DIVISIBILITY OF CERTAIN SINGULAR OVERPARTITIONS BY POWERS OF 2 AND 3

AJIT SINGH[®] and RUPAM BARMAN[®]

(Received 14 October 2020; accepted 30 November 2020; first published online 14 January 2021)

Abstract

Andrews introduced the partition function $\overline{C}_{k,i}(n)$, called the singular overpartition function, which counts the number of overpartitions of *n* in which no part is divisible by *k* and only parts $\equiv \pm i \pmod{k}$ may be overlined. We prove that $\overline{C}_{6,2}(n)$ is almost always divisible by 2^k for any positive integer *k*. We also prove that $\overline{C}_{6,2}(n)$ and $\overline{C}_{12,4}(n)$ are almost always divisible by 3^k . Using a result of Ono and Taguchi on nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of 2 satisfied by $\overline{C}_{6,2}(n)$.

2020 Mathematics subject classification: primary 11P83; secondary 05A17.

Keywords and phrases: arithmetic density, eta-quotients, modular forms, singular overpartitions.

1. Introduction and statement of results

In [5], Corteel and Lovejoy introduced overpartitions. An overpartition of *n* is a nonincreasing sequence of natural numbers whose sum is *n* in which the first occurrence of a number may be overlined. In order to give overpartition analogues of Rogers–Ramanujan type theorems for the ordinary partition function, Andrews [1] defined the so-called singular overpartitions. Andrews' singular overpartition function $\overline{C}_{k,i}(n)$ counts the number of overpartitions of *n* in which no part is divisible by *k* and only parts $\equiv \pm i \pmod{k}$ may be overlined. For example, $\overline{C}_{3,1}(4) = 10$ with the relevant partitions being $4, \overline{4}, 2 + 2, \overline{2} + 2, 2 + 1 + 1, \overline{2} + 1 + 1, 2 + \overline{1} + 1, \overline{2} + \overline{1} + 1, 1 + 1 + 1 + 1, \overline{1} + 1 + 1 + 1$. For $k \ge 3$ and $1 \le i \le \lfloor k/2 \rfloor$, the generating function for $\overline{C}_{k,i}(n)$ is given by

$$\sum_{n=0}^{\infty} \overline{C}_{k,i}(n)q^n = \frac{(q^k; q^k)_{\infty}(-q^i; q^k)_{\infty}(-q^{k-i}; q^k)_{\infty}}{(q; q)_{\infty}},$$
(1.1)

where $(a; q)_{\infty} := \prod_{j=0}^{\infty} (1 - aq^j)$. And rews proved the following Ramanujan-type congruences satisfied by $\overline{C}_{3,1}(n)$:

$$\overline{C}_{3,1}(9n+3) \equiv \overline{C}_{3,1}(9n+6) \equiv 0 \pmod{3} \quad \text{for } n \ge 0.$$

^{© 2021} Australian Mathematical Publishing Association Inc.

239

Chen *et al.* [4] later showed that Andrews' congruences modulo 3 are two examples of an infinite family of congruences modulo 3 which hold for the function $\overline{C}_{3,1}(n)$. More precisely, they showed that for prime $p \equiv 3 \pmod{4}$,

$$\overline{C}_{3,1}(p^{2k+1}m) \equiv 0 \pmod{3} \text{ for all } k, m \ge 0 \text{ with } p \nmid m.$$

In [4], Chen *et al.* also studied the parity of $\overline{C}_{k,i}(n)$. They showed that $\overline{C}_{3,1}(n)$ is always even and that $\overline{C}_{6,2}(n)$ is even (or odd) if and only if *n* is not (or is) a pentagonal number. Recently, Aricheta [2] studied the parity of $\overline{C}_{3k,k}(n)$. Represent any positive integer *k* as $k = 2^a m$ where the integer $a \ge 0$ and *m* is odd. Assume further that $2^a \ge m$. Then Aricheta proved that $\overline{C}_{3k,k}(n)$ is almost always even, that is,

$$\lim_{X \to \infty} \frac{\#\{0 < n \le X : \overline{C}_{3k,k}(n) \equiv 0 \pmod{2}\}}{X} = 1.$$

Aricheta also showed that for any pair (k, i), $\overline{C}_{k,i}(n)$ satisfies infinitely many Ramanujan-type congruences modulo any power of a prime coprime to 6k.

Let k be a fixed positive integer. Recently, Barman and Ray [3] proved that for any positive integer k, $\overline{C}_{3,1}(n)$ is almost always divisible by 2^k and 3^k . In this paper we study divisibility of $\overline{C}_{6,2}(n)$ and $\overline{C}_{12,4}(n)$ by 2^k and 3^k . More precisely, we prove that $\overline{C}_{6,2}(n)$ is divisible by arbitrary powers of 2 for almost all n. We also prove that $\overline{C}_{6,2}(n)$ and $\overline{C}_{12,4}(n)$ are divisible by arbitrary powers of 3 for almost all n.

THEOREM 1.1. Let k be a fixed positive integer. Then the set

$$\{n \in \mathbb{N} : C_{6,2}(n) \equiv 0 \pmod{2^k}\}$$

has arithmetic density 1.

Serre observed and Tate proved that the action of Hecke algebras on spaces of modular forms of level 1 modulo 2 is locally nilpotent (see [10–12]). Ono and Taguchi [9] showed that this phenomenon generalises to higher levels. Using this, we prove the following congruence for $\overline{C}_{6,2}(n)$ modulo arbitrary powers of 2.

THEOREM 1.2. Let *n* be a nonnegative integer. Then there is an integer $s \ge 0$ such that for every $t \ge 1$ and distinct primes p_1, \ldots, p_{s+t} coprime to 6,

$$\overline{C}_{6,2}\left(\frac{p_1\cdots p_{s+t}\cdot n-1}{24}\right)\equiv 0 \pmod{2^t}$$

whenever *n* is coprime to p_1, \ldots, p_{s+t} .

We further prove that the partition functions $\overline{C}_{6,2}(n)$ and $\overline{C}_{12,4}(n)$ are divisible by 3^k for almost all *n*.

THEOREM 1.3. Let k be a fixed positive integer. Then the set

$$\{n \in \mathbb{N} : C_{3\ell,\ell}(n) \equiv \pmod{3^k}\}$$

has arithmetic density 1 for $\ell = 2, 4$ *.*

2. Preliminaries

In this section we recall some definitions and basic facts on modular forms and eta-quotients. For more details, see [6, 8].

2.1. Spaces of modular forms. We first define the matrix groups

$$SL_{2}(\mathbb{Z}) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\},$$

$$\Gamma_{0}(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_{2}(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\},$$

$$\Gamma_{1}(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_{0}(N) : a \equiv d \equiv 1 \pmod{N} \right\},$$

$$\Gamma(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_{2}(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N} \text{ and } b \equiv c \equiv 0 \pmod{N} \right\},$$

where *N* is a positive integer. A subgroup Γ of $SL_2(\mathbb{Z})$ is called a congruence subgroup if $\Gamma(N) \subseteq \Gamma$ for some *N*. The smallest *N* such that $\Gamma(N) \subseteq \Gamma$ is called the level of Γ . For example, $\Gamma_0(N)$ and $\Gamma_1(N)$ are congruence subgroups of level *N*.

Let $\mathbb{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ be the upper half of the complex plane. The group

$$\operatorname{GL}_{2}^{+}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \text{ and } ad - bc > 0 \right\}$$

acts on \mathbb{H} by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} z = \frac{az+b}{cz+d}.$$

We identify ∞ with $\frac{1}{0}$ and define

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{r}{s} = \frac{ar+bs}{cr+ds}, \quad \text{where } \frac{r}{s} \in \mathbb{Q} \cup \{\infty\}.$$

This gives an action of $GL_2^+(\mathbb{R})$ on the extended upper half-plane $\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$. Suppose that Γ is a congruence subgroup of $SL_2(\mathbb{Z})$. A cusp of Γ is an equivalence class in $\mathbb{P}^1 = \mathbb{Q} \cup \{\infty\}$ under the action of Γ .

The group $\operatorname{GL}_2^+(\mathbb{R})$ also acts on functions $f : \mathbb{H} \to \mathbb{C}$. If f(z) is a meromorphic function on \mathbb{H} and ℓ is an integer, we define the slash operator $|_{\ell}$ by

$$(f|_{\ell}\gamma)(z) := (\det \gamma)^{\ell/2}(cz+d)^{-\ell}f(\gamma z), \text{ where } \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_{2}^{+}(\mathbb{R}).$$

DEFINITION 2.1. Let Γ be a congruence subgroup of level *N*. A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is called a modular form with integer weight ℓ on Γ if the following statements hold.

(1) We have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^{\ell} f(z)$$
 for all $z \in \mathbb{H}$ and all $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$.

(2) If $\gamma \in SL_2(\mathbb{Z})$, then $(f|_{\ell}\gamma)(z)$ has a Fourier expansion of the form

$$(f|_{\ell}\gamma)(z) = \sum_{n\geq 0} a_{\gamma}(n)q_N^n,$$

where $q_N := e^{2\pi i z/N}$.

For a positive integer ℓ , the complex vector space of modular forms of weight ℓ with respect to a congruence subgroup Γ is denoted by $M_{\ell}(\Gamma)$.

DEFINITION 2.2 [8, Definition 1.15]. If χ is a Dirichlet character modulo N, then we say that a modular form $f \in M_{\ell}(\Gamma_1(N))$ has Nebentypus character χ if

$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^{\ell}f(z)$$
 for all $z \in \mathbb{H}$ and all $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N)$.

The space of such modular forms is denoted by $M_{\ell}(\Gamma_0(N), \chi)$.

2.2. Modularity of eta-quotients. In this paper the relevant modular forms are those that arise from eta-quotients. The Dedekind eta-function $\eta(z)$ is defined by

$$\eta(z) := q^{1/24}(q;q)_{\infty} = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$$

where $q := e^{2\pi i z}$ and $z \in \mathbb{H}$. A function f(z) is called an eta-quotient if it is of the form

$$f(z) = \prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}$$

where *N* is a positive integer and the r_{δ} are integers.

We now recall two theorems from [8, page 18] on modularity of eta-quotients. We will use these two results to verify modularity of certain eta-quotients appearing in the proofs of our main results.

THEOREM 2.3 [8, Theorem 1.64]. If $f(z) = \prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}$ is an eta-quotient such that $\ell = \frac{1}{2} \sum_{\delta \mid N} r_{\delta} \in \mathbb{Z}, \sum_{\delta \mid N} \delta r_{\delta} \equiv 0 \pmod{24}$ and

$$\sum_{\delta|N} \frac{N}{\delta} r_{\delta} \equiv 0 \pmod{24},$$

then f(z) satisfies

$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^{\ell}f(z) \quad for \ every \ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N).$$

Here the character χ is defined by $\chi(d) := \left(\frac{(-1)^{\ell_s}}{d}\right)$, where $s := \prod_{\delta \mid N} \delta^{r_{\delta}}$ and $\left(\frac{1}{2}\right)$ is the Jacobi symbol.

[4]

A. Singh and R. Barman

Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3 and that the associated weight ℓ is a positive integer. If f(z) is holomorphic at all of the cusps of $\Gamma_0(N)$, then $f(z) \in M_{\ell}(\Gamma_0(N), \chi)$. The following theorem gives the necessary criterion for determining orders of an eta-quotient at cusps.

THEOREM 2.4 [8, Theorem 1.65]. Let c, d and N be positive integers with d | N and gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 2.3 for N, then the order of vanishing of f(z) at the cusp (c/d) is

$$\frac{N}{24} \sum_{\delta \mid N} \frac{\gcd(d,\delta)^2 r_{\delta}}{\gcd(d,N/d)d\delta}$$

Finally, we recall the definition of Hecke operators. Let *m* be a positive integer and $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_{\ell}(\Gamma_0(N), \chi)$. Then the action of the Hecke operator T_m on f(z) is defined by

$$f(z)|T_m := \sum_{n=0}^{\infty} \left(\sum_{d|\gcd(n,m)} \chi(d) d^{\ell-1} a\left(\frac{nm}{d^2}\right)\right) q^n.$$

In particular, if m = p is prime, then

$$f(z)|T_p := \sum_{n=0}^{\infty} \left(a(pn) + \chi(p)p^{\ell-1}a\left(\frac{n}{p}\right) \right) q^n.$$

We adopt the convention that a(n) = 0 when *n* is a nonnegative integer.

3. Proof of Theorem 1.1

Using (1.1), we find that the generating function of $\overline{C}_{6,2}(n)$ is given by

$$\sum_{n=0}^{\infty} \overline{C}_{6,2}(n)q^n = \frac{(q^4; q^4)_{\infty}(q^6; q^6)_{\infty}^2}{(q; q)_{\infty}(q^2; q^2)_{\infty}(q^{12}; q^{12})_{\infty}}.$$
(3.1)

Given a prime *p*, let

$$A_p(z) = \prod_{n=1}^{\infty} \frac{(1-q^{48n})^p}{(1-q^{48pn})} = \frac{\eta^p(48z)}{\eta(48pz)}.$$

By the binomial theorem,

$$A_p^{p^k}(z) = \frac{\eta^{p^{k+1}}(48z)}{\eta^{p^k}(48pz)} \equiv 1 \pmod{p^{k+1}}.$$

Define $B_{p,k}(z)$ by

$$B_{p,k}(z) = \left(\frac{\eta(96z)\eta(144z)^2}{\eta(24z)\eta(48z)\eta(288z)}\right) A_p^{p^k}(z).$$
(3.2)

d 576	$\frac{\gcd(d,48)^2}{\gcd(d,288)^2}$	$\frac{\gcd(d,96)^2}{\gcd(d,288)^2}$	$\frac{\gcd(d, 144)^2}{\gcd(d, 288)^2}$	$\frac{\gcd(d,24)^2}{\gcd(d,288)^2}$	L
1, 2, 3, 4, 6, 8,	1	1	1	1	$9 \cdot 2^k - 12$
12,24					
16,48	1	1	1	0.2500	$9 \cdot 2^{k} - 3$
32, 64, 96, 192	0.2500	1	0.2500	0.0625	0.7500
9, 18, 36, 72	0.1111	0.1111	1	0.1111	$2^{k} + 1.33$
144	0.1111	0.1111	1	0.0278	$2^{k} + 2.33$
288, 576	0.0278	0.1111	0.2500	0.0069	0.0833

TABLE 1. Calculation of values of L for Theorem 1.1.

Modulo p^{k+1} ,

$$B_{p,k}(z) \equiv \frac{\eta(96z)\eta(144z)^2}{\eta(24z)\eta(48z)\eta(288z)} = q \left(\frac{(q^{96};q^{96})_{\infty}(q^{144};q^{144})_{\infty}^2}{(q^{24};q^{24})_{\infty}(q^{48};q^{48})_{\infty}(q^{288};q^{288})_{\infty}}\right).$$
(3.3)

Combining (3.1) and (3.3),

$$B_{p,k}(z) \equiv \sum_{n=0}^{\infty} \overline{C}_{6,2}(n) q^{24n+1} \pmod{p^{k+1}}.$$
(3.4)

PROOF OF THEOREM 1.1. We put p = 2 in (3.2) to obtain

$$B_{2,k}(z) = \left(\frac{\eta(96z)\eta(144z)^2}{\eta(24z)\eta(48z)\eta(288z)}\right) A_2^{2^k}(z) = \frac{\eta(48z)^{2^{k+1}-1}\eta(144z)^2}{\eta(96z)^{2^{k}-1}\eta(24z)\eta(288z)}.$$

Now, $B_{2,k}$ is an eta-quotient with N = 576. The cusps of $\Gamma_0(576)$ are represented by fractions c/d where $d \mid 576$ and gcd(c, d) = 1 (see [7, page 5]). By Theorem 2.4, we find that $B_{2,k}(z)$ is holomorphic at a cusp c/d if and only if

$$\frac{\gcd(d,48)^2}{48}(2^{k+1}-1) + \frac{\gcd(d,96)^2}{96}(1-2^k) + \frac{\gcd(d,144)^2}{72} - \frac{\gcd(d,24)^2}{24} - \frac{\gcd(d,288)^2}{288} \ge 0,$$

that is, if and only if

$$\begin{split} L &:= 6 \frac{\gcd(d, 48)^2}{\gcd(d, 288)^2} (2^{k+1} - 1) + 3 \frac{\gcd(d, 96)^2}{\gcd(d, 288)^2} (1 - 2^k) \\ &+ 4 \frac{\gcd(d, 144)^2}{\gcd(d, 288)^2} - 12 \frac{\gcd(d, 24)^2}{\gcd(d, 288)^2} - 1 \ge 0. \end{split}$$

Table 1 shows the possible values of L. The table was prepared using MATLAB.

Since $L \ge 0$ for all $d \mid 576$, we see that $B_{2,k}(z)$ is holomorphic at every cusp c/d. From Theorem 2.3, the weight of $B_{2,k}(z)$ is $\ell = 2^{k-1}$ and the associated character for $B_{2,k}(z)$ is

$$\chi_1 = \left(\frac{2^{3 \cdot 2^k + 1} 3^{2^k + 1}}{\bullet}\right).$$

Finally, it follows from Theorem 2.3 that $B_{2,k}(z) \in M_{2^{k-1}}(\Gamma_0(576), \chi_1)$ for $k \ge 2$. For given any positive integer *m*, by a deep theorem of Serre [8, page 43], if $f(z) \in M_{\ell}(\Gamma_0(N), \chi)$ has Fourier expansion $f(z) = \sum_{n=0}^{\infty} c(n)q^n \in \mathbb{Z}[[q]]$, then there is a constant $\alpha > 0$ such that

$$#\{n \le X : c(n) \not\equiv 0 \pmod{m}\} = O\left(\frac{X}{(\log X)^{\alpha}}\right).$$

This yields

$$\lim_{X \to \infty} \frac{\#\{n \le X : c(n) \equiv 0 \pmod{m}\}}{X} = 1.$$

Since $B_{2,k}(z) \in M_{2^{k-1}}(\Gamma_0(576), \chi_1)$, the Fourier coefficients of $B_{2,k}(z)$ are almost always divisible by $m = 2^k$. Now using (3.4) completes the proof of the theorem.

4. Proof of Theorem 1.2

We prove Theorem 1.2 using nilpotency of Hecke operators. We use the following result which is implied by a much more general result of Ono and Taguchi [9, Theorem 1.3]. This result was also used by Aricheta (see, for example, [2, Theorem 4.5]).

THEOREM 4.1. Let *n* be a nonnegative integer and *k* be a positive integer. Let χ be a quadratic Dirichlet character of conductor $9 \cdot 2^n$. There is an integer $c \ge 0$ such that for every $f(z) \in M_k(\Gamma_0(9 \cdot 2^a), \chi) \cap \mathbb{Z}[q]$ and every $t \ge 1$,

$$f(z)|T_{p_1}|T_{p_2}|\cdots|T_{p_{c+t}} \equiv 0 \pmod{2^t}$$

whenever the primes p_1, \ldots, p_{c+t} are coprime to 6.

PROOF OF THEOREM 1.2. Taking p = 2 in (3.4),

$$B_{2,k}(z) \equiv \sum_{n=0}^{\infty} \overline{C}_{6,2}(n) q^{24n+1} \pmod{2^{k+1}}.$$

This yields

$$B_{2,k}(z) := \sum_{n=0}^{\infty} A(n)q^n \equiv \sum_{n=0}^{\infty} \overline{C}_{6,2}\left(\frac{n-1}{24}\right)q^n \pmod{2^{k+1}}.$$
(4.1)

Note that $B_{2,k}(z) \in M_{2^{k-1}}(\Gamma_0(N), \chi_1)$, where the level $N = 576 = 9 \cdot 2^6$. Using Theorem 4.1, we find that there is an integer $s \ge 0$ such that for any $t \ge 1$,

$$B_{2,k}(z)|T_{p_1}|T_{p_2}|\cdots|T_{p_{s+t}} \equiv 0 \pmod{2^t}$$

whenever p_1, \ldots, p_{s+t} are coprime to 6. It follows from the definition of Hecke operators that if p_1, \ldots, p_{s+t} are distinct primes and if *n* is coprime to $p_1 \cdots p_{s+t}$

then

$$A(p_1 \cdots p_{s+t} \cdot n) \equiv 0 \pmod{2^t}.$$
(4.2)

Combining (4.1) and (4.2) completes the proof of the theorem.

5. Proof of Theorem 1.3

The generating function of $\overline{C}_{12,4}(n)$ is given by

$$\sum_{n=0}^{\infty} \overline{C}_{12,4}(n) q^n = \frac{(q^8; q^8)_{\infty} (q^{12}; q^{12})_{\infty}^2}{(q; q)_{\infty} (q^4; q^4)_{\infty} (q^{24}; q^{24})_{\infty}}.$$
(5.1)

Given a prime p, let

$$E_p(z) = \prod_{n=1}^{\infty} \frac{(1-q^{32n})^p}{(1-q^{32pn})} = \frac{\eta^p(32z)}{\eta(32pz)}$$

From the binomial theorem,

$$E_p^{p^k}(z) = \frac{\eta^{p^{k+1}}(32z)}{\eta^{p^k}(32pz)} \equiv 1 \pmod{p^{k+1}}.$$

Define $R_{p,k}(z)$ by

$$R_{p,k}(z) = \left(\frac{\eta(64z)\eta(96z)^2}{\eta(8z)\eta(32z)\eta(192z)}\right) E_p^{p^k}(z).$$
(5.2)

Modulo p^{k+1} ,

$$R_{p,k}(z) \equiv \frac{\eta(64z)\eta(96z)^2}{\eta(8z)\eta(32z)\eta(192z)} = q \left(\frac{(q^{64};q^{64})_{\infty}(q^{96};q^{96})_{\infty}^2}{(q^8;q^8)_{\infty}(q^{32};q^{32})_{\infty}(q^{192};q^{192})_{\infty}}\right).$$
(5.3)

Combining (5.1) and (5.3),

$$R_{p,k}(z) \equiv \sum_{n=0}^{\infty} \overline{C}_{12,4}(n)q^{8n+1} \pmod{p^{k+1}}.$$
(5.4)

PROOF OF THEOREM 1.3. We put p = 3 in (5.2) to obtain

$$R_{3,k}(z) = \left(\frac{\eta(64z)\eta(96z)^2}{\eta(8z)\eta(32z)\eta(192z)}\right) E_3^{3^k}(z) = \frac{\eta(32z)^{3^{k+1}-1}\eta(64z)}{\eta(96z)^{3^k-2}\eta(8z)\eta(192z)}.$$
(5.5)

Now, $R_{3,k}$ is an eta-quotient with N = 192. The cusps of $\Gamma_0(192)$ are represented by fractions c/d where $d \mid 192$ and gcd(c, d) = 1. Hence, by Theorem 2.4, $R_{3,k}(z)$ is holomorphic at a cusp c/d if and only if

$$\frac{\gcd(d,32)^2}{32}(3^{k+1}-1) + \frac{\gcd(d,64)^2}{64} - \frac{\gcd(d,8)^2}{8} - \frac{\gcd(d,96)^2}{96}(3^k-2) - \frac{\gcd(d,192)^2}{192} \ge 0.$$

[8]

d 192	$\frac{\gcd(d,96)^2}{\gcd(d,192)^2}$	$\frac{\gcd(d, 64)^2}{\gcd(d, 192)^2}$	$\frac{\gcd(d,8)^2}{\gcd(d,192)^2}$	$\frac{\gcd(d, 32)^2}{\gcd(d, 192)^2}$	S
1, 2, 4, 8	1	1	1	1	$16 \cdot 3^k - 24$
3, 6, 12, 24	1	0.1111	0.1111	0.1111	0
16	1	1	0.2500	1	$16 \cdot 3^k - 6$
32	1	1	0.0625	1	$16 \cdot 3^k - 1.5$
48	1	0.1111	0.0278	0.1111	2
64	0.2500	1	0.0156	0.2500	$4.3^k + 1.12$
96	1	0.1111	0.0069	0.1111	2.5
192	0.2500	0.1111	0.0017	0.0278	0.1250

TABLE 2. Calculation of *S* for Theorem 1.3.

that is, if and only if

$$S := 6 \frac{\gcd(d, 32)^2}{\gcd(d, 192)^2} (3^{k+1} - 1) + 3 \frac{\gcd(d, 64)^2}{\gcd(d, 192)^2} - 24 \frac{\gcd(d, 8)^2}{\gcd(d, 192)^2} - 2 \frac{\gcd(d, 96)^2}{\gcd(d, 192)^2} (3^k - 2) - 1 \ge 0.$$

Table 2 shows all the possible values of S. The table was prepared using MATLAB.

Since $S \ge 0$ for all $d \mid 192$ and $k \ge 1$, it follows that $R_{3,k}(z)$ is holomorphic at every cusp c/d. Using Theorem 2.3, we find that the weight of $R_{3,k}(z)$ is $\ell = 3^k$. Also, the associated character for $R_{3,k}(z)$ is given by

$$\chi_3 = \left(\frac{-2^{10 \cdot 3^k + 2} 3^{3^{-k} + 1}}{\bullet}\right)$$

Finally, from Theorem 2.3, $R_{3,k}(z) \in M_{3^k}(\Gamma_0(192), \chi_3)$ for $k \ge 1$ and, by Serre's density result, the Fourier coefficients of $R_{3,k}(z)$ are almost always divisible by 3^k . This proves that $\overline{C}_{12,4}(n)$ is divisible by 3^k for almost all *n* because of (5.4).

We next put p = 3 in (3.2) to obtain

$$B_{3,k}(z) = \left(\frac{\eta(96z)\eta(144z)^2}{\eta(24z)\eta(48z)\eta(288z)}\right) A_3^{3^k}(z) = \frac{\eta(48z)^{3^{k+1}-1} \eta(96z)}{\eta(144z)^{3^k-2} \eta(24z)\eta(288z)}.$$
 (5.6)

As before, the cusps of $\Gamma_0(576)$ are represented by fractions c/d where $d \mid 576$ and gcd(c, d) = 1. By Theorem 2.4, $B_{3,k}(z)$ is holomorphic at a cusp c/d if and only if

$$\frac{\gcd(d,48)^2}{48}(3^{k+1}-1) + \frac{\gcd(d,144)^2}{144}(2-3^k) + \frac{\gcd(d,96)^2}{96} - \frac{\gcd(d,24)^2}{24} - \frac{\gcd(d,288)^2}{288} \ge 0,$$

that is, if and only if

$$Q := 6 \frac{\gcd(d, 48)^2}{\gcd(d, 288)^2} (3^{k+1} - 1) + 2 \frac{\gcd(d, 144)^2}{\gcd(d, 288)^2} (2 - 3^k) + 3 \frac{\gcd(d, 96)^2}{\gcd(d, 288)^2} - 12 \frac{\gcd(d, 24)^2}{\gcd(d, 288)^2} - 1 \ge 0.$$

From Table 1, we find that $Q \ge 0$ for all $d \mid 576$. As before, using Theorem 2.3, we find that $B_{3,k}(z) \in M_{3^k}(\Gamma_0(576), \chi_2)$, where the character χ_2 is given by

$$\chi_2 = \left(\frac{-2^{8 \cdot 3^k + 1} 3^{3^k + 1}}{\bullet}\right).$$

Using the same reasoning and (3.4), we find that $\overline{C}_{6,2}(n)$ is divisible by 3^k for almost all $n \ge 0$. This completes the proof of the theorem.

Acknowledgement

We thank Professor Ken Ono for many valuable comments on the article.

References

- [1] G. E. Andrews, 'Singular overpartitions', Int. J. Number Theory 11 (2015), 1523–1533.
- [2] V. M. Aricheta, 'Congruences for Andrews' (k, i)-singular overpartitions', *Ramanujan J.* 43 (2017), 535–549.
- [3] R. Barman and C. Ray, 'Divisibility of Andrews' singular overpartitions by powers of 2 and 3', *Res. Number Theory* 5 (2019), 22.
- [4] S. C. Chen, M. D. Hirschhorn and J. A. Sellers, 'Arithmetic properties of Andrews' singular overpartitions', *Int. J. Number Theory* 11 (2015), 1463–1476.
- [5] S. Corteel and J. Lovejoy, 'Overpartitions', Trans. Amer. Math. Soc. 356 (2004), 1623–1635.
- [6] N. Koblitz, *Introduction to Elliptic Curves and Modular Forms* (Springer-Verlag, New York, 1991).
- [7] K. Ono, 'Parity of the partition function in arithmetic progressions', J. reine angew. Math. 472 (1996), 1–15.
- [8] K. Ono, *The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series*, CBMS Regional Conference Series in Mathematics, 102 (American Mathematical Society, Providence, RI, 2004).
- [9] K. Ono and Y. Taguchi, '2-adic properties of certain modular forms and their applications to arithmetic functions', *Int. J. Number Theory* 1 (2005), 75–101.
- [10] J.-P. Serre, 'Divisibilité de certaines fonctions arithmétiques', Séminaire Delange-Pisot-Poitou. Théorie des Nombres 16 (1974), 1–28.
- [11] J.-P. Serre, 'Valeurs propres des opérateurs de Hecke modulo l', Astérisque 24 (1975), 109–117.
- [12] J. Tate, 'Extensions of Q unramified outside 2', In: Arithmetic Geometry: Conference on Arithmetic Geometry with an Emphasis on Iwasawa Theory, March 15–18, 1993, Arizona State University, Contemporary Mathematics, 174 (American Mathematical Society, Providence, RI, 1994).

[10]

247

AJIT SINGH, Department of Mathematics, Indian Institute of Technology Guwahati, Assam, India, PIN-781039 e-mail: ajit18@iitg.ac.in

RUPAM BARMAN, Department of Mathematics, Indian Institute of Technology Guwahati, Assam, India, PIN-781039 e-mail: rupam@iitg.ac.in

248