
Math. Struct. in Comp. Science (2017), vol. 27, pp. 33–53. c© Cambridge University Press 2015

doi:10.1017/S096012951500002X First published online 18 March 2015

Linked data privacy

SVETLANA JAKŠ I Ć, JOVANKA PANTOVI Ć

and S ILVIA GHILEZAN†

University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia

Received 14 October 2013; revised 11 November 2014

Web of Linked Data introduces common format and principles for publishing and linking

data on the Web. Such a network of linked data is publicly available and easily consumable.

This paper introduces a calculus for modelling networks of linked data with encoded

privacy preferences.

In that calculus, a network is a parallel composition of users, where each user is named and

consists of data, representing the user’s profile, and a process. Data is a parallel composition

of triples with names (resources) as components. Associated with each name and each triple

of names are their privacy protection policies, that are represented by queries. A data triple

is accessible to a user if the user’s data satisfies the query assigned to that triple.

The main contribution of this model lies in the type system which together with the

introduced query order ensures that static type-checking prevents privacy violations. We say

that a network is well behaved if

— access to a triple is more restrictive than access to its components and less restrictive

than access to the user name it is enclosed with,

— each user can completely access their own profile,

— each user can update or partly delete profiles that they own (can access the whole

profiles), and

— each user can update the privacy preference policy of data of another profile that they

own or write data to another profile only if the newly obtained profile stays fully

accessible to their owner.

We prove that any well-typed network is well behaved.

1. Introduction

The more data connects with other sources of information, the more its value increases.

Having that in mind, an initiative to establish a generic format for connecting the Semantic

Web was born a decade ago, and has grown into a collection of recommendations for

publishing data on the Web (Bizer 2009; Klyne and Caroll 2004). The Web of Linked

Data is expected to expand into a huge graph of linked data, based on the use of URIs for

names of anything, use of HTTP URIs for reading the names, and making connections

between data on the Web in Resource Description Format (RDF). Publishing data online

in an open standard, such as RDF, and interlinking data sources aims to transform Web

† This work was partly supported by the Serbian Ministry of Education, Science and Technological

Development (projects ON174026 and III44006) and COST Action IC1201.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 34

of Documents to more (re)usable, machine readable, Web of Data. Assuming that the

Web of Linked Data is a reality, the data can be queried by W3 recommended SPARQL

Query (Klyne and Caroll 2004; Prud’hommeaux and Seaborne 2008) and consumed by a

higher-level programming language.

Another great merit of the Web of Linked Data is its exposure to public consumption.

Even though public availability brings a great advantage to users of such data, not all data

are produced for public usage. This gives rise to the question of privacy of linked data

since the lack of privacy protection mechanisms often discourages people from publishing

data on the Web of Linked Data. Addressing this issue requires a clear explanation for

the intuition of the notion of privacy. Privacy may not include private status of some

data only, but also the significance or no significance of data for some group and ability

of readers to understand the data properly (Stanković et al. 2009). In Westin (1967), the

privacy is defined as ‘the ability to control who has access to information and to whom

that information is communicated’. In this sense, we deem that privacy of data is protected

in case:

— An owner (creator) of data can always access their own data.

— An owner of data can control access to their data, i.e. they can create conditions for

other consumers to access parts (or all) of their data. Only consumers that fulfil the

settled conditions can access the data constituents. If a data set (corresponding to an

owner) is completely accessible to different users, they are all considered as the data

owners and the data can be updated by any of them.

In this paper, we introduce a formal model of linked data that can statically detect

run-time errors due to privacy violations.

We introduce a new calculus for modelling the web of linked data. Resources (URIs)

are denoted by names from a specified set. Data are parallel composition of triples of

names (describing links between resources). Processes are π-calculus processes (Milner

1999; Milner et al. 1992), without input and output capabilities, and with introduced

capabilities that describe the interaction between processes and data. Networks are parallel

compositions of user names enclosing data and processes.

In order to enable each owner of data to control privacy of the data, we assign a query

to each user name and also a query to each data triple. This approach is similar to the

one proposed in Sacco and Passant (2011b). We say that a user can access a triple if the

user’s data satisfies the query assigned to the triple. However, an owner’s privacy will be

violated:

— if a user updated a query of a triple with a query that was not satisfied by the owner’s

data or

— if a user wrote a data triple to an owner’s data and the triple query was not satisfied

by the owner’s data.

In this scenario, we say that a network is well behaved if:

— access to a triple is more restrictive than access to its components and less restrictive

than access to the user name it is enclosed with,

— each user can access each triple of its own data,

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 35

— each user can update or partly delete data that they own (can access all its triples),

and

— each user can update a query assigned to a triple or write data to a user only if the

newly obtained data stays accessible to its owner.

We introduce a simple yet sufficiently powerful type assignment system which, together

with the introduced query order, is able to statically check if a network is well behaved.

Since the queries are partially ordered the type system enforces that the query of a triple

is

— bounded above by the queries of triple components and

— bounded below by the query of the user name it is enclosed with.

The type system ensures that a process can modify a triple’s query only if the query,

assigned to the name it is enclosed with, admits this. Finally, we prove the main result,

that a well-typed network is well behaved.

We clarify the developed typed calculus informally by the following example.

1.1. Example

In order to achieve a clear explanation of the calculus presented in this paper, the example

is written in the corresponding language, instead of original RDF and SPARQL format.

Suppose that there are two users, Alice and Bob, running in parallel

NAlice | NBob

where each user has their own profile (corresponding to RDF data) Duser and a process

Puser running on behalf of that user. This will be written as

Nuser = user[Duser ‖ Puser], user ∈ {Alice, Bob}.

Data are represented as parallel composition of triples, where each component is a name

(resource).

Since the main goal of this calculus is to protect privacy of data, we associate each

resource (user name or triple component) and each triple with a privacy protection policy.

A novelty we propose is to take the same apparatus to query data and to check if a profile

(data) satisfies a privacy protection policy. Therefore, we introduce a function T to assign

a query (privacy protection policy) to each name and also assign a query to each data

triple. For example, we consider the following data:

user Profile (Data)

Alice (Alice, affiliation, www.uns.ac.rs)UAlice |postU1

1 |postU2

2 |postU3

3

Bob (Bob, friend, Cindy)UBob |(Bob, research, types)UBob

Alice is a professor and she writes three posts about her scientific work, private life and

teaching. It is assumed that the user Alice has the privacy protection policy T (Alice) =

UAlice with UAlice = (Alice, affiliation, www.uns.ac.rs). We also assume that each

triple component policy is less restrictive than the triple policy (a user can create a triple

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 36

only from names that are accessible to that user). For example, let

T (affiliation) = T (www.uns.ac.rs) = ∃x.∃y.∃z.(x, y, z).

The query ∃x.∃y.∃z.(x, y, z) is satisfied by a profile, if there is any triple in the profile data,

and it will thus be the privacy policy of public names and public data. The users with

profiles that contain (Alice, affiliation, www.uns.ac.rs)U, like Alice, can access her

profile (for an arbitrary U). This is the case because such a profile satisfies the given query

UAlice. We denote by |= the relation that states that data satisfy query. We will write

(Alice, affiliation, www.uns.ac.rs)U |= (Alice, affiliation, www.uns.ac.rs)

and the same will hold for all data that contain the triple,

(Alice, affiliation, www.uns.ac.rs)U |D′ |= (Alice, affiliation, www.uns.ac.rs).

We say that the names affiliation and www.uns.ac.rs are public since it holds

D |= ∃x.∃y.∃z.(x, y, z)

for any D.

It is natural to require that each user has access to its own profile (i.e. to each triple in

the profile), which is for Alice provided by conditions

DAlice |= UAlice ∧ DAlice |= U1 ∧ DAlice |= U2 ∧ DAlice |= U3.

This property will be written as

readable(DAlice, DAlice) = DAlice.

Let the privacy protection policies of its single posts (triples) be the following:

Triple Privacy Protection Policy

post1 U1 = ∃x.(x, research, types) ⊕ ∃x.(x, affiliation, www.uns.ac.rs)
post2 U2 = ∃x.(x, guest, www.uns.ac.rs) ⊕ ∃x.(x, affiliation, www.uns.ac.rs)
post3 U3 = ∃x.(Alice, professor, x) ⊕ ∃x.(x, friend, Cindy)

⊕∃x.(x, affiliation, www.uns.ac.rs)

The first post written by Alice is about her research and she wants to share it with

everyone with the same affiliation and with those whose research interest is types:

post1 = (paper, published, journal)U1 .

The present type system protects privacy of a single resource. We want to guarantee

that a name that is a component of a triple has a less restrictive policy than the triple.

This means that the permission to access a triple can only be given to processes that

have permissions to access all its components. For this purpose, we introduce an order �
between privacy protection policies (i.e. between queries). For example, it holds that

(Alice,affiliation, www.uns.ac.rs) � ∃x.∃y.∃z.(x, y, z).

We will later prove that U � V implies D |= U ⇒ D |= V .

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 37

Bob has permission to read post1 and post3 because

DBob |= U1 and DBob |= U3,

while he cannot read post2. The part of DAlice that Bob can access is

readable(DBob, DAlice) = postU1

1 |postU3

3 .

Let the process running on behalf of Bob be

PBob = READAlice(∃x.(x, published, journal), χ).Q.

This process looks for all the triples from DAlice that are readable to him and that satisfy

the given query. Since only post1 fulfills both conditions, the network reduces as follows:

NAlice | NBob → NAlice | Bob[DBob||Q{post1/χ}].

Alice may decide to change the privacy protection policy of post2 in order to let Bob

see her post about the party, by running the following process:

PAlice = UPDATEAlice(post2, U2 ⊕ (Bob, friend, Cindy)).R.

It will be well typed in our calculus since

UAlice � U2 ⊕ (Bob, friend, Cindy)

and hence

DAlice |= UAlice ⇒ DAlice |= U2 ⊕ (Bob, friend, Cindy).

It means that Alice still has access to post2 and she can still control who has access to

her data.

1.2. Structure of the paper

The remainder of the paper is organized as follows. In Section 2, we introduce formally

the calculus, including the syntax and the operational semantics, that describes the

behaviour of a network of linked data which is used by a higher-level language. The

operational semantics uses some auxiliary functions and relations that specify how data

and processes interact within the network. In order to obtain a suitable basis for studying

privacy preference issues, we introduce a type system, which is the content of Section 3.

We formalize, in the language of this type system, when we consider that a network

is well behaved. The main results are collected in Section 4, with all the technicalities

to prove the subject reduction and the main properties. Finally, Section 5 discusses

related papers and Section 6 gives a brief summary with certain directions for future

work.

2. Language

In this section, we formally introduce the calculus.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 38

Table 1. Syntax of query pattern and data.

U ::= Query pattern

(u, u, u) Triple pattern

| U ⊕U Choice

| ∃x.U Exists

D ::= Data

� Empty data

| (a, a, a)U Triple with query pattern

| D|D Parallel

2.1. Syntax

2.1.1. Names. We assume that we are given an infinite set Names of URIs(names,

resources) ranged over by a, b, . . . , and an infinite set Variables of name variables ranged

over by x, y, We let u, v range over the set Names ∪ Variables.

2.1.2. Query patterns. The syntax of query pattern is given in Table 1. As a query pattern,

we take a triple of names or name variables, choice of query patterns or an existing query

pattern. We have chosen to leave out the join query since it would make the syntax and

the operational semantics more complicated without contributing to privacy properties.

The operator ∃ is binding and we say that a query pattern is well formed if it contains

no occurrences of free variables. Hereinafter, we observe only such query patterns. Query

patterns are ranged over by U,V ,W ,

2.1.3. Data. The syntax of data is given in Table 1. Data is an empty data, a triple

of names with an associated query pattern or a parallel composition of data. A query

pattern is assigned to each triple of names, representing its privacy protection policy. Data

variables are ranged over by χ, ψ, We let δ, ε range over data and data variables.

2.1.4. Processes. The syntax of processes is given in Table 2. The first four process

expressions, 0, P + P , P |P and recX.P are regular π-calculus processes. We additionally

have:

— READu(U, χ).P that expresses a process that reads from the user named u the data D

found by the query U and then behaves like P {D/χ};
— WRITEu(δ).P that expresses a process that writes the data δ to the user named u and

then behaves like P ;

— DELETEu(U).P that expresses a process that deletes from the user named u the data

found by the query U and then behaves like P ;

— SELECTu(∃x.U).P that expresses a process that collects substitutions and then behaves

like the parallel composition of processes obtained by applying these substitutions to

P . Each substitution has the property that when applied to the given query pattern

∃x.U, it finds a data triple of user named u that satisfies it; and

— UPDATEu(U1, U2).P that expresses a process that finds the data of user named u

identified by the query pattern U1, change by the query pattern U2 all the query

patterns of triples in the found data, and then behaves like P .

Process variables are ranged over by X,Y ,

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 39

Table 2. Syntax of processes and networks.

P ::= Process

0 Termination

| P + P Choice

| P |P Parallel

| recX.P Recursion

| X Process variable

| READu(U, χ).P Read

| WRITEu(δ).P Write

| DELETEu(U).P Delete

| SELECTu(∃x.U).P Select

| UPDATEu(U,U).P Update

N ::= Network

a[D ‖ P] User

| N | N Parallel

2.1.5. Networks. The syntax of networks is given in Table 2. A network is a user name

that encloses data and process, or a parallel composition of networks. We say that a

network is well formed if all its users have different names.

2.2. Operational semantics

2.2.1. Satisfaction of query patterns and queries. Before defining the operational semantics

we need to formalize two notions. The first one is a deductive system which presents a

tool for checking whether some data triple satisfy a query pattern (in the absence of a

join query, data that can satisfy a query pattern can only be a single data triple).

Definition 2.1 (satisfaction of a query pattern). We say that a triple TU satisfies query

pattern V , written TU |= V , if it can be deduced by the following rules:

[Q-Triple]

TU |= T

[Q-ChoiceL]

D |= U

D |= U ⊕ V

[Q-ChoiceR]

D |= V

D |= U ⊕ V

[Q-Exists]

D |= U{a/x}
D |= ∃x.U

.

The second one is a method for checking whether some profile (data) satisfies an ask

query.

Definition 2.2 (satisfaction of ask query). We say that data D satisfies an ask query of a

query pattern U, written D |= U, if it can be deduced by the following rules

[Q-Ask]

D′ |= U

D′|D′′ |= U

[Q-Scong]

D′ |= U D′ ≡D D
′′

D′′ |= U
.

We sometimes write that D satisfies a query U, for short. Informally, a data satisfies a

query if there is a triple in the data that satisfies the corresponding query pattern.

2.2.2. Auxiliary functions. In Table 3, we introduce auxiliary functions for data manipu-

lation:

— readable(Da, Db) takes two data (profiles) as arguments and returns the parallel

composition of triples of the second profile that a process running on behalf of the

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 40

Table 3. Definitions of data manipulation functions.

readable(D,�) = �

readable(D, (a, b, c)U) =

{
(a, b, c)U if D |= U,

� otherwise

readable(D,D1|D2) = readable(D,D1)|readable(D,D2)

read(U,�) = �

read(U, (a, b, c)V) =

{
(a, b, c)V if (a, b, c)V |= U,

� otherwise

read(U,D1|D2) = read(U,D1)|read(U,D2)

delete(U,�) = �

delete(U, (a, b, c)V) =

{
� if (a, b, c)V |= U,

(a, b, c)V otherwise

delete(U,D1|D2) = delete(U,D1)|delete(U,D2)

select(∃x.U,�) = �

select(∃x.U, (a, b, c)V) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{a/x} if (a, b, c)V |= U{a/x},
{b/x} if (a, b, c)V |= U{b/x},
{c/x} if (a, b, c)V |= U{c/x},
� otherwise

select(∃x.U,D1|D2) = select(∃x.U,D1) ∪ select(∃x.U,D2)

update(U,�, V) = �

update(U, (a, b, c)V
′
, V) =

{
(a, b, c)V if (a, b, c)V

′ |= U,

(a, b, c)V
′

otherwise

update(U,D1|D2, V) = update(U,D1, V)|update(U,D2, V)

first profile can access. We will say that the first profile’s user can fully access (or

owns) the second profile if readable(Da, Db) = Db.

— read(U,D) takes a query and data as arguments and returns the parallel composition

of the data triples that satisfy the query;

— delete(U,D) takes a query and data as arguments and, contrary to read, returns the

parallel composition of all the triples that do not satisfy the query;

— select(∃x.U,D) takes an existing query and data as arguments and returns a set of

substitutions. The substitutions are those that applied to the query induce that the data

satisfy the query. Sometimes we denote a substitution with s and a set of substitutions

with S;

— update(U,D, V) takes a query, a profile and another query as arguments and returns

the profile with privacy protection policies updated on triples that satisfy the first

query. The new privacy protection policies are given by the second query.

2.2.3. Auxiliary relation. Besides auxiliary functions, we introduce also an auxiliary

relation �a, in order to describe interaction between processes and data that occurs

on behalf of the user a[Da ‖ Ua]. It is given in Table 4.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 41

Table 4. Interaction rules.
[I-Choice]

(P ,D)�a (P ′, D′)

(P + Q,D)�a (P ′, D′)

[I-Parallel]

(P ,D)�a (P ′, D′)

(P |Q,D)�a (P ′|Q,D′)

[I-Recursion]

(P {recX.P /X}, D)�a (P ′, D′)

(recX.P , D)�a (P ′, D′)

[I-Read]

D′ = read(U, readable(Da, D))

(READb(U, χ).P , D)�a (P {D′
/χ}, D)

[I-Write]

(WRITEb(D
′).P , D)�a (P ,D|D′)

[I-Delete]

D′ = delete(U,D)

(DELETEb(U).P , D)�a (P ,D′)

[I-Select]

S = select(∃x.U, readable(Da, D))

(SELECTb(∃x.U).P , D)�a (
∏

s∈S P s, D)

[I-Update]

D′ = update(U,D, V)

(UPDATEb(U,V).P , D)�a (P ,D′)

Table 5. Structural congruence.

(Data) (D1|D2)|D3 ≡D D1|(D2|D3) D1|D2 ≡D D2|D1 D|� ≡D D

(Processes) (P1|P2)|P3 ≡P P1|(P2|P3) P1|P2 ≡P P2|P1 P |0 ≡P P

(P1 + P2) + P3 ≡P P1 + (P2 + P3) P1 + P2 ≡P P2 + P1

D1 ≡D D2 ⇒ WRITEu(D1).P ≡P WRITEu(D2).P

(Networks) (N1 | N2) | N3 ≡ N1 | (N2 | N3) N1 | N2 ≡ N2 | N1

D1 ≡D D2 ∧ P1 ≡P P2 ⇒ a[D1 ‖ P1] ≡ a[D2 ‖ P2]

— In rules [I-Choice], [I-Parallel], [I-Recursion], [I-Read] and [I-Select] the data remain

unchanged.

— In rules [I-Choice], [Parallel] and [I-Recursion], components that correspond to

processes continue as in reductions in the π-calculus, while in [I-Delete], [I-Write]

and [I-Update] processes follow up by the given (unchanged) continuations.

— In [I-Read], the process READb(U, χ).P interacts with the data D such that it finds the

part D′ of the data that is both readable to the profile Da and satisfies the query U,

and substitutes D′ for χ in the continuation P .

— In [I-Select], interaction between SELECTb(∃x.U).P and D results in the parallel

composition of those processes obtained by applying to the continuation P the

substitutions that are the result of select(∃x.U,D′). The data argument D′ of this

function is the part of D that is readable to Da.

— In [I-Write], the process WRITEb(D′).P and the data D give, after interaction, the data

D′ composed in parallel with D.

— In [I-Delete] and [I-Update], reactions produce the data that is the result of the data

manipulation functions delete and update, respectively.

2.2.4. Reduction relation. We assume ≡ to be the structural congruence, which is the

least equivalence relation on networks that is closed with respect to α-conversion and

satisfies the axioms given in Table 5.

In Table 6, we define the reduction relation on networks. There are two axioms,

[R-User] and [R-Self]. The former one allows interaction between different users and it

is determined by the interaction between the process of the first user and the data of

the second user. The latter one describes self-interaction between user’s process and its

own data. The rules [R-Struct] and [R-Parallel] formalize the property that the reduction

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 42

Table 6. Reduction relation.
[R-User]

(P ,Db)�a (P ′, D) a
= b

a[Da ‖ P] | b[Db ‖ Q] → a[Da ‖ P ′] | b[D ‖ Q]

[R-Self]

(P ,Da)�a (P ′, D)

a[Da ‖ P] → a[D ‖ P ′]

[R-Struct]

N1 ≡ N′
1 N1 → N2 N2 ≡ N′

2

N′
1 → N′

2

[R-Parallel]

N1 → N2

N1 | N → N2 | N

relation is defined up to structural congruence and closed with respect to the usual static

contexts. We use →∗ to denote the reflexive and transitive closure of → .

2.2.5. Well-behaved networks. Suppose we are given a function T that assigns query

patterns (privacy protection policies) to names. More precisely, each name will have a

corresponding privacy protection policy identified by the query pattern. The following

definition formalizes what we consider as well-behaved network, i.e. when we consider

that privacy of data is completely protected.

Definition 2.3. Let N →∗ a[Da ‖ P] | N ′ and T (a) = Ua. We say that N is well behaved

if the following three assertions hold:

i. if Da ≡ (a1, a2, a3)
U |D′

a and T (ai) = Ui, i ∈ {1, 2, 3}, then

–

– D |= U implies D |= Ui for every i ∈ {1, 2, 3},
ii. D |= Ua implies D |= U, and readable(Da, Da) = Da, and

iii. if N ′ ≡ b[Db ‖ Q] | N ′′ with T (b) = Ub then

– if P ≡ DELETEb(U).R or P ≡ UPDATEb(U,W).R then readable(Da, Db) = Db, and

– if P ≡ WRITEb(D′).R or P ≡ UPDATEb(U,W).R and (P ,Db) �a (P ,D′
b) then

readable(D′
b, D

′
b) = D′

b.

Less formally, a network is well behaved if:

— access to a triple is less restrictive than access to the user name it is enclosed with,

— access to a triple is more restrictive than access to its components,

— each user can completely read their own profile,

— each user can update or partly delete profiles that they own (can read the whole

profile), and

— each user can update the privacy preference policy of data of another profile that they

own or write data to another profile only if the newly obtained profile stays accessible

(fully readable) to their owner.

Example 2.1. Even if we extended Bob’s profile such that Bob became an owner of the

profile of Alice, we would treat the network with the processes

PBob ≡ UPDATEAlice(post2, (Bob, research, types)) or

PBob ≡ WRITEAlice(post
(Bob,research,types)
4)

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 43

as ill behaved, since after reduction Alice’s profile would become

DAlice ≡ . . . |post(Bob,research,types)i | . . .

and Alice could not access her own triple posti (for i = 2, 4).

3. Type system

Aiming to prevent privacy violations, we introduce a type system and prove that well-typed

networks are well behaved.

3.1. Query comparison

In order to compare privacy protection policies, we find it inevitable to introduce a

relation on queries.

Definition 3.1 (query comparison relation). We define a partial order � on queries by the

following rules:

U � U ⊕ V V � U ⊕ V U{a/x} � ∃x.U
U{a/x} � V {a/x}

∃x.U � ∃x.V

If U � V we say that U is more restrictive than V (or, equivalently, that V is less

restrictive than U).

We use the relation � in order to compare privacy protection policies. Before proving

Theorem 3.1 we will prove two auxiliary lemmas.

Lemma 3.1. If ∃x.U � ∃x.V then U{a/x} � V {a/x} for every name a.

Lemma 3.2. If U � V then U{a/x} � V {a/x} and ∃x.U � ∃x.V .

Proof. We will prove that U{a/x} � V {a/x} and the rest will hold by Definition 3.1.

The proof is by induction on the derivation of U � V .
If U � U ⊕ V then U{a/x} � U{a/x} ⊕ V {a/x}, by definition of � .
If V � U ⊕ V then V {a/x} � U{a/x} ⊕ V {a/x}, by definition of � .
If U{c/y} � ∃y.U then (U{c/y}){a/x} � (∃y.U){a/x} since it is equivalent to

(U{a/x}){c/y} � ∃y.(U{a/x}).
The induction hypothesis states that U{b/y} � V {b/y} implies (U{b/y}){a/x} � (V {b/y})

{a/x}. The latter relation is equivalent to (U{a/x}){b/y} � (V {a/x}){b/y}, which implies

that ∃y.(U{a/x}) � ∃y.(V {a/x}) or equivalently (∃y.U){a/x} � (∃y.V){a/x}.
We shall prove that ∃y.U � ∃y.V implies (∃y.U){a/x} � (∃y.V){a/x}. If the relation

∃y.U � ∃y.V holds, then U{b/y} � V {b/y} for every name b. The induction hypothesis

completes the proof.

By proving the following lemma, we know that if a triple satisfies a query pattern then

it satisfies all less restrictive query patterns. The same property is valid for the profiles

and ask queries.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 44

Theorem 3.1 (policy satisfaction). If U � V and D |= U then D |= V .

Proof. The proof is by induction on the derivation of U � V .
If U � U ⊕ V and D |= U then D |= U ⊕ V holds by [Q-ChoiceL].

If V � U ⊕ V and D |= V then D |= U ⊕ V holds by [Q-ChoiceR].

If U{a/x} � ∃x.U and D |= U{a/x} then D |= ∃x.U holds by [Q-Exists].

Let ∃x.U � ∃x.V and D |= ∃x.U. We can conclude from the definition of |= that there

is a name a such that D |= U{a/x}. It holds by Lemma 3.1 that U{a/x} � V {a/x}. By

induction hypothesis, we have that D |= V {a/x}. Finally, by the definition of |= we deduce

D |= ∃x.V .

3.2. Typing

We distinguish four kinds of types, given by the following syntax:

Name(U) name type Data(U) data type

Process(U) process type Network network type.

They correspond to four kinds of the calculus primitives. The type Name(U) denotes

a name which has the privacy policy U. The data whose all triples and all triples’

components have policies which are not more restrictive than U have type Data(U). A

process with the type Process(U) does not update or delete data of users with more

restrictive policies than U. Network denotes the type of the network. A type environment

Γ associates name and data variables with name and data types, i.e. we define:

Γ ::= � | Γ, x : Name(U) | Γ, χ : Data(U).

The empty list is a well-formed environment. We denote by dom(Γ) the set of all name

and data variables that appear in Γ. For a well-formed environment Γ, we say that

Γ, x : Name(U) is well formed if x
∈ dom(Γ), and similarly, Γ, χ : Data(U) is well formed

if χ
∈ dom(Γ).

The four kinds of types induce the four forms of judgments:

Γ � u : Name(U) Γ � D : Data(U) Γ � P : Process(U) Γ � N : Network .

The first three state that the name u, the data D and the process P are well typed under

the environment Γ for the privacy protection policy U. The forth judgment states that the

network N is well typed under Γ. We use the environment by the standard axioms:

[T-Name Variable]

Γ, x : Name(U) � x : Name(U)

[T-Data Variable]

Γ, χ : Data(U) � χ : Data(U).

3.2.1. Typing rules for names and data. Typing rules for names and data, given in Table 7,

state the following:

— If a query pattern (privacy protection policy) is assigned to a name by the function T ,
then that name is well typed under any environment for the assigned query pattern.

([T-Name])

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 45

Table 7. Typing rules for names and data.

[T-Name]

T (a) = U

Γ � a : Name(U)

[T-Empty Data]

Γ � � : Data(U)

[T-Triple]

Γ � ai : Name(Ui)
(i∈{1,2,3}) V � U � Ui

(i∈{1,2,3})

Γ � (a1, a2, a3)
U : Data(V)

[T-Parallel Data]

Γ � Di : Data(Ui)
(i∈{1,2}) U � Ui

(i∈{1,2})

Γ � D1|D2 : Data(U)

(superscript i ∈ I means for every i ∈ I)

— Empty data is well typed under any environment and privacy protection policy.

([T-Empty Data])

— The privacy protection policy of a triple is more restrictive than the privacy protection

policies of its subject, predicate and object (expressed by the relation U � Ui for each

i ∈ {1, 2, 3}). This ensures that access to the triple is forbidden to processes that do not

have the permission to access any of its component names. The triple is well typed

for a query V if the policy U of the triple is less restrictive than the query (V � U).

([T-Triple])

— Parallel composition of data is well typed for a privacy protection policy if the

composed data have less restrictive privacy protection policies than the specified

policy.([T-Parallel Data])

3.2.2. Typing rules for processes. Typing rules for processes, given in Table 8, state the

following:

— The terminating process and process variables are well typed under any environment

and privacy protection policy. ([T-Termination], [T-Process Variable])

— Choice and parallel composition of two processes are well typed under an environment

for a privacy protection policy if both processes are well typed under the same

environment for the same privacy protection policy. ([T-Choice], [T-Parallel Process])

— A recursive process is well typed under an environment if its body is well typed for

the same environment. ([T-Recursion])

— Read and select processes are well typed under an environment if their continuing pro-

cesses are well typed under corresponding augmented environments. The enhancement

is formed by adding an association between data variable or name variable with data

or name type corresponding to the privacy protection policy of the location where we

intend to read or select data. ([T-Read], [T-Select])

— A process that wants to write data well typed for W to a location well typed for Uu is

well typed for V if Uu is more restrictive than W and continuation of the process is

well typed for V . This ensure that users that have access to the whole profile will still

have that privilege after the profile is extended with new data. ([T-Write])

— A process aiming to delete or update data of a user that is well typed for a privacy

protection policy Uu are well typed for V if V � Uu and the continuation is well

typed for V . The update requires also the new privacy protection policy W to be

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 46

Table 8. Typing rules for processes.

[T-Termination]

Γ � 0 : Process(V)

[T-Choice]

Γ � Pi : Process(V) (i∈{1,2})

Γ � P1 + P2 : Process(V)

[T-Parallel Process]

Γ � Pi : Process(V) (i∈{1,2})

Γ � P1|P2 : Process(V)

[T-Process Variable]

Γ � X : Process(V)

[T-Recursion]

Γ � P : Process(V)

Γ � recX.P : Process(V)

[T-Read]

Γ, χ : Data(W) � P : Process(V)

Γ � READu(U, χ).P : Process(V)

[T-Write]

Γ � u : Name(Uu) Γ � δ : Data(W) Γ � P : Process(V) Uu �W

Γ � WRITEu(δ).P : Process(V)

[T-Select]

Γ, x : Name(Ux) � P : Process(V)

Γ � SELECTu(∃x.U).P : Process(V)

[T-Update]

Γ � u : Name(Uu) Γ � P : Process(V) V � Uu �W

Γ � UPDATEu(U,W).P : Process(V)

[T-Delete]

Γ � u : Name(Uu) Γ � P : Process(V) V � Uu

Γ � DELETEu(U).P : Process(V)

Table 9. Typing rules for networks.

[T-User]

� � a : Name(U) � � D : Data(U) � � P : Process(U) D |= U

� � a[D ‖ P] : Network

[T-Parallel Network]

� � Ni : Network (i∈{1,2})

� � N1 | N2 : Network

less restrictive than Uu. This ensures that the data stays available to its owner after

an update has been executed and that delete is to be done only by the owner of the

data.([T-Delete], [T-Update])

3.2.3. Typing rules for networks. Typing rules for networks, given in Table 9, state the

following:

— A user with enclosed data (profile) and process is well typed, if the user name, the data

and the process are well typed for the same privacy protection policy. A straightforward

consequence of the type assignment rules is the following: if a user a[D ‖ P] is well

typed, then both the data D and the process P do not contain occurrences of free

variables.([T-User])

— Parallel composition of well-typed networks is a well-typed network. ([T-Parallel

Network])

4. Properties

In the current section, we prove that the proposed type system guarantees the operational

property of type preservation under reduction: all networks obtained by reduction starting

in a typed network are again typed. First, we need a few preliminary lemmas in order to

enable the reversal of the typing rules. The proposed type system is syntax directed, hence

the proofs of the following lemmas are straightforward.

We introduce an extra meta-variable:

ω ::= Name(U) | Data(U) | Process(U) | Network .

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 47

Lemma 4.1 (generation lemma for variables).

1. Γ � x : ω ⇒ x : ω ∈ Γ and ω = Name(U).

2. Γ � χ : ω ⇒ χ : ω ∈ Γ and ω = Data(U).

Lemma 4.2 (generation lemma for names and data).

1. Γ � a : ω ⇒ T (a) = Ua and ω = Name(Ua).

2. Γ � � : ω ⇒ ω = Data(U).

3. Γ � (a1, a2, a3)
U : ω ⇒ ω = Data(V) and Γ � ai : Name(Ui) and V � U � Ui for every

i ∈ {1, 2, 3}.
1. Γ � D1|D2 : ω ⇒ ω = Data(U) and Γ � Di : Data(Ui) and U � Ui for every i ∈ {1, 2}.

Lemma 4.3 (generation lemma for processes).

1. Γ � 0 : ω ⇒ ω = Process(V).

2. Γ � P1 + P2 : ω ⇒ ω = Process(V) and Γ � P1 : Process(V) and Γ � P2 : Process(V).

3. Γ � P1|P2 : ω ⇒ ω = Process(V) and Γ � P1 : Process(V) and Γ � P2 : Process(V).

4. Γ � X : ω ⇒ ω = Process(V).

5. Γ � recX.P : ω ⇒ ω = Process(V) and Γ � P : Process(V).

6. Γ � READu(U, χ).P : ω ⇒ ω = Process(V) and Γ, χ : Data(W) � P : Process(V).

7. Γ � WRITEu(δ).P : ω ⇒ ω = Process(V) and Γ � u : Name(Uu) and Γ � δ : Data(W)

and Γ � P : Process(V) and Uu �W.

8. Γ � SELECTu(∃x.U).P : ω ⇒ ω = Process(V) and Γ, x : Name(Ux) � P : Process(V).

9. Γ � UPDATEu(U,W).P : ω ⇒ ω = Process(V) and Γ � u : Name(Uu) and Γ � P :

Process(V) and V � Uu �W.

10. Γ � DELETEu(U).P : ω ⇒ ω = Process(V) and Γ � u : Name(Uu) and Γ � P :

Process(V) and V � Uu.

Lemma 4.4 (generation lemma for networks).

1. � � a[D ‖ P] : ω ⇒ ω = Network and � � a : Name(U) and � � D : Data(U) and

� � P : Process(U) and D |= U.

2. � � N1 | N2 : ω ⇒ ω = Network and � � N1 : Network and � � N2 : Network .

Lemma 4.5 (substitution).

1. If Γ, χ : Data(W) � P : Process(V) and Γ � D : Data(W) then Γ � P {D/χ} :

Process(V).

2. If Γ, x : Name(Ux) � P : Process(V) and Γ � a : Name(Ux) then Γ � P {a/x} :

Process(V).

3. If Γ, X : Process(U) � P : Process(V) and Γ � Q : Process(U) then Γ � P {Q/X} :

Process(V).

Lemma 4.6. Let Γ � D : Data(V). If

1. D′ = readable(Da, D),

2. D′ = read(U,D),

3. D′ = delete(U,D), or

4. D′ = update(U,D,W) and V �W,

then Γ � D′ : Data(V).

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 48

Proof. The proof is by induction on the structure of D. We write the proof for read,

other cases are similar.

If D = (a, b, c)U then V � U by Lemma 4.2.3. By definition of read, D′ = � or

D′ = D. In both cases, applying typing rules for data, we derive Γ � D′ : Data(V).

Assume that Γ � D′
1 : Data(V) and Γ � D′

2 : Data(V) for D′
1 = read(U,D1), and

D′
2 = read(U,D2). We shall prove Γ � D′ : Data(V) for D′ = read(U,D1|D2) =

read(U,D1)| read(U,D2), which follows from the induction hypothesis and [T-Parallel

Data].

Lemma 4.7. If � � N1 : Network and N1 ≡ N2, then � � N2 : Network .

Finally, we prove that the proposed type system enjoys the preservation of types under

reduction.

Theorem 4.1 (subject reduction). If � � N1 : Network and N1 → N2 then � � N2 :

Network .

Proof. The proof is by induction on the derivation of N1 → N2. We have two base

cases, from the reduction rules [R-User] and [R-Self].

[R-User] Suppose a
= b and � � a[Da ‖ P] | b[Db ‖ Q] : Network . We have to show

� � a[Da ‖ P ′] | b[D ‖ Q] : Network , which will follow from the typing rules if we

prove � � P ′ : Process(Ua) and � � D : Data(Ub). The latter two will be proved by

induction on the derivation of (P ,Db)�a (P ′, D). We consider the following five base

cases.

[I-Read] P = READb(U, χ).P1, P
′ = P1{D′

/χ}, D′ = read(U, readable(Da, Db)),

D = Db : By Lemma 4.3.6, � � P : Process(Ua) implies χ : Data(W) � P1 :

Process(Ua). We conclude by Lemma 4.6.1–2 and Lemma 4.5.1 that � � P1{D′
/χ} :

Process(Ua).

[I-Write] P = WRITEb(D′).P1, P
′ = P1, D = Db|D′ : From � � P : Process(Ua),

by Lemma 4.3.7, it holds that � � P1 : Process(Ua) and � � D′ : Data(W) and

Ub �W. Applying the typing rule [T-Parallel Data] we get � � D : Data(Ub).

[I-Select] P = SELECTb(∃x.U).P1, P
′ =

∏
s∈S P1s, S = select(∃x.U, readable(Da, Db)),

D = Db : By Lemma 4.3.8, Lemma 4.5.2 and [T-Parallel Process], � � P ′ :

Process(Ua).

[I-Update] P = UPDATEb(U,W).P1, P
′ = P1, D = update(U,Db,W) : By

Lemma 4.3.9, � � P : Process(Ua) implies � � b : Name(Ub) and � � P1 :

Process(Ua) and Ua � Ub � W. According to Lemma 4.6.4 it follows that

� � D : Data(Ub).

[I-Delete] P = DELETEb(U).P1, P
′ = P1, D = delete(U,Db) : By Lemma 4.3.10,

� � P : Process(Ua) implies � � P1 : Process(Ua), and by Lemma 4.6.3 we get

� � D : Data(Ub).

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 49

Assume the induction hypothesis: (P ,Db)�a (P ′, D) implies � � P ′ : Process(Ua) and

� � D : Data(Ub). Applying the typing rules [T-Parallel Process] and [T-Recursion],

we obtain

If (P + Q,Db)�a (P ′, D) then � � P ′ : Process(Ua) and � � D : Data(Ub).

If (P |Q,Db)�a (P ′|Q,D) then � � P ′|Q : Process(Ua) and � � D : Data(Ub).

If (recX.P1, Db)�a (P ′, D) and P = P1{recX.P1/X} then � � P ′ : Process(Ua) and

� � D : Data(Ub).

[R-Self] Suppose � � a[Da ‖ P] : Network . We have to show that � � a[Da ‖ P ′] :

Network i.e. � � P ′ : Process(Ua) for (P ,Da) �a (P ′, D). The proof is similar to the

previous case.

Suppose that � � N1 : Network and N1 → N2 imply � � N2 : Network .

[R-Parallel] If � � N1 | N : Network and N1 | N → N2 | N, by Lemma 4.4.2 and the

typing rule [T-Parallel Network], � � N2 | N : Network .

[R-Struct] If N1 ≡ N ′
1, N2 ≡ N ′

2, N
′
1 → N ′

2 and � � N ′
1 : Network . By Lemma 4.7,

� � N1 : Network , and by the induction hypothesis we conclude � � N2 : Network .

Applying now Lemma 4.7 to N2 ≡ N ′
2, we get � � N ′

2 : Network .

Corollary 4.1. If � � N1 : Network and N1 →∗ N2 then � � N2 : Network .

Lemma 4.8. If � � a[Da ‖ Pa] : Network and � � a : Name(Ua), then readable(Da, Da) =

Da.

Proof. The proof follows by induction on the structure of Da. If Da = TV then, by

Lemma 4.2.3, Ua � V . From Lemma 4.4.1 it holds that TV |= Ua, by Theorem 3.1

we conclude TV |= V , and therefore readable(Da, T
V) = TV . Assume that Da =

D′|D′′ and readable(Da, D
′) = D′ and readable(Da, D

′′) = D′′. Then readable(Da, D) =

readable(Da, D
′|D′′)= readable(Da, D

′)| readable(Da, D
′′) = D′|D′′ = Da.

Theorem 4.2. If � � N : Network , then N is well behaved.

Proof. Let N →∗ a[Da ‖ P] | N ′, T (a) = Ua, and � � Network . We can conclude, by

Corollary 4.1 and Lemma 4.4.2, that � � a[Da ‖ P] : Network and � � N ′ : Network .

i. Assume that Da ≡ (a1, a2, a3)
U |D′

a and T (ai) = Ui, i ∈ {1, 2, 3}. It holds by

Lemma 4.4.1 that � |= (a1, a2, a3)
U |D′

a : Data(Ua). By Lemma 4.2.3, Ua � U � Ui for

every i ∈ {1, 2, 3}. We conclude by applying the Theorem 3.1.

ii. readable(Da, Da) = Da is straightforward consequence of the Lemma 4.8 and

Lemma 4.4.2.

iii. – AssumethatN ′ ≡ b[Db ‖ Q] | N ′′ and (P ≡ DELETEb(U).R or P ≡ UPDATEb(U,W).R)

and T (a) = Ua. By Lemma 4.4.2, � � P : Process(Ua), and by Lemma 4.3.9–10

Ua � Ub. We proceed by induction on the structure of Db. If Db = TU then,

by Lemma 4.2, Ub � U. From Ua � Ub � U, by Theorem 3.1, since Da |= Ua

it follows Da |= U, and therefore also readable(Da, T
U) = TU. Induction shows

readable(Da, D
′
b|D′′

b) = readable(Da, D
′
b) | readable(Da, D

′′
b) = D′

b| D′′
b = Db.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 50

– Assume thatN ′ ≡ b[Db ‖ Q] | N ′′ and (P ≡ WRITEb(D′).R or P ≡ UPDATEb(U,W).R)

and (P ,Db) �a (P ,D′
b) and T (b) = Ub. It follows from [I-Write] and [I-Update]

that D′
b ≡ Db|D′ or D′

b ≡ update(U,Db,W). According to Lemma 4.6.4 and in

the former case [T-Parallel Data] it holds � � D′
b : Data(Ub). We conclude by

Theorem 4.1 that D′
b |= Ub and from Ub � W we have D′

b |= W. Therefore,

readable(D′
b, D

′
b) = D′

b.

5. Related work

The Linked Data is currently present on the Web in many areas: media, publications,

life sciences, geographic data and user generated content (Berners-Lee et al. 2001; Bizer

2009; Bizer et al. 2009; Heath 2011; Heath and Bizer 2001). In the present calculus,

we have mostly focused on privacy issues for user generated content. There is a

great number of references on technologies and tools for the Linked Data. Here we

name RDF (Brickley and Guha 2004; Klyne and Caroll 2004), SPARQL (Haris et al.

2011; Prud’hommeaux and Seaborne 2008), FOAF (Friend of a Friend, a common

vocabulary that describes RDF data, http://www.foaf-project.org/), SIOC exporters

(Linked Data wrappers for blogging engines, content management systems and discussion

forums, http://sioc-project.org/exporters), Zemanta (provides tools for the semiautomated

enrichment of blog posts with data-level links pointing to DBpedia, Freebase, MusicBrainz,

and Semantic Crunch-Base), HyperTwitter and Twarql.

Horne and Sassone (2011b); Horne et al. (2011) provide an abstract syntax in order

to capture Linked Data structures, queries and updates which are then internalized in

a process calculus. The abstract syntax of RDF of Klyne and Caroll (2004) was used

as base for the introduced model of stored Linked Data. The interaction of the stored

data in RDF format, SPARQL queries and applications that consume the queried data

is described by operational semantics. We have introduced the user profiles and privacy

policies as suggested in Sacco and Passant (2011a,b); Stanković et al. (2009) where the

authors propose the authentication of users based on their FOAF profiles and SPARQL

query as privacy preference checkers.

In Dezani et al. (2012), the authors study provenance for Linked Data and introduce

a typed calculus for modelling interaction between processes and Linked Data, tracing

where the data has been published and who published it. The syntax of our calculus is

similar to the one of Dezani et al. (2012) in the sense that both calculi distinguish between

processes and data and describe their interaction. In the present calculus, processes run

on behalf of data and both the data and the process are enclosed with a user name (like

in named graphs), while in the other calculus linked data is open. Since the two calculi

model orthogonal problems, triples are decorated with completely different annotations,

while the tool for checking whether a data satisfy a query is the same. The semantics differ

quite a lot since in our model it is essential that the operations are performed on the

entire observed data (think of updating privacy policy: it must be updated on all triples

satisfying some condition i.e. query) while other related calculi do not have to guarantee

this.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 51

In this paper, by means of a type system, we verify preservation of privacy properties

from Sacco and Passant (2011a,b), where the vocabulary for fine-grained privacy preference

control and a tool for privacy preference management were defined, as well as several

more general properties. Basic type systems for process calculi could be found in Hennessy

(2007) and Sangiorgi and Walker (2001). Type systems were successfully used to analyse

a wide range of security properties (authenticity, security, safety, secrecy, privacy. . .),

here we mention the following: in Abadi and Blanchet (2003) and Abadi et al. (2006)

computational secrecy control for asynchronous π-calculus (Merro and Sangiorgi 1998) by

introducing types for public and private channels and proving computational soundness

theorem; in Fournet et al. (2003) the type system for objective join-calculus guaranties

that private labels are accessed only from the body of a class used to create the object;

in Fournet et al. (2007) policy conformance in a distributed system is verified with a type

system; in Haack and Jeffrey (2005) authenticity and secrecy of well-typed protocols in

timed spi-calculus. In Horne and Sassone (2011a) a type and a subtype system verify

consistency of URI names usage. The most related type assignment systems are (Dezani

et al. 2010, 2008), where the safety properties of data in XML format have been proved.

The type system from the present paper is equipped with query comparison relation which

is tailored especially for the investigated kind of privacy control.

6. Conclusion

We have introduced a core language of processes that interact with data in RDF format,

modelling a fragment of SPARQL and a higher order language that consumes the data.

These processes together with data are enclosed under named users which are put in

parallel, representing a network of users interacting with each other. We define the desired

privacy properties of the network by defining well-behaved network. What distinguishes

this work from others analysing variety of security properties is the fact that it does not

feature any additional means for privacy control beside those that are already present

in the syntax of the calculus, i.e. privacy policies are expressed as queries and policy

satisfaction comes to query satisfaction with users profiles in RDF format. We have

studied a type system guaranteeing some privacy properties by proving that well-typed

network is well behaved. The key of the type system simplicity lies in the introduced

query comparison relation and the chosen set of processes. The calculus is equipped only

with processes essential for the privacy study done in the paper. With the extension of the

process language we would get more complicated semantics and the type system without

significant impact on the privacy properties which we have discussed.

This paper contributes to the expanding trend of building the Web of Linked Data.

To the best of our knowledge, this is the first typed calculus that tackles privacy

protection for Linked Data. The proposed typed calculus provides a ground model

for the development of type checkers for high level languages for Linked Data. When

the Web of Linked Data becomes significantly spread out, the natural step forward

will be the study of formal models of applications that consume the Web of Linked

Data.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

S. Jakšić, J. Pantović and S. Ghilezan 52

Acknowledgement

We wish to thank the anonymous reviewers who have provided suggestions for improving

the paper. We are grateful to Mariangiola Dezani-Ciancaglini for reading and providing

valuable comments on an early version of the paper.

References

Abadi, M. and Blanchet, B. (2003). Secrecy types for asymmetric communication. Theoretical

Computer Science 3 (298) 387–415.

Abadi, M., Corin, R. and Fournet, C. (2006). Computational secrecy by typing for the pi calculus.

In: Kobayashi, N. (ed.) APLAS. Springer Lecture Notes in Computer Science 4279 253–269.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The semantic web. Scientific Am. 284 (5) 35–43.

Bizer, C. (2009). The emerging web of linked data. IEEE Inteligent Systems 24 87–92.

Bizer, C., Heath, T. and Berners-Lee, T. (2009). Linked data - the story so far. International Journal

on Semantic Web and Information Systems 5 (3) 1–22.

Brickley, D. and Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.

W3C, MIT, Cambridge, MA. REC-rdf-schema-20040210.

Dezani-Ciancaglini, M., Ghilezan, S., Jakšić, S. and Pantovic̀ J. (2010). Types for role-based access

control of dynamic web data. In: WFLP’10. Lecture Notes in Computer Science 6559 1–29.

Dezani-Ciancaglini, M., Ghilezan, S., Pantović, J. and Varacca, D. (2008). Security types for dynamic

web data. Theoretical Computer Science 402 (2–3) 156–171.

Dezani-Ciancaglini, M., Horne, R. and Sassone, V. (2012). Tracing where and who provenance in

Linked Data: A calculus. Theoretical Computer Science 464 113–129.

Fournet, C., Gordon, A. and Maffeis, S. (2007). A type discipline for authorization in distributed

systems. In: CSF IEEE Computer Society 31–48.

Fournet, C., Laneve, C., Maranget, L. and Rémy, D. (2003). Inheritance in the join calculus. Journal

of Logic and Algebraic Programming 57 (1-2) 23–69.

Haack, C. and Jeffrey, A. (2005). Timed spi-calculus with types for secrecy and authenticity. In:

Abadi, M. and de Alfaro, L. (eds.) CONCUR. Springer Lecture Notes in Computer Science 3653

202–216.

Haris, S., Seaborne, A. and Prud’hommeaux, E. (2011). SPARQL 1.1 query language. W3C, MIT,

Cambridge, MA. WD-sparql11-query-20110512.

Heath, T. (2011) Linked data - welcome to the data network. IEEE Internet Computing 15 (6) 70–73.

Heath, T. and Bizer, C. (2001). Linked data: Evolving the web into a global data space. Synthesis

Lectures on the Semantic Web: Theory and Technology 1 (1) 1–136.

Hennessy, M. (2007). A Distributed Pi-Calculus, Cambridge University Press.

Horne, R. and Sassone, V. (2011a). A typed model for linked data. Technical Report, available online

at http://eprints.ecs.soton.ac.uk/21996/5/paper.pdf.

Horne, R. and Sassone, V. (2011b). A verified algebra for linked data. In: Mousavi, M. R. and

Ravara, A. (eds.) FOCLASA. Electronic Proceedings in Theoretical Computer Science 58 20–33.

Horne, R., Sassone, V. and Gibbins, N. (2011). Operational semantics for SPARQL update. In:

1st Joint International Semantic Technology Conference, 4–7th December 2011, Hangzhou, China

1–16.

Klyne, G. and Caroll, J. (2004). Resource description framework: Concepts and abstract syntax.

W3C, MIT, Cambridge, MA, REC-rdf-concepts-20040210.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

Linked data privacy 53

Merro, M. and Sangiorgi, D. (1998). On asynchrony in name-passing calculi. In: Larsen, K. G.,

Skyum, S. and Winskel, G. (eds.) ICALP. Springer Lecture Notes in Computer Science 1443

856–867.

Milner, R. (1999). Communicating and Mobile Systems: The π-Calculus, Cambridge University Press.

Milner, R., Parrow, J. and Walker, D. (1992). A calculus of mobile processes, part I and II.

Information and Computation 100 (1) 1–40.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL query language for RDF. W3C, MIT,

Cambridge, MA. REC-rdf-sparql-query-20080115.

Sacco, O. and Passant, A. (2011a). A privacy preference ontology (ppo) for linked data.

In: Proceedings of the Linked Data on the Web Workshop (LDOW2011), available online at

http://ceur-ws.org/Vol-813/.

Sacco, O. and Passant, A. (2011b). A privacy preference manager for the social semantic Web. In:

Proceedings of the 2nd Workshop on Semantic Personalized Information Management: Retrieval

and Recommendation 42–53.

Sangiorgi, D. and Walker, D. (2001). The π-Calculus: A Theory of Mobile Processes, Cambridge

University Press.

Stanković, M., Passant, A. and Laublet, P. (2009). Directing status messages to their audience

in online communities. In: COIN@AAMAS&IJCAI&MALLOW. Springer Lecture Notes in

Computer Science 6069 195–210.

Westin, A. (1967). Privacy and Freedom, New York: Atheneum.

https://doi.org/10.1017/S096012951500002X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500002X

