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Abstract

Andrews introduced the partition function Ck,i(n), called the singular overpartition function, which counts

the number of overpartitions of n in which no part is divisible by k and only parts ≡ ±i (mod k) may

be overlined. We prove that C6,2(n) is almost always divisible by 2k for any positive integer k. We also

prove that C6,2(n) and C12,4(n) are almost always divisible by 3k. Using a result of Ono and Taguchi on

nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of 2

satisfied by C6,2(n).
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1. Introduction and statement of results

In [5], Corteel and Lovejoy introduced overpartitions. An overpartition of n is

a nonincreasing sequence of natural numbers whose sum is n in which the first

occurrence of a number may be overlined. In order to give overpartition analogues

of Rogers–Ramanujan type theorems for the ordinary partition function, Andrews [1]

defined the so-called singular overpartitions. Andrews’ singular overpartition function

Ck,i(n) counts the number of overpartitions of n in which no part is divisible by k and

only parts ≡ ±i (mod k) may be overlined. For example, C3,1(4) = 10 with the relevant

partitions being 4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 +

1, 1 + 1 + 1 + 1. For k ≥ 3 and 1 ≤ i ≤ ⌊k/2⌋, the generating function for Ck,i(n) is

given by

∞
∑

n=0

Ck,i(n)qn
=

(qk; qk)∞(−qi; qk)∞(−qk−i; qk)∞

(q; q)∞
, (1.1)

where (a; q)∞ :=
∏∞

j=0(1 − aqj). Andrews proved the following Ramanujan-type con-

gruences satisfied by C3,1(n):

C3,1(9n + 3) ≡ C3,1(9n + 6) ≡ 0 (mod 3) for n ≥ 0.
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Chen et al. [4] later showed that Andrews’ congruences modulo 3 are two examples of

an infinite family of congruences modulo 3 which hold for the function C3,1(n). More

precisely, they showed that for prime p ≡ 3 (mod 4),

C3,1(p2k+1m) ≡ 0 (mod 3) for all k, m ≥ 0 with p ∤ m.

In [4], Chen et al. also studied the parity of Ck,i(n). They showed that C3,1(n) is

always even and that C6,2(n) is even (or odd) if and only if n is not (or is) a pentagonal

number. Recently, Aricheta [2] studied the parity of C3k,k(n). Represent any positive

integer k as k = 2am where the integer a ≥ 0 and m is odd. Assume further that 2a ≥ m.

Then Aricheta proved that C3k,k(n) is almost always even, that is,

lim
X→∞

#{0 < n ≤ X : C3k,k(n) ≡ 0 (mod 2)}

X
= 1.

Aricheta also showed that for any pair (k, i), Ck,i(n) satisfies infinitely many

Ramanujan-type congruences modulo any power of a prime coprime to 6k.

Let k be a fixed positive integer. Recently, Barman and Ray [3] proved that for any

positive integer k, C3,1(n) is almost always divisible by 2k and 3k. In this paper we

study divisibility of C6,2(n) and C12,4(n) by 2k and 3k. More precisely, we prove that

C6,2(n) is divisible by arbitrary powers of 2 for almost all n. We also prove that C6,2(n)

and C12,4(n) are divisible by arbitrary powers of 3 for almost all n.

THEOREM 1.1. Let k be a fixed positive integer. Then the set

{n ∈ N : C6,2(n) ≡ 0 (mod 2k)}

has arithmetic density 1.

Serre observed and Tate proved that the action of Hecke algebras on spaces of

modular forms of level 1 modulo 2 is locally nilpotent (see [10–12]). Ono and Taguchi

[9] showed that this phenomenon generalises to higher levels. Using this, we prove the

following congruence for C6,2(n) modulo arbitrary powers of 2.

THEOREM 1.2. Let n be a nonnegative integer. Then there is an integer s ≥ 0 such that

for every t ≥ 1 and distinct primes p1, . . . , ps+t coprime to 6,

C6,2

(

p1 · · · ps+t · n − 1

24

)

≡ 0 (mod 2t)

whenever n is coprime to p1, . . . , ps+t.

We further prove that the partition functions C6,2(n) and C12,4(n) are divisible by 3k

for almost all n.

THEOREM 1.3. Let k be a fixed positive integer. Then the set

{n ∈ N : C3ℓ,ℓ(n) ≡ (mod 3k)}

has arithmetic density 1 for ℓ = 2, 4.
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2. Preliminaries

In this section we recall some definitions and basic facts on modular forms and

eta-quotients. For more details, see [6, 8].

2.1. Spaces of modular forms. We first define the matrix groups

SL2(Z) :=

{[

a b

c d

]

: a, b, c, d ∈ Z, ad − bc = 1

}

,

Γ0(N) :=

{[

a b

c d

]

∈ SL2(Z) : c ≡ 0 (mod N)

}

,

Γ1(N) :=

{[

a b

c d

]

∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}

,

Γ(N) :=

{[

a b

c d

]

∈ SL2(Z) : a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N)

}

,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence subgroup

if Γ(N) ⊆ Γ for some N. The smallest N such that Γ(N) ⊆ Γ is called the level of Γ. For

example, Γ0(N) and Γ1(N) are congruence subgroups of level N.

Let H := {z ∈ C : Im(z) > 0} be the upper half of the complex plane. The group

GL+2 (R) =

{[

a b

c d

]

: a, b, c, d ∈ R and ad − bc > 0

}

acts on H by

[

a b

c d

]

z =
az + b

cz + d
.

We identify∞ with 1
0

and define

[

a b

c d

]

r

s
=

ar + bs

cr + ds
, where

r

s
∈ Q ∪ {∞}.

This gives an action of GL+2 (R) on the extended upper half-plane H∗ = H ∪ Q ∪ {∞}.

Suppose that Γ is a congruence subgroup of SL2(Z). A cusp of Γ is an equivalence

class in P1
= Q ∪ {∞} under the action of Γ.

The group GL+2 (R) also acts on functions f : H→ C. If f (z) is a meromorphic

function on H and ℓ is an integer, we define the slash operator |ℓ by

( f |ℓγ)(z) := (det γ)ℓ/2(cz + d)−ℓ f (γz), where γ =

[

a b

c d

]

∈ GL+2 (R).

DEFINITION 2.1. Let Γ be a congruence subgroup of level N. A holomorphic function

f : H→ C is called a modular form with integer weight ℓ on Γ if the following

statements hold.
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(1) We have

f

(

az + b

cz + d

)

= (cz + d)ℓ f (z) for all z ∈ H and all

[

a b

c d

]

∈ Γ.

(2) If γ ∈ SL2(Z), then ( f |ℓγ)(z) has a Fourier expansion of the form

( f |ℓγ)(z) =
∑

n≥0

aγ(n)qn
N ,

where qN := e2πiz/N .

For a positive integer ℓ, the complex vector space of modular forms of weight ℓ with

respect to a congruence subgroup Γ is denoted by Mℓ(Γ).

DEFINITION 2.2 [8, Definition 1.15]. If χ is a Dirichlet character modulo N, then we

say that a modular form f ∈ Mℓ(Γ1(N)) has Nebentypus character χ if

f

(

az + b

cz + d

)

= χ(d)(cz + d)ℓ f (z) for all z ∈ H and all

[

a b

c d

]

∈ Γ0(N).

The space of such modular forms is denoted by Mℓ(Γ0(N), χ).

2.2. Modularity of eta-quotients. In this paper the relevant modular forms are

those that arise from eta-quotients. The Dedekind eta-function η(z) is defined by

η(z) := q1/24(q; q)∞ = q1/24

∞
∏

n=1

(1 − qn),

where q := e2πiz and z ∈ H. A function f (z) is called an eta-quotient if it is of the form

f (z) =
∏

δ|N

η(δz)rδ ,

where N is a positive integer and the rδ are integers.

We now recall two theorems from [8, page 18] on modularity of eta-quotients. We

will use these two results to verify modularity of certain eta-quotients appearing in the

proofs of our main results.

THEOREM 2.3 [8, Theorem 1.64]. If f (z) =
∏

δ|N η(δz)rδ is an eta-quotient such that

ℓ = 1
2

∑

δ|N rδ ∈ Z,
∑

δ|N δrδ ≡ 0 (mod 24) and

∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f (z) satisfies

f

(

az + b

cz + d

)

= χ(d)(cz + d)ℓ f (z) for every

[

a b

c d

]

∈ Γ0(N).

Here the character χ is defined by χ(d) :=
(

(−1)ℓs

d

)

, where s :=
∏

δ|N δ
rδ and

(

·
·

)

is the

Jacobi symbol.
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Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3 and

that the associated weight ℓ is a positive integer. If f (z) is holomorphic at all of the

cusps of Γ0(N), then f (z) ∈ Mℓ(Γ0(N), χ). The following theorem gives the necessary

criterion for determining orders of an eta-quotient at cusps.

THEOREM 2.4 [8, Theorem 1.65]. Let c, d and N be positive integers with d | N and

gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 2.3 for N,

then the order of vanishing of f (z) at the cusp (c/d) is

N

24

∑

δ|N

gcd(d, δ)2rδ

gcd(d, N/d)dδ
.

Finally, we recall the definition of Hecke operators. Let m be a positive integer and

f (z) =
∑∞

n=0 a(n)qn ∈ Mℓ(Γ0(N), χ). Then the action of the Hecke operator Tm on f (z)

is defined by

f (z)|Tm :=

∞
∑

n=0

(

∑

d|gcd(n,m)

χ(d)dℓ−1a

(

nm

d2

))

qn.

In particular, if m = p is prime, then

f (z)|Tp :=

∞
∑

n=0

(

a(pn) + χ(p)pℓ−1a

(

n

p

))

qn.

We adopt the convention that a(n) = 0 when n is a nonnegative integer.

3. Proof of Theorem 1.1

Using (1.1), we find that the generating function of C6,2(n) is given by

∞
∑

n=0

C6,2(n)qn
=

(q4; q4)∞(q6; q6)2
∞

(q; q)∞(q2; q2)∞(q12; q12)∞
. (3.1)

Given a prime p, let

Ap(z) =

∞
∏

n=1

(1 − q48n)p

(1 − q48pn)
=
ηp(48z)

η(48pz)
.

By the binomial theorem,

A
pk

p (z) =
ηpk+1

(48z)

ηpk
(48pz)

≡ 1 (mod pk+1).

Define Bp,k(z) by

Bp,k(z) =

(

η(96z)η(144z)2

η(24z)η(48z)η(288z)

)

A
pk

p (z). (3.2)
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TABLE 1. Calculation of values of L for Theorem 1.1.

d | 576
gcd(d, 48)2

gcd(d, 288)2

gcd(d, 96)2

gcd(d, 288)2

gcd(d, 144)2

gcd(d, 288)2

gcd(d, 24)2

gcd(d, 288)2
L

1, 2, 3, 4, 6, 8,

12, 24

1 1 1 1 9 · 2k − 12

16, 48 1 1 1 0.2500 9 · 2k − 3

32, 64, 96, 192 0.2500 1 0.2500 0.0625 0.7500

9, 18, 36, 72 0.1111 0.1111 1 0.1111 2k
+ 1.33

144 0.1111 0.1111 1 0.0278 2k
+ 2.33

288, 576 0.0278 0.1111 0.2500 0.0069 0.0833

Modulo pk+1,

Bp,k(z) ≡
η(96z)η(144z)2

η(24z)η(48z)η(288z)
= q

(

(q96; q96)∞(q144; q144)2
∞

(q24; q24)∞(q48; q48)∞(q288; q288)∞

)

. (3.3)

Combining (3.1) and (3.3),

Bp,k(z) ≡

∞
∑

n=0

C6,2(n)q24n+1 (mod pk+1). (3.4)

PROOF OF THEOREM 1.1. We put p = 2 in (3.2) to obtain

B2,k(z) =

(

η(96z)η(144z)2

η(24z)η(48z)η(288z)

)

A2k

2 (z) =
η(48z)2k+1−1 η(144z)2

η(96z)2k−1 η(24z)η(288z)
.

Now, B2,k is an eta-quotient with N = 576. The cusps of Γ0(576) are represented by

fractions c/d where d | 576 and gcd(c, d) = 1 (see [7, page 5]). By Theorem 2.4, we

find that B2,k(z) is holomorphic at a cusp c/d if and only if

gcd(d, 48)2

48

(

2k+1 − 1
)

+
gcd(d, 96)2

96

(

1 − 2k)

+
gcd(d, 144)2

72
−

gcd(d, 24)2

24
−

gcd(d, 288)2

288
≥ 0,

that is, if and only if

L := 6
gcd(d, 48)2

gcd(d, 288)2

(

2k+1 − 1
)

+ 3
gcd(d, 96)2

gcd(d, 288)2

(

1 − 2k)

+ 4
gcd(d, 144)2

gcd(d, 288)2
− 12

gcd(d, 24)2

gcd(d, 288)2
− 1 ≥ 0.

Table 1 shows the possible values of L. The table was prepared using MATLAB.

Since L ≥ 0 for all d | 576, we see that B2,k(z) is holomorphic at every cusp c/d.

From Theorem 2.3, the weight of B2,k(z) is ℓ = 2k−1 and the associated character for
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B2,k(z) is

χ1 =

(

23·2k
+132k

+1

•

)

.

Finally, it follows from Theorem 2.3 that B2,k(z) ∈ M2k−1 (Γ0(576), χ1) for k ≥ 2. For

given any positive integer m, by a deep theorem of Serre [8, page 43], if f (z) ∈

Mℓ(Γ0(N), χ) has Fourier expansion f (z) =
∑∞

n=0 c(n)qn ∈ Z[[q]], then there is a con-

stant α > 0 such that

#{n ≤ X : c(n) . 0 (mod m)} = O

(

X

(log X)α

)

.

This yields

lim
X→∞

#{n ≤ X : c(n) ≡ 0 (mod m)}

X
= 1.

Since B2,k(z) ∈ M2k−1 (Γ0(576), χ1), the Fourier coefficients of B2,k(z) are almost always

divisible by m = 2k. Now using (3.4) completes the proof of the theorem. �

4. Proof of Theorem 1.2

We prove Theorem 1.2 using nilpotency of Hecke operators. We use the following

result which is implied by a much more general result of Ono and Taguchi [9, Theorem

1.3]. This result was also used by Aricheta (see, for example, [2, Theorem 4.5]).

THEOREM 4.1. Let n be a nonnegative integer and k be a positive integer. Let χ be a

quadratic Dirichlet character of conductor 9 · 2n. There is an integer c ≥ 0 such that

for every f (z) ∈ Mk(Γ0(9 · 2a), χ) ∩ Z[q] and every t ≥ 1,

f (z)|Tp1
|Tp2
| · · · |Tpc+t

≡ 0 (mod 2t)

whenever the primes p1, . . . , pc+t are coprime to 6.

PROOF OF THEOREM 1.2. Taking p = 2 in (3.4),

B2,k(z) ≡

∞
∑

n=0

C6,2(n)q24n+1 (mod 2k+1).

This yields

B2,k(z) :=

∞
∑

n=0

A(n)qn ≡

∞
∑

n=0

C6,2

(

n − 1

24

)

qn (mod 2k+1). (4.1)

Note that B2,k(z) ∈ M2k−1 (Γ0(N), χ1), where the level N = 576 = 9 · 26. Using

Theorem 4.1, we find that there is an integer s ≥ 0 such that for any t ≥ 1,

B2,k(z)|Tp1
|Tp2
| · · · |Tps+t

≡ 0 (mod 2t)

whenever p1, . . . , ps+t are coprime to 6. It follows from the definition of Hecke

operators that if p1, . . . , ps+t are distinct primes and if n is coprime to p1 · · · ps+t
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then

A(p1 · · · ps+t · n) ≡ 0 (mod 2t). (4.2)

Combining (4.1) and (4.2) completes the proof of the theorem. �

5. Proof of Theorem 1.3

The generating function of C12,4(n) is given by

∞
∑

n=0

C12,4(n)qn
=

(q8; q8)∞(q12; q12)2
∞

(q; q)∞(q4; q4)∞(q24; q24)∞
. (5.1)

Given a prime p, let

Ep(z) =

∞
∏

n=1

(1 − q32n)p

(1 − q32pn)
=
ηp(32z)

η(32pz)
.

From the binomial theorem,

E
pk

p (z) =
ηpk+1

(32z)

ηpk
(32pz)

≡ 1 (mod pk+1).

Define Rp,k(z) by

Rp,k(z) =

(

η(64z)η(96z)2

η(8z)η(32z)η(192z)

)

E
pk

p (z). (5.2)

Modulo pk+1,

Rp,k(z) ≡
η(64z)η(96z)2

η(8z)η(32z)η(192z)
= q

(

(q64; q64)∞(q96; q96)2
∞

(q8; q8)∞(q32; q32)∞(q192; q192)∞

)

. (5.3)

Combining (5.1) and (5.3),

Rp,k(z) ≡

∞
∑

n=0

C12,4(n)q8n+1 (mod pk+1). (5.4)

PROOF OF THEOREM 1.3. We put p = 3 in (5.2) to obtain

R3,k(z) =

(

η(64z)η(96z)2

η(8z)η(32z)η(192z)

)

E3k

3 (z) =
η(32z)3k+1−1 η(64z)

η(96z)3k−2 η(8z)η(192z)
. (5.5)

Now, R3,k is an eta-quotient with N = 192. The cusps of Γ0(192) are represented

by fractions c/d where d | 192 and gcd(c, d) = 1. Hence, by Theorem 2.4, R3,k(z) is

holomorphic at a cusp c/d if and only if

gcd(d, 32)2

32

(

3k+1 − 1
)

+
gcd(d, 64)2

64
−

gcd(d, 8)2

8

−
gcd(d, 96)2

96

(

3k − 2
)

−
gcd(d, 192)2

192
≥ 0,
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TABLE 2. Calculation of S for Theorem 1.3.

d | 192
gcd(d, 96)2

gcd(d, 192)2

gcd(d, 64)2

gcd(d, 192)2

gcd(d, 8)2

gcd(d, 192)2

gcd(d, 32)2

gcd(d, 192)2
S

1, 2, 4, 8 1 1 1 1 16 · 3k − 24

3, 6, 12, 24 1 0.1111 0.1111 0.1111 0

16 1 1 0.2500 1 16 · 3k − 6

32 1 1 0.0625 1 16 · 3k − 1.5

48 1 0.1111 0.0278 0.1111 2

64 0.2500 1 0.0156 0.2500 4.3k
+ 1.12

96 1 0.1111 0.0069 0.1111 2.5

192 0.2500 0.1111 0.0017 0.0278 0.1250

that is, if and only if

S := 6
gcd(d, 32)2

gcd(d, 192)2

(

3k+1 − 1
)

+ 3
gcd(d, 64)2

gcd(d, 192)2

− 24
gcd(d, 8)2

gcd(d, 192)2
− 2

gcd(d, 96)2

gcd(d, 192)2

(

3k − 2
)

− 1 ≥ 0.

Table 2 shows all the possible values of S. The table was prepared using MATLAB.

Since S ≥ 0 for all d | 192 and k ≥ 1, it follows that R3,k(z) is holomorphic at every

cusp c/d. Using Theorem 2.3, we find that the weight of R3,k(z) is ℓ = 3k. Also, the

associated character for R3,k(z) is given by

χ3 =

(

−210·3k
+233−k

+1

•

)

.

Finally, from Theorem 2.3, R3,k(z) ∈ M3k (Γ0(192), χ3) for k ≥ 1 and, by Serre’s density

result, the Fourier coefficients of R3,k(z) are almost always divisible by 3k. This proves

that C12,4(n) is divisible by 3k for almost all n because of (5.4).

We next put p = 3 in (3.2) to obtain

B3,k(z) =

(

η(96z)η(144z)2

η(24z)η(48z)η(288z)

)

A3k

3 (z) =
η(48z)3k+1−1 η(96z)

η(144z)3k−2 η(24z)η(288z)
. (5.6)

As before, the cusps of Γ0(576) are represented by fractions c/d where d | 576 and

gcd(c, d) = 1. By Theorem 2.4, B3,k(z) is holomorphic at a cusp c/d if and only if

gcd(d, 48)2

48

(

3k+1 − 1
)

+
gcd(d, 144)2

144

(

2 − 3k)

+
gcd(d, 96)2

96
−

gcd(d, 24)2

24
−

gcd(d, 288)2

288
≥ 0,
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that is, if and only if

Q := 6
gcd(d, 48)2

gcd(d, 288)2

(

3k+1 − 1
)

+ 2
gcd(d, 144)2

gcd(d, 288)2

(

2 − 3k)

+ 3
gcd(d, 96)2

gcd(d, 288)2
− 12

gcd(d, 24)2

gcd(d, 288)2
− 1 ≥ 0.

From Table 1, we find that Q ≥ 0 for all d | 576. As before, using Theorem 2.3, we find

that B3,k(z) ∈ M3k (Γ0(576), χ2), where the character χ2 is given by

χ2 =

(

−28·3k
+133k

+1

•

)

.

Using the same reasoning and (3.4), we find that C6,2(n) is divisible by 3k for almost

all n ≥ 0. This completes the proof of the theorem. �
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