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Abstract

We study generating functions of ordinary and plane partitions coloured by the action of a
finite subgroup of the corresponding special linear group. After reviewing known results for
the case of ordinary partitions, we formulate a conjecture concerning a basic factorisation
property of the generating function of coloured plane partitions that can be thought of as
an orbifold analogue of a conjecture of Maulik et al., now a theorem, in three-dimensional
Donaldson–Thomas theory. We study natural quantisations of the generating functions aris-
ing from geometry, discuss a quantised version of our conjecture, and prove a positivity
result for the quantised coloured plane partition function under a geometric assumption.

2010 Mathematics Subject Classification: 05A17

1. Introduction

Let P and Q denote the set of all partitions, respectively plane partitions. With a dimen-
sion shift, these can be defined as follows: a partition λ ∈P is a finite subset λ⊂N2 of the
non-negative lattice quadrant, stable under forces acting in the negative direction along each
of the coordinate axes; a plane partition α ∈Q is a finite subset α ⊂N3 of the non-negative
lattice octant with the same property (see Figure 1). In both cases, we will refer to the lat-
tice points contained in a partition or plane partition as boxes. There are other well-known
equivalent definitions of these sets [1], mostly less symmetric than the one given here. Both
partitions and plane partitions have a measure of size | | : P→N, respectively | | : Q→N,
given by “counting the number of boxes”. The corresponding generating functions

E(t)=
∑
λ∈P

t |λ|
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Fig. 1. A partition and a plane partition.

and

M(t)=
∑
α∈Q

t |α|

have product expansions known since the 18th, respectively 19th centuries:

E(t)=
∏
m>0

(1− tm)−1 (1·1)

and

M(t)=
∏
m>0

(1− tm)−m . (1·2)

In this paper, we are interested in “coloured" and “quantised" versions of these generating
functions, where the colours are coming from the action of a finite matrix group G < GLd(C)

for d = 2, 3, while the quantisation is coming from geometry. In fact we will only discuss in
detail the case when G < SLd(C); there is more structure around in this case, and stronger
results possible. We start in Section 2 by reviewing the well-known story for d = 2 and
G < SL2(C) abelian; we then explain what can be said in a non-abelian case. Then we turn
our attention to d = 3, restricting to G abelian. In Section 3, we state as Conjecture 3·1 a fac-
torisation property of the coloured generating function, that can be thought of as an orbifold
version of the famous conjecture of Maulik, Nekrasov, Okounkov and Pandharipande [26],
now a theorem of Bridgeland and Toda, that states a formally analogous factorisation prop-
erty of the Donaldson–Thomas partition function attached to a Calabi–Yau threefold (see
Remark 4·2). We check one nontrivial consequence of our conjecture, and present some
numerical evidence. We recall from the literature some cases in which Conjecture 3·1 is
known, and discuss the structural features of the resulting formulae, using the language of
the plethystic exponential. In Section 4, we discuss the relationship of the problem to the
geometry of the quotient C3/G and its minimal resolution(s), leading to a quantised version
of the generating function, as well as Conjecture 4·7, a quantised version of Conjecture 3·1.
We close by explaining how Hodge theory and the theory of wall-crossing structures gives a
framework to attack the quantised conjecture, and proves a related general positivity result,
Theorem 4·11, concerning the quantum partition function, under a geometric assumption.
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For d = 3, geometry dictates that the generating functions should include certain signs.
In the combinatorial Section 3, we will ignore these, at the expense of a somewhat uncon-
ventional definition of a twisted plethystic exponential PExpσ . The signed version of the
generating function, defined in the geometric Section 4, correctly accounts for all these signs.

In our treatment, the relationship between the results for partitions and those for plane
partitions is purely formal; there is a very close similarity between the shapes of the vari-
ous formulae and their symmetries, but the proofs are different. It is hoped that the reader
will find the parallels drawn between the two stories sufficient justification for the joint
discussion.

Notation. Given a set of variables t= (t0, . . . , tr−1) and n= (n0, . . . , nr−1) ∈Nr , denote
tn =∏i t ni

i . Given a set of non-negative integers an ∈N for n ∈Nr \ {0} and choices of signs
σn ∈ {±1} for those n for which an �= 0, we define the twisted plethystic exponential

PExpσ

⎛⎝ ∑
n∈Nr\{0}

σnantn

⎞⎠= ∏
n∈Nr\{0}

(1− σntn)−σnan .

Thus, according to this definition, for a single variable t ,

PExpσ (t)= (1− t)−1

but, unusually,

PExpσ (−t)= 1+ t.

In fact it is immediate to check that, when expanded around t= 0,

PExpσ

⎛⎝ ∑
n∈Nr\{0}

σnantn

⎞⎠ ∈N[[t]].
This is natural in the context of combinatorial generating functions, but of course destroys
all algebraic properties of the ordinary plethystic exponential. With the correct choice of
signs, all would be well. Notice in passing that (always expanding around t = 0)

E(t)= PExpσ

(
t

1− t

)
and

M(t)= PExpσ

(
t

(1− t)2

)
.

Some of the statements in the case d = 3 are most conveniently expressed in terms of the
functions

M(s, t)=
∏
m>0

(1− stm)−m = PExpσ

(
st

(1− t)2

)
and

M̃(s, t)= M(s, t) · M(s−1, t)= PExpσ

(
(s + s−1) t

(1− t)2

)
;
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Fig. 2. The partition from Figure 1 coloured by the group μ3(1,−1) < SL2.

note

M̃(−s, t)−1 = PExpσ

(−(s + s−1) t

(1− t)2

)
.

Given a finite group G with r conjugacy classes, let Irrep(G)= {ρ0 = triv, ρ1, . . . , ρr−1}
be the set of irreducible representations of G. For G cyclic of order r , we label so that
ρk = ρ⊗k

1 ; for other groups, we will explain the labelling explicitly.

2. Partitions

2·1. The abelian case: r-coloured partitions with diagonal colouring

As is well known, an abelian subgroup G < SL2(C) is necessarily cyclic, of some order
r ≥ 1. For concreteness, we fix an isomorphism G ∼=μr with the group of r th roots of unity
in C, diagonally embedded in SL2(C) in such a way that the action is given by

ξ 
−→
(

ξ 0
0 ξ−1

)
.

We label representations of G so that C2 ∼= ρ1 ⊕ ρr−1 as G-representations. We will call
this action μr (1, r − 1) to record the weights. The G-action extends to an action on the
coordinate ring C[x, y] that we can identify with the semigroup ring C[N2]. Each monomial
xi y j ∈C[N2] spans a one-dimensional G-eigenspace in the representation ρi− j mod r ; this
gives a diagonal colouring (labelling) of the monomials in C[N2] with characters of G; see
Figure 2.

Given a partition λ⊂N2, we can define an r -tuple of non-negative integers

w(λ)= (w0(λ), . . . , wr−1(λ))

counting the number of boxes (monomials) in λ of colour j for each j . Clearly

|λ| =
r−1∑
j=0

w j (λ).

One can then form the generating function

Zμr (1,r−1)(t)=
∑
λ∈P

tw(λ)
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for a set of variables t= (t0, . . . , tr−1). Specialising to ti = t recovers E(t). The following
reasonably standard result gives a closed formula for this generating function.

THEOREM 2·1. Setting t =∏r−1
j=0 t j to be the product of the variables, there is a

factorisation

Zμr (1,r−1)(t)= E(t)r · Zμr (1,r−1)

red (t) (2·1)

into a power of the function E(t) and a reduced series Zμr (1,r−1)

red ∈N[[t]]. This latter series
is itself a generating function

Zμr (1,r−1)

red (t)=
∑

λ∈P (r)

tw(λ), (2·2)

where P (r) ⊂P is the set of r -core partitions [20]. Moreover, it admits the following
expression:

Zμr (1,r−1)

red (t)=
∑

m∈�Ar−1

x
〈m,m〉

2

r−1∏
i=1

tmi
i ,

where �Ar−1
∼= (Zr−1, 〈 〉) is the type Ar−1 root (Cartan) lattice, the lattice corresponding to

the Dynkin diagram of type Ar−1.

Proof. We recall the outline of the argument. The process of taking the r -quotient of a
partition [20] gives a combinatorial bijection

P←→Pr ×P (r)

between the set of partitions, and r -tuples of partitions together with an r -core. This gives
the factorisation formula (2·1), together with the interpretation (2·2). The reduced partition
function can then be determined with the help of a further bijection

P (r)←→�Ar−1 .

For details, see for example [17].

Example 2·2. For r = 2, we are colouring partitions by the checkerboard colouring. The 2-
cores are the staircase partitions. We get the generating function of checkerboard-coloured
partitions

Zμ2(1,1)(t0, t1)= E(t0t1)
2 ·

∞∑
m=−∞

tm2

0 tm2+m
1 .

The sum on the right-hand side is essentially the sum side of the Jacobi triple product
identity, and so it also admits an infinite product form.

2·2. Geometry and Lie theory

Given a finite subgroup G < SL2(C), the corresponding action on C2 preserves the
two-form dx ∧ dy. The quotient space X =C2/G has a rational (du Val, simple) surface
singularity at the origin, and is smooth elsewhere. It admits a unique Calabi–Yau resolution
π : Y → X . The exceptional curves Ei ⊂ Y of π are all rational, and form an intersection
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configuration that is described by a simply-laced, connected Dynkin diagram, necessarily of
ADE type. For a cyclic G < SL2(C) of size r , we get the type Ar−1 configuration, giving a
superficial reason for the appearance of the corresponding root lattice above.

The 2-dimensional McKay correspondence [31] gives a different appearance of the
Dynkin diagram. As we recall in the next section, McKay defined, using the embedding
G < SL2(C), a graph structure on the set Irrep(G)= {ρ0 = triv, ρ1, . . . , ρr−1}. This turns
out to give an affine Dynkin diagram, of the same type, with distinguished node ρ0 whose
removal returns the finite Dynkin diagram.

The appearance of the finite and affine Dynkin diagrams indicates a possible role for
Lie algebras in this picture. The subjects are indeed intimately connected; this is a very
large area, so we only mention the issue relevant for the present discussion. For type A,
the set of all r -coloured partitions gives one combinatorial model of the so-called crystal
basis [21] of the basic representation of the affine Lie algebra ĝlr , an infinite-dimensional
Lie algebra closely related to the affine root system Âr−1. From a representation-theoretic
point of view, the formulas (2·1)-(2·2) compute the character of the basic representation of
this Lie algebra, compatibly with the Frenkel–Kac construction. For details from the present
point of view, see [18, section 4 and appendix A]. For the special case r = 1, ĝl1 is just
the infinite dimensional Heisenberg algebra, acting on its standard (fermionic) Fock space
representation.

2·3. Partitions and Euler characteristics of Hilbert schemes

In this subsection we again focus on the cyclic/type A case, with G ∼=μr acting with
weights (1,−1) as above. Denote by

Hilb(C2)=�nHilbn(C2)

the Hilbert scheme of points of C2, whose C-points consist of finite-codimension ideals
of H 0(OC2)∼=C[x, y]. The G-fixed locus Hilb(C2)G ⊂Hilb(C2) can also be thought of as
the Hilbert scheme Hilb([C2/G]) attached to the orbifold [C2/G], as any invariant ideal is
G-equivariant in a canonical way. This fixed locus naturally decomposes as

Hilb([C2/G])=
⊔

ρ∈Rep(G)

Hilbρ([C2/G]),

where for a finite-dimensional representation ρ ∈Rep(G), we denote

Hilbρ([C2/G])= {I ∈Hilb(C2)G : (C[x, y]/I )�G ρ}
the ρ-Hilbert scheme of the orbifold [C2/G], with�G denoting G-equivariant isomorphism.
Each of the spaces in the decomposition is smooth; this is a consequence of the smoothness
of Hilb(C2).

Given a point in Hilb([C2/G]), the associated C[x, y]-module F = (C[x, y]/I ) decom-
poses canonically into a direct sum of weight spaces F =⊕0≤i≤r−1Fi , where Fi is a direct
sum of copies of the irreducible representation ρi . The action of x on F cyclically per-
mutes these summands, sending Fi to Fi+1 (where i is taken modulo r ) and the action of y
cyclically permutes these summands in the opposite direction. A G-equivariant C[x, y]-
representation, then, corresponds to a representation of a quiver with vertices indexed by
the irreducible G-representations, and arrows in both directions between i and i + 1 (taken
modulo r ). We label the arrows starting at i corresponding to the action of x and y with
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labels xi and yi respectively. The resulting oriented graph is the McKay quiver Q for G, and
is the double of the McKay graph mentioned above. This quiver can be defined outside of
type A, and for arbitrary G-representations: the number of arrows from i to j is defined to
be the number of copies of ρ j inside V ⊗ ρi .

Coming back to our example of G < SL2(C), a representation of this quiver corresponds
to a G-equivariant representation of C[x, y] precisely if the commutativity relations yi+1xi =
xi−1 yi hold. The quotient of the free path algebra of Q by these relations is known as the
preprojective algebra.

Let T be the subgroup of diagonal matrices in GL2(C). Then T acts on Hilb(C2) and
this action moreover commutes with the G-action, and hence induces an action on each
component Hilbρ([C2/G]); this is where we are making essential use of the assumption that
we are in type A. The fixed points of this action correspond to finite-codimension Z2-graded
ideals I ⊂C[x, y]. The monomial basis of C[x, y]/I then defines a coloured partition as in
Section 2·1. Summing up, for G =μr (1, r − 1), there is an equality

Z G(t0, . . . , tr−1)=
∑
d∈Nr

χ(Hilbρd([C2/G]))td,

where ρd =⊕0≤i≤r−1 ρ
⊕di
i , connecting the geometry of Hilbert schemes with coloured

partition counting.
This point of view also allows a deformation (or quantisation) of this formula: we can

replace Euler characteristics here by the Poincaré polynomials, arriving at the generating
functions

Z G(t0, . . . , tr−1; q1/2)=
∑
d∈Nr

P(Hilbρd([C2/G]), q1/2)td,

where for a smooth variety X , we denote P(X, q1/2)=∑ j dimQ H j (X,Q)q j/2 its (topo-
logical) Poincaré polynomial. In the abelian case, this function is computed by [15] to
be

Zμr (1,r−1)(t; q1/2)=
(∏

m>0

(1− tmqm−1)−1(1− tmqm)−(r−1)

)
· Zμr (1,r−1)

red (t). (2·3)

We will expand upon the relationship between combinatorics, quiver representations and
quantised formulae further when we come to plane partitions.

2·4. A nonabelian family of examples

Armed with a full understanding of the cyclic case, we can ask whether there are similar
stories to be told for nonabelian subgroups G < SL2(C). Apart from cyclic groups, there is
one other infinite set of such subgroups, as well as three sporadic ones. For the infinite series
of binary dihedral groups, there is a precise analogue of the diagonally coloured partition
story. While from the present point of view this is just an amusing extension of well-known
ideas, we could not resist telling it. For geometric applications of the theory in this section,
see [18].

The binary dihedral group G = B Dr < SL2(C) is generated by the matrices

(
ξ 0
0 ξ−1

)
and

(
0 1
−1 0

)
, with ξ a (2r − 4)th root of unity. Another notation for this group would be
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Fig. 3. The Dr -coloured positive octant; single dots in boxes denote a run of numbers between 2 and r − 2.

B D4r−8, but we will stick with this more economical notation. This group has order 4r − 8,
and r + 1 conjugary classes. In the correspondences recalled above, it gives the (finite and
affine) Dynkin diagrams of type Dr . It is natural to label the representations of B Dr so that
ρ0 = triv, ρ1 is the sign representation, whose kernel is the abelian subgroup generated by the
first matrix above, ρ2 is the irreducible representation coming from the embedding B Dr <

SL2(C), ρ3, . . . , ρr−2 are further 2-dimensional representations (for r > 4) labelled so that
ρ j ⊗ ρ2

∼= ρ j−1 ⊕ ρ j+1 for j < r − 2, and finally ρr−1 and ρr are again one-dimensional,
with ρr−2 ⊗ ρ2

∼= ρr−3 ⊕ ρr−1 ⊕ ρr .
A search for a corresponding partition colouring story begins by recalling that the con-

nection between groups and colourings in the abelian case was given by the semigroup ring
C[N2] and its decomposition into irreducible μr -spaces spanned by monomials. This does
not quite work in the dihedral case, but it almost does. It can be checked that for most
pairs (i, j), the two-dimensional vector space generated by xi y j and x j yi forms an irre-
ducible representation of B Dr ; for special pairs (i, j), it splits up into two eigenspaces (not
generated by monomials). We get Figure 3, first exploited in this language in [18]. The dia-
gram encodes a full description of C[N2] and its decomposition into irreducible B Dr -spaces.
There are r + 1 different colours (labels), some labelling boxes and some half-boxes. Since
we wish to study configurations that are equivariant with respect to the dihedral group, it
is indeed enough to look at the octant of the plane represented on the figure, and then the
full configuration is determined by reflection. Let us call this combinatorial arrangement the
Dr -coloured positive octant.

The correct generalisation of partitions can be derived from both the geometric and
the representation theoretic points of view. One is led to a combinatorial set PDr of Dr -
partitions, finite subsets of the Dr -coloured positive octant. The precise definition [22, 18] is
as follows: a finite subset β of the Dr -coloured positive octant will be called a Dr -partition,
if the following rules are satisfied:

(i) if a full box is not present in β, then all full or half boxes to the right of it are also not
in β, and at least one (full or half) box immediately above it is not in β;

(ii) if a full or half-box is missing from β, then all the boxes on the diagonal in the same
position, above and to the right of this box, are also missing;

(iii) if a half box is not in β, then the full box to the right of it is also not in β;
(iv) if both half-boxes sharing the same box position are missing from β, then the full

box immediately above this position is also not in β.

Thus the rules that define these objects are “partition-like” at the full boxes; indeed, (i)
and (ii) (which in the case of ordinary partitions is superfluous) give the standard definition
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Fig. 4. Some D4-partitions.

of ordinary partitions. However, the half-boxes have their own, different rules, leading to
interesting complications in the theory. Figure 4 shows some Dr -partitions for r = 4.

Be that as it may, to a Dr -partition β ∈PDr we can associate a set of r + 1 nonnegative
integers

w(β)= (w0(β), . . . , wr (β))

counting the numbers of (full or half) boxes in β of different colours (labels). For a set of
variables t= (t0, . . . , tr ), we are lead to the generating function

Z B Dr (t)=
∑

β∈PDr

tw(β).

The following result is the precise analogue of Theorem 2·1 above.

THEOREM 2·3. Set t = t0t1tr−1tr
∏r−2

j=2 t2
j . Then there is a factorisation

Z B Dr (t)= E(t)r+1 · Z B Dr
red (t) (2·4)

into a power of the function E(t) and a reduced series Z B Dr
red ∈N[[t]]. This latter series is

itself a generating function

Z B Dr
red (t)=

∑
λ∈P (r)

Dr

tw(λ), (2·5)

where P (r)

Dr
⊂P is a certain set of core Dr -partitions. Moreover, this function admits the

following expression:

Z B Dr
red (t)=

∑
m∈�Dr

t
〈m,m〉

2

r∏
i=1

tmi
i ,

where �Dr
∼= (Zr , 〈 〉) is the type Dr root (Cartan) lattice, the lattice corresponding to the

Dynkin diagram of type Dr .

Proof. The proof works along the same lines as the proof of Theorem 2·1; details are spelled
out in [18].

We are not aware of a proof of the obvious generalisation of formula (2·3) for Poincaré
polynomials in the type D case.

Remark 2·4. As already hinted above, the set of all Dr -partitions gives one combinatorial
model of the crystal basis of the basic representation of an infinite-dimensional Lie algebra
closely related to the affine root system D̂r ; see [22].
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Fig. 5. Plane partitions α1, α2 coloured by μ3(1, 1, 1) < SL3. The weights are w(α1)= (2, 3, 3),
respectively w(α2)= (13, 14, 14).

For subgroups of SL2(C) of types E6, E7, E8, in other words the symmetry groups of the
tetrahedron, cube and dodecahedron, we are not aware of such a construction of the crystal
basis. Perhaps the corresponding groups are too “three-dimensional”.

2·5. Groups outside SL

For any abelian group G < GL2(C), the colouring of partitions by periodic colours of
course makes sense. However, we are not aware of any results computing the resulting parti-
tion function in full if G contains elements of determinant different from 1. See [3] for some
nontrivial results.

3. Plane partitions: combinatorics

3·1. The setup and the main conjecture

Now let G be a finite abelian subgroup of SL3(C) of size r , that we will assume again to be
diagonally embedded. As before, let Irrep(G)= {ρ0 = triv, . . . , ρr−1} denote the irreducible
representations of G. The embedding G < SL3(C) corresponds to a three-dimensional rep-
resentation of G that can be decomposed as C3 ∼= ρa ⊕ ρb ⊕ ρc; if needed, we will denote
this group G(a, b, c) < SL3.

As before, we can colour (label) each box of a plane partition α ∈Q by one of r labels as
follows. Each box of coordinate (i, j, k) in α corresponds to a monomial xi y j zk ∈C[N3],
and thus corresponds to a one-dimensional G-eigenspace with character ρχ(i, j,k) ∈ Irrep(G)

for some χ(i, j, k) ∈ {0, . . . , r − 1}; give this box colour χ(i, j, k). Let wi (α) to be the
number of boxes in α of colour i and set w(α)= (w0(α), . . . , wr−1(α)). See Figure 5 for
some plane partitions coloured by μ3(1, 1, 1) < SL3.

Let

Z G(a,b,c)(t)=
∑
α∈Q

tw(α) (3·1)

be the generating function of G(a, b, c)-coloured plane partitions. Once again, setting ti = t
for all i recovers the generating function M(t) of all plane partitions.

Motivated on the one hand by the formal analogy with coloured partitions, and on the
other by some geometric ideas to be discussed in the last part of the paper, we make the
following conjecture about this generating function.
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CONJECTURE 3·1. Setting t =∏r−1
j=0 t j to be the product of the variables, there exists a

factorisation

Z G(a,b,c)(t)= M(t)r · Z G(a,b,c)
red (t), (3·2)

where the reduced series Z G(a,b,c)
red (t) has non-negative coefficients only.

The series M(t)r begins 1+ r t0t1 · · · tr−1 + O(t2). Thus our putative factorisation with
positive quotient can only work if the coefficient of t0t1 · · · tr−1 in Z G(a,b,c)(t) is at least r . In
fact, the following stronger statement is implicit in the literature.

PROPOSITION 3·2. The coefficient of the t0t1 · · · tr−1 term in Z G(a,b,c)(t) is exactly r . In other
words, independently of the choice of the group G < SL3, there are exactly r plane partitions
with one box of colour i for each i = 0, . . . , r − 1.

Proof. This is stated in [30, lemma 4·1], but, it seems to us, without proof. In the next
section, we discuss a geometric argument for this statement. We are not aware of a direct
combinatorial proof.

It is natural to speculate whether the reduced series Z G(a,b,c)
red (t) might be the generating

function of some natural subset of the set Q of plane partitions, analogous to the second
part of Theorems 2·1, 2·3. Unfortunately, as we discuss in one of the examples below in
Section 3·4, this cannot be true, at least without breaking the natural symmetries of the
problem.

In the following sections we discuss some instances in which Conjecture 3·1 is known to
hold, and present some numerical evidence for it in other cases. Section 4 of the paper puts
the conjecture in a geometric context, discusses a quantisation of it, and outlines a possible
line of attack.

3·2. The action μr (1, r − 1, 0) and slr symmetry

Consider the case when G < SL2(C) < SL3(C) is abelian; thus G ∼=μr acts with weights
(1, r − 1, 0). The generating function Zμr (1,r−1,0)(t) admits an explicit infinite product
representation.

THEOREM 3·3 (Young [32]). We have

Zμr (1,r−1,0)(t0 . . . , tr−1)= M(t)r
∏

0<a<b<r

M̃

⎛⎝ ∏
a≤ j≤b

t j , t

⎞⎠. (3·3)

Proof. As discussed in [32], some of the standard proofs of (1·2) also prove this result.
The key is to “slice” a plane partition into partition slices that are monochromatic in this
colouring.

In particular, Conjecture 3·1 holds in this case. To bring out symmetries of this formula
more explicitly, we can re-write it using the plethystic exponential as follows.

COROLLARY 3·4. Let � ⊂�Ar−1
∼=Zr−1 ⊂Zr denote the root system of the Lie algebra

of type Ar−1. Then
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Zμr (1,r−1,0)(t)= PExpσ

(
t

(1− t)2

(
r +

∑
α∈�

tα
))

,

where t =∏r−1
j=0 t j still, and in the last bracket, only the variables t1, . . . , tr−1 appear.

This formula nicely confirms expectations of the theoretical physics literature, where this
geometry is expected to lead to “enhanced Ar−1 symmetry” [23]. The slr -symmetry of the
last formula is apparent: it is essentially the (exponential of the) character of the adjoint
representation.

3·3. The case G ∼=μ2 ×μ2 and sl3
2-symmetry

The main result of [32] treats the case G =μ2 ×μ2 < SL3(C), embedded as the group
of all diagonal matrices with determinant 1 that square to the identity. The group G has
four one-dimensional irreducible representations Irrep(G)= {ρ0 = triv, ρ1, ρ2, ρ3}. The G-
coloured partition function again admits an explicit infinite product representation.

THEOREM 3·5 (Young [32]). With t =∏3
i=0 ti as before,

Zμ2×μ2(t0, t1, t2, t3)= M(t)4 M̃(t1t2, t)M̃(t1t2, t)M̃(t1t2, t)

M̃(−t1, t)M̃(−t2, t)M̃(−t3, t)M̃(−t1t2t3, t)
.

Proof. This is much harder; the proof in [32] is indirect, and uses combinatorial wall-
crossing to arrive at a different problem, solved earlier, involving pyramid partitions.

This result confirms Conjecture 3·1 in this case. The right-hand side can again be writ-
ten in a more symmetric form using the plethystic exponential. Indeed, a short calculation
shows:

COROLLARY 3·6. We have

Zμ2×μ2(t)= PExpσ

(
t

(1− t)2

(
2+ (t

1
2

1 − t
− 1

2
1 )(t

1
2

2 − t
− 1

2
2 )(t

1
2

3 − t
− 1

2
3 )((t1t2t3)

− 1
2 − (t1t2t3)

1
2 )
))

.

This formula is compatible with expectations in the physics that expects sl3
2-symmetry in

the partition functions connected to this geometry [6]. Indeed, the first three terms in the
last bracket give the character of the fundamental representation of sl3

2. Introducing a new
variable t4 with t1t2t3t4 = 1, we can re-write the last formula as

Zμ2×μ2(t)= PExpσ

⎛⎝ t

(1− t)2

⎛⎝2+
4∏

j=1

(t
1
2
j − t

− 1
2

j )

⎞⎠⎞⎠ ,

suggesting that there is more symmetry around. It is not clear to us whether there is any
significance to this remark.

3·4. The action μ3(1, 1, 1) and other cyclic cases

The first case not covered by the results above is when G ∼=μ3, acting with weights
(1, 1, 1) on C3. The generating function Zμ3(1,1,1)(t) does not appear to admit an infinite
product expansion. We checked Conjecture 3·1 with the help of computer enumeration up to
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degree 24; we include the resulting reduced series Zμ3(1,1,1)

red (t) in the Appendix. The support
of this series, the rational cone in N3 spanned by (a0, a1, a2) with the corresponding mono-
mial ta0

0 ta1
1 ta2

2 having nonzero coefficient, appears to be the simplicial cone generated by
(1, 0, 0), (1, 3, 0) and (1, 3, 6). These monomials come with coefficient 1, and correspond
to the first, second and third power of the maximal ideal of the origin respectively.

As we mentioned before, it would have been natural to hope that the reduced series
Z G(a,b,c)

red (t) is the coloured generating function of some natural subset of the set Q of plane
partitions. However, in the case G =μ3(1, 1, 1), we show that there is no such subset cho-
sen in a way that fully respects the symmetries of the problem. Let S3 be the natural group
of (rotation and reflection) symmetries of the positive octant N3. Note that the colouring
employed in this case is S3-invariant.

PROPOSITION 3·7. For the action of the group μ3 with weights (1, 1, 1) on C3, there does
not exist an S3-invariant rule that selects a subset of Q whose coloured generating function
agrees with the reduced series Zμ3(1,1,1)

red (t).

Proof. It can be checked by computer enumeration that the number of plane partitions of
multi-weight (3, 3, 3) is 108. Furthermore, this set is partitioned into orbits of size 3 or 6
under the natural action of S3: there are no plane partitions of this multi-weight with full S3

or A3-symmetry. However, the corresponding coefficient of the reduced series Zμ3(1,1,1)

red (t)
is 44. This number is not divisible by 3, so there is no symmetric rule that would select 44
partitions among the 108 with this multi-weight.

We further checked Conjecture 3·1 to degree 24 by computer enumeration also for the
cases μ4(1, 1, 2), μ5(1, 1, 3) and μ6(1, 2, 3).

3·5. The case G ∼=μ3 ×μ3 and the elusive e6-symmetry

We discuss one last case; consider G ∼=μ3 ×μ3 embedded in SL3(C). Numerical evi-
dence is of limited value for this example, since Proposition 3·2 means that the non-trivial
checks for Conjecture 3·1 happen in total degree 18 and above, and it is increasingly dif-
ficult to calculate values in this range; but the conjecture does pass the tests we were able
to set it (up to degree 20). On the other hand, physics not only predicts the existence of a
sl3

3-symmetry in this example, in analogy with Section 3·3, but an enhancement of this sym-
metry to e6; see [6, section 4·2]. Indeed, one of the resolutions of the quotient C3/G is the
total space of the anticanonical bundle on a specialised cubic surface, and thus symmetry
under e6 is expected. It would be interesting to see some remnant of this symmetry in the
reduced orbifold series Zμ3×μ3(t), but we have not been able to do so.

4. Plane partitions: geometry

4·1. The geometry of the quotient and its resolutions

The action of G < SL3(C) on C3 preserves the three-form dx ∧ dy ∧ dz, and hence
the quotient X =C3/G has Gorenstein (Calabi–Yau) singularities; the singular set of X
includes the origin, and can also contain curves of singularities. In the three-dimensional
case, there is still a Calabi–Yau resolution, but it is not unique. There turns out to be a dis-
tinguished resolution YG , Nakamura’s G-Hilbert scheme [30]; the resolution map is given
by the Hilbert–Chow morphism πG : YG→ X =C3/G. Other resolutions πi : Yi→ X are
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obtained by flops from YG . One key feature [2, theorem 1·10] of the McKay correspondence
is the numerical equality of the topological Euler characteristic of one (hence all) Calabi–
Yau resolution(s) of X , and the “orbifold Euler characteristic” of the equivariant geometry,
which in the case of G < SL3(C) acting on C3 is just the number of conjugacy classes of G,
or for G abelian, simply its order r .

In simple cases, all fibres of the resolution πG : YG→ X are at most one-dimensional;
the examples discussed in Sections 3·2-3·3 were of this type. In general however, the map
πG has a two-dimensional fibre over the (image of the) origin 0 ∈ X , leading to increased
complexity in the problem, as shown by the examples in Sections 3·4-3·5. Indeed, for the
example G ∼=μ3 acting with weights (1, 1, 1) on C3, the quotient X =C3/G admits the
(unique) Calabi–Yau resolution Y = YG =OP2(−3) with π : Y → X contracting the zero
section. Thus the resolution of singularities π of X has the two dimensional fibre P2 over
the origin (smooth and irreducible in this case).

The tautological bundle of C[x, y, z]� G-modules on YG , considered as a G-equivariant
sheaf on YG ×C[x, y, z], provides the Fourier–Mukai kernel of an equivalence of cate-
gories [8]

� : Db(Coh(YG))−→ Db((C[x, y, z]� G) -mod) (4·1)

with an inverse that we will denote by 
.

4·2. Plane partitions and Euler characteristics

In complete analogy with the discussion of Section 2·3, the generating function
Z G(a,b,c)(t) can be thought of as the generating function of topological Euler characteristics
of spaces of G-invariant subschemes of C3, or equivalently sheaves on the orbifold [C3/G].
The equivariant Hilbert schemes Hilbρ([C3/G]) for ρ ∈Rep(G) are in general singular, but
still have finitely many fixed points under the action of the group T of diagonal matrices in
GL3(C), parametrised by plane partitions (we are once again relying on the fact here that G
is abelian so can be assumed to be diagonal). We thus get an equality

Z G(a,b,c)(t)=
∑
d∈Nr

χ(Hilbρd([C3/G]))td, (4·2)

with ρd =⊕0≤i≤r−1 ρ
⊕di
i .

Nakamura’s G-Hilbert scheme is by definition YG =Hilbρreg([C3/G]), where ρreg ∈
Rep(G) is the regular representation of G. This particular Hilbert scheme is known to be
nonsingular [8, 30] and indeed is a crepant resolution of the quotient X =C3/G, as noted
already above. This fact then provides a proof of Proposition 3·2.

Proof of Proposition 3·2. By the previous discussion, remembering that G is abelian, the
coefficient of t =∏r−1

i=0 ti in Z G(a,b,c)(t) is equal to the Euler characteristic χ(YG) of
Nakamura’s G-Hilbert scheme. Again as commented above, this number is known to
be equal to the “orbifold Euler characteristic” of [C3/G] which is simply r since G is
abelian [2].

In the three-dimensional case, alongside the series Z G(a,b,c)(t) defined in (3·1) and identi-
fied with a partition function of Euler characteristics in (4·2), it is also natural to consider a
signed series
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Z G(a,b,c)
signed (t)=

∑
α∈Q

(−1)d0+(d,d)tw(α) (4·3)

where the bilinear form in the exponent is defined by

(d, e)=
∑

i a vertex of Q

di ei −
∑

a:i→ j an arrow of Q

di e j

and the sign change will arise from taking a virtual Euler characteristic, ubiquitous in three-
dimensional sheaf counting problems. In the abelian case, this is still a sum over torus-fixed
points [5], so the generating function gives a signed count of planar partitions [32, A·2]. We
will return to these signs below.

4·3. Representations of the McKay quiver in dimension 3

We can also approach coloured plane partitions via moduli spaces of representations of a
McKay quiver, just as in dimension 2. We will denote by Q = Q(a, b, c) the McKay quiver
for G(a, b, c), constructed as follows. The vertex set Q0 of Q = Q(a, b, c) is still identified
with the set of irreducible representations ρ0, . . . , ρr−1 of G. For each i ≤ r − 1 there is an
arrow xi going from ρi to ρi+a , where addition is modulo r , and similarly, arrows yi , zi from
ρi to ρi+b and ρi+c respectively. As before, G-equivariant sheaves on C[x, y, z] are naturally
isomorphic to representations of this quiver, satisfying the obvious quadratic (commutation)
relations. A new feature in the 3-dimensional setting is that these relations can be packaged
as the noncommutative derivatives [16] of a potential W =W (a, b, c):

W (a, b, c)=
∑

0≤i≤r−1

(zi+a+b yi+a xi − yi+a+czi+a xi ). (4·4)

The variables should be considered as (non-commuting) quiver arrows here, and subscripts
should still be taken modulo r . Since a + b+ c= 0 mod r , the above expression is a sum
of cyclic paths in Q. We write C(Q, W ) for the quotient of the free path algebra by the
noncommutative derivatives of W . Then there is an isomorphism

C[x, y, z]� G ∼=C(Q, W )

which at the level of underlying vector spaces of representations, takes a C[x, y, z]� G-
module to its decomposition according to the characters of G.

It was observed by Ito and Nakajima [29, section 3], that Nakamura’s G-Hilbert scheme
YG makes an appearance as a moduli space of stable representations of the McKay quiver
with potential (Q, W ). Recall that a stability parameter [24] for a quiver Q is an element

ζ ∈QQ0 .

For concreteness, for the rest of this paper we fix the stability parameter

ζ0 = (r − 1,−1, . . . ,−1) ∈QQ0 (4·5)

on the McKay quiver Q. The slope of a Q-representation ρ with respect to a stability
parameter ζ is defined by

μ(ρ)= dim(ρ) · ζ
dim(ρ)

,
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where dim(ρ) ∈NQ0 is the dimension vector of the representation, and dim(ρ)=∑ dim(ρ)i

is the ordinary dimension. A representation M is defined to be ζ -(semi)stable if all proper
submodules have slope less than (or equal to) that of M . Then we have

PROPOSITION 4·1 (Ito and Nakajima). Fix the dimension vector d0 = (1, . . . , 1). There
exists an open neighbourhood U of stability parameters of ζ0 ∈QQ0 , such that the space YG

can be identified with the fine moduli space of ζ -stable d0-dimensional C(Q, W )-modules
for any ζ ∈U.

More generally, there is an isomorphism of schemes between Hilbρd([C/G]) and the mod-
uli space ncHilbd(Q, W ) of pairs of a d-dimensional C(Q, W )-representation M with a
generating vector v ∈ MG , which in turn is realised as a subscheme of the smooth mod-
uli scheme of all stable framed representations of the free path algebra CQ as the critical
locus of the function Tr(W ). To study such representations, we will write Q ′ for the quiver
obtained from the McKay quiver Q by adding one extra vertex, which we label∞, and one
arrow, from∞ to ρ0.

Let T0
∼= (C∗)2 ⊂ T ∼= (C∗)3 be the sub-torus of the torus T acting on C3 and fixing the

three-form dx ∧ dy ∧ dz. The function Tr(W ) is T0-invariant, and its fixed locus has iso-
lated fixed points equal to the fixed points of the T -action on ncHilbd(Q, W ); the latter
are precisely parametrised by coloured plane partitions. The results of [5] then tell us that
the correct weighted Euler characteristic to consider is given by summing over these fixed
points, with each fixed point p contributing (−1)TpY , the parity of the Zariski tangent space
at p, which is equal to (−1)d0+(d,d) by [28, theorem 7·1]. In conclusion, there is an equality

Z G(a,b,c)
signed (t)=

∑
d∈Nr

χvir(ncHilbd(Q, W ))td (4·6)

between the signed version of the coloured plane partition generating function, and the so-
called Donaldson–Thomas (DT) generating function attached to the collection of spaces
{ncHilbd(Q, W ) : d ∈Nr }.
Remark 4·2. In [26], Maulik et al. attach an analogous generating function to ordinary
(non-orbifold) Calabi–Yau geometries Y with topological Euler characteristic e(Y ), and
conjecture a factorisation into a term M(−t)e(Y ), corresponding to point sheaves on Y , and a
reduced series. In fact the conjecture in [26] is more general, but we only need the Calabi–
Yau case. One way to think about Conjecture 3·1 is as an orbifold analogue of the conjecture
of [26], where r = e(Y )= eorb(C

3, G) is the (orbifold) Euler characteristic.

4·4. Refinements from cohomological DT theory

The link between DT theory and coloured plane partitions can be enriched by considering
mixed Hodge structures on the cohomology of the moduli spaces ncHilbd(Q, W ) instead
of their weighted Euler characteristics. The technical tools for refined Donaldson–Thomas
theory come from Saito’s theory of mixed Hodge modules.

Given a function f on a smooth variety Z , we write

ϕ f := ϕ f QZ
⊗L− dim(Z)/2

for the normalised mixed Hodge module of vanishing cycles, where L=Hc(A
1,Q) is a

pure weight 2 Hodge structure in cohomological degree 2. Strictly speaking, to make sense
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of this expression when the exponent is not an integer, we have to formally add a tensor
square root L1/2 to the category of mixed Hodge modules — see [25] for details. In the
general framework of cohomological Donaldson–Thomas theory, the cohomology of the
above mixed Hodge module is supposed to be considered as a monodromic mixed Hodge
structure; however in our case, since the quiver with potential admits a cut, in the sense of
[19], the monodromy is trivial — see the appendix of [10] for details and proofs.

We package the mixed Hodge structures corresponding to all d ∈Nr together into a Nr -
graded mixed Hodge structure

H(a, b, c) :=
⊕
d∈Nr

H(ncHilbd(Q), ϕTr(W )).

On the right-hand side we have taken the cohomology of the smooth ambient moduli scheme
ncHilbd(Q); since the mixed Hodge module ϕTr(W ) is supported on ncHilbd(Q, W ), the crit-
ical locus of Tr(W ), this makes no difference. In terms of stability conditions, ncHilbd(Q)

can be realised as the (fine) moduli space of ζ ′-stable (d, 1)-dimensional Q ′-representations,
for ζ ′ = (−1, . . . ,−1, |d|).

For later use, we generalise this construction as in [14, section 3] to take account of
nontrivial stability conditions on Q. Let ζ ∈NQ0 be such a stability condition. Fixing a
dimension vector d and M� 0 a large integer, we may assume that ζ · d=−1/M by adding
a constant dimension vector to ζ , leaving the notion of ζ -(semi)stability unchanged. Then
we set ζ ′ = (Mζ, 1) ∈QQ′0 . It is easy to check that a (d, 1)-dimensional Q ′-representation is
stable if it is semistable, and it is semistable precisely if the underlying Q-representation ρ

is ζ -semistable and there is no proper subrepresentation ρ ′ ⊂ ρ containing the image of the
one-dimensional vector space at the vertex∞, and such that μ(ρ ′)=μ(ρ). We denote the
resulting fine moduli space ncHilbζ,d(Q). For a stability parameter ζ , slope function μ and
fixed slope θ ∈ (−∞,∞) we define,

H(a, b, c)θ :=
⊕

d∈NQ0 |μ(d)=θ

H(ncHilbζ,d(Q), ϕTr(W )).

Definition 4·3. Let L be a NQ0 -graded, cohomologically graded mixed Hodge structure,
such that for each d ∈Nr there is an equality GrW

n H(Ld)= 0 for n� 0, and moreover for
every n, GrW

n Hi(Ld)= 0 for all but finitely many i . We define the characteristic function
of L:

χQ,wt(L, q1/2, t)=
∑
n,i∈Z

∑
d∈NQ0

(−1)i dim(GrW
n Hi (Ld))(q

1/2)ntd, (4·7)

as an element of the quantum torus

AQ =Z((q−1/2))[[ti |i∈Q0]]
endowed with the usual additive structure, and the Z((q−1/2))-linear multiplication defined
on t-variables by td · td′ = q (d,d′)/2td+d′ .

If the total cohomology of each of the graded pieces Ld is finite-dimensional, then we
define

χQ(L, t)= χQ,wt(L, q1/2 = 1, t) ∈Z[[ti |i∈Q0]].
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The mixed Hodge structure H(a, b, c) satisfies the stronger finite-dimensionality condi-
tion of Definition 4·3, and by [4] we have that the Euler characteristic of its dth graded piece
χ(H(a, b, c)d) is the virtual Euler characteristic of ncHilbd(Q, W ). Combining this with
(4·6) we deduce that there is an equality

χQ(H(a, b, c), t)=
∑
α∈Q

(−1)d0+(d,d)tw(α) = Z G(a,b,c)
signed (t) (4·8)

giving an interpretation of the signed plane partition function in terms of the representation
theory of the McKay quiver with potential.

We also consider the mixed Hodge structure on the vanishing cycle cohomology

Hstack(a, b, c)=
⊕

d∈NQ0

Hc

(
Md(Q), ϕTr(W )

)
of the stack Md(Q) of all finite-dimensional CQ-modules. The cohomological degree is
unbounded below for every nonzero NQ0 -degree, and so only the q-refined characteristic
function of Definition 4·3 is defined for this mixed Hodge structure. For a stability parameter
ζ ∈QQ0 and slope θ ∈ (−∞,∞) we can also define

Hstack(a, b, c)θ =
⊕

d∈NQ0 |μ(d)=θ

Hc

(
Mζ−sst

d (Q), ϕTr(W )

)
where Mζ−sst

d (Q) is the stack of ζ -semistable modules with dimension vector d, and μ is the
slope function defined with respect to ζ .

All of these mixed Hodge structures are related to each other in an elegant way by wall
crossing isomorphisms which are special cases of [13, theorem B]. The isomorphisms we
will need are

Hstack(a, b, c)∼=
tw⊗

−∞ θ−→∞
Hstack(a, b, c)θ (4·9)

H(a, b, c)⊗tw Hstack(a, b, c)∼=Hstack(a, b, c)⊗tw Q1∞ (4·10)

and

H(a, b, c)θ ⊗tw Hstack(a, b, c)θ
∼=Hstack(a, b, c)θ ⊗tw Q1∞ . (4·11)

The isomorphism (4·9) takes place in the category of Nr -graded mixed Hodge structures,
while (4·10) and (4·11) take place in the category of Nr+1-graded mixed Hodge structures,
i.e. the categories of mixed Hodge structures graded by dimension vectors for Q and Q ′

respectively. The category of Nr -graded mixed Hodge structures is equipped with a twisted
tensor product via the rule N ⊗tw P =N ⊗P ⊗L

(e,d)−(d,e)
2 for N and P homogeneous of

degree d and e respectively. We extend this to a tensor product for Nr+1-graded mixed Hodge
structures by using the Euler pairing for Q ′ instead of Q. Finally, the object Q1∞ above is
the constant pure weight zero Hodge structure Q, situated in Nr+1-degree (0, . . . , 0, 1), so

χQ′,wt(Q1∞, q1/2, t)= t∞.
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This twist is introduced so that the equation χQ(L⊗tw B)= χQ(L)χQ(B) holds, for L,B
two Nr -graded mixed Hodge structures, and the same statement holds for Nr+1-graded mixed
Hodge structures with χQ replaced by χQ′ .

Putting together (4·10) and (4·8) we deduce that

χQ(H(a, b, c), t)= [AdχQ,wt(Hstack(a,b,c),q1/2,t)(t∞)
]

q1/2=1=t∞
= Z G(a,b,c)

signed (t),

where, for the left-hand side, we have given H(a, b, c) the Nr grading given by only remem-
bering the dimension vector restricted to Q. Motivated by the above discussion, we make
the following:

Definition 4·4. The q-deformed coloured plane partition function is

Z G(a,b,c)(t, q1/2)= χQ,wt(H(a, b, c), q1/2, t) ∈AQ .

Setting q1/2 = 1 in Z G(a,b,c)(t, q1/2) recovers the signed partition function Z G(a,b,c)
signed (t).

The connection between these ideas and our Conjecture 3·1 comes from the fol-
lowing construction. Recall the dimension vector d0 = (1, . . . , 1) ∈NQ0 , stability param-
eter ζ0 = (r − 1,−1, . . . ,−1) ∈QQ0 , and the open neighbourhood ζ0 ∈U ⊂QQ0 from
Proposition 4·1. Fixing a bound N ∈N, it is clearly possible to choose a small rational
perturbation ζN ∈U ⊂QQ0 such that a dimension vector d with all components smaller than
N has fixed slope

θ0 = d0 · ζ0 = 0

if and only if d is a rational multiple of d0. The mixed Hodge structure H(a, b, c)θ0 stabilises
in each degree as we take the limit in the sequence of stability conditions ζ0, ζ1, . . . so the
entire graded mixed Hodge structures limits to a “generic” mixed Hodge structure which
we denote P(a, b, c). Likewise, we denote by P st(a, b, c) the limit of the mixed Hodge
structures Hstack(a, b, c)θ0 as we vary the stability condition.

There is a natural inclusion of quantum tori AQ ⊂AQ′ . Note that setting as usual t =∏r−1
i=0 ti = t1, the ring Z((q−1/2))[[t]] lies in the centre of AQ , but not the centre of AQ′ .

Indeed, if α ∈ t∞ ·AQ then applying χQ′,wt to (4·11), with θ =μ(1)= 0, we deduce

AdχQ,wt(P st (a,b,c))(α)= α ∗ χQ′,wt(P(a, b, c)) (4·12)

and we have

PROPOSITION 4·5. With t =∏r−1
i=0 ti as before, there is an equality

χQ(P(a, b, c), t)= M(−t)χ(YG ). (4·13)

Proof. Set θ = 0. For the stability condition ζN constructed above, the geometric Proposition
4·13 to be discussed below implies that H(a, b, c)θ is the vanishing cycle cohomology of
the Hilbert scheme of points of YG up to degree (N , . . . , N ). Taking N→∞ and using the
results of [5], the stated equality follows.

This proposition, along with (4·12), says that the operator AdχQ,wt(P st (a,b,c)) is a q-
refinement of multiplication by the right-hand side of (4·13), the term we factor out in the
definition of the reduced partition function in (3·2). On the other hand, by (4·10) we can
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write

Z G(a,b,c)
signed (t, q1/2)= [AdχQ,wt(Hstack(a,b,c),q1/2,t)(t∞)

]
t∞=1

and by centrality of χQ,wt(P st(a, b, c)) in AQ we can factorise

AdχQ,wt(Hstack(a,b,c),q1/2,t) =AdχQ,wt(P st (a,b,c),q1/2,t) ◦AdχQ,wt(Hstack(a,b,c)′,q1/2,t),

where

Hstack(a, b, c)′ =
tw⊗

−∞ θ �=0−−→∞
Hstack(a, b, c)θ .

The discussion above motivates the following definition.

Definition 4·6. We define the q-deformed reduced plane partition function

Z G(a,b,c)
red (t, q1/2)= χQ,wt(H(a, b, c), q1/2, t)/χQ,wt(P(a, b, c), q1/2, t). (4·14)

We formulate the following, quantised version of Conjecture 3·1:

CONJECTURE 4·7. The q-deformed reduced partition function (4·14) can be written

Z G(a,b,c)
red (t, q1/2)=

∑
d∈Nr

hd(q)(−q1/2)d0+(d,d)td,

where hd(q) ∈N[q±1].
Setting q1/2 = 1 in Conjecture 4·7 recovers Conjecture 3·1.

Example 4·8. For the case G =μr (1, r − 1, 0) studied in Section 3·2, Conjecture 4·7 is also
known to hold. In fact, [27, theorem 1·2] gives a somewhat involved but explicit formula for
the quantised generating function, a quantum version of (3·3), from which Conjecture 4·7
can be derived easily.

4·5. Purity and positivity

As noted in Proposition 3·7, in general there is little hope of proving positivity of the
reduced partition function by showing that the dth coefficient counts a certain subset of
weight d coloured partitions. Rather than proving positivity combinatorially, i.e. by showing
that the coefficients count elements in a set, we may try to prove positivity via categorifica-
tion, i.e. by showing that these numbers are the dimensions of vector spaces. In this section
we establish the base camp for such an attempt, and prove Theorem 4·11, the positivity of the
unreduced q-refined partition function for certain abelian G(a, b, c) < SL3(C), by exactly
this kind of approach.

Our general approach to proving a conjecture like Conjecture 4·7 regarding a partition
function Z(q1/2, t) ∈Z((q−1/2))[[t]] is as follows:

(i) show that Z(q1/2, t)= χwt(H, q1/2, t) for H some Nr -graded, cohomologically
graded mixed Hodge structure (for example, arising in Donaldson–Thomas theory);

(ii) show that H is pure, in the sense that the i th cohomologically graded piece of H is
pure of weight i ;
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(iii) show that each Hd is concentrated entirely in even cohomological degree, or entirely
in odd cohomological degree, of the predicted parity.

The point is that for pure mixed Hodge structures, the only terms that contribute to the sum
in (4·7) have n = i .

We will use an extra geometric assumption to prove a purity statement. We do not expect
it to be essential.

THEOREM 4·9. Let G < SL3 be abelian, and such that the exceptional locus of
πG : YG→C3/G is mapped to the origin. Then the mixed Hodge structure Hstack

G is pure,
and Hstack

G is concentrated entirely in even or odd degree, depending on whether (d, d) is
even or odd, respectively.

We relegate the technical proof of this statement to the last section of our paper.

COROLLARY 4·10. Under the same assumption as Theorem 4·9, the mixed Hodge struc-
ture on H(a, b, c) is pure, and H(a, b, c)d is concentrated entirely in even or odd degree,
depending on whether (d, d)+ d0 is even or odd, respectively.

Proof. From (4·10) there is an inclusion of Nr+1-graded mixed Hodge structures

H(a, b, c)d ⊂Hstack(a, b, c)⊗tw Q1∞ .

The result follows from Theorem 4·9 and the definition of the twisted tensor product.

We deduce

THEOREM 4·11. Let G < SL3 be abelian, and assume that the exceptional locus of
πG : YG→C3/G is mapped to the origin. Then

Z G(a,b,c)(q1/2, t)=
∑
d∈Nr

gd(q)(−q1/2)d0+(d,d)td,

where gd ∈N[q±1].
Remark 4·12. If G =μr (a, b, c) < SL3 is cyclic, then it is easy to see that the condition that
the exceptional locus of πG : YG→C3/G be mapped to the origin is equivalent to (a, r)=
(b, r)= (c, r)= 1.

4·6. Proof of Theorem 4·9
In this section, the most technical in our paper, we give the proof of the purity result

Theorem 4·9. We begin with a geometric statement, which we used in Section 4·4; the main
idea of the proof is exactly the same as the proof of Nakamura’s conjecture in [8], as kindly
explained to us by Tom Bridgeland.

As before, let (Q, W ) be the McKay quiver of G(a, b, c) < SL(3,C) with its
potential (4·4). Define nd0 = (n, . . . , n) ∈NQ0 , a dimension vector on Q, ζ0 = (r −
1,−1, . . . ,−1) ∈QQ0 our fixed stability parameter on Q and U ⊂QQ0 the small open
neighbourhood around it in the space of stability parameters from Proposition 4·1.
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PROPOSITION 4·13. Let ζ ∈U be generic. The equivalences of categories � of (4·1) and
its inverse 
 induce for every positive integer n an isomorphism of stacks

fn : Torsn(YG)∼=M(Q, W )
ζ−sst
nd0

between the moduli stack of ζ -semistable representations of the QP (Q, W ) of dimen-
sion vector nd0 and the stack Torsn(YG) of torsion sheaves on YG of length n. If, further,
the exceptional locus of πG : YG→C3/G maps to the origin, then fn restricts to an
isomorphism of groupoids

fn,nilp : (Torsn(YG)(C))ex
∼= (M(Q, W )

ζ−sst
nd0

(C))nilp,

where on the right we restrict to nilpotent CQ-modules, and on the left we restrict to sheaves
set-theoretically supported on the exceptional locus of πG : YG→C3/G.

Proof. Since the equivalence � is derived from a Fourier–Mukai kernel Q, there is a canon-
ical way to try to upgrade it to a morphism of stacks — we take the Fourier–Mukai kernel
Q�OS to define a functor from S-flat families of coherent sheaves on S × YG to complexes
of OS ⊗C(Q, W )-modules on S. We need to show that the complexes we obtain this way
are supported in cohomological degree zero and are moreover S-flat families of ζ -semistable
modules. By [7, lemma 4·3] this statement follows from the claim that this construction gives
an isomorphism of groupoids of K -points for any K ⊃C, which furthermore proves that the
morphism of stacks is an isomorphism.

For simplicity we assume that K =C, as for a general field the proofs are unchanged. For
n = 1, we have Torsn(YG)∼= YG , so the result follows from Proposition 4·1. We prove the
general case by induction on n. First take F ∈Torsn(YG). Any such sheaf is a finite iterated
extension of point sheaves Oyi for (not necessarily distinct) points yi ∈ Y , and in particular
for some y ∈ YG there exists an exact sequence

0−→Oy −→F −→F ′ −→ 0.

The sheaf F ′ is then a torsion sheaf of length n − 1, and we get a distinguished triangle

�(Oy)−→�(F)−→�(F ′) [1]−→
in D(C(Q, W ) -mod). By induction, �(F ′) and �(Oy) are ζ -semistable representations
of (Q, W ), of dimension vectors n− 1 and 1 respectively. Hence �(F) is also an actual
representation, and also ζ -semistable. This gives a morphism

gn : Torsn(Y )(C)−→M(Q, W )
ζ−sst
nd0

(C)

that is injective on isomorphism classes and an isomorphism on morphism spaces since �

is an equivalence of categories.
To show that gn is surjective, we follow [8, section 8]. Suppose that M is a ζ -stable

C(Q, W )-representation of dimension vector nd0, for n > 1. Then for all ζ -(semi)stable
representations N of dimension vector (1, 1, 1), we have Hom(M, N )=Hom(N , M)= 0,
so Exti(M, N ) lives in degrees 1 and 2 only. Thus 
(M) is a 2-term complex of vector bun-

dles [L−2 d−→ L−1] on YG . The cohomology of this complex is compactly supported, and so d
is injective. So 
(M) is a coherent sheaf on Y living in degree (−1). This sheaf cannot have
a summand supported away from the exceptional locus E , since the corresponding summand
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of M would have negative dimension vector. So 
(M)[1] is set-theoretically supported on
E , and thus has a filtration by coherent sheaves on E . The Chern characters of these sheaves
sum to −n times the chern Character of the skyscraper sheaf of a point, which is a contra-
diction. Hence any semistable representation of dimension vector nd0 is strictly semistable
and in particular an iterated extension of stable representations of dimension vector d0. The
converse of the inductive argument above then shows that its image under 
 is a torsion
sheaf on Y . Thus gn is an isomorphism of groupoids as required.

Finally, suppose that F in the above argument is supported along the exceptional locus.
By our assumption on π , F is annihilated by all monomials xr ys zt , considered as functions
on YG , for r + s + t� 0. As such, �(F) is annihilated by multiplication by the central
elements ( ∑

0≤i≤r−1

xi

)r ( ∑
0≤i≤r−1

yi

)s ( ∑
0≤i≤r−1

zi

)t

in C(Q, W ), for r + s + t� 0 i.e. it is nilpotent. The converse works in the same way.

Proof of Theorem 4·9. We introduce an auxiliary mixed Hodge structure

Hstack(a, b, c)z-nilp =
⊕

d∈NQ0

Hc

(
Md(Q), ϕTr(W )d |z-nilp

)
by restricting the vanishing cycle mixed Hodge module to the reduced substack, the C-points
of which are defined by the condition that the action of z ∈C[x, y, z]� G is nilpotent. We
will prove that the purity and parity statements of the theorem are true of both Hstack(a, b, c)
and Hstack(a, b, c)z-nilp. By [13, theorem B] we have the following variant of (4·9):

Hstack(a, b, c)z-nilp ∼=
tw⊗

−∞ θ−→∞
Hc

(
Msst

θ (Q), ϕTr(W )|z-nilp

)
. (4·15)

The parity and purity statements for the left-hand side of (4·9) and (4·15) are equivalent to
the same parity and purity statements for the components of the tensor product decomposi-
tions. This is because purity is preserved by tensor product, L1/2 is pure, and the degree shift
introduced by the twisted monoidal product is equal to the part of the following equation
that we have put in square brackets:

(d, d)+ (e, e)+ [(e, d)− (d, e)]= (d+ e, d+ e) mod 2.

Under the derived equivalence �, complexes of C(Q, W )-modules with finite-
dimensional cohomology correspond to complexes of coherent sheaves with compactly
supported cohomology sheaves, and nilpotency for the cohomology of C(Q, W )-modules
corresponds to cohomology sheaves being set-theoretically supported on the exceptional
locus of πG : YG→C3/G.

Without affecting the definition of ζ -stability we may adjust our stability condition ζ so
that the dimension vector d0 = (1, . . . , 1) has slope zero, by adding some scalar multiple of
(1, . . . , 1) to ζ .

Let d be a dimension vector of nonzero slope with respect to ζ . If M is ζ -semistable and
d-dimensional, the sheaf 
(M) must be supported set-theoretically on the exceptional locus
of πG , for if G ⊂
(M) is the summand supported away from the exceptional locus, then
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dim(Supp(�(G)))= 0 and so �(G) is a direct summand of ρ with slope zero. It follows that
the support of ϕTr(W )d , restricted to the semistable locus, only contains nilpotent modules,
and in particular, modules for which the action of z is nilpotent. So for θ �= 0 there is an
equality

Hc

(
Msst

θ (Q), ϕTr(W )

)=Hc

(
Msst

θ (Q), ϕTr(W )|z-nilp

)
. (4·16)

If we let C∗ act on the edges of Q by scaling the edges x1, . . . , xr and leaving the other
edges invariant, the function Tr(W ) is a weight one eigenfunction for C∗, and so as a special
case of the dimensional reduction isomorphism (i.e. we “reduce” along the x direction, from
a categorically three-dimensional moduli problem to a two-dimensional one) we have

Hstack(a, b, c)z-nilp
d
∼=Hc(Rd,Q)⊗L(d,d)/2+r ,

where r =∑0≤i≤r−1 di di+c and

Rd =Repz-nilp
d (C[y, z]� G),

is the stack of C[y, z]� G-modules for which z acts nilpotently, and the underlying G-
representation is given by ⊕

0≤i≤r−1

ρ
⊕di
i .

Because of the constraint on z, for a given d there are finitely many possibilities for the
isomorphism class of the underlying C[z]� G-representation. We can partition the stack Rd

according to the isomorphism type of this representation, and it is straightforward to check as
in [11] that each piece of this partition has pure compactly supported cohomology, supported
entirely in even degree. From the resulting long exact sequences in compactly supported
cohomology, it follows that Rd has pure compactly supported cohomology, supported in
even degree. It follows that Hstack(a, b, c)z-nilp

G is pure, supported in degrees of the required
parity, and so the same is true of the terms in (4·9), for θ �= 0, as well as the right-hand side
of (4·15) for all θ .

Let θ = 0, so that by Proposition 4·13 the only semistable C(Q, W )-modules of slope θ

have dimension vector nd0 for some n and correspond under the derived equivalence � to
coherent sheaves with zero-dimensional support. As in [12] we can write

Hc

(
Msst

θ (Q), ϕTr(W )

)∼=Sym

(⊕
n≥1

Hc(YG,Ln)⊗Hc(pt /C∗)⊗L1/2

)
(4·17)

Hc

(
Msst

θ (Q), ϕTr(W )|nilp

)∼=Sym

(⊕
n≥1

Hc(YG,Ln|nilp)⊗Hc(pt /C∗)⊗L1/2

)
, (4·18)

where Ln is a pure rank one variation of mixed Hodge structure on YG , and Ln|nilp is its
restriction to the locus where z acts nilpotently. Since (nd0, nd0)= 0, we need to show that
the left-hand side of (4·17) is pure, of even degree, which is equivalent to showing that each
Hc(YG,Ln) is pure of odd degree, because of the extra twist by L1/2 on the right hand side.

https://doi.org/10.1017/S0305004119000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000252


Enumerating coloured partitions 503

We claim that in fact Ln|nilp
∼=Q

YG
⊗L−3/2. This follows from the (analytic) local triviality

of this mixed Hodge module, along with the claim that π1(YG)= 1. For this claim, note that
by [30], YG is a smooth toric variety, and since it has Euler characteristic r , the associated fan
contains a 3-dimensional cone. The claim then follows from [9, theorem 12·1·10]. Finally,
then, we have to prove that either of the isomorphic mixed Hodge structures

Hc(YG,Q)⊗L−3/2 ∼= (H(YG,Q)⊗L−3/2
)∗

are pure, with cohomology in entirely odd degree. The purity, of weight i , of Hi(YG,Q)

follows by a standard argument: the mth graded piece of the weight filtration is zero for m <

i since YG is smooth, on the other hand, YG contracts onto its exceptional locus E = π−1
G (0),

and the mth graded piece of the weight filtration on Hi(E,Q) is zero for m > i since E is
proper.

For the parity statement, from the composition of isomorphisms

H(YG,Q)∼=H(E,Q)∼=Hc(E,Q)

we deduce that it is enough to show that Hc(E,Q) is concentrated in even degree. Let
Z ⊂ YG be the locus cut out by the equation z = 0. Then the complement U = Z \ E admits
a Galois cover from C2 \ {0}, i.e. the locus inside C3 for which z = 0 and one of x, y are
nonzero. In particular, the only impure compactly supported cohomology of U is concen-
trated in odd cohomological degree, as the same is true of C2 \ {0}. Moreover, the compactly
supported cohomology of both Z and E are pure – purity for Z follows from purity of the
left hand side of (4·18) and our description of Ln . Then since the morphisms in the long
exact sequence in cohomology

−→Hi
c(U,Q)−→Hi

c(Z ,Q)−→Hi
c(E,Q)−→

are morphisms of mixed Hodge structures it follows that Hc(E,Q) is concentrated in even
degree.
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Appendix
Here we record the coefficients of the reduced μ3(1, 1, 1) partition function up to total

degree 24.
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Z

μ3(1,1,1)

red (t0, t1, t2)= 1+ t0 + 3t0t1 + 3t0t2
1 + t0t3

1 + 9t0t2
1 t2 + 6t0t3

1 t2 + 9t0t2
1 t2

2 + 9t2
0 t2

1 t2
2 + 15t0t3

1 t2
2+

3t0t2
1 t3

2 + 12t2
0 t3

1 t2
2 + 12t2

0 t2
1 t3

2 + 20t0t3
1 t3

2 + 18t3
0 t2

1 t3
2 + 46t2

0 t3
1 t3

2 + 15t0t3
1 t4

2 + 12t4
0 t2

1 t3
2+

44t3
0 t3

1 t3
2 + 66t2

0 t3
1 t4

2 + 6t0t3
1 t5

2 + 3t5
0 t2

1 t3
2 + 36t4

0 t3
1 t3

2 + 15t3
0 t4

1 t3
2 + 114t3

0 t3
1 t4

2 + 42t2
0 t3

1 t5
2+

t0t3
1 t6

2 + 18t5
0 t3

1 t3
2 + 36t4

0 t4
1 t3

2 + 96t4
0 t3

1 t4
2 + 45t3

0 t4
1 t4

2 + 126t3
0 t3

1 t5
2 + 10t2

0 t3
1 t6

2 + 45t5
0 t4

1 t3
2+

12t4
0 t5

1 t3
2 + 39t5

0 t3
1 t4

2 + 153t4
0 t4

1 t4
2 + 210t4

0 t3
1 t5

2 + 45t3
0 t4

1 t5
2 + 45t3

0 t3
1 t6

2 + 60t5
0 t5

1 t3
2+

6t6
0 t3

1 t4
2 + 144t5

0 t4
1 t4

2 + 54t4
0 t5

1 t4
2 + 210t5

0 t3
1 t5

2 + 234t4
0 t4

1 t5
2 + 120t4

0 t3
1 t6

2 + 15t3
0 t4

1 t6
2+

45t5
0 t6

1 t3
2 + 36t6

0 t4
1 t4

2 + 225t5
0 t5

1 t4
2 + 126t6

0 t3
1 t5

2 + 486t5
0 t4

1 t5
2 + 90t4

0 t5
1 t5

2 + 210t5
0 t3

1 t6
2+

120t4
0 t4

1 t6
2 + 18t5

0 t7
1 t3

2 + 90t6
0 t5

1 t4
2 + 201t5

0 t6
1 t4

2 + 42t7
0 t3

1 t5
2 + 504t6

0 t4
1 t5

2 + 468t5
0 t5

1 t5
2+

252t6
0 t3

1 t6
2 + 420t5

0 t4
1 t6

2 + 66t4
0 t5

1 t6
2 + 3t5

0 t8
1 t3

2 + 120t6
0 t6

1 t4
2 + 108t5

0 t7
1 t4

2 + 6t8
0 t3

1 t5
2+

261t7
0 t4

1 t5
2 + 354t5

0 t6
1 t5

2 + 846t6
0 t5

1 t5
2 + 210t7

0 t3
1 t6

2 + 840t6
0 t4

1 t6
2 + 429t5

0 t5
1 t6

2 + 18t4
0 t5

1 t7
2+

90t6
0 t7

1 t4
2 + 27t5

0 t8
1 t4

2 + 54t8
0 t4

1 t5
2 + 684t7

0 t5
1 t5

2 + 828t6
0 t6

1 t5
2 + 270t5

0 t7
1 t5

2 + 120t8
0 t3

1 t6
2+

1050t7
0 t4

1 t6
2 + 1296t6

0 t5
1 t6

2 + 306t5
0 t6

1 t6
2 + 126t5

0 t5
1 t7

2 + 36t6
0 t8

1 t4
2 + 216t8

0 t5
1 t5

2 + 975t7
0 t6

1 t5
2+

558t6
0 t7

1 t5
2 + 108t5

0 t8
1 t5

2 + 45t9
0 t3

1 t6
2 + 840t8

0 t4
1 t6

2 + 2319t7
0 t5

1 t6
2 + 1420t6

0 t6
1 t6

2 + 360t5
0 t7

1 t6
2+

378t6
0 t5

1 t7
2 + 129t5

0 t6
1 t7

2 + 6t6
0 t9

1 t4
2 + 504t8

0 t6
1 t5

2 + 810t7
0 t7

1 t5
2 + 252t6

0 t8
1 t5

2 + 10t10
0 t3

1 t6
2+

420t9
0 t4

1 t6
2 + 2586t8

0 t5
1 t6

2 + 3207t7
0 t6

1 t6
2 + 1284t6

0 t7
1 t6

2 + 252t5
0 t8

1 t6
2 + 630t7

0 t5
1 t7

2 + 852t6
0 t6

1 t7
2+

270t5
0 t7

1 t7
2 + 21t5

0 t6
1 t8

2 + 756t8
0 t7

1 t5
2 + 387t7

0 t8
1 t5

2 + 54t6
0 t9

1 t5
2 + t11

0 t3
1 t6

2 + 120t10
0 t4

1 t6
2 + 1755t9

0 t5
1 t6

2+
4668t8

0 t6
1 t6

2 + 3138t7
0 t7

1 t6
2 + 795t6

0 t8
1 t6

2 + 630t8
0 t5

1 t7
2 + 2355t7

0 t6
1 t7

2 + 1404t6
0 t7

1 t7
2 + 378t5

0 t8
1 t7

2+
147t6

0 t6
1 t8

2 + 108t5
0 t7

1 t8
2 + 756t8

0 t8
1 t5

2 + 96t7
0 t9

1 t5
2 + 15t11

0 t4
1 t6

2 + 660t10
0 t5

1 t6
2 + 4320t9

0 t6
1 t6

2+
5622t8

0 t7
1 t6

2 + 2022t7
0 t8

1 t6
2 + 216t6

0 t9
1 t6

2 + 378t9
0 t5

1 t7
2 + 3480t8

0 t6
1 t7

2 + 4140t7
0 t7

1 t7
2 + 1494t6

0 t8
1 t7

2+
441t7

0 t6
1 t8

2 + 738t6
0 t7

1 t8
2 + 378t5

0 t8
1 t8

2 + 18t5
0 t7

1 t9
2 + 504t8

0 t9
1 t5

2 + 9t7
0 t10

1 t5
2 + 105t11

0 t5
1 t6

2+
2200t10

0 t6
1 t6

2 + 6930t9
0 t7

1 t6
2 + 4920t8

0 t8
1 t6

2 + 693t7
0 t9

1 t6
2 + 126t10

0 t5
1 t7

2 + 2895t9
0 t6

1 t7
2 + 8172t8

0 t7
1 t7

2+
4365t7

0 t8
1 t7

2 + 504t6
0 t9

1 t7
2 + 735t8

0 t6
1 t8

2 + 2412t7
0 t7

1 t8
2 + 1845t6

0 t8
1 t8

2 + 150t6
0 t7

1 t9
2 + 252t5

0 t8
1 t9

2+
216t8

0 t10
1 t5

2 + 455t11
0 t6

1 t6
2 + 4950t10

0 t7
1 t6

2 + 7560t9
0 t8

1 t6
2 + 3270t8

0 t9
1 t6

2 + 81t7
0 t10

1 t6
2 + 18t11

0 t5
1 t7

2+
1284t10

0 t6
1 t7

2 + 9612t9
0 t7

1 t7
2 + 10800t8

0 t8
1 t7

2 + 2220t7
0 t9

1 t7
2 + 735t9

0 t6
1 t8

2 + 4680t8
0 t7

1 t8
2+

5346t7
0 t8

1 t8
2 + 756t6

0 t9
1 t8

2 + 546t7
0 t7

1 t9
2 + 1536t6

0 t8
1 t9

2 + 108t5
0 t8

1 t10
2 ++54t8

0 t11
1 t5

2+
1365t1

0 1t7
1 t6

2 + 7920t10
0 t8

1 t6
2 + 5670t9

0 t9
1 t6

2 + 1596t8
0 t10

1 t6
2 + 237t1

0 1t6
1 t7

2 + 5886t10
0 t7

1 t7
2+

18045t9
0 t8

1 t7
2 + 9114t8

0 t9
1 t7

2 + 324t7
0 t1

1 0t7
2 + 441t10

0 t6
1 t8

2 + 5580t9
0 t7

1 t8
2 + 11934t8

0 t8
1 t8

2+
4143t7

0 t9
1 t8

2 + 1134t8
0 t7

1 t9
2 + 4497t7

0 t8
1 t9

2 + 756t6
0 t9

1 t9
2 + 837t6

0 t8
1 t10

2 + 27t5
0 t8

1 t11
2 +

O((t0, t1, t2)25).
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