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Abstract

Vanishing cycles, introduced over half a century ago, are a fundamental tool for studying the topology
of complex hypersurface singularity germs, as well as the change in topology of a degenerating family
of projective manifolds. More recently, vanishing cycles have found deep applications in enumerative
geometry, representation theory, applied algebraic geometry, birational geometry, etc. In this survey, we
introduce vanishing cycles from a topological perspective and discuss some of their applications.
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32S30, 32S50, 34M35, 58K30.
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1. Introduction

In his quest to discover exotic spheres, Milnor [59] gave a detailed account of the
topology of complex hypersurface singularity germs. For a germ of an analytic map
f : (Cn+1, 0)→ (C, 0) having a singularity at the origin, he introduced what is now
called the Milnor ball B, Milnor fibration f −1(D∗) ∩ B→ D∗ (over a small enough
punctured disc in C), and the Milnor fiber Fs = f −1(s) ∩ B (that is, the fiber of the
Milnor fibration) of f at 0. Around the same time, Grothendieck and Deligne [27,
28] defined the nearby and vanishing cycle functors, ψ f and ϕ f , globalizing Milnor’s
construction, and proving his conjecture that the eigenvalues of the monodromy acting
on H∗(F;Z) are roots of unity. These concepts were eventually used by Deligne in the
proof of the Weil conjectures [12]. A few years later, Lê [41] extended the geometric
setting of the Milnor fibration to the case of functions defined on complex analytic
germs.

The author was supported by the Simons Foundation Collaboration Grant #567077 and by the Sydney
Mathematical Research Institute.
© 2020 Australian Mathematical Publishing Association Inc.

371

https://doi.org/10.1017/S1446788720000403 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788720000403
http://orcid.org/0000-0001-7204-0931
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788720000403&domain=pdf
https://doi.org/10.1017/S1446788720000403


372 L. G. Maxim [2]

Since their introduction more than half a century ago, vanishing cycles have
found a wide range of applications, in fields such as algebraic geometry, algebraic
and geometric topology, symplectic geometry, singularity theory, number theory,
enumerative geometry, representation theory, applied algebra and algebraic statistics.
In this survey we introduce vanishing cycles from a topological perspective, with an
emphasis on examples and applications.

The paper is organized as follows. Sections 2 and 3 are intended as a motivation for
the theory of vanishing cycles. Section 2 gives an overview of Milnor’s study of the
topology of hypersurface singularities, while Section 3 describes the specialization
morphism for families of projective manifolds. The nearby and vanishing cycle
functors are introduced in Section 4, along with a discussion of their main properties.
A first topological application of vanishing cycles is worked out in Section 5, for
the computation of Euler characteristics of complex projective hypersurfaces with
arbitrary singularities. Section 6 gives a brief account of the use of vanishing cycles
for constructing perverse sheaves via a gluing procedure (due to Deligne, Verdier
and Beilinson). A D-module analogue of nearby and vanishing cycles is discussed
in Section 7. Sections 8, 9 and 10 are devoted to applications. Section 8 indicates the
use of vanishing cycles in the context of enumerative geometry (Donaldson–Thomas
theory). Section 9 describes applications of vanishing cycles to characteristic classes,
which can be further used in the context of birational geometry (for detecting jumping
coefficients of multiplier ideals, for characterizing rational or Du Bois singularities,
etc.). Section 10 provides a brief account of other areas where vanishing cycles
have had a substantial impact in recent years, including applied algebraic geome-
try and algebraic statistics, Hodge theory, enumerative geometry (Gopakumar–Vafa
invariants), representation theory, and noncommutative geometry. For more classical
applications, the interested reader may also check [17, 49, 71], and the references
therein.

2. Motivation: Local topology of complex hypersurface singularities

In this section we give an overview of Milnor’s work [59] on the topology of
complex hypersurface singularity germs. Globalizing Milnor’s theory is one of the
main attributes of Deligne’s nearby and vanishing cycles.

2.1. Milnor fibration. Let f : Cn+1 → C be a regular (or analytic) map with 0 ∈C a
critical value. Let X0 = f −1(0) be the special (singular) fiber of f, and for s � 0 small
enough let Xs = f −1(s) denote the generic (smooth) fiber of f. Pick a point x ∈ X0,
and choose a small enough ε-ball Bε,x in Cn+1 centered at x, with boundary the (2n +
1)-sphere Sε,x. The topology of the hypersurface singularity germ (X0, x) is described
by the following fundamental result (see [59] and also [17, Ch. 3]).

THEOREM 2.1 (Milnor). In the above notation, the following statements hold.

(1) Bε,x ∩ X0 is contractible, and it is homeomorphic to the cone on Kx := Sε,x ∩ X0,
the (real) link of x in X0.
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(2) The real link Kx is (n − 2)-connected.
(3) The map f /| f | : Sε,x\Kx −→ S1 is a topologically locally trivial fibration, called

the Milnor fibration of the hypersurface singularity germ (X0, x).
(4) If the complex dimension of the germ of the critical set of X0 at x is r, the fiber

Fx of the Milnor fibration (the Milnor fiber of f at x) is (n − r − 1)-connected. In
particular, if x is an isolated singularity, then Fx is (n − 1)-connected. (Here we
use the convention that dimC ∅ = −1.)

(5) The Milnor fiber Fx has the homotopy type of a finite CW complex of real
dimension n.

(6) The Milnor fiber Fx is parallelizable.

REMARK 2.2. The connectivity of the Milnor fiber in the case of an isolated
hypersurface singularity was proved by Milnor in [59, Lemma 6.4], while the general
case is due to Kato and Matsumoto [35].

In simple cases, the homotopy type of the Milnor fiber can be described explicitly,
as the following result shows.

PROPOSITION 2.3 (Milnor [59])

(a) If (X0, x) is a nonsingular hypersurface singularity germ, then the Milnor fiber
Fx is contractible.

(b) If (X0, x) is an isolated hypersurface singularity germ, then the Milnor fiber Fx

has the homotopy type of a bouquet of μx n-spheres,

Fx �
∨
μx

Sn, (2-1)

where

μx = dimC C{x0, . . . , xn}/
(
∂ f
∂x0

, . . . ,
∂ f
∂xn

)
(2-2)

is the Milnor number of f at x. Here, C{x0, . . . , xn} is the C-algebra of analytic function
germs defined at x ∈ Cn+1.

DEFINITION 2.4. The n-spheres in the bouquet decomposition (2-1) are called the
vanishing cycles at x.

EXAMPLE 2.5. Let us test formula (2-2) in the following simple situations:

(i) If A1 = {x2 + y2 = 0} ⊂ (C2, 0), then the origin 0 = (0, 0) ∈ A1 is the only singular
point of A1, and the corresponding Milnor number and Milnor fiber at 0 are
μ0 = 1 and F0 � S1.

(ii) If A2 = {x3 + y2 = 0} ⊂ (C2, 0), the origin 0 ∈ A2 is the only singular point of A2,
with μ0 = dimC C{x, y}/(x2, y) = 2 and F0 � S1 ∨ S1. The link K0 of the singular
point 0 ∈ A2 is the famous trefoil knot, that is, the (2, 3)-torus knot.

DEFINITION 2.6. The monodromy of f at x is the homeomorphism

hx : Fx → Fx
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induced on the fiber of the Milnor fibration at x by circling the base of the fibration
once in the positive direction with respect to a choice of orientation on S1 (as induced
by the choice of the complex orientation). When the point x is clear from the context,
we simply write h for hx, or use the notation h f ,x (or h f ) to emphasize the map f.

It was conjectured by Milnor, and proved by Grothendieck [27], Landman [38] and
others, that the monodromy homeomorphism induces a quasi-unipotent operator on
the (co)homology of the Milnor fiber. More precisely, one has the following result.

THEOREM 2.7 (Monodromy theorem). All eigenvalues of the algebraic monodromy

h∗x : Hi(Fx;C)→ Hi(Fx;C)

are roots of unity. In fact, there are positive integers p and q such that

((h∗x)p − id)q = 0.

Moreover, one can take q = i + 1.

The algebraic monodromy can be used to give a necessary condition for singulari-
ties, as the following result shows.

THEOREM 2.8 (A’Campo [1]). Let

L(hx) :=
∑

i

(−1)itrace(h∗x : Hi(Fx;C)→ Hi(Fx;C))

be the Lefschetz number of the monodromy homeomorphism hx. Then L(hx) = 0 if x is
a singular point for f (that is, if d f (x) = 0).

COROLLARY 2.9. If x is a singular point for f, then the associated Milnor fiber Fx
cannot be homologically contractible, that is, H∗(Fx;C) � H∗(pt;C).

EXAMPLE 2.10 (Weighted homogeneous singularities). As a special case, assume that
f ∈ C[x0, . . . , xn] is a weighted homogeneous polynomial of degree d with respect to
the weights wt(xi) = wi, where wi is a positive integer, for all i = 0, . . . , n. This means
that

f (tw0 x0, . . . , twn xn) = td · f (x0, . . . , xn).

There is a natural C∗-action on Cn+1 associated to these weights, given by

t · x = (tw0 x0, . . . , twn xn)

for all t ∈ C∗ and x = (x0, . . . , xn) ∈ Cn+1, which can be used to show that the restriction
of the polynomial mapping f given by

f : Cn+1\ f −1(0) −→ C∗

is a locally trivial fibration. This fibration is referred to as the affine (global) Milnor
fibration, and its fiber F = f −1(1) is called the affine (global) Milnor fiber of f. In fact,
it is easy to see that F is homotopy equivalent to the Milnor fiber associated to the
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germ of f at the origin. The monodromy homeomorphism h : F → F is in this case
given by multiplication by a primitive dth root of unity, that is,

h(x) = exp
2πi
d
· x

(see, for example, [17, Example 3.1.19]). In particular, hd = id, so the complex
algebraic monodromy operator

h∗ : H∗(F;C) −→ H∗(F;C)

is semi-simple (diagonalizable) and has as eigenvalues only dth roots of unity.
Furthermore, if the weighted homogeneous polynomial f has an isolated singularity
at the origin, the corresponding Milnor number of f at 0 ∈ Cn+1 is computed by the
formula (see [16, Proposition 7.27])

μ0 =

n∏
i=0

d − wi

wi
. (2-3)

EXAMPLE 2.11. Let f : Cn+1 → C be given by f = x0x1 · · · xn. The Milnor fiber of the
singularity of f at the origin is homotopy equivalent to (S1)n, hence, in particular, the
homology groups Hi(F;Z) are nonzero in all dimensions 0 ≤ i ≤ n. This shows that
the connectivity statement of Theorem 2.1(4) is sharp.

REMARK 2.12 (Milnor–Lê fibration). A closely related version of the Milnor fibration
was developed by Lê [41] (but see also [59], Theorem 5.11]). If D̊∗δ is the open
punctured disc (at the origin) of radius δ in C, then the above Milnor fibration is fiber
diffeomorphic equivalent to the smooth locally trivial fibration

B̊ε,x ∩ f −1(D̊∗δ) −→ D̊∗δ, 0 < δ � ε � 1,

which is usually referred to as the Milnor–Lê fibration. In particular, the Milnor fiber
Fx � B̊ε,x ∩ f −1(s) (for 0 < |s| � δ � ε) can be viewed as a local smoothing of X0
near x (see Figure 1). We do not make any distinction between these two types of
fibrations.

The concepts of Milnor fibration, Milnor fiber, and monodromy operator have also
been extended by Lê [41] to the more general situation where f : Cn+1 → C is replaced
by a nonconstant regular or analytic function f : X → C, with X a complex algebraic
or analytic variety. In this case, the open ball B̊ε,x of radius ε about x ∈ X is defined by
using an embedding of the germ (X, x) in an affine space CN . Then Fx = B̊ε,x ∩ Xs, for
0 < |s| � δ � ε, is the (local) Milnor fiber of the function f at the point x.

REMARK 2.13. The Milnor fibration associated to a complex hypersurface singularity
germ does not depend on the choice of a local equation for that germ; see [42] for
details.

2.2. Thom–Sebastiani theorem. One of the most versatile tools for studying the
homotopy type of the Milnor fiber is the Thom–Sebastiani theorem. Results of
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FIGURE 1. Milnor fiber.

Thom–Sebastiani type consist of exhibiting topological or analytical properties of a
function f (x0, . . . , xn) + g( y0, . . . , ym) with separated variables from analogous prop-
erties of the components f and g. Topologically, these correspond to the well-known
join construction that we now recall.

DEFINITION 2.14. Given two topological spaces X and Y, the join of X and Y, denoted
X ∗ Y , is the space obtained from the product X × [0, 1] × Y by making the following
identifications:

(i) (x, 0, y) ∼ (x′, 0, y) for all x, x′ ∈ X, y ∈ Y;
(ii) (x, 1, y) ∼ (x, 1, y′) for all x ∈ X, y, y′ ∈ Y .

Informally, X ∗ Y is the union of all segments joining points x ∈ X to points y ∈ Y .
For example, if X is a point, then X ∗ Y is just the cone cY on Y. If X = S0, then X ∗ Y
is the suspension ΣY of Y.

The homology of a join X ∗ Y was computed by Milnor in terms of homology
groups of the factors X and Y. Denote by [x, t, y] the equivalence class in X ∗ Y of
(x, t, y) ∈ X × [0, 1] × Y .

LEMMA 2.15 (Milnor [60]). Let X, Y be topological spaces with self-maps a : X → X
and b : Y → Y. Define a self-map a ∗ b : X ∗ Y → X ∗ Y by setting

(a ∗ b)([x, t, y]) := [a(x), t, b( y)].
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Then there is an isomorphism (with integer coefficients)

H̃r+1(X ∗ Y) �
⊕
i+j=r

(H̃i(X) ⊗ H̃j(Y)) ⊕
⊕

i+j=r−1

Tor(H̃i(X), H̃j(Y)),

which is compatible with the homomorphisms induced by a ∗ b, a, and b, respectively,
at the homology level.

Let f : (Cn+1, 0)→ (C, 0) and g : (Cm+1, 0)→ (C, 0) be two hypersurface singularity
germs, and consider their sum

f + g : (Cn+m+2, 0)→ (C, 0), ( f + g)(x, y) = f (x) + g( y),

for x = (x0, . . . , xn) ∈ Cn+1, y = ( y0, . . . , ym) ∈ Cm+1. Let Ff , Fg, Ff+g be the corre-
sponding Milnor fibers, and hf , hg, h f+g the associated monodromy homeomorphisms.
(Note that if f and g are weighted homogeneous polynomials, then f + g is also
weighted homogeneous, and in this case we can consider the affine Milnor objects
as well.) In this notation, one has the following result (see [73] in the case of isolated
singularities, and [62, 69] for the general case).

THEOREM 2.16. There is a homotopy equivalence

j : Ff ∗ Fg −→ Ff+g

so that the diagram

Ff ∗ Fg

h f ∗hg

��

j
�� Ff+g

h f+g

��

Ff ∗ Fg
j

�� Ff+g

is commutative up to homotopy.

As a consequence, one gets by Lemma 2.15 the following result.

COROLLARY 2.17 (Thom and Sebastiani). Assume that both f and g are isolated
hypersurface singularity germs. Then f + g is also an isolated hypersurface singu-
larity and the following diagram is commutative:

H̃n(Ff ;Z) ⊗ H̃m(Fg;Z)

(h f )∗⊗(hg)∗
��

� �� H̃n+m+1(Ff+g;Z)

(h f+g)∗
��

H̃n(Ff ;Z) ⊗ H̃m(Fg;Z) � �� H̃n+m+1(Ff+g;Z)

EXAMPLE 2.18 (Whitney umbrella). Let f (x, y, z) = z2 − xy2 be the Whitney umbrella,
and denote by F its Milnor fiber at the singular point at the origin. Since f is a sum of
two polynomials in different sets of variables and the Milnor fiber of {z2 = 0} at 0 is
just two points, one can apply Theorem 2.16 to deduce that F is the suspension on the
Milnor fiber G of g(x, y) = xy2 at the origin. Since g is homogeneous, its Milnor fiber
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G is defined by xy2 = 1, and hence G is homotopy equivalent to a circle S1. Therefore,
the Milnor fiber F of the Whitney umbrella at the origin is homotopy equivalent to a
2-sphere S2.

2.3. Important example: Brieskorn–Pham isolated singularities. We conclude
this section with a discussion on the important class of examples provided by the
Brieskorn–Pham singularities; see [8], [17, Ch. 3] and [59, Section 9].

Consider the isolated singularity at the origin of Cn+1 defined by the weighted
homogeneous polynomial

fa = xa0
0 + · · · + xan

n ,

where n ≥ 2, ai ≥ 2 are integers, and a = (a0, . . . , an). Let K(a), F(a), μ(a), h(a) denote
the corresponding link, Milnor fiber, Milnor number, and monodromy homeomor-
phism, respectively. The following result is a consequence of Theorem 2.16.

THEOREM 2.19 (Brieskorn and Pham). The eigenvalues of the algebraic monodromy
operator

h(a)∗ : Hn(F(a);Z) −→ Hn(F(a);Z)

are the products λ0λ1 · · · λn, where each λj ranges over all ajth roots of unity other than
1. In particular, the corresponding Milnor number is

μ(a) = (a0 − 1)(a1 − 1) · · · (an − 1).

REMARK 2.20. Due to their high connectivity, links of isolated hypersurface singu-
larities are the main source of exotic spheres. This was in fact Milnor’s motivation for
studying complex hypersurface singularities. Indeed, by using the generalized Poincaré
hypothesis of Smale and Stallings, it can be shown that if n � 2 the link K of an
isolated hypersurface singularity is homeomorphic to the sphere S2n−1 if and only if K
is a Z-homology sphere (that is, H∗(K;Z) � H∗(S2n−1;Z)); see [59, Lemma 8.1]. The
integral homology of such a link K can be studied by using the monodromy and the
Wang sequence associated to the Milnor fibration. We sketch the argument.

Let f = 0 be an isolated hypersurface singularity at the origin of Cn+1, n ≥ 2, and
let K, F and h denote the corresponding link, Milnor fiber, and monodromy home-
omorphism, respectively. Then K is a (n − 2)-connected, closed, oriented, manifold
of real dimension 2n − 1 and hence, by Poincaré duality, the only interesting integer
(co)homology of K appears in degrees n − 1 and n. Moreover, the Milnor fiber F has
the homotopy type of a bouquet of n-spheres. Let Δ(t) denote the local Alexander
polynomial at the origin, that is,

Δ(t) = det(t · I − h∗ : Hn(F;Z)→ Hn(F;Z)).

For simplicity, we use here the notation S2n+1 for the small ε-sphere centered at the
origin. The Wang long exact sequence with Z-coefficients associated to the Milnor
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fibration, that is,

0→ Hn+1(S2n+1\K)→ Hn(F)
h∗−id−→ Hn(F)→ Hn(S2n+1\K)→ 0,

together with the two Alexander duality isomorphisms Hn+1(S2n+1\K;Z) � Hn−1(K;Z)
and Hn(S2n+1\K;Z) � Hn(K;Z), yields the following results.

(a) K is a Q-homology sphere (that is, it has the Q-homology of S2n−1) if and only if
Δ(1) � 0 (that is, t = 1 is not an eigenvalue of the algebraic monodromy operator
h∗ : Hn(F;Z)→ Hn(F;Z)).

(b) K is a Z-homology sphere if and only if Δ(1) = ±1.

In particular, if n ≥ 3 and Δ(1) = ±1 then K is homeomorphic to S2n−1. Moreover,
the embedding K ⊂ S2n+1 is not equivalent to the trivial equatorial embedding S2n−1 ⊂
S2n+1 (that is, K is an exotic (2n − 1)-sphere) except for the smooth case d f (0) � 0.

EXAMPLE 2.21 (Brieskorn). By combining Theorem 2.19 and Remark 2.20, one can
now obtain examples of exotic spheres of type K(a), that is, which are links of
Brieskorn–Pham singularities. Specifically, let f : C5 → C be given by

f (x, y, z, t, u) = x2 + y2 + z2 + t3 + u6k−1

Then, for 1 ≤ k ≤ 28, the link of the singularity at the origin of f −1(0) is a topological
7-sphere. Furthermore, these give the 28 different types of exotic 7-spheres which
bound parallelizable manifolds, initially discovered by Kervaire and Milnor [36] by
surgery-theoretic methods. In fact, as shown in [8, Korollar 2], every exotic sphere
of dimension m = 2n − 1 > 6 that bounds a parallelizable manifold is the link of a
Brieskorn–Pham isolated singularity, that is, of the form K(a), for an appropriate
choice of a = (a0, . . . , an), with each ai ≥ 2.

EXAMPLE 2.22 (Poincaré’s icosahedral 3-sphere and the E8-singularity). Let us
consider the Brieskorn–Pham singularity (X0, 0) ⊂ (C3, 0) defined by the equation

x3 + y5 + z2 = 0.

One can use Theorem 2.19 to compute directly that Δ(1) = 1, and conclude that the
corresponding link K(3, 5, 2) is a Z-homology sphere as in Remark 2.20. Moreover,
(X0, 0) is an isolated quotient singularity, that is, there is an analytic isomorphism

(X0, 0) � (C2/G, 0),

for G the finite subgroup (with 120 elements) of SU(2) called the binary icosahedral
group. It then follows that K(3, 5, 2) = S3/G, hence

π1(K(3, 5, 2)) � G.

In particular, the link K(3, 5, 2) is not homeomorphic to S3. The closed 3-manifold
K(3, 5, 2) is usually referred to as Poincaré’s ‘fake’ (icosahedral) 3-sphere, and its
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FIGURE 2. E8 Dynkin diagram.

discovery showed that the Poincaré conjecture could not be stated only in terms of
homology.

Since (X0, 0) is an irreducible isolated normal surface singularity, its topology can
also be studied through its dual resolution graph; see, e.g., [17 Ch. 2, Section 3] for a
brief introduction to surface singularities. More precisely, if (X0, 0) is such a normal
surface singularity with link K, let p : Z → X0 be a very good resolution of (X0, 0),
in the sense that Z is a smooth complex surface with boundary the link K, p is a
proper analytic morphism which is an isomorphism over X0\{0}, and the exceptional
set E = p−1(0) =

⋃r
i=1 Ei is a simple normal crossing divisor with |Ei ∩ Ej| ≤ 1 for any

i � j. (We can, moreover, assume that p is minimal in the sense that no Ei can be
contracted to get a new very good resolution of (X0, 0).) The dual resolution graph
of (X0, 0) is the connected graph on r vertices {1, . . . , r}, one for each curve Ei, and
there is an edge connecting two vertices j and k if and only if Ej ∩ Ek � ∅. The
intersection matrix I(Z) of the dual graph records the intersection numbers Ei · Ej, and
it is negative definite. Then one can show that the link K is a Z-homology 3-sphere if
and only if all exceptional curves Ei are rational, the dual resolution graph is a tree,
and det I(Z) = ±1. In the example under consideration, the dual resolution graph is
the Dynkin diagram E8 (see Figure 2).

Note that in order to compute det I(Z), one also needs to calculate the
self-intersection numbers Ei · Ei of the exceptional curves Ei. In the example under
consideration (just like for any rational double point singularity), one can show by
using the adjunction formula and the Riemann–Roch theorem that Ei · Ei = −2 for any
i; see, for instance, [23, A3]. We refer to [23] for a list of 15 characterizations of such
rational double point singularities.

At the end of this section, it is natural to draw attention to the following problem.

PROBLEM 2.23. How can one piece together, in a consistent way, the (local) Milnor
information at various points along a singular fiber of a regular (or analytic) map?

3. Motivation: Families of complex hypersurfaces and specialization

Consider a family {Xs}s∈D∗ of nonsingular complex hypersurfaces degenerating to a
singular hypersurface X0, where D∗ is a small enough punctured disc about 0 ∈ C. One
is faced with the following problem.

PROBLEM 3.1. Describe the topology of X0 in terms of the topology of the family
{Xs}s∈D∗ .
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Specifically, one would like to derive topological information about X0 from the
monodromy of the family {Xs}s∈D∗ and from the (local and global) smoothing(s) of X0.

For example, if the projection map of the family is proper, there exists a specializa-
tion map

sp : Xs → X0

(s ∈ D∗) that collapses (nonholomorphically) the (local) vanishing cycles to the
singularities of X0. An overview of the construction of the specialization map can be
found in [43, Section 5.8]. (Co)homologically, the specialization can be constructed
as follows. If the above family of complex hypersurfaces is given by a (proper) map
f : X → D on a complex manifold X, so that Xs = f −1(s), s � 0, is the generic smooth
fiber, and X0 = f −1(0) is the special fiber, then for a small enough disc Dδ about 0 ∈ C
and for s ∈ D∗δ, we have maps

Xs
is
↪→ f −1(Dδ) � X0,

which respectively induce the homology specialization homomorphism,

sp∗ : H∗(Xs;Z)
is∗−→ H∗( f −1(Dδ);Z) � H∗(X0;Z), (3-1)

and the cohomological specialization,

sp∗ : H∗(X0;Z) � H∗( f −1(Dδ);Z)
i∗s−→ H∗(Xs;Z). (3-2)

EXAMPLE 3.2. Let {Xs} be the family of elliptic curves (in CP2)

y2 = x(x − 1)(x − s)

over the open unit disc |s| < 1, that degenerate to a nodal curve at s = 0. For s � 0,

H1(Xs;Z) � Zαs ⊕ Zβs,

with αs and βs respectively the meridian and the longitude in the 2-torus Xs. As s→ 0,
we see that αs �→ 0 (and say that αs is a ‘vanishing cycle’), while βs �→ β0, the longitude
in X0 (and say that βs is a ‘nearby cycle’), and H1(X0;Z) � Zβ0. We therefore notice
that the vanishing cycle αs measures the difference between H1(Xs;Z) and H1(X0;Z).
Furthermore, as one transports the cycles {αs, βs} around a loop in the s-plane, one
ends up with a new basis {h(αs), h(βs)} for H1(Xs;Z), which is related to the old basis
{αs, βs} by the Picard–Lefschetz formula (see, for instance, [17, (3.3.11)]):

h(αs) = αs and h(βs) = βs − (βs · αs)αs.

In the next section we will introduce a nearby cycle functor ψ, which corresponds
roughly to H∗(Xs), and a vanishing cycle functor ϕ, which measures the difference
between H∗(Xs) and H∗(X0). These functors come endowed with monodromy opera-
tors, which are compatible with the Milnor monodromies and the monodromy of the
family {Xs}s∈D∗ , respectively.
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4. Nearby and vanishing cycles

In this section we follow Deligne’s approach [28, Exposés 13–14] to construct a
specialization homomorphism by using sheaf theory. We will also address the two
motivational problems above (Problems 2.23 and 3.1). We assume that the reader is
familiar with derived categories and the derived calculus (but see also Section 4.1
below for a quick overview of the constructible theory).

4.1. Whitney stratification, constructible complexes, and perverse sheaves. In
this section, we recall some background on Whitney stratifications, constructible
complexes and perverse sheaves. For a quick introduction to these concepts see, for
instance, [18, 49].

4.1.1. Whitney stratification. Let X be a complex algebraic or analytic variety. It
is well known that such a variety can be endowed with a Whitney stratification, that
is, a (locally) finite partition S into nonempty, connected, locally closed nonsingular
subvarieties S of X (called strata) which satisfy the following properties.

(a) Frontier condition: for any stratum S ∈ S , the frontier ∂S := S̄\S is a union of
strata of S , where S̄ denotes the closure of S.

(b) Constructibility: the closure S̄ and the frontier ∂S of any stratum S ∈ S are closed
complex algebraic (respectively, analytic) subspaces in X.

In addition, whenever two strata S1 and S2 are such that S2 ⊆ S̄1, the pair (S2, S̄1) is
required to satisfy certain regularity conditions that guarantee that the variety X is
topologically equisingular along each stratum.

EXAMPLE 4.1 (Whitney umbrella). The singular locus of the Whitney umbrella X =
{z2 = xy2} ⊂ C3 of Example 2.18 is the x-axis, but the origin is ‘more singular’ than
any other point on the x-axis. A Whitney stratification of X has strata

S1 = X\{x-axis}, S2 = {(x, 0, 0) | x � 0}, S3 = {(0, 0, 0)}.

4.1.2. Constructible and perverse complexes. Let A be a noetherian and commu-
tative ring of finite global dimension (such as Z, Q or C). Let X be a complex algebraic
or analytic variety, and denote by Db(X) the derived category of bounded complexes
of sheaves of A-modules.

DEFINITION 4.2. A sheaf F of A-modules on X is said to be constructible if there
is a Whitney stratification S of X such that the restriction F |S of F to every
stratum S ∈S is an A-local system with finitely generated stalks. A bounded complex
F • ∈ Db(X) is said to be constructible if all its cohomology sheaves H j(F •) are
constructible.

EXAMPLE 4.3. The constant sheaf AX is constructible on X (with respect to any
Whitney stratification). On the other hand, if i : C ↪→ C denotes the inclusion of the
Cantor set, then it is known that the direct image sheaf i∗AC is not constructible on C.
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We denote by Db
c(X) the full triangulated subcategory of Db(X) consisting of

constructible complexes (that is, complexes which are constructible with respect to
some Whitney stratification). Then it can be shown that the category Db

c(X) is closed
under Grothendieck’s six operations; see, for instance, [49, Ch. 7] for a precise
formulation of this fact.

Perverse sheaves are an important class of constructible complexes, introduced
in [4] as a formalization of the celebrated Riemann–Hilbert correspondence of
Kashiwara [33], which relates the topology of algebraic varieties (intersection homol-
ogy) and the algebraic theory of differential equations (microlocal calculus and
holonomic D-modules). We recall their definition below.

DEFINITION 4.4. (a) The perverse t-structure on Db
c(X) consists of the two strictly full

subcategories pD≤0(X) and pD≥0(X) of Db
c(X) defined as

pD≤0(X) = {F • ∈ Db
c(X) | dimC supp−j(F •) ≤ j,∀j ∈ Z},

pD≥0(X) = {F • ∈ Db
c(X) | dimC cosupp j(F •) ≤ j,∀j ∈ Z},

where, for kx : {x} ↪→ X denoting the point inclusion, we respectively define the jth
support and the jth cosupport of F • ∈ Db

c(X) by

suppj(F •) = {x ∈ X | Hj(k∗xF •) � 0},

cosuppj(F •) = {x ∈ X | Hj(k!
xF •) � 0}.

Here, k∗xF
� and k!

xF
� are respectively called the stalk and costalk of F � at x.

(b) A constructible complex F • ∈ Db
c(X) is called a perverse sheaf on X if F • ∈

Perv(X) := pD≤0(X) ∩ pD≥0(X).

The category of perverse sheaves is the heart of the perverse t-structure, hence it is
an abelian category, and it is stable by extensions.

REMARK 4.5. If A is a field, the universal coefficient theorem can be used to show that
the Verdier duality functor D : Db

c(X)→ Db
c(X) satisfies

cosuppj(F •) = supp−j(DF •), (4-1)

In particular, D preserves perverse sheaves.

It is important to note that the categories pD≤0(X) and pD≥0(X) can also be described
in terms of a fixed Whitney stratification of X. Indeed, the perverse t-structure can be
characterized as follows.

THEOREM 4.6. Assume F • ∈ Db
c(X) is constructible with respect to a Whitney

stratification S of X. For each stratum S ∈ S , let iS : S ↪→ X denote the inclusion.
Then

(i) F • ∈ pD≤0(X) ⇐⇒ Hj(i∗SF
•) = 0, ∀S ∈ S , j > − dim S;

(ii) F • ∈ pD≥0(X) ⇐⇒ Hj(i!SF
•) = 0, ∀S ∈ S , j < − dim S.
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EXAMPLE 4.7. Assume X is of pure complex dimension. Then the following state-
ments hold.

(a) AX[dim X] ∈ pD≤0(X).
(b) The intersection cohomology complex ICX is a perverse sheaf on X.
(c) If X is a local complete intersection then AX[dim X] is a perverse sheaf on X (see

[17, Theorem 5.1.20, 40]).

The existence of the perverse t-structure on Db
c(X) implies the existence of

perverse truncation functors pτ≤0, pτ≥0, which are adjoint to the inclusions pD≤0(X) ↪→
Db

c(X)←↩ pD≥0(X). These functors can be used to associate to any constructible
complex F • ∈ Db

c(X) its perverse cohomology sheaves defined as
pH i(F •) := pτ≤0

pτ≥0(F •[i]) ∈ Perv(X).

It then follows that F • ∈ pD≤0(X) if and only if pH i(F •) = 0 for all i > 0. Similarly,
F • ∈ pD≥0(X) if and only if pH i(F •) = 0 for all i < 0. In particular, F • ∈ Perv(X)
if and only if pH i(F •) = 0 for all i � 0 and pH 0(F •) =F •.

We conclude this overview with a few words about t-exactness.

DEFINITION 4.8. A functor F : D1 → D2 of triangulated categories with t-structures
is left t-exact if F(D≥0

1 ) ⊆ D≥0
2 , right t-exact if F(D≤0

1 ) ⊆ D≤0
2 , and t-exact if F is both

left and right t-exact.

REMARK 4.9. If F is a t-exact functor, it restricts to a functor on the corresponding
hearts. We only work here with the perverse t-structure, so a t-exact functor preserves
perverse sheaves.

EXAMPLE 4.10. Let X be a complex algebraic (or analytic) variety, and let Z ⊆ X
be a closed subset. Fix a Whitney stratification of the pair (X, Z). Then U := X\Z
inherits a Whitney stratification as well, and if we denote by i : Z ↪→ X and j : U ↪→
X the inclusion maps, then the functors j∗ = j!, i!, i∗, i∗ = i!, j! and Rj∗ preserve
constructibility with respect to the above fixed stratifications. Moreover, the functors
j!, i∗ are right t-exact, the functors j! = j∗, i∗ = i! are t-exact, and Rj∗, i! are left t-exact.

4.2. Construction of nearby/vanishing cycles. We assume that the base ring
A is commutative and noetherian, of finite global dimension, and we work with
constructible complexes of sheaves of A-modules.

Let f : X → D ⊂ C be a holomorphic map from a reduced complex variety X to a
disc D ⊂ C. Denote by X0 = f −1(0) the central fiber, with inclusion map i : X0 ↪→ X.
Let X∗ := X\X0 with induced map f ∗ : X∗ → D∗ to the punctured disc. Consider the
following cartesian diagram:

X0

��

� � i �� X

f

��

X∗��
j

��

f ∗

��

X̃∗π̂��

��

{0} �
�

�� D D∗��
�� D̃∗π

��
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where π : D̃∗ → D∗ is the infinite cyclic (and universal) cover of D∗ defined by the
map z �→ exp(2πiz). In follows that π̂ : X̃∗ → X∗ is an infinite cyclic cover with deck
group Z. The space X̃∗ is identified with the canonical fiber of f (and it is homotopy
equivalent to the generic fiber Xs), and the map j ◦ π̂ is a canonical model (that is,
independent of the choice of the specific fiber) for the inclusion of the generic fiber Xs

in X∗.

DEFINITION 4.11. The nearby cycle functor of f assigns to a bounded constructible
complex F • ∈ Db

c(X) the complex on X0 defined by

ψ f F
• := i∗R( j ◦ π̂)∗( j ◦ π̂)∗F • ∈ Db(X0). (4-2)

REMARK 4.12. The complex ψ f F • is constructible, that is, ψ f F • ∈ Db
c(X0); see, for

instance, [71, Theorem 4.0.2, Lemma 4.2.1]. (Note however that since the definition
of ψ f F • involves nonalgebraic maps, its constructibility is not clear a priori.) So one
gets a functor

ψ f : Db
c(X) −→ Db

c(X0).

Note that in order to define ψ f F • we first pull back F • to the ‘generic fiber’
of f and then retract onto the ‘special fiber’ X0. In particular, ψ f F • contains more
information about the behavior of F • near X0 than the naive restriction i∗F •. It is
also worth noting that ψ f F • depends in fact only on the restriction of F • to X∗.

It follows directly from the above definition that the stalk cohomology at a point
of X0 computes the (hyper)cohomology of the corresponding Milnor fiber. Indeed, for
x ∈ X0, let B̊ε,x be an open ball of radius ε in X, centered at x. (If X is singular, such a
ball is defined by using an embedding of the germ (X, x) in a complex affine space.)
Then, as in Section 2, for |s| nonzero and sufficiently small, Fx = B̊ε,x ∩ Xs is the (local)
Milnor fiber of f at x, and one has the following result.

COROLLARY 4.13. For every x ∈ X0 there is an A-module isomorphism

H k(ψ f F
•)x � Hk(B̊ε,x ∩ Xs; F •|Xs ) = H

k(Fx; F •), (4-3)

for all k ∈ Z. In particular, if F • = AX is the constant sheaf on X, then

H k(ψ f AX)x � Hk(Fx; A). (4-4)

When f is proper, it can be shown that the nearby cycle functor computes the
(hyper)cohomology of the generic fiber Xs of f. More precisely, one has the following
result (see [26, Part II, Section 6.13]).

THEOREM 4.14. If f is proper, then

ψ f F
• � Rsp∗(F

•|Xs ) ∈ Db
c(X0). (4-5)

Therefore, one has the identification

Hk(X0;ψ f F
•) � Hk(Xs; F •|Xs ) (4-6)
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for every k ∈ Z and s ∈ D∗. In particular, if F • = AX is the constant sheaf on X, then

Hk(X0;ψ f AX) � Hk(Xs; A). (4-7)

REMARK 4.15. The deck group action on D̃∗ in Definition 4.11 induces a monodromy
transformation h = h f on ψ f , which is compatible with the monodromy of the family
{Xs}s∈D∗ via (4-7) and with the Milnor monodromy via (4-4), respectively.

DEFINITION 4.16. The sheaf complex ψ f AX is called the nearby cycle complex of f
with A-coefficients.

Consider the adjunction morphism

F • → R( j ◦ π̂)∗( j ◦ π̂)∗F •

and apply i∗ to obtain the specialization morphism

sp : i∗F • → ψ f F
•. (4-8)

This is a sheaf version of the cohomological specialization (3-2). Indeed, if f is proper
and F • = AX , one gets (3-2) by applying the hypercohomology functor to (4-8). Next,
by taking the cone of (4-8), one gets a unique distinguished triangle

i∗F • sp
−→ ψ f F

• can−→ ϕ f F
• [1]−→ (4-9)

in Db
c(X0), where ϕ f F • is, by definition, the vanishing cycles of F •. In fact, one gets

a functor

ϕ f : Db
c(X)→ Db

c(X0)

called the vanishing cycle functor of f. (Note, however, that cones are not functorial,
so the above construction is not enough to get ϕ f as a functor; see, for instance, [34,
Ch. 8] and [71, pp. 25–26] for more details.) The vanishing cycle functor also comes
equipped with a monodromy automorphism, which is still denoted by h.

DEFINITION 4.17. The sheaf complex ϕ f AX is called the vanishing cycle complex of f
with A-coefficients.

Let us next compute the stalk cohomology H k(ϕ f F •)x of the vanishing cycles at
x ∈ X0. By using the long exact sequence associated to the triangle (4-9), that is,

· · · −→H k(i∗F •)x −→H k(ψ f F
•)x −→H k(ϕ f F

•)x −→ · · · ,

together with the A-module isomorphisms

Hk(B̊ε,x ∩ X0; F •) �H k(i∗F •)x �H k(F •)x � Hk(B̊ε,x; F •)

and

H k(ψ f F
•)x � Hk(B̊ε,x ∩ Xs; F •)
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for s ∈ D∗, one gets the identification

H k(ϕ f F
•)x � Hk+1(B̊ε,x, B̊ε,x ∩ Xs; F •). (4-10)

EXAMPLE 4.18. As a particular case of (4-10), assume that F • = AX is the constant
sheaf on X. Then, since B̊ε,x ∩ X0 is contractible, one gets (for s ∈ D∗)

H k(ϕ f AX)x � Hk+1(B̊ε,x, B̊ε,x ∩ Xs; A) � H̃k(B̊ε,x ∩ Xs; A) � H̃k(Fx; A),

with Fx the Milnor fiber of f at x.
Assume, moreover, that X is nonsingular. Then, since Fx is contractible if x is a

nonsingular point of X0 (see Proposition 2.3), the above stalk calculation shows that
H k(ϕ f AX)x = 0 at such a nonsingular point. It then follows that in this case one has
the inclusion

supp(ϕ f AX) :=
⋃

k

supp H k(ϕ f F
•) ⊆ Sing(X0).

In fact, by using Corollary 2.9, it follows readily that these sets coincide if A is a field.

EXAMPLE 4.19. Let f : Cn+1 → C be a polynomial function that depends only on the
first n − r + 1 coordinates of Cn+1 (with 0 < r < n). Furthermore, suppose that f has an
isolated singularity at 0 ∈ Cn−r+1 when regarded as a polynomial function on Cn−r+1,
and let F0 denote the corresponding Milnor fiber. If X0 = f −1(0) ⊂ Cn+1, then the
singular locus Σ of X0 is the affine space Cr in the remaining coordinates of Cn+1,
and the filtration Σ ⊂ X0 induces a Whitney stratification of X0. If v : Σ ↪→ X0 denotes
the inclusion map, it follows by the local product structure of neighborhoods of points
in Σ and from the stalk calculation of Example 4.18 that

ϕ f ACn+1 � v!MΣ[r − n],

where MΣ is the constant sheaf on Σ with stalk Hn−r(F0; A).

A more general estimation of the support of vanishing cycles is provided by the
following result (see, for instance, [45]).

PROPOSITION 4.20. Let X be a complex analytic variety with a given Whitney
stratification S , and let f : X → C be an analytic function. For every S -constructible
complex F • on X and every integer k, one has the inclusion

supp H k(ϕ f F
•) ⊆ X0 ∩ SingS ( f ), (4-11)

where

SingS ( f ) :=
⋃
S∈S

Sing( f |S)

is the stratified singular set of f with respect to the stratification S .
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4.3. Relation with perverse sheaves and duality. Let f : X → C be a nonconstant
regular (or complex analytic) function, and assume that the coefficient ring A is com-
mutative, noetherian, of finite dimension. The behavior of the nearby and vanishing
cycle functors with regard to duality and perverse sheaves is reflected in the following
result (see, for instance, [71, Theorem 6.0.2], [46, Theorem 3.1, Corollary 3.2]).

THEOREM 4.21. In the above notation, we have the following statements.

(i) The shifted functors ψ f [−1] and ϕ f [−1] commute with the Verdier duality functor
D up to natural isomorphisms.

(ii) The shifted functors

ψ f [−1], ϕ f [−1] : Db
c(X) −→ Db

c(X0)

are t-exact. In particular, there are induced functors on perverse sheaves

ψ f [−1], ϕ f [−1] : Perv(X) −→ Perv(X0).

PROOF. In this sketch proof, we focus on the t-exactness of ψ f [−1], assuming (i).
Assume for simplicity that the coefficient ring A is a field. Then, if P is perverse, so
is DP . It suffices to show that ψ f [−1] is right t-exact with respect to the perverse
t-structure, so in particular if P is perverse then ψ f P[−1] ∈ pD≤0. Then the duality
statement from part (i) yields that

D(ψ f P[−1]) � ψ f (DP)[−1] ∈ pD≤0,

whence ψ f P[−1] ∈ pD≥0.
To show the right t-exactness of ψ f [−1], assume for simplicity that f : X → D ⊂ C

is given by the restriction of an algebraic family over a curve (this is the case considered
in our applications below). In particular, monodromy is quasi-unipotent. By taking a
ramified cover of D, one can further assume that monodromy h is unipotent. In the
notation of Section 4.2, consider now the distinguished triangle

i∗Rj∗j∗ −→ ψ f
h−1−→ ψ f

[1]−→ (4-12)

(which stalkwise corresponds to the Wang sequence of a local Milnor fibration) and
note that, under the above assumptions, Rj∗ and j∗ are t-exact and i∗ is right t-exact. So
if P is perverse on X, then i∗Rj∗j∗P ∈ pD≤0. Taking perverse cohomology in (4-12)
yields

pH i(ψ f P)
h−1−→ pH i(ψ f P) −→ pH i+1(i∗Rj∗j∗P) = 0 (4-13)

for all i ≥ 0. Since h − 1 is surjective and nilpotent, by assumption, pH i(ψ f P) must
vanish for all i ≥ 0. Thus ψ f P ∈ pD≤−1, as claimed. �

EXAMPLE 4.22. If X is a pure (n + 1)-dimensional locally complete intersection (for
example, X is nonsingular), then ψ f AX[n] and ϕ f AX[n] are perverse sheaves on X0.
Indeed, in this case, AX[n + 1] is perverse on X (see Example 4.7(c)).
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For convenience, we make the following definition.

DEFINITION 4.23. The perverse nearby and perverse vanishing cycle functors are
defined by

pψ f := ψ f [−1] and pϕ f := ϕ f [−1].

4.4. Milnor fiber cohomology via vanishing cycles. Perverse nearby and vanishing
cycles can be used to study the local topology of hypersurface singularity germs,
without relying on Milnor’s Theorem 2.1. Let us consider the classical case of the
Milnor fiber of a nonconstant analytic function germ f : (Cn+1, 0)→ (C, 0). Denote
the Milnor fiber of the singularity at the origin in X0 = f −1(0) by F0, and let K be
the corresponding link. The following result is a homological version of some of the
statements contained in Theorem 2.1.

PROPOSITION 4.24

(i) If r = dimC Sing( f ), then

H̃k(F0; A) = 0

for any base ring A and for k � [n − r, n]. (Here we use the convention that
dimC ∅ = −1.)

(ii) The link K is homologically (n − 2)-connected, that is,

H̃i(K;Z) = 0

for every integer i ≤ n − 2.

PROOF. We include here the proof of (i). Since AX[n + 1] is a perverse sheaf on
X = Cn+1, we get by Theorem 4.21 that pϕ f (AX[n + 1]) is a perverse sheaf on X0. Since
supp(pϕ f (AX[n + 1])) ⊆ Sing( f ), it follows that pϕ f (AX[n + 1])|Sing( f ) is a perverse
sheaf on Sing( f ); see, for example, [49, Corollary 8.2.10]. Since r = dimC Sing( f ),
the support condition for perverse sheaves yields that

H q(pϕ f (AX[n + 1])|Sing( f ))0 = 0

for q � [−r, 0]. In particular,

H q(pϕ f (AX[n + 1]))0 =H q(pϕ f (AX[n + 1])|Sing( f ))0 = 0

for q � [−r, 0]. The assertion follows from the stalk identification of Example 4.18:

H q(pϕ f (AX[n + 1]))0 =H q+n(ϕ f (AX))0 = H̃q+n(F0; A). �

For more applications of the vanishing and nearby cycles to the study of the
cohomology of the Milnor fiber, see for example [19] and the more recent [52]. In [19],
Dimca and Saito investigated local consequences of the perversity of vanishing cycles,
and computed the Milnor fiber cohomology from the restriction of the vanishing cycle
complex to the real link of the singularity. In particular, they show that the reduced
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cohomology groups H̃k(F0; A) = 0 of the Milnor fiber are completely determined for
i < n − 1 (and for i = n − 1 only partially) by the restriction of the vanishing cycle
complex to the complement of the singularity. The dependence of the Milnor fiber
cohomology on the singular strata is further refined in [52].

4.5. Thom–Sebastiani result for vanishing cycles. We now state a Thom–
Sebastiani result for vanishing cycles, generalizing Corollary 2.17 to functions defined
on singular ambient spaces, with arbitrary critical loci, and with arbitrary sheaf
coefficients. For complete details, see [47] and also [71, Corollary 1.3.4]. We work
over a regular noetherian base ring of finite dimension (such as Z, Q, or C).

Let f : X → C and g : Y → C be complex analytic functions. Let pr1 and pr2 denote
the projections of X × Y onto X and Y, respectively. Consider the function

f � g := f ◦ pr1 + g ◦ pr2 : X × Y → C.

The goal is to express the vanishing cycle functor ϕ f�g in terms of ϕ f and ϕg. For
convenience, the statement is formulated in terms of perverse vanishing cycles, as
introduced in the previous section.

We let V( f ) = { f = 0}, and similarly for V(g) and V( f � g). Denote by k the
inclusion of V( f ) × V(g) into V( f � g). With this notation, one has the following result.

THEOREM 4.25. For F • ∈ Db
c(X) and G • ∈ Db

c(Y), there is a natural isomorphism

k∗pϕ f�g(F • L
� G •) � pϕ f F

• L
� pϕgG

• (4-14)

commuting with the corresponding monodromies.
Moreover, if p = (x, y) ∈ X × Y is such that f (x) = 0 and g( y) = 0, then, in an open

neighborhood of p, the complex pϕ f�g(F • L
� G •) has support contained in V( f ) ×

V(g), and, in every open set in which such a containment holds, there are natural
isomorphisms

pϕ f�g(F • L
� G •) � k!(pϕ f F

• L
� pϕgG

•) � k∗(pϕ f F
• L
� pϕgG

•). (4-15)

COROLLARY 4.26. In the notation of the above theorem and with integer coefficients,
there is an isomorphism

H̃i−1(Ff�g,p) �
⊕
a+b=i

(H̃a−1(Ff ,pr1(p)) ⊗ H̃b−1(Fg,pr2(p)))

⊕
⊕

c+d=i+1

Tor(H̃c−1(Ff ,pr1(p)), H̃d−1(Fg,pr2(p))),
(4-16)

where Ff ,x denotes as usual the Milnor fiber of a function f at x, and similarly for Fg,y.

EXAMPLE 4.27 (Brieskorn singularities and intersection cohomology). Let us now
indicate how Theorem 4.25 applies in the context of Brieskorn–Pham singularities,
with twisted intersection cohomology coefficients; see [47, Section 2.4] for complete
details.
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For i = 1, . . . , n, consider a C-local system Li of rank ri on C∗, with monodromy
automorphism hi, and denote the corresponding intersection cohomology complex
on C by ICC(Li). The complex ICC(Li) agrees with Li[1] on C∗, and has stalk
cohomology at the origin concentrated in degree −1, where it is isomorphic to
Ker (id − hi). For positive integers ai, consider the functions fi(x) = xai on C. The
complex pϕ fi ICC(Li) is a perverse sheaf supported only at 0; therefore, pϕ fi ICC(Li) is
nonzero only in degree 0, where it has dimension airi − dim Ker (id − hi).

Next, consider the C-local system L1� · · ·�Ln on (C∗)n with monodromy auto-
morphism h := �n

i=1hi, and note that

ICC(L1)
L
� · · ·

L
� ICC(Ln) � ICCn (L1� · · ·�Ln).

The perverse sheaf
pϕxa1

1 +···+xan
n

ICCn (L1� · · ·�Ln)

is supported only at the origin, and hence is concentrated only in degree 0. In degree
0, it can be seen by iterating the Thom–Sebastiani isomorphism that it has dimension
equal to ∏

i

(airi − dim Ker (id − hi)).

In the special case when ri = 1 and hi = 1 for all i, the above calculation recovers the
result of Theorem 2.19 that the dimension of the vanishing cycles in degree n − 1 (that
is, the Milnor number of the isolated singularity at the origin of xa1

1 + · · · + xan
n = 0) is∏

i(ai − 1).

5. Application: Euler characteristics of projective hypersurfaces

Nearby and vanishing cycles provide an ideal tool for computing Euler characteris-
tics of hypersurfaces. For simplicity, in this section we assume that the base ring A is
a field.

5.1. General considerations. Let f : X → D ⊂ C be a proper holomorphic map
defined on a complex analytic variety X, and consider the distinguished triangle

i∗AX = AX0

sp
−→ ψ f AX

can−→ ϕ f AX
[1]−→

The associated long exact sequence in hypercohomology yields by (4-7) the following
long exact sequence of A-vector spaces:

· · · −→ Hk(X0; A) −→ Hk(Xs; A) −→ Hk(X0;ϕ f AX) −→ · · · (5-1)

for s ∈ D∗. Moreover, since the fibers of f are compact, the corresponding Euler
characteristics are well defined and one gets

χ(Xs) = χ(X0) + χ(X0,ϕ f AX), (5-2)
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with

χ(X0,ϕ f AX) := χ(H∗(X0;ϕ f AX)).

Assume next that the fibers of f are complex algebraic varieties, as in the situations
considered below. Then χ(X0,ϕ f AX) can be computed in terms of a stratification
of X0, by using the additivity of Euler characteristic for constructible complexes.
More precisely, if X is nonsingular and S is a stratification of X0 such that ϕ f AX is
S-constructible, one obtains the following result.

LEMMA 5.1

χ(X0,ϕ f AX) =
∑
S∈S

χ(S) · μS, (5-3)

where

μS := χ(H ∗(ϕ f AX)xS ) = χ(H̃∗(FxS ; A))

is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS of f at
some point xS ∈ S.

EXAMPLE 5.2 (Specialization sequence). In the above notation, assume moreover that
X is nonsingular and the singular fiber X0 has only isolated singularities.

Assume that dimC X = n + 1, and hence dimC X0 = n. Then, for x ∈ Sing(X0), the
corresponding Milnor fiber Fx �

∨
μx

Sn is up to homotopy a bouquet of n-spheres, and
the stalk calculation for vanishing cycles yields

Hk(X0;ϕ f AX) �
⊕

x∈Sing(X0)

H k(ϕ f AX)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, k � n,⊕
x∈Sing(X0)

H̃n(Fx; A), k = n.

Then the long exact sequence (5-1) becomes the following specialization sequence:

0 −→ Hn(X0; A) −→ Hn(Xs; A) −→
⊕

x∈Sing(X0)

H̃n(Fx; A)

−→ Hn+1(X0; A) −→ Hn+1(Xs; A) −→ 0,

for s ∈ D∗, together with isomorphisms

Hk(X0; A) � Hk(Xs; A), for k � n, n + 1.

Taking Euler characteristics, one gets for s ∈ D∗ the identity

χ(Xs) = χ(X0) +
∑

x∈Sing(X0)

χ(H̃∗(Fx; A)) = χ(X0) + (−1)n
∑

x∈Sing(X0)

μx

or, equivalently,

χ(X0) = χ(Xs) + (−1)n+1
∑

x∈Sing(X0)

μx. (5-4)
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5.2. Euler characteristics of complex projective hypersurfaces. The following
result is well known. We include its proof due to the connection with results from
Section 2.

PROPOSITION 5.3. Let Y ⊂ CPn+1 be a degree d smooth complex projective hyper-
surface defined by the homogeneous polynomial g : Cn+2 → C. Then the Euler charac-
teristic of Y is given by the formula

χ(Y) = (n + 2) − 1
d
{1 + (−1)n+1(d − 1)n+2}. (5-5)

PROOF. Since the diffeomorphism type of a smooth complex projective hypersurface
is determined only by its degree and dimension, one can assume without loss of
generality that Y is defined by the degree d homogeneous polynomial g =

∑n+1
i=0 xd

i .
The affine cone Ŷ = {g = 0} ⊂ Cn+2 on Y has an isolated singularity at the cone

point 0 ∈ Cn+2. Since g is homogeneous, the local Milnor fibration of g at the origin in
Cn+2 is fiber homotopy equivalent to the affine Milnor fibration

F = {g = 1} ↪→ Cn+2\Ŷ
g
−→ C∗.

Note also that the map F → CPn+1\Y defined by

(x0, . . . , xn+1) �→ [x0 : · · · : xn+1]

is a d-fold cover of CPn+1\Y , so

χ(F) = d · χ(CPn+1\Y) = d · (χ(CPn+1) − χ(Y)). (5-6)

Finally, the Milnor number of g at the origin in Cn+2 is easily seen to be (d − 1)n+2

(see, for instance, (2-3)), hence

χ(F) = 1 + (−1)n+1(d − 1)n+2. (5-7)

The desired expression for the Euler characteristic of Y is obtained by combining (5-6)
and (5-7). �

If the projective hypersurface V has arbitrary singularities, the strategy is to define
a family of projective hypersurfaces with singular fiber V and generic fiber a smooth
degree d projective hypersurface as in Proposition 5.3, then employ the specialization
sequence (5-1).

Let V = { f = 0} ⊂ CPn+1 be a reduced complex projective hypersurface of degree
d. Fix a Whitney stratification S of V and consider a one-parameter smoothing of
degree d, namely

Vs := { fs = f − sg = 0} ⊂ CPn+1 (s ∈ C),

for g a general polynomial of degree d. Note that, for s � 0 small enough, Vs is smooth
and transverse to the stratification S . Let

B = { f = g = 0}
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be the base locus of the pencil. Consider the incidence variety

VD := {(x, s) ∈ CPn+1 × D | x ∈ Vs},

with D a small disc centered at 0 ∈ C so that Vs is smooth for all s ∈ D∗ := D\{0}.
Denote by

π : VD → D

the proper projection map, and note that V = V0 = π
−1(0) and Vs = π

−1(s) for all
s ∈ D∗. In what follows we will write V for V0 and use Vs for a smoothing of V.
By definition, the incidence variety VD is a complete intersection of pure complex
dimension n + 1. It is nonsingular if V = V0 has only isolated singularities, but
otherwise it has singularities where the base locus B of the pencil { fs}s∈D intersects
the singular locus Σ := Sing(V) of V.

Consider the specialization sequence (5-1) for π, namely

−→ Hk(V; A)
spk

−→ Hk(Vs; A)
cank

−→ Hk(V;ϕπAVD
) −→ Hk+1(V; A)

spk+1

−→ (5-8)

Here, the maps spk are the specialization morphisms in cohomology, while the maps
cank are induced by the canonical morphism of (4-9). Let us also note that since the
incidence variety VD = π

−1(D) deformation retracts to V = π−1(0), it follows readily
that

Hk(V;ϕπAVD
) � Hk+1(VD, Vs; A).

Recall that the stalk of the cohomology sheaves of ϕπAVD
at a point x ∈ V is

computed by

H j(ϕπAVD
)x � Hj+1(Bx, Bx ∩ Vs; A) � H̃j(Bx ∩ Vs; A),

where Bx denotes the intersection of VD with a sufficiently small ball in some chosen
affine chart Cn+1 × D of the ambient space CPn+1 × D (hence Bx is contractible). Here
Bx ∩ Vs = Fπ,x is the Milnor fiber of π at x. Let us now consider the function

h := f /g : CPn+1\W → C

where W := {g = 0}, and note that h−1(0) = V\B with B = V ∩W the base locus of the
pencil. If x ∈ V\B, then in a neighborhood of x one can describe Vs (s ∈ D∗) as

{x | fs(x) = 0} = {x | h(x) = s},

that is, as the Milnor fiber of h at x. Note also that h defines V in a neighborhood of x �
B. Since the Milnor fiber of a complex hypersurface singularity germ does not depend
on the choice of a local equation, we can therefore use h or a local representative of
f when considering Milnor fibers of π at points in V\B. We therefore use the notation
Fx for the Milnor fiber of the hypersurface singularity germ (V , x).
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It was shown in [63, Proposition 5.1] (see also [56, Proposition 4.1], [74, Lemma
4.2]) that there are no vanishing cycles along the base locus B, that is,

ϕπAVD
|B � 0. (5-9)

Therefore, if u : V\B ↪→ V is the open inclusion, we get from (5-9) that

ϕπAVD
� u!u∗ϕπAVD

. (5-10)

Together with (5-2), this gives

χ(Vs) = χ(V) + χ(V ,ϕπAVD
) = χ(V) + χ(V\B, u∗ϕπAVD

). (5-11)

Therefore, Lemma 5.1, together with the fact that the Milnor fibration of a hypersurface
singularity germ does not depend on the choice of a local equation for the germ, yields
the following result.

THEOREM 5.4. Let V = { f = 0} ⊂ CPn+1 be a reduced complex projective hyper-
surface of degree d, and fix a Whitney stratification S of V. Let W = {g = 0} ⊂ CPn+1

be a smooth degree d projective hypersurface which is transverse to S . Then

χ(V) = χ(W) −
∑
S∈S

χ(S\W) · μS, (5-12)

where

μS := χ(H̃∗(FxS ; A))

is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS of V at
some point xS ∈ S.

EXAMPLE 5.5 (Isolated singularities). If the degree d hypersurface V ⊂ CPn+1 has
only isolated singularities, one gets by (5-12) and Proposition 5.3 the following
formula for the Euler characteristic of V:

χ(V) = (n + 2) − 1
d
{1 + (−1)n+1(d − 1)n+2} + (−1)n+1

∑
x∈Sing(V)

μx. (5-13)

5.3. Digression on Betti numbers and integral cohomology of projective hyper-
surfaces. Let V = { f = 0} ⊂ CPn+1 be a reduced complex projective hypersurface of
degree d. By the classical Lefschetz theorem (see, for instance, [17, Lemma 5.2.6]),
the inclusion map j : V ↪→ CPn+1 induces cohomology isomorphisms

j∗ : Hk(CPn+1;Z)
�−→ Hk(V;Z) for all k < n, (5-14)

and a monomorphism for k = n, regardless of the singularities of V.
If the hypersurface V ⊂ CPn+1 is smooth, moreover, then one gets by Poincaré

duality that Hk(V;Z) � Hk(CPn;Z) for all k � n. The universal coefficient theorem
also yields in this case that Hn(V;Z) is free abelian, and its rank bn(V) can be easily
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computed from formula (5-5) for the Euler characteristic of V as

bn(V) =
(d − 1)n+2 + (−1)n+1

d
+

3(−1)n + 1
2

. (5-15)

For a singular degree d reduced projective hypersurface V, consider a one-parameter
smoothing Vs together with the incidence variety VD and projection map π : VD → D,
as in the previous section. The perversity of vanishing cycles together with vanishing
results of Artin type can be used to prove the following result, which generalizes the
situation of Example 5.2 as well as results of [74].

THEOREM 5.6 [51]. Let V ⊂ CPn+1 be a degree d reduced projective hypersurface
with s = dimC Sing(V). Then

Hk(V;ϕπZVD
) � 0 for all integers k � [n, n + s]. (5-16)

An immediate consequence of Theorem 5.6 and of the specialization sequence
(5-8) is the following result on the integral cohomology of a complex projective
hypersurface.

COROLLARY 5.7. Let V ⊂ CPn+1 be a degree d reduced projective hypersurface with
a singular locus Sing(V) of complex dimension s. Then the following statements hold.

(i) Hk(V;Z) � Hk(CPn;Z) for all integers k � [n, n + s + 1].
(ii) Hn(V;Z) � Ker (cann) is free.
(iii) Hk(V;Z) � Ker (cank) ⊕ Coker (cank−1) for all integers k ∈ [n + 1, n + s].
(iv) Hn+s+1(V;Z) � Hn+s+1(CPn;Z) ⊕ Coker (cann+s).

REMARK 5.8. By using (5-14) and Poincaré duality, Corollary 5.7(i) re-proves a result
of Kato (see, for instance, [17, Theorem 5.2.11]).

Let us finally note that if V = { f = 0} ⊂ CPn+1 is a degree d reduced projective
hypersurface, the inclusion map j : V ↪→ CPn+1 induces homomorphisms

j∗ : Hk(CPn+1;C)� Hk(V;C) for all k with 0 ≤ k ≤ 2n (5-17)

(see [17, Lemma 5.2.17]). In particular, the long exact sequence for the cohomology of
(CPn+1, V) breaks into short exact sequences:

0 −→ Hk(CPn+1;C) −→ Hk(V;C) −→ Hk+1(CPn+1, V;C)→ 0. (5-18)

On the other hand, if we let U = CPn+1\V , the Alexander duality yields isomorphisms

Hk+1(CPn+1, V;C) � H2n+1−k(U;C). (5-19)

Let us now consider the affine Milnor fiber F = { f = 1} of the homogeneous polyno-
mial f, with the corresponding monodromy homeomorphism h (see Example 2.10).
Then one has the identification U = F/〈h〉, and hence

H∗(U;C) � H∗(F;C)h∗ , (5-20)
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the fixed part under the homology monodromy operator. Combining (5-18)–(5-20),
one gets the following useful consequence (see [17, Corollary 5.2.22]).

COROLLARY 5.9. A hypersurface V = { f = 0} ⊂ CPn+1 has the same C-cohomology
as CPn if and only if the monodromy operator

h∗ : H̃∗(F;C) −→ H̃∗(F;C),

acting on the reduced C-homology of the corresponding affine Milnor fiber F =
{ f = 1}, has no eigenvalue equal to 1.

EXAMPLE 5.10. The hypersurface Vn = {x0x1 · · · xn + xn+1
n+1 = 0} has the same

C-cohomology as CPn; see [17, Exercise 5.2.23]. However, the Z-cohomology groups
of Vn may contain torsion; see [17, Proposition 5.4.8].

6. Canonical and variation morphisms, and gluing perverse sheaves

In this section we introduce terminology that plays an important role in the gluing
of perverse sheaves, as well as in the construction of Saito’s theory of mixed Hodge
modules. Here we assume that A = Q, unless otherwise specified.

6.1. Canonical and variation morphisms. Let f be a nonconstant holomorphic
function on a complex analytic space X, with corresponding nearby and vanishing
cycle functors ψ f , ϕ f , respectively. Recall that these two functors come equipped with
monodromy automorphisms, both of which are denoted here by h. For F • ∈ Db

c(X),
the morphism

can: ψ f F
• −→ ϕ f F

•

of (4-9) is called the canonical morphism, and it is compatible with monodromy. There
is a similar distinguished triangle associated to the variation morphism, namely

ϕ f F
• var−→ ψ f F

• −→ i!F •[2]
[1]−→ (6-1)

The variation morphism

var : ϕ f F
• → ψ f F

•

is heuristically defined by the cone of the pair of morphisms:

(0, h − 1) : [i∗F • → ψ f F
•] −→ [0→ ψ f F

•].

In fact, as explained in [71, (5.90)], the existence of the variation triangle (6-1) can
be seen as a consequence of the octahedral axiom. Moreover, in the above notation,

can ◦ var = h − 1, var ◦ can = h − 1. (6-2)

The monodromy automorphisms acting on the nearby and vanishing cycle functors
have Jordan decompositions

h = hu ◦ hs = hs ◦ hu,

where hs is semi-simple (and locally of finite order) and hu is unipotent.
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For λ ∈ Q and F • ∈ Db
c(X) a (shift of a) perverse sheaf, define

ψ f ,λF
• := Ker (hs − λ · id)

and similarly for ϕ f ,λF •; these are well-defined (shifted) perverse sheaves since
perverse sheaves form an abelian category. By the definition of vanishing cycles, the
canonical morphism can induces morphisms

can: ψ f ,λF
• −→ ϕ f ,λF

•,

which (since the monodromy acts trivially on i∗F •) are isomorphisms for λ � 1, and
there is a distinguished triangle

i∗F • sp
−→ ψ f ,1F

• can−→ ϕ f ,1F
• [1]−→ (6-3)

If A = C, there are (locally finite) decompositions

ψ f F
• =
⊕
λ∈C∗

ψ f ,λF
•, ϕ f F

• =
⊕
λ∈C∗

ϕ f ,λF
•,

and, when h is locally quasi-unipotent, the λ appearing in the above decomposition are
roots of unity. Moreover, if Lλ is the C-local system of rank 1 on C∗ with stalk Lλ and
monodromy given by multiplication by λ, then

ψ f ,λF
• � ψ f ,1(F • ⊗ f ∗L −1

λ ) ⊗ Lλ, (6-4)

where h acts as λ on the one-dimensional vector space Lλ. Note also that if X is smooth
then

H k(ψ f ,λCX)x � Hk(Fx;C)λ, H k(ϕ f ,λCX)x � H̃k(Fx;C)λ,

where the right-hand side denotes the λ-eigenspace of the monodromy acting on the
(reduced) Milnor fiber cohomology, with Fx denoting as usual the Milnor fiber of
f −1(0) at x.

In general, there are decompositions

ψ f = ψ f ,1 ⊕ ψ f ,�1 and ϕ f = ϕ f ,1 ⊕ ϕ f ,�1 (6-5)

so that hs = 1 on ψ f ,1 and ϕ f ,1, and hs has no 1-eigenspace on ψ f ,�1 and ϕ f ,�1.
Moreover, can : ψ f ,�1 → ϕ f ,�1 and var : ϕ f ,�1 → ψ f ,�1 are isomorphisms.

It is technically convenient (for instance, for the theory of mixed Hodge modules)
to also define a modification Var of the variation morphism var as follows. Let

N := log(hu),

and define the morphism

Var : ϕ f F
• −→ ψ f F

• (6-6)

by the cone of the pair (0, N); see [65]. Then one has that

can ◦ Var = N, Var ◦ can = N,
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and there is a distinguished triangle

ϕ f ,1F
• Var−→ψ f ,1F

• −→ i!F •[2]
[1]−→ (6-7)

REMARK 6.1. It can be seen from definitions that N and h − 1 differ by an automor-
phism. Similarly, the morphisms var and Var also differ by an automorphism on pϕ f ,1.

The morphism Var appears in the following semi-simplicity criterion for perverse
sheaves that has been used by M. Saito in his proof of the decomposition theorem (see
[65, Lemma 5.1.4] and [67, (1.6)]).

PROPOSITION 6.2. Let X be a complex manifold and let F • be a perverse sheaf on X.
Then the following conditions are equivalent.

(a) One has a splitting

pϕg,1(F •) = Ker (Var : pϕg,1F
• → pψg,1F

•)

⊕ Image (can: pψg,1F
• → pϕg,1F

•)

for every locally defined holomorphic function g on X.
(b) F • can be written canonically as a direct sum of twisted intersection cohomol-

ogy complexes.

6.2. Gluing perverse sheaves via vanishing cycles. We include here a brief
discussion of the gluing procedure for perverse sheaves (see [3, 64, 79]; this procedure
is also used by M. Saito to construct his mixed Hodge modules [66]). It establishes
an equivalence of categories between perverse sheaves on an algebraic variety X and
a pair of perverse sheaves, one on a hypersurface Y, the other on the complementary
open set U, together with a gluing datum.

Let X be an algebraic variety and Y
i
↪→ X

j
←↩ U, with i a closed inclusion and j an

open inclusion. A natural question to address is whether one can ‘glue’ the categories
Perv(Y) and Perv(U) to recover the category Perv(X) of perverse sheaves on X. We
consider here the case where Y is a hypersurface (but see also [79] for a more general
setup). We assume A = C.

As a warm-up case, let X = C with coordinate function s, Y = {0} and U = C∗.
Consider a C-perverse sheaf P on X. Then one can form the diagram

pψsP
can
�
var

pϕsP

whose objects are perverse sheaves on Y = {0}, that is, complex vector spaces. This
leads to the following elementary description of the category of perverse sheaves on
C; see Deligne and Verdier [79].

PROPOSITION 6.3. The category of perverse sheaves (with quasi-unipotent mon-
odromy) on C which are locally constant on C∗ is equivalent to the category of quivers
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(that is, diagrams of vector spaces) of the form

ψ
c
�
v
ϕ

with ψ,ϕ finite-dimensional vector spaces, and 1 + c ◦ v, 1 + v ◦ c invertible (with
eigenvalues which are roots of unity).

EXAMPLE 6.4. The quiver

0
0
�
0

V

corresponds to the skyscraper sheaf F on C with F0 = V . Indeed, since F = i∗F0,
we get j∗F = 0, hence ψsF = 0 and pψsF = 0. The desired quiver arises from the
triangle

0 = pψsF
can→ pϕsF →F0 = i∗F

[1]→ 0

from which we get that pϕsF =F0 = V .

EXAMPLE 6.5. Let L be a C-local system on C∗ with stalk V and monodromy
h : V→V . The perverse sheaf j∗L [1] corresponds to

V
c
�
v

V/Ker (h − 1),

where c is the projection and v is induced by h − 1. Thus a quiver

ψ
c
�
v
ϕ

with c surjective arises from j∗L [1], where L1 = ψ is the stalk of L and h =
1 + v ◦ c.

REMARK 6.6. It is easy to classify the simple quivers and see that they are covered by
the cases considered in Examples 6.4 and 6.5. These are of three types:

(Q1) 0
0
�
0
C, which corresponds to C0;

(Q2) C� 0, which corresponds to C
C

[1];

(Q1,λ) C
=

�
λ−1
C with λ � 1; this corresponds to j∗Lλ[1], where Lλ is the rank 1 local

system on C∗ with monodromy λ.

In fact, the perverse sheaves corresponding to these simple quivers are intersection
cohomology complexes, and in the notation of Proposition 6.3 one has ϕ = Ker (v)
in the case (Q1), and ϕ = Image(c) in the cases (Q2) and (Q3,λ). This fact should be
compared to the statement of Proposition 6.2.

More generally, let g be a regular function on a smooth algebraic variety X,
with Y = g−1(0) and U = X\Y . Let Perv(U, Y)gl be the category whose objects
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are (P ′, P ′′, c, v), with P ′ ∈ Perv(U), P ′′ ∈ Perv(Y), c ∈ Hom(pψg,1P
′, P ′′), v ∈

Hom(P ′′, pψg,1P
′), and so that 1 + v ◦ c is invertible. Then one has the following

result.

THEOREM 6.7 (Beilinson [3], Deligne and Verdier [79]). There is an equivalence of
categories

Perv(X) � Perv(U, Y)gl

defined by

P �→ (P |U , pϕg,1P , can, var).

Here, to get a perverse sheaf from gluing data P = (P ′, P ′′, c, v), one forms the
complex K•(P) on X:

i∗pψg,1P
′ (α,c)
→ Ξg,1(P ′) ⊕ i∗P ′′ (β,−v)

→ i∗pψg,1P
′

with i∗pψg,1P
′ in degree −1, where Ξg,1(−) : Perv(U)→ Perv(X) is Beilinson’s

maximal extension functor, α is a canonical injection and β is a canonical surjection.
Then H0(K•(P)) yields a perverse sheaf on X.

EXAMPLE 6.8. As an application, let us describe the category of perverse sheaves on
C2 which are constructible for the stratification

C2 ⊃ C × {0} ∪ {0} × C ⊃ {(0, 0)}. (6-8)

Let (s, t) denote the complex coordinates on C2. Then one can attach to any perverse
sheaf P on C2 four vector spaces (V11 =

pψs,1
pψt,1P , V12 =

pψs,1
pϕt,1P , V21 =

pϕs,1
pψt,1P , V22 =

pϕs,1
pϕt,1P) along with maps between them induced by can and

var. The claim is that these four vector spaces and the arrows between them classify
the perverse sheaves on C2.

Indeed, consider the second projection t = pr2 : C × C→ C, with zero set Y = C ×
{0} and open complement U = C × C∗. By Theorem 6.7, to give a perverse sheaf P
on C2 amounts to give a gluing datum for t, namely

pψt,1P
can
�
var

pϕt,1P (6-9)

on Y. But each perverse sheaf F on Y = C = {0} ∪ C∗ (and, in particular, pψt,1P and
pϕt,1P) is given by a quiver:

V1
↓↑
V2

As a consequence, we need to replace diagram (6-9) in Perv(Y) by its image in
Perv(C∗, {0})gl. Thus the category Perv(C2) of perverse sheaves which are constructible
with respect to the stratification (6-8) is equivalent to the category of quivers of the
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form

V11 � V12
↓↑ ↓↑
V21 � V22

together with the requirement that for any pair of opposite arrows c and v one has that
1 + c ◦ v and 1 + v ◦ c are invertible.

7. D-module analogue of vanishing cycles

Let X be a complex manifold, with n = dimC X. The Riemann–Hilbert correspon-
dence [33] establishes an equivalence between the category of regular holonomic
D-modules (we refer the reader to [30] for a comprehensive treatment of the theory
of D-modules) and the category of C-perverse sheaves on X, defined via the functor
M �→ DR(M), where DR(M) denotes the de Rham complex of M, that is, the C-linear
complex

DR(M) := [M −→M⊗Ω1
X −→ · · · −→ M⊗Ωn

X],

placed in degrees −n, . . . , 0. (In the algebraic context, the de Rham complex used for
the Riemann–Hilbert correspondence is the associated analytic de Rham complex in
the classical topology.) This is a broad generalization of the equivalence between local
systems and flat vector bundles on a complex manifold. It is therefore natural to ask
what is the D-module analogue of the vanishing cycles under the Riemann–Hilbert
correspondence.

Let f : X → C be a holomorphic function on the complex manifold X, with X0 =

f −1(0). Let i : X → X × C = X̃ be the graph embedding with t = pr2 : X̃ → C the
projection onto the second factor. Note that t is a smooth morphism with f = t ◦ i.

Let I ⊂ OX̃ be the ideal sheaf defining the smooth hypersurface {t = 0} � X, that is,
the sheaf of functions vanishing along X. The increasing V-filtration on DX̃ is defined
for k ∈ Z by

VkDX̃ := {P ∈ DX̃ | P(Ij+k) ⊂ Ij for all j ∈ Z}.

Here, Ij := OX̃ for j < 0. Note that⋂
k∈Z

VkDX̃ = {0} and
⋃
k∈Z

VkDX̃ = DX̃ .

By definition, one has t ∈ V−1DX̃ and ∂t ∈ V1DX̃ , and ∂tt = 1 + t∂t ∈ V0DX̃ .
A regular holonomic (left) DX-module M is said to be quasi-unipotent along

X0 = f −1(0) if pψ f DR(M) is quasi-unipotent with respect to the monodromy h. For a
DX-moduleM which is quasi-unipotent along X0 (such as the underlying D-module of
a mixed Hodge module), let M̃ := i∗M. Malgrange and Kashiwara [32] showed that
M̃ admits a canonical V-filtration V•M̃, which is a discrete, exhaustive, rationally
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indexed filtration, compatible with the V-filtration on DX̃ , and such that ∂tt + α is
nilpotent on GrV

αM̃ := VαM̃/V<αM̃. (Here, V<αM̃ :=
⋃
β<α VβM̃.) One also has that

t : GrV
αM̃ → GrV

α−1M̃ is bijective for all α � 0, and ∂t : GrV
αM̃ → GrV

α+1M̃ is bijective
for all α � −1. Finally, all GrV

αM̃|X are holonomic left DX-modules.
In the above notation, one has the following result.

THEOREM 7.1 (Malgrange and Kashiwara [32]). Let f : X → C be a nonconstant
holomorphic function on a complex manifold X, and let M be a regular holonomic
(left) DX-module which is quasi-unipotent along X0 = f −1(0). Let P := DR(M) ∈
Perv(X). For α ∈ Q, let λ = e2πiα. Then there are canonical isomorphisms

DR(GrV
αM̃|X) �

⎧⎪⎪⎨⎪⎪⎩
pψ f ,λP if α ∈ [−1, 0)
pϕ f ,λP if α ∈ (−1, 0].

(7-1)

Under these isomorphisms, ∂tt + α, ∂t and t on the left correspond to N, can and Var,
respectively, on the right.

REMARK 7.2. Let f : X → C be a nonconstant regular function on a smooth complex
algebraic variety X, with X0 = f −1(0)red. The graded pieces GrV

α of the V-filtration are
used in the D-module context to ‘lift’ the functors pψ f and pϕ f acting on perverse
sheaves to corresponding functors on the level of Saito’s mixed Hodge modules:

ψH
f : MHM(X)→ MHM(X0) and ϕH

f : MHM(X)→ MHM(X0).

If rat : MHM(−)→ Perv(−) is the forgetful functor assigning to a mixed Hodge
module the underlying Q-perverse sheaf, then

rat ◦ ψH
f =

pψ f ◦ rat and rat ◦ ϕH
f =

pϕ f ◦ rat. (7-2)

Moreover, the morphisms can, N, Var and decompositions pψ f =
pψ f ,1 ⊕ pψ f ,�1 (and

similarly for pϕ f ) lift to the category of mixed Hodge modules. Vanishing cycles can
be used just in the case of perverse sheaves to construct mixed Hodge modules by a
gluing procedure.

The existence of nearby/vanishing cycles at the level of mixed Hodge modules
allows one to endow the cohomology of several objects considered in this note with
mixed Hodge structures. For example, if f : X → C is a nonconstant regular function
on the complex algebraic variety X, with Xc = f −1(c) the fiber over c, then for each
x ∈ Xc one gets canonical mixed Hodge structures on the groups

Hj(Fx;Q) = rat(Hj(i∗xψ
H
f−cQX

[1]))

and

H̃j(Fx;Q) = rat(Hj(i∗xϕ
H
f−cQX

[1])),
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where Fx denotes the Milnor fiber of f at x ∈ Xc, and ix : {x} ↪→ Xc is the inclusion of
the point. Similarly, one obtains in this way the limit mixed Hodge structure on

Hj(Xc;ψ f−cQX
) = rat(Hj(ct∗ψH

f−cQX
[1]))

with ct : Xc → {c} the constant map.

8. Applications of vanishing cycles to enumerative geometry

In this section we indicate a recent application of vanishing cycles and
perverse sheaves in the context of enumerative geometry, or more specifically in
Donaldson–Thomas (DT) theory.

Given a moduli space M of stable coherent sheaves on a Calabi–Yau 3-fold, the
DT theory associates to it an integer χvir(M) that is invariant under deformations
of complex structures. Behrend [2] showed that the DT invariant χvir(M) can be
computed as χ(M, μM), that is, the weighted Euler characteristic overM of a certain
constructible function called the Behrend function μM.

A natural way to build constructible functions is to take stalkwise Euler charac-
teristics of constructible complexes of sheaves of vector spaces. Specifically, given a
bounded constructible complex F • ∈ Db

c(M), a constructible function χst(F •) onM
can be defined as follows: at a point x ∈ M, set

χst(F •)(x) := χ(F •
x ) :=

∑
i

(−1)i dim H i(F •)x.

One of the fundamental questions in DT theory concerns the categorification of the
DT invariant χvir(M). Specifically, one would like to find a constructible complex of
vector spaces ΦM ∈ Db

c(M) so that the Behrend function μM can be recovered as

μM = χst(ΦM),

and hence, in particular, χvir(M) = χ(M,ΦM).
IfM is smooth, Behrend’s construction already implies that one can choose ΦM to

be the perverse sheaf ΦM := Q
M

[dimM] onM.
Furthermore, if the moduli spaceM is the scheme-theoretic critical locus of some

function f : X → C defined on a smooth complex quasi-projective variety X (this
is, for example, the case for M = Hilbm

C3 , the Hilbert scheme of m points on C3), a
categorification of χvir(M) can again be read off from Behrend’s work, that is, one can
choose ΦM := pϕ fQX

[dim X] ∈ Perv(M), the self-dual complex of perverse vanishing
cycles of f.

More generally, it is known that a moduli spaceM of simple coherent sheaves on a
Calabi–Yau 3-fold is, locally around every closed point, isomorphic to a critical locus.
Then it can be shown [7] that the perverse sheaves of vanishing cycles on the critical
charts glue (up to some sign issues controlled by a choice of ‘orientation’) to a self-dual
global perverse sheaf ΦM ∈ Perv(M), the DT sheaf onM, whose Euler characteristic
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χ(M,ΦM) computes χvir(M). Hence ΦM categorifies χvir(M). We refer to [76] for a
survey and an extensive list of references.

9. Applications to characteristic classes and birational geometry

Vanishing cycles play an important role in the theory of characteristic classes for
singular hypersurfaces, which have recently seen applications in birational geometry
(for example, for detecting jumping coefficients of multiplier ideals, or for character-
izing rational or du Bois singularities). We briefly mention here the theory of spectral
characteristic classes [57] for complex hypersurfaces, and some of their applications
in the context of birational geometry. To put things in context, we start with a short
overview of the theory of characteristic classes for hypersurfaces.

9.1. Setup, terminology and examples. Let i : X ↪→ Y be a complex algebraic
hypersurface in a complex algebraic manifold Y, with normal bundle NXY (such
a normal bundle exists even if X is singular). The virtual tangent bundle of X is
defined as

Tvir
X := [TY |X] � [NXY] ∈ K0(X).

It is independent of the embedding of X in Y, so it is a well-defined element in
the Grothendieck group K0(X) of algebraic vector bundles on X. If X is smooth, then
clearly Tvir

X = [TX] is the class of the tangent bundle of X.
Let R be a commutative ring with unit, and let

cl∗ : (K0(X),⊕)→ (H∗(X) ⊗ R,∪)

be a multiplicative characteristic class theory of complex algebraic vector bundles,
where H∗(X) = H2∗(X;Z). One can then associate to a hypersurface X as above an
intrinsic homology class (that is, independent of the embedding X ↪→ Y):

clvir
∗ (X) := cl∗(Tvir

X ) ∩ [X] ∈ H∗(X) ⊗ R,

with [X] ∈ H∗(X) the fundamental class of X in Borel–Moore homology H∗(X) :=
HBM

2∗ (X).
Assume next that we are given a homology characteristic class theory cl∗(−) for

complex algebraic varieties, so that if X is smooth one has the normalization property
cl∗(X) = cl∗([TX]) ∩ [X]. Note that, if X is a smooth hypersurface then

clvir
∗ (X):=cl∗(Tvir

X ) ∩ [X]=cl∗([TX]) ∩ [X]=cl∗(X) .

However, if X is singular, the difference

M cl∗(X) := clvir
∗ (X) − cl∗(X)

depends in general on the singularities of X. In fact, if k : Xsing ↪→ X is the inclusion of
the singular locus, then

M cl∗(X) ∈ Image(k∗),

https://doi.org/10.1017/S1446788720000403 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000403


406 L. G. Maxim [36]

so M cl∗(X) measures the complexity of singularities of X. Since M cl∗(X) is
supported on the singular locus of X, this also yields immediately that clvir

k (X) = clk(X),
for all integers k > dimC Sing(X).

An important problem in singularity theory is to describe the difference class
M cl∗(X) = clvir

∗ (X) − cl∗(X) in terms of the geometry of the singular locus Σ :=
Sing(X) of X. As a byproduct, one then computes the (very) complicated ‘actual’
homology class cl∗(X) in terms of the simpler (cohomological) virtual class and
invariants of the singularities of X.

EXAMPLE 9.1 (Chern and Milnor classes). If cl∗ = c∗ is the Chern class in cohomol-
ogy, the corresponding virtual Chern class

cvir
∗ (X) := c∗(Tvir

X ) ∩ [X]

is called the Fulton–Johnson class of X; see [24]. The homological class theory in this
case is the Chern class transformation of MacPherson [44],

cl∗ = c∗ : K0(Db
c(X))

χst→ F(X)
c∗→ H∗(X),

with

c∗(X) := c∗([QX]) = c∗(1X)

the Chern–MacPherson class of X. (Here F(X) is the group of constructible functions
on X, and χst is defined by taking stalkwise Euler characteristics.) The difference class

M∗(X) := cvir
∗ (X) − c∗(X)

is called the Milnor class of X. This terminology is justified by the fact that if X is an
n-dimensional hypersurface with only isolated singularities, then

M∗(X) =
∑

x∈Xsing

χ(H̃∗(Fx;Q)) =
∑

x∈Xsing

(−1)nμx, (9-1)

where Fx and μx are respectively the Milnor fiber and the Milnor number of the isolated
hypersurface singularity germ (X, x) ⊂ (Cn+1, 0).

Let us also note that, if X = f −1(0) is a global hypersurface, with f : Y → C a proper
algebraic map on a smooth variety Y, then by pushing M∗(X) down to a point (that is,
by taking the degree of M∗(X)) one computes the difference χ(Xs) − χ(X), for Xs the
generic (smooth) fiber of f. In particular, (9-1) yields in this case a reformulation of
formula (5-4).

If X = f −1(0), with f : Y → C an algebraic map on a smooth variety Y, the
relation between Milnor classes and vanishing cycles is obtained by using Verdier’s
specialization [78] for MacPherson’s Chern class transformation, which in our notation
yields the identity

cvir
∗ (X) = c∗(ψ f (QY )).
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It then follows that the Milnor class of X is computed by vanishing cycles, that is, with
Σ := Sing(X), one has the formula

M∗(X) := cvir
∗ (X) − c∗(X) = c∗(ϕ f (QY )) ∈ H∗(Σ).

EXAMPLE 9.2 (Hirzebruch and Milnor–Hirzebruch classes). In 2005, Brasselet,
Schürmann and Yokura [6] defined a singular version of Hirzebruch’s cohomology
class T∗y (−) from the generalized Hirzebruch–Riemann–Roch theorem. One first
defines a certain natural transformation

Ty∗ : K0(MHM(X))→ HBM
2∗ (X) ⊗ Q[y±1],

on the Grothendieck group of Saito’s algebraic mixed Hodge modules on X, whose
particular value

Ty∗(X) := Ty∗([Q
H
X ])

on the (Grothendieck class of the) ‘constant Hodge module’ QH
X is called the

(homology) Hirzebruch class of X. It satisfies a corresponding normalization property
in the smooth case and, moreover,

T−1∗(X) = c∗(X) ∈ H∗(X) ⊗ Q.

The Milnor–Hirzebruch class [11, 56] of a complex algebraic hypersurface X in the
complex algebraic manifold Y is defined as

My∗(X) := Tvir
y∗ (X) − Ty∗(X),

where

Tvir
y∗ (X) := T∗y (Tvir

X ) ∩ [X] ∈ H∗(X) ⊗ Q[y]

is the virtual Hirzebruch class of X. We have that M−1∗(X) =M∗(X) ⊗ Q, and in
fact many results about Milnor classes admit generalizations to this Hodge-theoretic
context. For example, as Deligne’s nearby and vanishing cycle functors admit lifts to
Saito’s mixed Hodge module theory (see Remark 7.2), Schürmann’s specialization [72]
of Hirzebruch classes yields that

(1) Tvir
y∗ (X) = Ty∗(ψH

f Q
H
Y [1]),

(2) My∗(X) := Tvir
y∗ (X) − Ty∗(X) = Ty∗(ϕ

H
f Q

H
Y [1]).

For example, if the n-dimensional hypersurface X has only isolated singularities, then

My∗(X)=
∑

x∈Xsing

(−1)nχy([H̃n(Fx;Q)])

=
∑

x∈Xsing

(−1)n∑
p

dim Grp
FH̃n(Fx;C) · (−y)p,

where Fx is the Milnor fiber of the isolated hypersurface singularity germ (X, x), and
F denotes the Hodge filtration of the mixed Hodge structure on H̃n(Fx;Q).
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9.2. Spectral Hirzebruch and Milnor–Hirzebruch classes [57] . Recall that the
nearby and vanishing cycle functors ψ f and ϕ f come equipped with monodromy
actions compatible with the local monodromies of the Milnor fibrations. By using the
semi-simple part of the local monodromy action on H̃∗(Fx;Q) and the corresponding
eigenspace decomposition, Steenbrink [75] and Varchenko [77] defined the (local)
Hodge spectrum of the hypersurface singularity germ (X, x). Abstractly, if Kmon

0 (mHs)
denotes the Grothendieck group of Q-mixed Hodge structures with a finite-order
automorphism, the Hodge spectrum is the transformation

hsp : Kmon
0 (mHs)→

⋃
n≥1

Z[t
1
n , t−

1
n ]

given by

hsp(H, T) :=
∑

α∈Q∩(0,1)

tα
(∑

p∈Z
dim Grp

FHC,α · tp
)
∈ Z[t±1/ord(T)],

where HC,α is the exp(2πiα)-eigenspace of HC := H ⊗ C.
In [57], the authors defined a characteristic class version of the Hodge spectrum,

called the spectral Hirzebruch class transformation,

Tsp
t∗ : Kmon

0 (MHM(X))→
⋃
n≥1

H∗(X) ⊗ Q[t1/n, t−1/n],

where Kmon
0 (MHM(X)) is the Grothendieck group of algebraic mixed Hodge modules

with a finite-order automorphism, such as the semi-simple part hs of the monodromy
acting on ψH

f ,ϕH
f . The spectral classes Tsp

t∗ (M, T) are refined versions (for t = −y and
forgetting the action) of the Hirzebruch classes Ty∗(M), and if X is compact one gets at
degree level:

deg Tsp
t∗ (M, T) = hsp([H•(M), T•]) :=

∑
j

(−1)jhsp([Hj(M), Tj]).

In this sense, the spectral class Tsp
t∗ (M, T) is indeed a characteristic class generalization

of the Hodge spectrum.

DEFINITION 9.3. If X = f −1(0) is a global hypersurface, with f : Y → C and Σ :=
Sing(X) as before, we define the spectral Milnor–Hirzebruch class of X by

M sp
t∗ (X) := Tsp

t∗ (ϕH
f Q

H
Y [1], hs) ∈ H∗(Σ)[t1/ord(hs)]. (9-2)

We then have the following Thom–Sebastiani type result for spectral Milnor–
Hirzebruch classes (see [57, Theorem 4]), whose proof relies on a corresponding
Thom–Sebastiani theorem for the underlying filtered D-modules of vanishing cycles
(see [58]).

THEOREM 9.4. Let Xi = f −1
i (0), for fi : Yi → C a nonconstant function on a connected

complex manifold Yi, and Σi := Sing(Xi), i = 1, 2. Let X := f −1(0) ⊂ Y := Y1 × Y2, with
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f := f1 + f2 and Σ := Sing(X). Then

M sp
t∗ (X) = −M sp

t∗ (X1) �M sp
t∗ (X2) ∈ H∗(Σ)[t1/ord(hs)], (9-3)

after replacing Yi by an open neighborhood of Xi (i = 1, 2) if necessary (to get Σ =
Σ1 × Σ2).

REMARK 9.5. If Xi (i = 1, 2) has only isolated singularities, Theorem 9.4 reduces to
the Thom–Sebastiani formula for the Hodge spectrum (see [70, 77]).

9.3. Applications of spectral Milnor–Hirzebruch classes in birational geometry.
Let us finally indicate several concrete applications of the spectral Milnor–Hirzebruch
classes in birational geometry; see [57] for complete details.

9.3.1. Multiplier ideals and jumping coefficients. Let X := f −1(0) be a reduced
hypersurface in a connected complex manifold Y. Recall that the multiplier ideal of X,
with coefficient α ∈ Q, is defined as

J (αX) :=
{

g ∈ OY |
|g|2

| f |2α
is locally integrable

}
(see, for instance, [39]). The multiplier ideals J (αX) form a decreasing sequence of
ideal sheaves of OY satisfying

J (αX) = OY (α ≤ 0), J ((α + 1)X) = fJ (αX) (α ≥ 0).

‘Smaller’ multiplier ideals correspond to ‘worse’ singularities. The multiplier ideal
J (αX) can also be defined by using an embedded resolution of X, and has the
property of right-continuity in α, namely,

J (αX) =J ((α + ε)X), 0 < ε � 1.

The jumping coefficients of f (or X) are defined by

JC(X) := {α ∈ Q |J ((α − ε)X)/J (αX) � 0}.

The log canonical threshold (lct) of f is the minimal jumping coefficient, that is,

lct( f ) := min{α ∈ JC(X)}.

EXAMPLE 9.6. A smaller lct corresponds to ‘worse’ singularities. Here are some
relevant examples:

(i) f (x, y) = x2 − y2 : C2 → C, lct( f ) = 1;
(ii) f (x, y) = x2 − y3 : C2 → C, lct( f ) = 5/6.

Let us also mention here the following standard facts concerning jumping coeffi-
cients.

(a) 1 ∈ JC( f ) (from the smooth points of X).
(b) lct( f ) = 1 ⇐⇒ X has Du Bois/log canonical singularities.
(c) JC(X) = (JC(X) ∩ (0, 1]) + N, so we can restrict to α ∈ Q ∩ (0, 1].
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9.3.2. Applications of spectral classes. In the above notation, let

M sp
t∗ (X)|tα ∈ H∗(Σ)

be the coefficient of tα in the spectral Milnor–Hirzebruch class M sp
t∗ (X). Then one has

the following results, whose proofs make use of the D-module description of vanishing
cycles in terms of the V-filtration, together with the observation that multiplier ideals
are essentially the same as the V-filtration on OY (see [9]).

THEOREM 9.7 [57]. If α ∈ (0, 1) ∩ Q is not a jumping coefficient for f, then
M sp

t∗ (X)|tα = 0. The converse holds if Σ = Sing(X) is projective.

THEOREM 9.8 [57]. In the above notation,

My∗(X)|y=0 =
⊕

α∈Q∩(0,1)

M sp
t∗ (X)|tα ∈ H∗(Σ). (9-4)

THEOREM 9.9 [57]. Assume Σ = Sing(X) is projective. Then

X has only Du Bois singularities ⇐⇒ My∗(X)|y=0 = 0.

REMARK 9.10. The special case of Theorem 9.9 for hypersurfaces with only isolated
singularities was proved by Ishii [31].

10. Applications of vanishing cycles to other areas

While our lack of expertise and/or space limitations do not necessarily allow us
to go into much detail, we briefly indicate here some other research areas where
vanishing cycles have made a substantial impact in recent years. This list is by no
means exhaustive, and we apologize in advance for any omissions.

10.1. Applied algebraic geometry and algebraic statistics. Vanishing cycles have
been recently used in the study of the algebraic complexity of concrete optimization
problems in applied algebraic geometry and algebraic statistics. Specifically, in
[53–55], vanishing cycles facilitate the understanding of the Euclidean distance degree
[22], which is an algebraic measure of the complexity of nearest-point problems;
see [50] for a survey. For instance, Theorem 5.4 on the Euler characteristic of
hypersurfaces was an essential ingredient in the proof of the ‘multiview conjecture’
[22] from computer vision; see [53] for details. Furthermore, formula (5-9) was used
in [54] for studying the ‘defect’ of Euclidean distance degree. Finally, vanishing cycles
have also proved useful in the context of nearest-point problems without genericity
assumptions; see [55].

10.2. Hodge theory. As already mentioned in Remark 7.2, vanishing and nearby
cycles admit lifts to Saito’s mixed Hodge module theory. In fact, vanishing cycles
are essential for constructing mixed Hodge modules via the gluing procedure. Besides
endowing the Milnor fiber cohomology with canonical mixed Hodge structures, nearby
and vanishing cycles provide detailed information about the Hodge spectrum [68]
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and the size of Jordan blocks [19, 21] of monodromy of the Milnor fibration of
a hypersurface singularity germ, and calculate the limit mixed Hodge structure of
quasi-semi-stable degenerations [20].

10.3. Motivic incarnations of vanishing cycles. Motivated by connections between
the Igusa zeta functions, Bernstein–Sato polynomials and the topology of hypersurface
singularities, Denef and Loeser defined in [13, 15] the motivic zeta function, motivic
nearby and vanishing cycles, and the motivic Milnor fiber of a hypersurface singularity
germ. The latter is a virtual variety endowed with an action of the group scheme of
roots of unity, from which one can retrieve (and shed new light on) several invariants
of the (topological) Milnor fiber, such as the Hodge spectrum, Euler characteristic,
and Thom–Sebastiani property [14]. See [29] for a nice introduction to this theory
and some of its applications. The motivic vanishing cycle has also appeared in the
Kontsevich–Soibelman theory of motivic Donaldson–Thomas invariants [37], and was
used in [10] to categorify Donaldson–Thomas invariants of Calabi–Yau 3-folds.

10.4. Enumerative geometry: Gopakumar–Vafa invariants. As already men-
tioned in Section 8, vanishing cycles have found deep applications in enumerative
geometry. We mention here another such instance. In [48], the authors propose
defining Gopakumar–Vafa invariants of Calabi–Yau 3-folds by using perverse sheaves
of vanishing cycles. Let X be a smooth projective Calabi–Yau 3-fold. For g ≥ 0 and
β ∈ H2(X;Z), the corresponding Gromov–Witten invariants are an infinite sequence of
rational numbers, which can be controlled by a finite collection of integer invariants
ng,β, called Gopakumar–Vafa invariants. The original definition of Gopakumar–Vafa
invariants is through their relations to Gromov–Witten invariants. In [48], the authors
proposed defining Gopakumar–Vafa invariants of X directly. Let Shβ(X) denote the
moduli space of one-dimensional stable sheaves E on X with [E] = β ∈ H2(X;Z) and
χ(E) = 1. As indicated in Section 8, the moduli space Shβ(X) is locally written as a
critical locus of some function on a smooth scheme, and a global perverse sheaf ΦSh is
obtained by gluing together the locally defined perverse sheaves of vanishing cycles.
Roughly speaking, the Gopakumar–Vafa invariants are certain integers ng,β associated
to the perverse sheaf ΦSh; see [48, Definition 1.1] for a precise formulation.

10.5. Representation theory. Nearby and vanishing cycles have become an impor-
tant tool in representation theory. We mention here one sample application. The
geometric Satake equivalence [61] gives a geometric realization of representations of
a reductive algebraic group in terms of perverse sheaves on the affine Grassmannian
(see [80] for a nice survey). In [25], Gaitsgory constructs perverse sheaves on the affine
flag variety (central with respect to convolution) by using the nearby cycle operation
on perverse sheaves for a degeneration from the affine flag variety to the product
of the affine Grassmannian and the flag manifold. The resulting perverse sheaves
have extra structure, a nilpotent endomorphism, coming from the monodromy in this
degeneration.
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10.6. Noncommutative algebraic geometry. In [5], derived and noncommutative
algebraic geometry is used in order to establish a relation between vanishing cycles
and singularity categories. One of the main results of [5] asserts that one can recover
vanishing cohomology through the dg-category of singularities, that is, in a purely
noncommutative (and derived) geometrical setting.
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and to the lively audience for many interactions and questions that shaped the final
version of this survey.

References
[1] N. A’Campo, ‘Le nombre de Lefschetz d’une monodromie’, Indag. Math. 35 (1973), 113–118.
[2] K. Behrend, ‘Donaldson-Thomas type invariants via microlocal geometry’, Ann. Math. (2) 170

(2009), 1307–1338.
[3] A. A. Beilinson, ‘How to glue perverse sheaves’, in: K-Theory, Arithmetic and Geometry (Moscow,

1984–1986), Lecture Notes in Mathematics, 1289 (Springer, Berlin, 1987), 42–51.
[4] A. A. Beilinson, J. N. Bernstein and P. Deligne, ‘Faisceaux pervers’, in: Analysis and Topology on

Singular Spaces, I (Luminy, 1981). Astérisque, Vol. 100 (Société Mathématique de France, Paris,
1982), 5–171.

[5] A. Blanc, M. Robalo, B. Toën and G. Vezzosi, ‘Motivic realizations of singularity categories and
vanishing cycles’, J. Éc. Polytech. Math. 5 (2018), 651–747.

[6] J.-P. Brasselet, J. Schürmann and S. Yokura, ‘Hirzebruch classes and motivic Chern classes for
singular spaces’, J. Topol. Anal. 2(1) (2010), 1–55.

[7] C. Brav, V. Bussi, D. Dupont, D. Joyce and B. Szendröi, ‘Symmetries and stabilization for sheaves
of vanishing cycles’, J. Singul. 11 (2015), 85–151 (with an Appendix by Jörg Schürmann).

[8] E. Brieskorn, ‘Beispiele zur Differentialtopologie von Singularitäten’, Invent. Math. 2 (1966),
1–14.

[9] N. Budur and M. Saito, ‘Multiplier ideals, V-filtration, and spectrum’, J. Algebraic Geom. 14
(2005), 269–282.

[10] V. Bussi, D. Joyce and S. Meinhardt, ‘On motivic vanishing cycles of critical loci’, J. Algebraic
Geom. 28(3) (2019), 405–438.

[11] S. Cappell, L. Maxim, J. Schürmann and J. Shaneson, ‘Characteristic classes of complex
hypersurfaces’, Adv. Math. 225(5) (2010), 2616–2647.

[12] P. Deligne, ‘La conjecture de Weil. I’, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.
[13] P. Deligne, N. Katz and N. M. Katz, Groupes de Monodromie en Géométrie Algébrique. I, Lecture

Notes in Mathematics, 288 (Springer, Berlin–New York, 1972).
[14] P. Deligne, N. Katz and N. M. Katz, Groupes de Monodromie en Géométrie Algébrique. II, Lecture

Notes in Mathematics, 340 (Springer, Berlin–New York, 1973).
[15] J. Denef and F. Loeser, ‘Motivic Igusa zeta functions’, J. Algebraic Geom. 7(3) (1998), 505–537.
[16] J. Denef and F. Loeser, ‘Motivic exponential integrals and a motivic Thom-Sebastiani theorem’,

Duke Math. J. 99(2) (1999), 285–309.

https://doi.org/10.1017/S1446788720000403 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000403


[43] Notes on vanishing cycles and applications 413

[17] J. Denef and F. Loeser, ‘Geometry on arc spaces of algebraic varieties’, in: European Congress of
Mathematics, Vol. I (eds. C. Casacuberta, R. M. Miró-Roig, J. Verdera and S. Xambó-Descamps)
Progress in Mathematics, 201 (Birkhäuser, Basel, 2001), 327–348.

[18] A. Dimca, Topics on Real and Complex Singularities, Advanced Lectures in Mathematics (Friedr.
Vieweg & Sohn, Braunschweig, 1987).

[19] A. Dimca, Singularities and Topology of Hypersurfaces (Springer, New York, 1992).
[20] A. Dimca, Sheaves in Topology (Springer-Verlag, Berlin, 2004).
[21] A. Dimca and M. Saito, ‘Some consequences of perversity of vanishing cycles’, Ann. Inst. Fourier

(Grenoble) 54(6) (2004), 1769–1792.
[22] A. Dimca and M. Saito, ‘Vanishing cycle sheaves of one-parameter smoothings and

quasi-semistable degenerations’, J. Algebraic Geom. 21(2) (2012), 247–271.
[23] A. Dimca and M. Saito, ‘Number of Jordan blocks of the maximal size for local monodromies’,

Compos. Math. 150(3) (2014), 344–368.
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