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Abstract

Andrews introduced the partition function Cy ;(n), called the singular overpartition function, which counts
the number of overpartitions of n in which no part is divisible by k and only parts = +i (mod k) may
be overlined. We prove that Ce(n) is almost always divisible by 2* for any positive integer k. We also
prove that Ce (1) and Cj.4(n) are almost always divisible by 3*. Using a result of Ono and Taguchi on
nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of 2
satisfied by Eﬁ,z(n).
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1. Introduction and statement of results

In [5], Corteel and Lovejoy introduced overpartitions. An overpartition of n is
a nonincreasing sequence of natural numbers whose sum is n in which the first
occurrence of a number may be overlined. In order to give overpartition analogues
of Rogers—Ramanujan type theorems for the ordinary partition function, Andrews [1]
defined the so-called singular overpartitions. Andrews’ singular overpartition function
E‘k,,»(n) counts the number of overpartitions of n in which no part is divisible by k and
only parts = +i (mod k) may be overlined. For example, 63,1(4) = 10 with the relevant
partitions being 4,4,2+2,2+2,2+ 1+ 1,2+ 1+ L2+ 1+ 1,2+ 1+ 1,1+ 1+1+
LT+1+1+1. For k>3 and 1<i<[k/2], the generating function for a(,,»(n) is
given by
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where (a; ¢)oo := H;io(l — ag’). Andrews proved the following Ramanujan-type con-
gruences satisfied by E‘g,l(n):
C31(9n +3)=C31(9n+6) =0 (mod 3) forn > 0.
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Chen et al. [4] later showed that Andrews’ congruences modulo 3 are two examples of
an infinite family of congruences modulo 3 which hold for the function C3;(n). More
precisely, they showed that for prime p = 3 (mod 4),

C31(p*'m) =0 (mod 3) for all k,m > 0 with p { m.

In [4], Chen et al. also studied the parity of Cy,(n). They showed that Cs(n) is
always even and that 66’2(11) is even (or odd) if and only if # is not (or is) a pentagonal
number. Recently, Aricheta [2] studied the parity of E3k,k(n). Represent any positive
integer k as k = 2“m where the integer a > 0 and m is odd. Assume further that 2¢ > m.
Then Aricheta proved that Z‘gk,k(n) is almost always even, that is,

#{0 <n <X : Cyx(n) = 0 (mod 2)}

lim =1
X—o0 X

Aricheta also showed that for any pair (k,i), E‘k,,»(n) satisfies infinitely many
Ramanujan-type congruences modulo any power of a prime coprime to 6k.

Let k be a fixed positive integer. Recently, Barman and Ray [3] proved that for any
positive integer k, 63,1(11) is almost always divisible by 2% and 3. In this paper we
study divisibility of 66,2(1’1) and 612,4(11) by 2% and 3. More precisely, we prove that
Z‘G,z(n) is divisible by arbitrary powers of 2 for almost all n. We also prove that 66,2(n)
and 612,4(11) are divisible by arbitrary powers of 3 for almost all 7.

THEOREM 1.1. Let k be a fixed positive integer. Then the set
{n € N : Cga(n) = 0 (mod 2%)}
has arithmetic density 1.

Serre observed and Tate proved that the action of Hecke algebras on spaces of
modular forms of level 1 modulo 2 is locally nilpotent (see [10—12]). Ono and Taguchi
[9] showed that this phenomenon generalises to higher levels. Using this, we prove the
following congruence for 66’2(71) modulo arbitrary powers of 2.

THEOREM 1.2. Let n be a nonnegative integer. Then there is an integer s > 0 such that

for every t > 1 and distinct primes p1, ..., psy: cOprime to 6,
— (P1°DPssron—1 ¢
C (—) =0 (mod?2
6.2 2 ( )
whenever n is coprime to py, ..., Dsit-

We further prove that the partition functions 66,2(11) and 612,4(11) are divisible by 3k
for almost all 7.

THEOREM 1.3. Let k be a fixed positive integer. Then the set
{n € N : Ca¢(n) = (mod 3))
has arithmetic density 1 for € = 2,4.
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2. Preliminaries

In this section we recall some definitions and basic facts on modular forms and
eta-quotients. For more details, see [6, 8].

2.1. Spaces of modular forms. We first define the matrix groups

SLZ(Z)::{Z Z :a,b,c,deZ,ad—bczl},
,a b:
To(N) :={c ; ESLZ(Z):CEO(modN)},
_a b:
Fl(N)::{c y GFO(N):azdzl(modN)},
r(N):z{j Z,ESLZ(Z):aEdEl(modN)andbECEO(modN)},

where N is a positive integer. A subgroup I' of SL,(Z) is called a congruence subgroup
if (V) C T for some N. The smallest N such that I'(N) C I is called the level of I'. For
example, ['o(N) and I';(N) are congruence subgroups of level N.

Let H := {z € C : Im(z) > 0} be the upper half of the complex plane. The group

GLI(R) = {[‘C‘ Z} :a,b,c,d € R and ad — be > 0}
acts on H by
a b|_ _az+b
c d|® cz+d

We identify co with % and define

[j Z} g = %Zj, where E € Q U {oo}.
This gives an action of GL;(R) on the extended upper half-plane H* = H U Q U {co}.
Suppose that I" is a congruence subgroup of SL,(Z). A cusp of I is an equivalence
class in P! = Q U {co} under the action of T

The group GLJ(R) also acts on functions f : H — C. If f(z) is a meromorphic
function on H and ¢ is an integer, we define the slash operator |, by

(Flen)(@) = (det y) ez +d) " f(y2).,  wherey = [i Z} € GL; (R).

DEFINITION 2.1. Let I" be a congruence subgroup of level N. A holomorphic function

f:H — C is called a modular form with integer weight ¢ on I' if the following
statements hold.
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(1) We have

az+by ¢ a b
f(cz+d)—(cz+d) f(z) forall z € Hand all [c d]er.

(2) Ify e SLy(Z), then (f]sy)(z) has a Fourier expansion of the form
AN = ) ay(may,

n>0
where gy = /N,
For a positive integer £, the complex vector space of modular forms of weight £ with
respect to a congruence subgroup I' is denoted by M,(I).

DEFINITION 2.2 [8, Definition 1.15]. If y is a Dirichlet character modulo N, then we
say that a modular form f € M,(I';(N)) has Nebentypus character y if

f( Zj : z) = Y(d)(cz+d)f(z) forallzeHandall [‘C’ Z] € To(N).

The space of such modular forms is denoted by M,(I'o(N), x).

2.2. Modularity of eta-quotients. In this paper the relevant modular forms are
those that arise from eta-quotients. The Dedekind eta-function 7(z) is defined by

@) = q" (@ 9w = 4" [ [0 =",
n=1

where ¢ := ¢?Z and z € H. A function f(z) is called an eta-quotient if it is of the form

f@ = [ne2r,

N

where N is a positive integer and the rs are integers.

We now recall two theorems from [8, page 18] on modularity of eta-quotients. We
will use these two results to verify modularity of certain eta-quotients appearing in the
proofs of our main results.

THEOREM 2.3 [8, Theorem 1.64]. If f(2) = [Isn 1(62)" is an eta-quotient such that
g = % Z(S\N rs S Z, Z(ﬂN (57’5 = 0 (mod 24) and

N
Z 75=0 (mod 24),

SIN
then f(z) satisfies

b
f( jj : d) = x(d)(cz + d)gf(z) for every [Z Z} € I'h(N).

Here the character y is defined by x(d) := (%) where s := [5y 6" and () is the
Jacobi symbol.
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Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3 and
that the associated weight ¢ is a positive integer. If f(z) is holomorphic at all of the
cusps of I'o(N), then f(z) € M(['o(N), ). The following theorem gives the necessary
criterion for determining orders of an eta-quotient at cusps.

THEOREM 2.4 [8, Theorem 1.65]. Let ¢,d and N be positive integers with d | N and
gcd(e,d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 2.3 for N,
then the order of vanishing of f(2) at the cusp (c/d) is

Z ged(d, 6)°rs
24 gcd(d,N/d)ds’
Finally, we recall the definition of Hecke operators. Let m be a positive integer and

f(@) = 2 an)g" € M(T'o(N), x). Then the action of the Hecke operator 7,, on f(z)
is defined by

[e9]

foT =Y (> x@da(%3))a

n=0 d|gcd(n,m)

In particular, if m = p is prime, then

o, =3 (atom + (5

n=0

We adopt the convention that a(n) = 0 when 7 is a nonnegative integer.

3. Proof of Theorem 1.1
Using (1.1), we find that the generating function of E(,,g(n) is given by

(e8]

— . (4% (g% %)%
Zcﬁ’zm)q T (@ D@ D)%) GD

Given a prime p, let

=1 (L=g™" _ nP(482)

o= L —gm) — n8pz)”

By the binomial theorem,

Py 77pk+](481) _ k+1
A, (2) = P @8pD) 1 (mod p™).
Define B, (z) by
_( n(962)n(144z)? >
Bpi(a) = (n(24z)n(48z)77(2882))A @ (3-2)
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TABLE 1. Calculation of values of L for Theorem 1.1.

gcd(d, 48> gcd(d,96)>  ged(d, 144)2  ged(d, 24)

d | 576
| ged(d,288)2  ged(d, 288)?  ged(d, 288)2  ged(d, 288)2
1,2,3,4,6,8, 1 1 1 1 9.2k_12
12,24
16,48 1 1 1 0.2500 9.2k_3
32,64,96,192 0.2500 1 0.2500 0.0625 0.7500
9,18,36,72  0.1111 0.1111 1 0.1111 2k +1.33
144 0.1111 0.1111 1 0.0278 2k 4233
288,576 0.0278 0.1111 0.2500 0.0069 0.0833
Modulo p**!,
n(962)n(144z)* (0% ¢°%)o(g"*; g%
Bpi(z) = - q( 24. ;24 48. 448 288. ;288 ) (3-3)
n(242)n(48z)n(288z2) (@75 @7 (q™5 47) 0 (%5 G7°° oo
Combining (3.1) and (3.3),
Byiu(2) = ) Cor(mg™" (mod p**"). (3.4)
n=0
PROOF OF THEOREM 1.1. We put p = 2 in (3.2) to obtain
n(962)n(144z)* " n(482)%"' 1 p(144z)>
Bas@ = ( IEE : .
n(24z)n(48z)n(288z) n(962)* -1 n(242)n(288z)

Now, B; is an eta-quotient with N = 576. The cusps of I'4(576) are represented by
fractions c¢/d where d | 576 and gcd(c,d) = 1 (see [7, page 5]). By Theorem 2.4, we
find that B, x(z) is holomorphic at a cusp ¢/d if and only if

ged(d,48)* ged(d, 96) .
13 (2 1)+ 96 (1-2%
. ged(d, 144)? _ geddd, 24)? _ gedd, 288)2 S
72 24 288 -
that is, if and only if
2 2
— 6 gcd(d, 48) (21 1)+ 3 gcd(d, 96) (1-2%

gcd(d, 288)?
ged(d, 144)? b ged(d, 24)? ~
ged(d, 288)? ged(d, 288)?

Table 1 shows the possible values of L. The table was prepared using MATLAB.

Since L > 0 for all d | 576, we see that B, (z) is holomorphic at every cusp c¢/d.
From Theorem 2.3, the weight of By4(z) is £ = 2¥! and the associated character for

gcd(d, 288)
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B (2) is
23‘2"+l 32"+l )

X1 = ( R
Finally, it follows from Theorem 2.3 that B (z) € My-1(I'9(576), x1) for k > 2. For
given any positive integer m, by a deep theorem of Serre [8, page 43], if f(z) €
M (T'o(N), ) has Fourier expansion f(z) = 3,7, c(n)q" € Z[[g]], then there is a con-
stant @ > 0 such that

#n < X 1 c(n) # 0 (mod m)} = O (logXX)” )

This yields
. #n<X:cm) =0 (modm))
lim
X—o0 X

=1

Since By x(z) € My-1(I'p(576), x1), the Fourier coefficients of B (z) are almost always
divisible by m = 2*. Now using (3.4) completes the proof of the theorem. O

4. Proof of Theorem 1.2

We prove Theorem 1.2 using nilpotency of Hecke operators. We use the following
result which is implied by a much more general result of Ono and Taguchi [9, Theorem
1.3]. This result was also used by Aricheta (see, for example, [2, Theorem 4.5]).

THEOREM 4.1. Let n be a nonnegative integer and k be a positive integer. Let y be a
quadratic Dirichlet character of conductor 9 - 2". There is an integer ¢ > 0 such that
for every f(z) € Mi(T'o(9 - 2%), x) N Z[q] and every t > 1,

FITp | Tp, |-+ |Tp,,, =0 (mod 2")
whenever the primes pi, ..., P+ are coprime to 6.
PROOF OF THEOREM 1.2. Taking p = 2 in (3.4),

Byu(2) = ) Con(mg™! (mod 2.
n=0

This yields

Box(2) = iA(n)q" = i Ceal” 2_41 Jor (moa 2441, 1)
n=0 n=0

Note that Byi(z) € My-1(I'o(N), x1), where the level N=576=9" 20, Using
Theorem 4.1, we find that there is an integer s > 0 such that for any 7 > 1,

Box(@\Ty, [T, |- -+ 1Ty, = 0 (mod 27)
whenever py,..., ps; are coprime to 6. It follows from the definition of Hecke
operators that if py,..., ps, are distinct primes and if n is coprime to p;--- pyis
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then

A(p1 -+ pssr-n) =0 (mod 2).
Combining (4.1) and (4.2) completes the proof of the theorem.

5. Proof of Theorem 1.3

The generating function of 512,4(n) is given by

(0% ¢®)e(q': "2,

Z 612,4(")41 =
n=0

Given a prime p, let
=T (=g pP(322)

E,,(Z) = Ll (1— q32pn) - 77(32pZ)‘

From the binomial theorem,

(@ Doo(q*; ¢Noo(@**; PN

. e 327
Eg (2) = Zp"(?,—(sz; =1 (mod Pk+l).
Define R, x(z) by
77(642)7](961)2 k
Rox(2) = ( ) £,
pk(2) 82n(322m(1922) » (2)
Modulo p**+1,
Ryu() = —OMO6)”_ q( (4* 4”1 40
T nEan320m(1920) T\ (@ )6 4)e(@™ 4D

Combining (5.1) and (5.3),

R,i(2) = 2612,4(n)l]8"+1 (mod p**H).
n=0

PROOF OF THEOREM 1.3. We put p = 3 in (5.2) to obtain
n(642)n(962)*

(322" (642)

Ras@) = JEd @ =

n(82)n(322)n(1922)

7(962)% -2 n(82)n(192z)

245

4.2)

(5.1

(5.2)

(5.3)

(5.4)

(5.5)

Now, R3; is an eta-quotient with N = 192. The cusps of I'7(192) are represented
by fractions c¢/d where d | 192 and gcd(c,d) = 1. Hence, by Theorem 2.4, R3;(z) is

holomorphic at a cusp c¢/d if and only if

ged(d, 32)? (3k+l C1)+ gcd(d, 64)° B ged(d, 8)?
32 64 8
B gcd(d, 96)?

o (3*-2)
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TABLE 2. Calculation of S for Theorem 1.3.

gcd(d, 96)? gcd(d, 64)? gcd(d, 8)2 gcd(d, 32)?

d 1192 s
| gcd(d, 192)2  ged(d, 192)2  ged(d, 192)2  ged(d, 192)?

1,2,4,8 1 1 1 1 16 -3k - 24
3,6,12,24 1 0.1111 0.1111 0.1111 0
16 1 1 0.2500 1 16-3k-6
32 1 1 0.0625 1 16-3K- 1.5
48 1 0.1111 0.0278 0.1111 2
64 0.2500 1 0.0156 0.2500 43k +1.12
96 1 0.1111 0.0069 0.1111 2.5
192 0.2500 0.1111 0.0017 0.0278 0.1250
that is, if and only if

_ . ged(d,32)? (31— 1) 4 3250 64)2

gcd(d, 192)2 gcd(d, 192)2
d(d, 8)* d(d, 96)?
oy 8d@8) ) ged@dIO0) i oy sy,

ged(d, 192)? ged(d, 192)?

Table 2 shows all the possible values of S. The table was prepared using MATLAB.
Since S > 0 for all 4 | 192 and k > 1, it follows that R3(z) is holomorphic at every
cusp c/d. Using Theorem 2.3, we find that the weight of R3;(z) is £ = 3. Also, the
associated character for R3;(z) is given by
_210~3*+233**'+1
e (2

[ ]
Finally, from Theorem 2.3, R3 x(z) € M3 (I'9(192), x3) for kK > 1 and, by Serre’s density
result, the Fourier coefficients of R3(z) are almost always divisible by 3. This proves

that 612,4(n) is divisible by 3* for almost all n because of (5.4).
We next put p = 3 in (3.2) to obtain

1(962)n(144z)> (482" 1(962)
n(242)n(482)n(288z2) n(1442)3-2 n(24z)n(288z)

As before, the cusps of I'4(576) are represented by fractions ¢/d where d | 576 and
gcd(c,d) = 1. By Theorem 2.4, B3 x(z) is holomorphic at a cusp ¢/d if and only if

B = HEE (5.6)

ged(d, 48)* 1 ged(d, 144>
T A A S Vv e Gl
N gcd(d, 96)2 B gcd(d, 24)2 B gcd(d, 288)2 -
9 24 288 =
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that is, if and only if

_ o god(d. 48y

0: ,ged(d. 144y
T Tged(d, 288)2

gcd(d, 288)?
ged(d, 96)> Db ged(d, 24)? B
gcd(d, 288)? gcd(d, 288)?

@B — 1)+ (2 -3

From Table 1, we find that Q > 0 for all d | 576. As before, using Theorem 2.3, we find
that Bs x(z) € M3 (I'0(576), x2), where the character y» is given by

_28-3"+133"+1

ne (22,
[ ]

Using the same reasoning and (3.4), we find that 66,2(11) is divisible by 3* for almost

all n > 0. This completes the proof of the theorem. O
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