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ON SEPARABLE A2 AND A3-FORMS

AMARTYA KUMAR DUTTA, NEENA GUPTA

and ANIMESH LAHIRI

Abstract. In this paper, we will prove that any A3-form over a field k

of characteristic zero is trivial provided it has a locally nilpotent derivation

satisfying certain properties. We will also show that the result of Kambayashi

on the triviality of separable A2-forms over a field k extends to A2-forms over

any one-dimensional Noetherian domain containing Q.

§1. Introduction

For any commutative ring R, we will use the notation A=R[n] to mean

that A is a polynomial ring in n variables over R. Now let k be a field with

algebraic closure k̄ and A be a k-algebra. We say that A is an An-form over

k if A⊗k k̄ = k̄[n]. It is well known that separable A1-forms are trivial (i.e.,

k[1]) and that there exist nontrivial purely inseparable A1-forms over fields

of positive characteristic. An extensive study of such algebras was made by

Asanuma in [3]. Kambayashi established [18] that separable A2-forms over

a field k are trivial. Over any field of positive characteristic, the nontrivial

purely inseparable A1-forms can be used to give examples of nontrivial

An-forms for any integer n > 1. However, the problem of the existence of

nontrivial separable A3-forms over a field is still open in general. A few

recent partial results on the triviality of separable A3-forms are mentioned

in Remark 3.3.

Now let R be a ring containing a field k. An R-algebra A is said to

be an An-form over R with respect to k if A⊗k k̄ = (R⊗k k̄)[n], where k̄

denotes the algebraic closure of k. In [10], Dutta investigated separable A1-

forms over any ring R containing a field k and obtained Theorem 2.9. He

also observed Theorem 2.10 for A2-forms over any Principal Ideal Domain

(PID) containing Q.
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In this paper, we prove a partial result on separable A3-forms over a field k

(Theorem 3.2) and extend the results on A2-forms (Theorems 2.8 and 2.10)

to any one-dimensional Noetherian Q-algebra (Theorem 3.7) and to any

Q-algebra having a fixed point free locally nilpotent derivation (Theo-

rem 3.8). After receiving a preprint of our paper, Prof. M. Miyanishi

informed us that a part of Theorem 3.2 has also been obtained recently

in [13] by a different approach (see Remark 3.3 (4) for a precise statement).

§2. Preliminaries

In this section we recall a few definitions and well-known results. All rings

will be assumed to be commutative containing unity.

Definition 2.1. An R-algebra A is said to be an Ar-fibration over R if

the following hold:

(i) A is finitely generated over R.

(ii) A is flat over R.

(iii) A⊗R k(p) = k(p)[r] for every prime ideal p of R.

Definition 2.2. Let k be a field of characteristic p (> 0) with algebraic

closure k̄ and R a k-algebra. An R-algebra A is said to be an An-form over

R (with respect to k) if A⊗k k̄ = (R⊗k k̄)
[n]

.

Definition 2.3. Let A=R[n] and F ∈A. F is said to be a residual

coordinate in A if, for every prime ideal p of R, A⊗R k(p) = k(p)[F̄ ][n−1],

where F̄ denotes the image of F in A⊗R k(p).

Definition 2.4. A derivation D on a ring A is said to be a locally nilpo-

tent derivation if, for each a ∈A, there exists an integer n> 0 (depending

on a), such that Dn(a) = 0.

Definition 2.5. We say that a locally nilpotent derivation D on a ring

A admits a slice if there exists s in A for which D(s) = 1.

Definition 2.6. A locally nilpotent derivation D on a ring A is said to

be fixed point free if (DA) =A, where (DA) is the ideal of A generated by

D(A).

Definition 2.7. Let R be a ring and D a locally nilpotent R-derivation

on the polynomial ring A=R[n]. Then the rank of the derivation D,

denoted by rk (D), is defined to be the least integer i such that there exist

X1, . . . , Xn−i ∈ kerD satisfying A=R[X1, . . . , Xn−i]
[i].
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We first state Kambayashi’s theorem [18, Theorem 3] on the triviality of

separable A2-forms over fields.

Theorem 2.8. Let k and L be fields such that L is separably algebraic

over k. Suppose A is a k-algebra such that A⊗k L= L[2]. Then A= k[2].

We now state a theorem on separable A1-forms over rings and a theorem

on A2-forms over a PID due to Dutta [10, Theorem 7 and Remark 8].

Theorem 2.9. Let k be a field, L a separable field extension of k, R a k-

algebra and A an R-algebra such that A⊗k L is isomorphic to the symmetric

algebra of a finitely generated rank one projective module over R⊗k L. Then

A is isomorphic to the symmetric algebra of a finitely generated rank one

projective module over R.

Theorem 2.10. Let k be a field of characteristic zero, R a PID

containing k and A an R-algebra such that A is an A2-form over R with

respect to k. Then A=R[2].

Next we quote a result on A2-fibrations due to Asanuma and Bhatwadekar

[2, Theorem 3.8 and Remark 3.13].

Theorem 2.11. Let R be a one-dimensional Noetherian Q-algebra. Let

A be an A2-fibration over R. Then there exists H ∈A such that A is an

A1-fibration over R[H].

The following result on residual coordinates was proved by Bhatwadekar

and Dutta for Noetherian rings containing Q [5, Theorem 3.2] and later

generalized by van den Essen and van Rossum for general Q-algebras

[11, Theorem 3.4].

Theorem 2.12. Let R be a Q-algebra, A=R[2] and F ∈A. If F is a

residual coordinate in A then A=R[F ][1].

Next we state a theorem which follows from a fundamental result in the

theory of locally nilpotent derivations [12, Corollary 1.26].

Theorem 2.13. Let k be a field of characteristic zero, A a k-algebra, D

a locally nilpotent derivation on A and B := kerD. Then the following are

equivalent:

(1) D admits a slice s.

(2) A=B[s] =B[1] and D = d/ds on A.

(3) D(A) =A.
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The following rigidity theorem is due to Daigle [8, Theorem 2.5].

Theorem 2.14. Let k be a field of characteristic zero and D be a locally

nilpotent derivation on the polynomial ring A= k[3] with rk (D) = 2. Let

X,W ∈ kerD be such that A= k[X][2] = k[W ][2]. Then k[X] = k[W ].

The following result on fixed point free locally nilpotent derivations was

obtained by Bhatwadekar and Dutta [6, Theorem 4.7] for any Noetherian

Q-algebra and later generalized to any Q-algebra by Berson et al. [4,

Theorem 3.5]; [12, Theorem 4.15].

Theorem 2.15. Let R be a Q-algebra, A=R[X, Y ] =R[2], D a fixed

point free locally nilpotent R-derivation of A and B = ker D. Then D admits

a slice, B =R[1] and A=B[1].

Remark 2.16. A fixed point free locally nilpotent derivation on

k[X, Y, Z] has a slice [17]. But a fixed point free locally nilpotent R-

derivation on R[X, Y, Z] need not have a slice even if R is a PID [7,

Example 5.6].

§3. Main results

In this section we will prove our main results. Note that if k is a field

of characteristic zero, A a k-algebra and L a field extension of k, then any

k-linear locally nilpotent derivation D on A can be extended to a locally

nilpotent derivation D ⊗ 1L on A⊗k L such that (D ⊗ 1L)(a⊗ λ) =D(a)⊗
λ for all a ∈A and λ ∈ L. We will first establish our main theorem on A3-

forms over k (Theorem 3.2). We begin with a special case of this result

which holds for A3-forms over a PID R with respect to k.

Proposition 3.1. Let k be a field of characteristic zero with algebraic

closure k̄, R a PID containing k and A be an A3-form over R with respect

to k. Suppose that there exists an R-linear locally nilpotent derivation D on

A such that rk (D ⊗ 1k̄) = 1. Then A=R[3].

Proof. Since A is an A3-form over R with respect to k, there exists a finite

extension L over k such that A⊗k L= (R⊗k L)[3] and rk (D ⊗k 1L) = 1. Let

B = kerD. Set R̄ :=R⊗k L, Ā :=A⊗k L, B̄ :=B ⊗k L and D̄ :=D ⊗ 1L.

Then Ā= R̄[3] and ker D̄ = B̄. Since rk(D̄) = 1, we have Ā= B̄[1] and B̄ =

R̄[2]. Hence, B =R[2] by Theorem 2.10. As Pic(B) is trivial, A=B[1] by

Theorem 2.9. Thus, A=R[3].

We now prove our main result on A3-forms.
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Theorem 3.2. Let k be a field of characteristic zero with algebraic

closure k̄ and A be an A3-form over k. Suppose that there exists a k-linear

locally nilpotent derivation D on A such that rk (D ⊗ 1k̄) 6 2. Then A= k[3].

Proof. Since A is an A3-form over k, there exists a finite Galois extension

L over k with Galois group G such that A⊗k L= L[3] and rk (D ⊗k 1L) 6 2.

Let B = kerD. Set Ā :=A⊗k L, B̄ :=B ⊗k L and D̄ :=D ⊗ 1L. Then Ā=

L[3] and ker D̄ = B̄.

If rk(D̄) = 1, then A= k[3] by Proposition 3.1 (taking R= k).

We now consider the case rk (D̄) = 2. We then have X ∈ B̄ such that Ā=

L[X][2]. We show that there exists W ∈ L[X] ∩A such that L[X] = L[W ].

We identify A with its image in Ā under the map a→ a⊗ 1. Any σ ∈G
can be extended to an A-automorphism of Ā by defining σ(a⊗ l) = a⊗ σ(l),

for all a ∈A and l ∈ L. Let

X = 1⊗ l0 + e1 ⊗ l1 + · · ·+ er ⊗ lr

where 1, e1, . . . , er form a part of a k-basis of A and li’s are in L. Since the

bilinear map L× L−→ k given by (x, y) 7→ Tr(xy) is nondegenerate (where

Tr(a) := Trace(a) for all a in L), replacing X by lX (for some l ∈ L) if

necessary we can assume that Tr(li) 6= 0 for some i> 1. Thus

W :=
∑
σ∈G

σ(X) = 1⊗ Tr(l0) + e1 ⊗ Tr(l1) + · · ·+ er ⊗ Tr(lr)

is an element of A \ k. Note that σD̄ = D̄σ and hence σ(X) ∈ B̄. Since σ is

an automorphism of Ā, by Theorem 2.14, L[X] = L[σ(X)]. Hence σ(X) is

linear in X for each σ and hence degXW 6 1. But as B ∩ L= k, W /∈ L, so

that degXW = 1 which implies L[X] = L[W ].

So Ā= L[W ][2] = (k[W ]⊗k L)[2]. By Theorem 2.10, we get A= k[W ][2].

Remark 3.3. Let k be a field of characteristic zero with algebraic closure

k̄ and A an A3-form over k. We record below a few other results on the

triviality of A.

(1) Daigle and Kaliman have proved [9, Corollary 3.3] that if A admits a

fixed point free locally nilpotent derivation D, then A= k[3].

(2) Daigle and Kaliman have also proved [9, Proposition 4.9] that if A

contains an element f which is a coordinate of A⊗k k̄, then A= k[3] and f

is a coordinate of A.
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(3) Koras and Russell have proved [19, Theorem C] that if A admits an

effective action of a reductive algebraic k-group of positive dimension, then

A= k[3].

(4) Recently, Gurjar, Masuda and Miyanishi have shown [13] that A=

k[3] if A admits either a fixed point free locally nilpotent derivation or a

nonconfluent action of a unipotent group of dimension two. Their results

give an alternative approach to Theorem 3.2 for the case rk (D̄) = 1.

We now extend Theorems 2.8 and 2.10 to more general rings. For

convenience, we first record a few easy lemmas.

Lemma 3.4. Let R be a ring containing Q and A=R[2]. If H ∈A is

such that A is an A1-fibration over R[H], then A=R[H][1].

Proof. Let p be a prime ideal of R and let H̄ denote the image of H

in A⊗R k(p). Then A⊗R k(p) is an A1-fibration over the PID k(p)[H̄] and

hence A⊗R k(p) = k(p)[H̄][1]. Thus, H is a residual coordinate of A. Hence,

by Theorem 2.12, A=R[H][1].

We now observe that Theorem 2.8 extends to separable A2-forms over a

field K with respect to a subfield k.

Lemma 3.5. Let k be a field and K a field extension of k. Let A be

a K-algebra such that A⊗k L= (K ⊗k L)[2], for some finite separable field

extension L of k. Then A=K [2].

Proof. By hypothesis, we have A⊗K (K ⊗k L) = (K ⊗k L)[2]. Since L

over k is a finite separable extension, K ⊗k L is a finite direct product of

separable extensions Li over K. Hence, we have A⊗K Li = Li
[2] (for each

i), which implies A=K [2] by Theorem 2.8.

We now show that A2-forms are A2-fibrations.

Lemma 3.6. Let k be a field of characteristic zero, R be a k-algebra and

A be an R-algebra. Let A be an A2-form over R with respect to k. Then A

is an A2-fibration over R.

Proof. Let A⊗k k̄ = (R⊗k k̄)[X, Y ], where k̄ is an algebraic clo-

sure of k. Let X =
∑n

i=0 ai ⊗ λi and Y =
∑m

i=0 bi ⊗ µi, where ai, bi ∈A
and λi, µi ∈ k̄. Then R[a1, . . . , an, b1, . . . , bm]⊆A and the induced map

R[a1, . . . , an, b1, . . . , bm]⊗k k̄ −→A⊗k k̄ is an isomorphism. Hence k̄ being

faithfully flat over k, we have A=R[a1, . . . , an, b1, . . . , bm]. Thus A is

a finitely generated R-algebra. Again, as A⊗k k̄ is faithfully flat over
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R⊗k k̄ and k̄ is faithfully flat over k, A is flat over R. Now it suffices to

show A⊗R k(p) = k(p)[2], for each prime ideal p of R.

Let p be an arbitrary prime ideal of R. By hypothesis there exists

a finite separable extension L of k such that A⊗k L= (R⊗k L)[2].

Hence, k(p)⊗R (A⊗k L) = k(p)⊗R (R⊗k L)[2] = (k(p)⊗k L)[2]. Hence by

Lemma 3.5, A⊗R k(p) = k(p)[2].

Thus, A is an A2-fibration over R.

We now extend Theorems 2.8 and 2.10 to any one-dimensional Noetherian

ring containing a field of characteristic zero.

Theorem 3.7. Let k be a field of characteristic zero and R a one-

dimensional Noetherian k-algebra. If A is an A2-form over R with respect

to k, then there exists a finitely generated rank one projective R-module Q

such that A∼= (SymR(Q))[1].

Proof. By Lemma 3.6, A is an A2-fibration over R and hence by Theorem

2.11, there exists H ∈A such that A is an A1-fibration over R[H]. Let k̄ be

an algebraic closure of k, Ā :=A⊗ k̄ and R̄ :=R⊗ k̄. Since Ā= R̄[2] and

Ā is an A1-fibration over R̄[H], we have Ā= R̄[H][1] by Lemma 3.4. Thus

by Theorem 2.9, A∼= SymR[H](Q1), for some finitely generated rank one

projective R[H]-module Q1. Set Rred :=R/nil(R). Now

A/nil(R)A∼= SymR[H](Q1)⊗R Rred = SymRred[H](Q1 ⊗R Rred).

Now by [14, Section 2, Lemma 1], there exists a finitely generated rank

one projective Rred-module Q′ such that Q1 ⊗R (Rred) =Q′ ⊗Rred
Rred[H].

Thus,

A/nil(R)A∼= SymRred
(Q′)⊗Rred

Rred[H] = (SymRred
(Q′))[1].

Now by [15, Proposition 2.3.5], there exists a finitely generated rank one pro-

jective R-module Q such that Q⊗R Rred =Q′ and hence A= (SymR(Q))[1].

The following result shows that under the additional hypothesis that A

has a fixed point free locally nilpotent R-derivation, Theorem 3.7 can be

extended to any ring containing a field of characteristic zero.

Theorem 3.8. Let k be a field of characteristic zero, R a ring containing

k and A be an A2-form over R with respect to k. Suppose A has a fixed point

free locally nilpotent R-derivation. Then there exists a finitely generated rank

one projective R-module Q such that A∼= (SymR(Q))[1].
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Proof. Let L be a finite extension of k such that A⊗k L= (R⊗k L)[2].

Let D be a fixed point free locally nilpotent R-derivation of A and B =

ker D. Set R̄ :=R⊗k L, Ā :=A⊗k L, B̄ :=B ⊗k L and D̄ :=D ⊗ 1L. Then

Ā= R̄[2], ker D̄ = B̄ and D̄ is a fixed point free locally nilpotent derivation

of Ā. Hence, by Theorem 2.15, D̄ has a slice and B̄ = R̄[1]. Now, by

Theorem 2.13, D(Ā) = Ā. Thus, D(A)⊗k L=D(Ā) = Ā=A⊗k L. Hence,

by faithful flatness of L over k, D(A) =A. So A=B[1] by Theorem 2.13.

Since B̄ = R̄[1], by Theorem 2.9,B = SymR(Q) and henceA= (SymR(Q))[1],

for some finitely generated rank one projective R-module Q.

Remark 3.9. Kahoui and Ouali have shown [16, Corollary 3.2] that

when R is regular the above result holds for any A2-fibration over R.
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