)

LEMMA 2·5. Given any x2-divisible g(x) ∈Z[x] of degree d � 3 and c ∈Q, for every
0 � n′ � n we have

ln Bn �
dn−n′

3
ln B̂n′ .

Proof. If B̂n′ = 1, it is trivial.
Now we assume that B̂n′ � 2. It is enough to show that every prime p ∈ I (Bn′) satisfies

valp(Bn)�
dn−n′

3
valp (Bn′) . (2·11)

Using Lemma 2·4 inductively, we have

valp (Bn) = dn−n′
valp(Bn′) − valp(ud)

n−n′−1∑
i=0

di �
(

dn−n′ −
n−n′−1∑

i=0

di

)
valp(Bn′).
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From our assumption that d � 3, we have

dn−n′ −
n−n′−1∑

i=0

di � dn−n′ − 2dn−n′−1 � 1

3
dn−n′

,

which completes the proof.

2·3. The lower bound for ln |gn
c (c)|

LEMMA 2·6. Given any x2-divisible g(x) ∈Z[x] and c ∈Q, if |gn′
c (c)|� max

{
4Lg, |c|}

for some n′ � 0, then for every n � n′ we have

|gn
c (c)|� 2− dn−n′ −1

d−1 · |gn′
c (c)|dn−n′

.

Clearly, in this case c is in the basin of infinity for gc.

Proof. The proof follows from induction. For n = n′ this lemma is trivial.
Assume that this lemma holds for some n � n′. Then we have

|gn
c (c)|� 2− dn−n′ −1

d−1 · |gn′
c (c)|dn−n′

� max{4Lg, |c|} · ∣∣4Lg/2
∣∣ dn−n′ −1

d−1 � max{4Lg, |c|},

and hence

|gn+1
c (c)|� |ud ||gn

c (c)|d −
d∑

i=2

|ui ||gn
c (c)|i − |c|

� |ud |
(
|gn

c (c)|d − Lg|gn
c (c)|d−1

)
= |gn

c (c)|d−1|ud |
(
|gn

c (c)| − Lg

)
� |gn

c (c)|d/2 � 2− dn−n′+1−1
d−1 · |gn′

c (c)|dn−n′+1
. (2·12)

COROLLARY 2·7. Given any x2-divisible g(x) ∈Z[x] and c ∈Q, if |gn′
c (c)|�

max
{
4Lg, |c|} for some n′ � 0, then for every n � n′ we have

ln |gn
c (c)|� dn−n′

ln |gn′
c (c)/2|.

Proof. It follows directly from Lemma 2·6.

Given an algebraic number γ ∈C of degree � with conjugates γ1 := γ, γ2, . . . , γ� over Q,
let a0 be an integer such that the coefficients of the polynomial g(X) = a0

∏�

i=1(X − γi ) are
integers of gcd 1, then we define the Mahler measure of γ by

M(γ ) := |a0|
�∏

i=1

max(1, |γi |).

Notation 2·8. For every r � 1 and δ > 0 we put

W (r, δ) := 2 × 107δ−4 · ln 4r · ln ln 4r.
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THEOREM 2·9 ([10, theorem 1]). Let 0 < δ < 1. Then for every algebraic number γ of
degree r � 1, there are at most W (r, δ) solutions a/b ∈Q to

|a/b − γ | < M(a/b)−2−δ (2·13)

with M(a/b)� max{42/δ, M(γ )}.
Theorem 2·9 implies the following result.

COROLLARY 2·10. Given any x2-divisible g(x) ∈Z[x], for every L > 0, N ∈N, c ∈
[−L , L] ∩Q and γ ∈C such that gN

c (γ ) = 0, there is an integer D > 0, independent of
c, such that

|a/b − γ | < 1

(2bD)3
(2·14)

has at most W (d N , 1/10) rational solutions a/b with b � max
{

420, (|ud |B0 D)d N
}

.

Proof. Let γc,1, . . . , γc,d N be the roots of gN
c (x) = 0 in C which are not necessary to be

distinct. Since gN
c (x) is continuous as a function of x and c, there exists an integer D > 1

such that for every c ∈ [−L , L] ∩Q and 1 � i � d N we have

|γc,i | < D. (2·15)

Without loss of generality, we put γ := γc,1 and h(x) := a0
∏�

i=1(x − γc,i ) to be the minimal
polynomial of γ with integer coefficients of gcd 1.

Since Bd N

0 gN
c (γ ) = 0 and Bd N

0 gN
c (x) is a polynomial with integer coefficients, we have

h(x)|Bd N

0 gN
c (x). Combined with Gauss’s lemma, this implies

a0|(ud B0)
d N

. (2·16)

Combining (2·15) with (2·16), we have

M(γ ) < (|ud |B0)
d N

D�. (2·17)

On the other hand, for every rational number a/b in the lowest terms such that |a/b|� 2D
we have

b � M(a/b)� 2bD. (2·18)

Note that Theorem 2·9 still holds when we do the following modifications.

(1) Restricting this theorem to a set of algebraic numbers and changing M(γ ) to a
function of γ which is larger than M(γ ) for every γ in this set.

(2) Changing the right-hand side of (2·13) to a function of a/b which is less than
M(a/b)−2−δ for every rational number a/b.

(3) Changing the second M(a/b) in Theorem 2·9 to a function of a/b which is less than
M(a/b) for every rational number a/b.

Therefore, combined with (2·17) and (2·18), Theorem 2·9 implies that there are at most
W (�, δ) rational solutions a/b to

|a/b − γ | < (2bD)−2−δ (2·19)

such that |a/b|� 2D and b � max{42/δ, (|ud |B0)
d N

D�}.
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For rational number a/b such that |a/b|� 2D we have

|a/b − γ |� D > 1 > (2bD)−2−δ.

Together with (2·19), this shows that there at most W (�, δ) rational solutions a/b ∈Q to

|a/b − γ | < (2bD)−2−δ (2·20)

with b � max{42/δ, (|ud |B0)
d N

D�}.
Take δ := 1/10. Combining W (�, 1/10)� W (d N , 1/10) with the modification(3) above,

we can replace � by d N and −2 − 1/10 by −3, which completes the proof.

Now we consider |c|� 4Lg. Recall that Sg is the set that contains all rational number
c such that {gn

c (0)} is infinite. By Corollary 2·7 with n′ = 0, for every c ∈ (−∞, −4Lg] ∪
[4Lg, ∞) we have limn→∞ ln |gn

c (c)| = ∞ and hence Sg ⊃ (−∞, −4Lg] ∪ [4Lg, ∞).
We denote by U0

g the finite subset of Sg ∩ [−4Lg, 4Lg] consisting of all the rational num-
bers with denominator dividing ud and put Ug := [−4Lg, 4Lg] ∩ (Sg\U0

g). The following
proposition aims at dealing the case c ∈Ug. It is worth noting that B̂0 � 2 for all c ∈Ug.

PROPOSITION 2·11. For an x2-divisible g(x) ∈Z[x] and a real number α ∈ [−4Lg, 4Lg]
such that g(x) �= ud xd or α �= 0, there exists 0 < δ < Lg, C > 0 and an integer N � 0 such
that for every c ∈ (α − δ, α + δ) ∩ Sg if B̂n′ � 2 for some n′ � 0, then there is a finite set
Sc ⊂N of bounded cardinality N + n′ such that for every n �∈ Sc we have

ln |gn
c (c)|� min {(−1 + 1/d) ln Bn + ln C, ln δ} .

Proof. Let

N0 :=
⌈

2 ln 3

ln(d/(d − 1))

⌉
+ 1,

which satisfies

9(d − 1)N0−1 � d N0−1. (2·21)

Let γ1, . . . , γr ∈C be the distinct roots of gN0
α (x) = 0 of multiplicity m1, . . . , mr , respec-

tively. Choose an 0 < ε < 1 small enough such that for any two distinct i, j ∈ [r ] we have
|γi − γ j | > 3ε.

By continuity of gN
c (x) as a function of x and c, there exists 0 < δ < Lg such that for

every 1 � i � r and α′, β ∈R with |α′ − α| < δ and |β| < δ there are exactly mi roots of
gN0

α′ (x) − β = 0 in the disk O(γi , ε) ⊂C.
Now we consider an arbitrary c ∈ (α − δ, α + δ) ∩ Sg.
Let 
 be the multiset consisting of all the roots of gN0

c (x) = 0, i.e. two elements in 


could be the same. From the argument above, for every n � N0 if |gn
c (c)| < δ, then there

exists 1 � i0 � r such that gn−N0
c (c) ∈ O(γi0, ε). We put


1 := 
\O(γi0, ε) and 
2 := 
 ∩ O(γi0, ε).

Note that we have


 = 
1 ∪ 
2, #(
) = d N0 and #(
2) = mi0 . (2·22)
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Now we count the distance between gn−N0
c (c) and the points in 
.

For every ξ ∈ 
1, from our choice of ε, we have∣∣ξ − gn−N0
c (c)

∣∣> 3ε − 2ε = ε. (2·23)

For every ξ ∈ 
2, by Corollary 2·10 with L := 4Lg and N := N0, there is an integer D > 0,
independent of c, such that

|a/b − ξ | < 1

(2bD)3
(2·24)

has at most W (d N0, 1/10) rational solutions a/b with b � max{420, (|ud |B0 D)d N0 }.
Put

N1 := ⌈
logd 120

⌉+ N0 and N2 := ⌈
3 logd log2(u

2
d D + 1)

⌉+ 2N0.

Then for every n � N1, by Lemma 2·5, we have

ln Bn+n′−N0 �
dn−N0

3
ln B̂n′ � dn−N0

3
ln 2 � 20 ln 4.

If B̂0 = 1, by Lemma 2·5, (2·10) and the choice of N2, for every n � N2 we have

ln Bn+n′−N0 �
dn−N0

3
ln B̂n′ � dn−N0

3
ln 2 � d N0 ln(u2

d D)� d N0 ln(|ud |B0 D).

If B̂0 � 2, by Lemma 2·5 and (2·10) again, for every n � N2 we have

ln Bn−N0 �
dn−N0

3
ln B̂0 �

(
dn−N0

3
− d N0

)
ln 2 + d N0 ln B̂0

� d N0 ln(u2
d B̂0 D)� d N0 ln(|ud |B0 D).

Therefore, there are most W (d N0, 1/10) many integers n � max{N1 + n′, N2 + n′} such
that gn−N0

c (c) is a rational solution to (2·24). Combined with

|gn
c (c)| = |gN0

c

(
gn−N0

c (c)
) | =

∏
ξ∈


|gn−N0
c (c) − ξ | =

∏
ξ∈
1

|gn−N0
c (c) − ξ | ·

∏
ξ∈
2

|gn−N0
c (c) − ξ |,

this implies that for all but at most #
2 · W (d N0, 1/10) many n � max{N1 + n′, N2 + n′} we
have

ln |gn
c (c)|� #
1 · ln ε − 3 · #
2 ln

(
2DBn−N0

)
. (2·25)

Combining (2·22) and our assumption 0 < ε < 1, we have

#
1 · ln ε − 3 · #
2 ln
(
2DBn−N0

)
� d N0 ln

( ε

8D3

)
− 3#
2 ln Bn−N0 .

From our assumption that g(x) �= ud xd or α �= 0, we have

#
2 = mi0 � (d − 1)N0 .
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Therefore, the previous statement implies that for all but at most (d − 1)N0 W (d N0, 1/10)

many n � max{N1 + n′, N2 + n′} we have

ln |gn
c (c)|� d N0 ln

( ε

8D3

)
− 3(d − 1)N0 ln Bn−N0 . (2·26)

By (2·10) and (2·21), we have

3(d − 1)N0 ln Bn−N0 �
d N0−1(d − 1)

3
ln Bn−N0 �

d N0−1(d − 1)

3
ln(|ud |B̂n−N0).

By Lemma 2·5, we obtain

d N0−1(d − 1)

3
ln(|ud |B̂n−N0)�

d N0−1(d − 1)

3
ln |ud | + d − 1

d
ln Bn

� d N0 ln |ud | + d − 1

d
ln Bn.

The two inequalities above imply that

right-hand side of (2·26)� d N0 ln

(
ε

8|ud |D3

)
+ (−1 + 1/d) ln Bn,

which completes the proof.

3. Proof of Proposition 2·2
The basic idea of proving Proposition 2·2 is to show that for each x2-divisible g(x) ∈Z[x]

there exists a finite cover of Sg as follows:

(1) (−∞, −4Lg] ∪ [4Lg, ∞);
(2) (α − δg,α, α + δg,α) ∩Ug for finitely many α in [−4Lg, 4Lg] with 0 < δg,α < Lg;
(3) the finite set U0

g.

such that g has rapidly increasing numerators on every set in this cover.
Recall that for every n ∈N we denote by ω(n) the number of its distinct prime divisors.

For convenience, we put sd(n) :=∑
p|n d

n
p . Then we have the following estimation.

LEMMA 3·1. For every d � 2 and every n � 30, we have sd(n)� d
3n
5 .

Proof. For every integer n � 2 we have n � 2ω(n) and hence

ω(n)� log2 n. (3·1)

Since for every prime divisor p of n we have n/p � n/2. Combined with (3·1), we have

sd(n)� d
n
2 ω(n)� d

n
2 log2 n. (3·2)

On the other hand, for every n � 30 we have

log2 n < 5 < 23 � d
n
10 .

Together with (3·2), this finishes the proof.
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LEMMA 3·2. Given any x2-divisible g(x) ∈Z[x] and c ∈Q, for every n � 30 we have∑
p|n

ln
∣∣An/p

∣∣� d
3n
5 ln

(
2|ud |2 B̂0 max

{|c|, 4Lg

} )
.

Proof. By Lemma 2·3, for every n � 0 we have∑
p|n

ln
∣∣An/p

∣∣�∑
p|n

dn/p ln
(

2|ud |B0 max
{|c|, 4Lg

} )
.

Together with Lemma 3·1 and (2·10), this completes the proof.

PROPOSITION 3·3. Every x2-divisible g(x) ∈Z[x] of degree d � 3 has rapidly increasing
numerators on (−∞, −4Lg] ∪ [4Lg, ∞).

Proof. Let c be an arbitrary rational number in (−∞, −4Lg] ∪ [4Lg, ∞).
By Lemma 2·5, Corollary 2·7 with n′ = 0 and |c|� 4Lg � 4, for every n � 0 we have

ln |An|� dn ln |c/2| + dn

3
ln B̂0 �

dn

3
ln |cB̂0|. (3·3)

Combined with Lemma 3·2 and |c|� 4Lg, this implies that for every n � 30
we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣�−d
3n
5 ln(2|ud |2) +

(
dn/3 − d

3n
5

)
ln
∣∣cB̂0

∣∣ .
Therefore, there exists an integer N > max

{
5
2 logd 3, 30

}
, which only depends on g, such

that for every n � N and every rational number c ∈ (−∞, −4Lg] ∪ [4Lg, ∞) we have

ln |An| >
∑
p|n

ln
∣∣An/p

∣∣ .
Thus we prove this proposition.

We next prove the following.

PROPOSITION 3·4. Every polynomial g(x) = ud xd ∈Z[x] of degree d � 3 has rapidly
increasing numerators on (−1/|4ud |, 1/|4ud |) ∩ Sg.

Since 0 /∈ Sg, it is sufficient to show the following two lemmas.

LEMMA 3·5. Every polynomial g(x) = ud xd ∈Z[x] of degree d � 3 has rapidly increas-
ing numerators on (0, 1/4|ud |) ∩ Sg.

Proof. For every c ∈ (0, 1/4|ud |) ∩ Sg and n � 0 we have

|c|� |gn
c (c)|� (|ud | + 1)

dn−1
d−1 |c|� (|ud | + 1)dn |c| (3·4)

and B̂0 � 2.

Combining Lemmas 2·3(1), 2·5 for n′ = 0 with (3·4), for every n � 0 we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣� (1 − ω(n)) ln |c| + dn

3
ln B̂0 − sd(n) ln

(
(|ud | + 1)B0

)
.
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Together with (2·10) and Lemma 3·1, this implies that for every n � 30 we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣�−d
3n
5 ln

(
(|ud | + 1)|ud |

)+
(

dn

3
− d

3n
5

)
ln B̂0.

From B̂0 � 2, there exists an integer N � 30 such that for every n � N we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣> 0,

which completes the proof.

LEMMA 3·6. Every polynomial g(x) = ud xd ∈Z[x] of degree d � 3 has rapidly increas-
ing numerators on (−1/4|ud |, 0) ∩ Sg.

Proof. Note that when d is odd, we may replace c with −c and the forward orbit of 0 will
be unchanged, modulo sign. By Lemma 3·5, we immediately prove this case.

Therefore, it is sufficient to study the case that d is even. We first show that for every
c ∈ (−1/4|ud |, 0) and every n � 0 we have

|c|(1 − |ud ||c|d−1)� |gn
c (c)|� |c|. (3·5)

For n = 0, we have |g0
c (c)| = |c|. Assume that (3·5) holds for some n � 0. Since gc(x) is

negative and decreasing on (−1/4|ud |, 0), we have

|c|(1 − |ud ||c|d−1) = |gc(c)|� |gc(gn
c (c))|� | f (0)| = |c|,

which proves (3·5) by induction.
Combining Lemmas 2·3(1), 2·5 with (3·5), we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣� ln
(
|c| · (1 − |ud ||c|d−1)

)
+ dn

3
ln B̂0 − sd(n) ln B0 − ω(n) ln |c|

� ln(1 − |ud ||c|d−1) + dn

3
ln B̂0 − sd(n) ln B0.

Together with (2·10), Lemma 3·1 and |c| < 1/4|ud |, this implies that for every n � 30
we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣� ln(3/4) + d
3n
5 ln |ud | +

(
dn

3
− d

3n
5

)
ln B̂0. (3·6)

On the other hand, for every c ∈ (−1/4|ud |, 0), we have B̂0 � 2. Combined with (3·6),
this proves that there exists an integer N � 30 such that for every n � N we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣> 0,

which completes the proof.

PROPOSITION 3·7. Given any x2-divisible g(x) ∈Z[x] of degree d � 3 and α ∈
[−4Lg, 4Lg] such that g(x) �= ud xd or α �= 0, there is an 0 < δ < Lg such that g has rapidly
increasing numerators on c ∈ (α − δ, α + δ) ∩Ug.
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Proof. Note that for every c ∈Ug we have B̂0 � 2. By Proposition 2·11 with n′ = 0, there is
a 3-tuple 0 < δ < Lg, C > 0 and N1 > 0 such that for every c ∈ (α − δ, α + δ) ∩Ug there is
a finite set Sc ⊂N of bounded cardinality N1 such that for every n �∈ Sc we have

ln |gn
c (c)|� min {(−1 + 1/d) ln Bn + ln C, ln δ} ,

and therefore

ln |An|� min

{
1

d
ln Bn + ln C, ln Bn + ln δ

}
. (3·7)

On the other hand, by Lemma 2·5, we have

ln(Bn) + ln δ − d
3n
5 ln

∣∣2cu2
d B̂0

∣∣� ln δ +
(

dn

3
− d

3n
5

)
ln B̂0 − d

3n
5 ln |2cu2

d |,
1

d
ln(Bn) + ln C − d

3n
5 ln

∣∣2cu2
d B̂0

∣∣� ln C +
(

dn−1

3
− d

3n
5

)
ln B̂0 − d

3n
5 ln |2cu2

d |.

Combined with Lemma 3·2, (3·7) and |c|� 5Lg, this implies that there exists an inte-
ger N2 � 30 such that for every rational number c ∈ (α − δ, α + δ) and n ∈ {N2, N2 +
1, . . . , }\Sc we have

ln |An| >
∑
p|n

ln
∣∣An/p

∣∣ .
Taking N := N1 + N2, we prove this proposition.

Now we turn our attention to the finite set U0
g.

PROPOSITION 3·8. Every x2-divisible g(x) ∈Z[x] of degree d � 3 has rapidly increasing
numerators on the finite set U0

g.

Proof. It is sufficient to show that for each individual rational number in U0
g there are finite

many n ∈N satisfying (2·1).
Let c be an arbitrary rational number in U0

g. We first show that there must exist an integer
n′ such that either |gn′

c (c)| > 4Lg or B̂n′ � 2. Suppose that for every n � 0 we have B̂n =
1, i.e., Bn|ud . Since c ∈ Sg and there are only finitely many integers in [−4Lg, 4Lg] with
denominator dividing ud , we know that there must exist an n′ � 0 such that |gn′

c (c)| > 4Lg.
(1) When |c|� 4Lg, B̂0 = 1 and there exists an integer n′ � 1 such that |gn′

c (c)| > 4Lg.
Combining these conditions with Corollary 2·7 and Lemma 3·2, for every n � max{30, n′}
we have

ln |An| −
∑
p|n

ln
∣∣An/p

∣∣�−d
3n
5 ln(8Lg|ud |2) + dn−n′ ∣∣gn′

c (c)/2
∣∣ .

Clearly, there exists an integer N > max{30, n′} such that for every n � N we have

ln |An| >
∑
p|n

ln
∣∣An/p

∣∣ .
(2) When |c|� 4Lg, B̂0 = 1 and there is an integer n′ � 1 such that B̂n′ � 2. Similar

to Proposition 3·7, we combine Lemma 2·5 with Proposition 2·11, and obtain a finite set
Sc ⊂N, an integer N , δc > 0 and Cc > 0 such that for every n � n′ if n �∈ Sc, then
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ln |gn
c (c)|� min {(−1 + 1/d) ln Bn + ln Cc, ln δc} ,

and therefore

ln |An|� min

{
1

d
ln Bn + ln Cc, ln Bn + ln δc

}
. (3·8)

On the other hand, by Lemma 2·5, we have

ln Bn + ln δc − d
3n
5 ln

∣∣2cu2
d B̂0

∣∣� ln δc + dn−n′

3
ln B̂n′ − d

3n
5 ln |2cu2

d |,
1

d
ln Bn + ln Cc − d

3n
5 ln

∣∣2cu2
d B̂0

∣∣� ln Cc + dn−n′−1

3
ln B̂n′ − d

3n
5 ln |2cu2

d |.
Combined with Lemma 3·2, (3·8) and |c|� 4Lg, this implies that there exists an integer

N1 > max{n′, 30} such that for every n ∈ {N1, N1 + 1, . . . }\Sc we have

ln |An| >
∑
p|n

ln
∣∣An/p

∣∣ .
Put N := #Sc + N1. Then we complete the proof.

Proof of Proposition 2·2. By Proposition 3·7, for every g(x) �= ud xd or α �= 0 and every
real number α ∈ [−4Lg, 4Lg], there is an 0 < δg,α < Lg such that g has rapidly increasing
numerators on c ∈ (α − δg,α, α + δg,α) ∩Ug.

For g(x) = ud xd and α = 0, if we put δg,α := 1/4|ud |, then we proved in Proposition 3·4
that g has rapidly increasing numerators on c ∈ (−δg,α, δg,α) ∩Ug.

Now for every x2-divisible g(x) ∈Z[x] we obtain a cover of Sg as

(−∞, −4Lg] ∪ [4Lg, ∞) ∪U0
g ∪

⋃
α∈[−4Lg ,4Lg]

(
(α − δg,α, α + δg,α) ∩Ug

)
. (3·9)

Note that ⋃
α∈[−4Lg ,4Lg]

(α − δg,α, α + δg,α)

is an open cover of the closed interval [−4Lg, 4Lg], which has a finite cover. We use the
center α to represent the interval (α − δg,α, α + δg,α) in this finite cover, and put T to be the
index set of α.

Therefore, we obtain a finite cover of Sg as follows:

(−∞, −4Lg] ∪ [4Lg, ∞) ∪U0
g ∪

⋃
α∈T

(
(α − δg,α, α + δg,α) ∩Ug

)
.

By Propositions 3·3, 3·4, 3·7 and 3·8, we know that g has rapidly increasing numerators
on each set in this cover. It implies that g also has rapidly increasing numerators on Sg,
which completes the proof.

4. Theorem 1·4 implies Theorem 1·2
At the end of this section, we will prove that Theorem 1·4 implies the following

proposition which leads to Theorem 1·2.
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PROPOSITION 4·1. For every x2-divisible polynomial g(x) ∈Q[x] there is a constant
Mg > 0, depending only on g, such that

#Z(gc, 0)� Mg

for every c ∈ Sg.

For every n ∈Z\{0}, we denote by ω(n) the number of distinct prime factors of n.

LEMMA 4·2. Let g(x) ∈Q[x] be x2-divisible and a ∈Z\{0}. Then with h(x) := g(ax)/a
we have

|#Z(gc, 0) − #Z(hc/a, 0)|�ω(a) for every c ∈Q.

Proof. Consider that

gn
c (ax) = uhn

c/a(x) and gn
c (0) = ahn

c/a(0).

For every p � u we have p is a primitive prime divisor of gn
c (0) if and only if it is a primitive

prime divisor of hn
c/a(0). Therefore, the difference between #Z(gc, 0) and #Z(hc/a, 0) can

not exceed the number of prime factors of a, which completes the proof.

LEMMA 4·3. For any x2-divisible g(x) ∈Q[x] and t ∈Q\{0}, Proposition 4·1 holds for
g if and only if it holds for g(t x)/t .

Proof. Let t = a/b be an arbitrary rational number. Put

h(x) := 1

t
g(t x) and h1(x) := 1

a
g(ax).

Note that h1(x) = 1
b h(bx).

By Lemma 4·2 for every c ∈Q we have

|#Z(gc, 0) − #Z((h1)c/a, 0)|�ω(a),

|#Z(hc/t , 0) − #Z((h1)c/a, 0)|�ω(b),

which implies

|#Z(gc, 0) − #Z(hc/t , 0)|�ω(a) + ω(b).

Since ω(a) and ω(b) are both independent of c, we complete the proof.

PROPOSITION 4·4. Theorem 1·4 implies Theorem 1·2.

Proof. Step I. We first prove that Theorem 1·4 implies Proposition 4·1.
Given any x2-divisible polynomial g(x) ∈Q[x] of degree d � 2, if d = 2, then we can

find t ∈Q such that g(t x)/t = x2. Combining Lemma 4·3 with [6, theorem 1.1], we prove
Proposition 4·1 for this case.

If d � 3, there is t ∈Z such that g(t x)/t ∈Z[x]. Combined with Lemma 4·3, this proves
Proposition 4·1 for this case.
Step II. Now we prove that Proposition 4·1 implies Theorem 1·2.
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For every polynomial g(x) ∈Q[x] with a critical point u ∈Q, if we put f (x) := g(x +
u) − u, then we know that 0 is a critical point of f and for every c ∈Q we have f n

c (0) =
gn

c (u) − u and hence

Z(gc, u) =Z( fc, 0).

This completes the proof.
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