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SUMMARY
The design and implementation of adaptive control for
nonlinear unknown systems is extremely difficult. The
nonlinear adaptive control for assembly robots performing a
peg-in-hole insertion is one such an example. The recently
intensively studied neural networks brings a new stage in
the development of adaptive control, particularly for
unknown nonlinear systems. The aim of this paper is to
propose a new approach of hybrid force position control of
an assembly robot based on artificial neural networks
systems. An appropriate neural network is used to model the
plant and is updated online. An artificial neural network
controller is then directly evaluated using the updated neuro
model. Two control structures are proposed and the stability
analysis of the closed-loop system is investigated using the
Lyapunov method. Experimental results demonstrate that
the identification and control schemes suggested in this
paper are efficient in practice.

KEYWORDS: Constrained control; Neural networks; Force
position control; Identification of system; Learning rules and
Adaptive control.

1. INTRODUCTION
Neural network theory has been an active field of research
over the last few years. Since the late 1980s, particular
attention has been paid to the application of neural networks
to design control systems,1,2 including adaptive control
problems.3,4 In the past three decades, major advances have
been carried out in adaptive identification and control of
plants with unknown parameters. The identifier and con-
troller structures are based on well established results in
systems theory. The main goal of this paper concerns a new
approach for the identification and control of a specific class
of nonlinear unknown systems using neural networks. A
typical example on which we shall focus is an assembly
robot interacting with its environment. In fact, during an
assembly task, the manipulator may interact with the parts
to assemble, thus, its motion is constrained by the task. In
this case, pure position control is ineffective since forces
and positions in the task frame must be controlled
simultaneously. This kind of control is called hybrid force/
position control. A few hybrid control schemes have been
proposed in the literature.5–9 The major drawback of these
methods is that a precise mathematical dynamic model of
the manipulator must be known a priori and the control

inputs must either be calculated from complex dynamic
equations in real time or from a precalculated and stored
array. Therefore, it is difficult to design a robust classical
hybrid control of an unknown nonlinear system. This
problem has been investigated using other techniques like
classical control associated to a fuzzy supervision.10 Gen-
erally, such a kind of approach doesn’t take into account the
system evolution and its parameters variation. The fuzzy
inference system is static (the knowledge doesn’t change
according to the system evolution during the control). To
solve constrained control of this kind of systems, a new
approach based on neural networks is proposed.

In this context, the application of neural networks to
dynamic system identification and control can be developed
in quite a natural way, due to the adaptive nature of the
learning process of neural network. Two basic approaches
based on the use of neural networks have been proposed in
the literature. In the first one, some design parameters are
learned off line from the input-output signals and from the
observation of the plant behavior in some key situations.
The control can then be implemented from this learning.11,12

In the second approach, an adaptive learning is implemented
and the control input is determined on-line as the output of
a neural network.13

In this paper, we adopt the adaptive learning approach
mentioned above, from a direct learning of free motion
forces and from the dynamic behavior of the system. More
specifically, a Feed Forward Neural Network Model
(FFNNM) is used for the estimation of free motion forces.
This network learns off-line these forces using variable
metric method combined with a one dimensional optimiza-
tion in order to improve robustness and to accelerate
convergence.14,15 A second Feed Forward Neural Network
System (FFNNS) which is used as an identifier learns off-
line the dynamic of the system using variable metric
method. The last Feed Forward Neural Network Controller
(FFNNC), which is used as a controller, is first trained off-
line to learn the input output relation from a classical hybrid
force position controller using variable metric method.
Then, in the second step, a real time parameters adjustment
methodology using a quadratic output criterion is proposed.
This paper aims at three main objectives. The two first ones,
which are the most important, consist of identifying both
involved forces in free motions and the plant and to design
control structures using neural networks for the adaptive
hybrid force position control of unknown nonlinear systems.
While major advances have been made in the design of
adaptive controllers for linear systems with unknown
parameters, such controllers cannot be used for the global
control of nonlinear systems. Consequently, the models
suggested represent a first step in this direction. The third
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objective is to present an adaptive method for the dynamic
adjustment of the parameters based on the back-propagation
algorithm. The last one concerns the local stability analysis
of the two proposed structures using Lyapunov method.

The paper is organized as follows: In the first section, the
experimental set up is described. After the formulation of
hybrid force position control problem of an unknown non-
linear system, two new hybrid structures based on neural
networks are proposed in Section 3.1. Section 3.2 deals with
the problem of identification of free motion forces. The
initialization technique of the neural network controller is
presented in Section 4.1. In Section 4.2, an on-line
adjustment algorithm of the controller parameters along
with the real time control architecture are presented. In
Section 5, the stability conditions of the proposed FFNNC
are studied. Before presenting some remarks and per-
spectives, experimental results are given and discussed in
the last section.

2. DESCRIPTION OF THE ASSEMBLY CELL
Photo A shows the whole view of the experimental set up
which consists of an assembly cell. This cell includes a 2D
Cartesian robot and a six degrees of freedom parallel robot
which acts as an active force controlled wrist of the
Cartesian robot. In our approach, an assembly task consists
of the following steps:

– Wide amplitude displacements performed by the 2D
Cartesian robot in order to bring the assembly parts in a
close vicinity.

– Very accurate corrective trajectory performed by the
parallel robot under control of an external vision sensor in
order to perform the proper location of the moving
part with respect to the receptive part. The vision
system measures the relative positioning of the parts to
assemble.

– Assembly or final insertion phase. During this phase,
contacts between parts may arise. It is therefore necessary
to implement a force feedback control of the parallel
robot in order to carry out this task successfully. This
force feedback is needed for security constraints and to
insure regularity and quality of parts.

The parallel robot presented above consists of a static part
and a mobile part connected together by six actuated
segments. Each segment is embedded to the static part and
linked to the mobile one through a spherical joint attached
to two crossed sliding plates. Theoretical studies concerning
this architecture have been presented.16–18 The C5 parallel
robot is equipped with six linear actuators, each of them is
driven by a DC motor. Each motor drives a ball and screw.
The position measurements are done by six incremental
encoders which are tied to the DC motors. In order to
implement a force feedback control, the robot has been
equipped with six strain gauge force sensors. Each sensor is
serially displayed between the linear actuator end and the
swivel (spherical joint). From the information given by the
force sensors, the contact force vector is then computed.
Modelisation of such a system is not obvious leading to
complex models for controls. This assembly cell is intended
to perform complex and various assembly tasks such as
weak tolerance insertion of parts with various shapes or
contour following under high dynamics. The architecture of
the control system is hierarchized (see Figure 1).

3. CONTROL AND ESTIMATION-COMPENSATION

3.1 Control structure
A robotic assembly task exhibits two kinds of motion: Free
motions and constrained ones. When the system works with
high dynamics, transitions from one kind of motion to
another lead to undesirable oscillations, thus the system
may become unstable. In this case, contact forces as well as

Photo A: Whole view of the flexible assembly cell.

Fig. 1. Hierarchized architecture of the control system.
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position trajectories must be controlled simultaneously in
order to ensure the quality of the task. Various classical
structures exist, however, the implementation of most of
them requires the mathematical models of plant, which are
difficult to obtain in some cases. In order to satisfy all these
constraints, a control structure based on an external force
control scheme19,20 is proposed. In this structure, a position
trajectory (Xd) and a force trajectory (Fd) are specified
where the force control loop is hierarchized with respect to
the position control loop so that the force error (�F) is
corrected from the variation of the position (�X) around the
nominal position trajectory (Xd) according to the following
relationship:

�X = C(�F) (1)

where C represents the force control law generally called
compliance model for force model. In order to control a
nonlinear system, the function C must be nonlinear. The
ability of neural networks to approximate a large class of
nonlinear functions with sufficient accuracy suggests their
use to compute function C. Figure 2 and Figure 3 illustrate
the two proposed control structures.

In the first one (Structure A), three neural networks are
used while in the structure B only two are needed. Due to
their locations, the force sensors measure both contact and
free motion forces induced by the mobile part of the parallel
robot. In order to extract the contact force values from the
measured ones, a FFNNM is used to estimate free motion

forces. This neural network is adjusted off-line using the
training data obtained from the robot’s displacements in the
free space. In constrained motion, a FFNNC is used as
compliance controller. The implementation of this con-
troller requires two steps (see Figure 4). First (� = 0), the
FFNNC is initialized off-line from the identification of an
external force position controller. In the second step (� =1),
the objective is to perform a real time control. In order to
perform this goal, two neural networks are then imple-
mented in the structure. The first one FFNNS acts as an
identifier to learn off-line plan’s dynamics. The FFNNC is
implemented on-line using back-propagation method
through the FFNNS. In the structure B, an associative
reinforcement learning21 to adapt on line the FFNNC’s
parameters is used.

In Figure 4, Ud is the desired output control, Ua the
corresponding actual output, Yd the desired output system
and Ya the corresponding actual output system.

3.2 Identification of free motion forces
Due to nonlinear mapping resulting from the nonlinear
distribution of robot’s inertia during a compliant motion, an
appropriate neural network can be used to estimate the
contact forces from the measured ones. This FFNNM is
trained off-line using data obtained from the robot’s
displacements in the free space. The objective is to build a
suitable model (Figure 5) which when excited by input P(k),
produces an output F̂g(k) that approximates Fg(k) such as

Fig. 2. Reference model Control Structure (Structure A).

Fig. 3. Control structure with no reference model (Structure B).
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the total squared error function E(w) is minimized by the
network. The criterion is as follows:

E(w) =
1
2

(Fg–F̂g)2 (2)

where Fg is the desired output network corresponding to the
input pattern, F̂g is the corresponding actual output. The
learning process is performed off line using Quasi-Newton
method combined with a one dimensional search.22 The
position and force control is performed using an external
force position architecture.

4. HYBRID NEURAL NETWORK CONTROLLER

4.1 Learning hybrid force position control
The initialization of the FFNNC consists of duplicating an
external hybrid force position controller. The learning
structure is presented in Figure 6.

Fd, Fa are the desired and actual contact forces. Fm is the
measured forces. Fg, F̂g are the free motion forces and the
estimated ones. In this structure, the force and position
control laws are of PID control type.

If the weights of the networks are considered as elements
of vector parameters W, the learning process involves the

Fig. 4. Implemented architecture.

Fig. 5. FFNNM Learning a free motions forces.

Fig. 6. FFNNC Learning Force Control.
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determination of the vector W* which minimises a cost
function J1 that uses all available training data. This
function can be based on the output error or on state criteria
for output process. In our case, the following criterion is
used:

J1(w) =
1
2

p = 1
P � j= 1

m l � (Udjp �Uajp )2 (3)

where Udjp is the desired output control from the jth input,
Uajp is the corresponding actual output. Quasi-Newton
method22 is applied to train the FFNNC. The parameters of
the FFNNM are the constants determined in Section 3.2.

4.2 Adaptive neural network controller
In order to ensure an efficient real time force position
control, the FFNNC controller is trained on-line using a
dynamic back-propagation method. In dynamic control of
constrained robot motion, neural networks are used, and an
adaptive algorithm is then needed to adjust the parameters
of the network from a given set of input output pairs. Back-
propagation is the most commonly used method for this
purpose in static contexts. A first dynamic back-propagation
algorithm has been studied by Narendra and Parthasarathy,24

and Williams and Zipser.23 In a causal dynamic system, the
change in parameters at time k produces a change in the
output y(t) for all t ≥ k. A dynamic learning process can be
formulated as follows:

W(k + 1) = W(k)��
�J(k)
�W(k)

(4)

where W(k) is an estimation of the weight vector at time k
and � is the constant step size. The output of the network at
current time k can be obtained by using only the state and
input of the network at past time.

4.2.1 Structure A: Reference model Control structure.
Two neural networks are used in this first structure (see
Figure 2) in order to perform a dynamic real time control.
The first neural network acts as an identifier (FFNNS) to
learn off-line the forward dynamics of the plant. This
identification step is followed by an implementation of the
second neural network FFNNC which operates on-line.

Dynamic back-propagation method through the FFNNS
using a gradient method is employed to achieve this step.

Identification of the plant: After having learned of the
classical force position control, the FFNNC is implemented
in the structure presented in Figure 7. This structure
includes the FFNNS which is used to identify the forward
model of the plant. To train the FFNNS the following
criteria is used:

Js(w) =
1
2

(F̂a–Fa)2 (5)

where Fa is the desired output vector and F̂a the
corresponding actual output. The neural network parameters
are adjusted by applying Quasi-Newton method. The
parameters of the FFNNM and FFNNC are the constant
terms determined respectively in Section 3.2 and Section
4.1. The output of the FFNNS is the estimation of contact
forces and can be written as follows:

F̂a = Ns(Ws, U) (6)

where U and Ws are respectively the input and the weight
vector of the identifier FFNNS.

Real time control: In this subsection, we will consider the
real time force position control of this system. So, in order
to increase the performances of the control system, the
FFNNC is trained on-line (Figure 2) using a dynamic back-
propagation method through a FFNNS. The controller has
to be updated so as to satisfy the following performance
criterion:

Jc =
eTe
2

(7)

where e = Fd �Fa, Fd is the desired contact force and Fa is
the measured one.

The parameters of the FFNNM and FFNNS are taken
constants, determined in Section 4 and Section 5.2.1,
respectively. Applying the back-propagation method, the
gradient of Equation (7) has to be computed:

�J(k)
�W(k)

=�eT �Fa(k)
�U(k)

�U(k)
�W(k)

(8)

Fig. 7. Identification of the plant by FFNNS.
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Combining Equation (6) and Equation (8), Equation (8) can
be re-written to give:

�J(k)
�W(k)

=�eT �Ns(k)
�U(k)

�U(k)
�W(k)

(9)

The matrix �Fa(k)
�U(k) represents the plant dynamic effect and is

used in the learning of structure A. Note that in this first
structure, when the learning process is applied to the
FFNNC, this information is obtained in the first learning
process by the FFNNS.

4.2.2 Structure B: Control structure with no reference
model: Real-time control. In this structure (Figure 3), the
FFNNC is trained on-line using dynamic back-propagation
with an associative reinforcement learning. In such a
learning process, the learning system interacts in a closed
loop with its environment. At each time step, the environ-
ment provides an input to the learning system based on
which the learning system generates an action. Based on
both learning systems inputs and the corresponding gen-
erated actions, the adaptive algorithm computes an
evaluation or a “reinforcement”. In our case, the error
between the force Fa and the desired one Fd, is used as the
input of the neural controller which it uses to compute a
control action. The action is executed by the robot resulting
in some motion of the peg. The network’s output is then
evaluated from the forces acting on the peg and the matrix
D called “the reinforcement matrix”. This matrix represents
the dynamic of the interaction robot-environment. Then, the
Equation (9) can be rewritten as follows:

�J(k)
�W(k)

=�eT D
�U(k)
�W(k)

(10)

Before proceeding to the implementation of the FFNNC, its
stability property must be investigated. In the next section,
we will study the stability of the direct controller using the
Lyapunov method for the two proposed structures.

5. STABILITY OF THE FFNNC
As shown in the first structure (Figure 2), the FFNNC is
trained through the plant dynamic effect. In the second one
(Figure 3), an associative reinforcement learning is imple-
mented. We start our study with the first structure and then
we will focus our interest on the case of reinforcement
learning.

5.1 Stability analysis using the reference model
In this case, the back-propagation method is based on the
gradient of quadratic error criterion (given by Equation (7)
and is given by Equation (8).

The matrix �Fa(k)
�U(k) which represents the plant dynamic

effect, is an important factor for the stability and is needed
for the back-propagation method. In our case, when the
FFNNC is applied to the learning process, this information
is obtained from the first learning process by the FFNNS.
However, due to the adaptive nature of our control structure,
this information is usually limited beforehand. Thus, it is
important to determine how much information is necessary

to ensure the stability. We discuss the stability from this
point of view. The output U of the controller, which is used
as the input of the plant, is defined by

U = N(W, I ) (11)

If we assume that the three-layer model and all the units
have the same sigmoid function f, the Equation (6) and
Equation (11) can be rewritten as follows

U = f(w2 f(w1e + b1) + b2) (12)

F̂a = f (w2s f(w1s(U + Xd ) + b1s) + b2s) (13)

where:

– w1 and b1 are the weight and threshold matrix from an
input layer to a hidden layer of the FFNNC.

– w2 and b2 are the weight and threshold matrix from a
hidden layer to the output layer of the FFNNC.

– w1s and b1s are the weight and threshold matrix from an
input layer to a hidden layer of the FFNNS.

– w2s and b2s are the weight and threshold matrix from a
hidden layer to the output layer of the FFNNS.

– f is the sigmoid function given by

f (x) =
1

(1 + exp(�x))
(14)

The sigmoid function of Equation (12) and Equation (13) is
a vector type extension of Equation (14). The relation
between the weight matrices w1, w2, w1, w2s, the threshold
matrix b1, b2, b1s, b2s and the weight vectors W, Ws are given
by:

wt
11 wt

21 bt
11 bt

21

: : : :

w1 = wt
1 j , w2 = wt

2i , b1 = bt
1 j and b2 - bt

2i

: : : :

wt
1n wt

2n bt
1n bt

2n

W t = � . . . , wt
1 j, . . . , wt

2i, . . . , bt
1 j, . . . , bt

2i �
wt

1s1 wt
2s1 bt

1s1 bt
2s1

: : : :

w1s = wt
1s j , w2s = wt

2si , b1s = bt
1s j and b2s = bt

2si

: : : :

wt
1s n wt

2s n bt
1s n bt

2s n

(16)

W t
s = � . . . , wt

1s j, . . . , wt
2si, . . . , bt

1s j, . . . , bt
2si �

As the back-propagation method is derived from the
quadratic error J defined by Equation (7), we choose the
following extended quadratic error V(e) as Lyapunov
function:

V(e) = J =
eT Pe

2
(17)
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where P = I (P Symmetric Positive definite chosen here as
the identity matrix). Both stability of the dynamic system
and the convergence of the FFNNC are guaranteed when
�V
�t ≤ 0 since the Lyapunov function candidate is a positive
definite function as shown in Equation (17). This condition
is investigated using Equation (17), so:

�V
�t

=
�(eT Pe

2 )
�t

= eT Pė (18)

where

ė =
�e
�t

=
�e
�U

�U
�t

(19)

When the back-propagation method is applied, then:

�W =��eT �e
�U

�U
�W

(20)

where � is a positive parameter for the learning gain tuning.
Since the relation given by Equation (20) obtained from the
back-propagation method cannot be substituted in Equation
(19), we consider a small deviation from the equilibrium
point, which corresponds to local stability analysis using
equation (11). The control input U is given by:

�U = ��N
�W �T

�W +� �N
�I �T

�I (21)

where I and N are respectively the input and output of the
FFNNC. Using relation (21), Equation (18) can be rewritten
as follows:

�V
�t

= ���N
�W �T

�W + �� �N
�I �T

�I (22)

with

� = eT P
�e
�U

and �I�e

(small deviation from the equilibrium point) (23)

Combining Equations (22) and (20), the following equation
can be obtained:

�V
�t

= eT(�R + T)e (24)

where

R = ��P
�e
�N � � �N

�W �T � �N
�W � �P

�e
�N �T

(25)

T = P � �e
�N � � �N

�e �T

(26)

As the stability is guaranteed when �V
�t ≤ 0, we investigate the

sign of each term of Equation (24). The first term is always
positive (R≥ 0). The stability is then ensured if the sign of
the second term is negative (T ≤ 0). The matrix T depends
on the identifier and controller weight vector which are
strongly related to both the initial value and the learning
technique. However, even if the negative definiteness
condition is not satisfied, the system may be stable when the
norm of the positive defined matrix R is larger than the norm
of the matrix T. The norm of the positive definite matrix R
depends strongly on both the turning parameter � and the
norm of the weight matrices. (Equation 25). Therefore, we
can choose large values for � and a large �e

�N and �N
�W norms,

the system can be made stable. However, if we consider a
discrete type of back-propagation method, there is an upper
bound of ��W � which leads to instabilities when �W
becomes large. In our case, the learning parameter � does
not change during the process and therefore does not affect
the stability of the whole system. This analysis shows that
the stability of this structure depends on both the initial
values of the weights vector and the gain tuning parameter.

5.2 Stability analysis using the reinforcement learning
In this second structure (Figure 3), the associative reinforce-
ment learning is used. In our case, first, the error between
the sensed peg force Fa and the desired one Fd, is used as the
input to the neural controller. The action computed by the
neural controller is executed by the robot resulting in some
motion of the peg. The network’s output is then evaluated
from the forces acting on the peg and the reinforcement
matrix D which represents the dynamics of the robot
environment interaction. Then the Equation (24) can be
rewritten as follows:

�V
�t

=eT(� Ŕ� + T�)e (27)

where

R� = � (PD)� �N
�W �T � �N

�W � (PD)T (28)

T� = (PD) � �N
�e �T

(29)

Since the stability is guaranteed when 
�V
�t

≤0, D must be

chosen such that the following inequality (Equation (30))
hold:

(PD)�����N
�W�T ��N

�W�(PD)T +��N
�e�T� ≤ 0 (30)

one solution for this condition is given by:
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(PD)T =

��N
�e�T���N

�W�T��N
�W���1

�
(31)

As it can be seen for this learning type, by choosing
appropriate values of both matrix D and tuning parameters
and controllers parameters the local stability of the closed
loop system can be guaranteed.

6. EXPERIMENTATION
In order to demonstrate the validity of the adaptive control
approach described above, the second control structure has
been implemented on the flexible cell of the LIIA laboratory
described in Section 2. The aim is to perform assembly
tasks with high accuracy for different shapes of parts. For
each experimentation, two parameters are defined: play
margin Pm and insertion velocity Vi. For free motion forces
estimation, a network  made up of three layers, six input-
layer neurons to represent the position and the orientation of
the end-effector, twenty neurons in single hidden layer and
six output layer neurons for the corresponding gravity force
vector. To learn the control, the same neural network
architecture has been used except that the six input-layer
neurons represent the difference betwen the desired and
actual force vector. The six output-layer correspond to the
control level. The hyperbolic tangent is used as nonlinear
activation function for the single hidden layers while a
linear function is chosen for the output layers. The initial
weights are chosen randomly within the range of �1 to +1.
The first step consists of the implementation of an external
force position control in order to initialize the FFNNC.
Figure 8 shows the convergence behavior of the FFNNC.
We obtain at the 2000 epoch, a sum squared error equals to
0.001, which represents a good result. From these results, it
can be seen that a substantial time saving is obtained in
training by employing the quasi-Newton method.

In the second step, the FFNNC is implemented on-line.
The associative reinforcement learning is used to adapt on
line the neural controller parameters. Figure 9 shows the
time evolution of the obtained contact force vector compo-
nents (Fx, Fy, Fz, Mx, My, Mz) with an insertion velocity of

15 mm/s and two parts of cylindrical shapes. The compo-
nent Fx exhibits a peak which corresponds to the first
contact between the peg and the receptive part. The
remaining components of the contact force vector decreases
and exhibits weak amplitude oscillations around the desired
force vector. Figure 10 shows the time evolution of the
obtained contact force vector components with an insertion
velocity of 10 mm/s and two parts of rectangular section. It
can be observed that components Fy and Fz exhibit peaks
during the contact and stabilize, respectively, around 10 N
and 0 N. In the same way, the Mz momentum component
exhibits a peak of 5 Nm during contact, then decreases to
stabilize close to zero. These results show that the
momentum components are well corrected by the control
structure.

Similarly, Figure 11 and Figure 12 show the time
evolution of the different components of the moving part
trajectory. When contact forces between parts arise, along a
direction, the corresponding position exhibits peak then
decreases and oscillates around the desired value.

These results show that the proposed structure leads to a
satisfactorily dynamic behavior from force contact mini-
mization point of view, even if the system dynamic is
unknown. Moreover, an experimental comparison between

Fig. 9. Adaptive neural controller (Vi = 15 mm/s, Pm = 0.1 mm, cylindric section part).

Fig. 8. Off-line training of FFNNC.
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external force position controller and the proposed hybrid
neural controller has been done. In fact, we have performed
insertion task using external force position control with
insertion velocity of 10 mm/s for two parts of rectangular
shapes. Figure 13 shows the time evolution of components
(Fx, Fy, Fz, Mx, My, Mz) of contact force vector. The
component Fx exhibits a peak which indicates occurrences

of contact between the peg and the receptive part. According
to the insertion velocity, instabilities may occur. In assembly
task involving rectangular section part, some vector compo-
nents show non zero residual values. Figure 14  illustrates
the time evolution of the position vector and show the same
behavior. Compared with an external force position control
(Figure 13 and Figure 14), adaptive neural approach (Figure
11 and Figure 12) exhibits better performances due to its
adaptive feature and reveals that the proposed structure
ensures better dynamic performances than the external force
position control. Due to its adaptive feature, the proposed
approach is easier to adjust for various tasks parameters
(insertion velocity, play margin). Indeed, according to the
insertion velocity value, instability may occur when an
external force position control is implemented.25,26

7. CONCLUSION
In this paper, a neural approach to solve the control of
constrained nonlinear dynamic systems and identification of
free motion forces is proposed. Opposite to classical force
position control, the architecture of the proposed structure
does not need any mathematical representation of dynamic

Fig. 10. Adaptive neural controller (Vi=10 mm/s, Pm=0.1 mm,
rectangular section part).

Fig. 11. Adaptive neural controller (Vi=15 mm/s, Pm=0.1 mm, cylindric section part).

Fig. 12. Adaptive neural controller (Vi=10 mm/s, Pm=0.1, rectangular section part).
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behavior of the robot. In the specific models given, the
difference between the measured forces and the identified
ones by a FFNNM are used as inputs to FFNNC. Methods
for the adjustment of parameters in generalized neural
networks are treated and the concept of dynamic back-
propagation is introduced in this context to generate partial
derivatives of a performance index with respect to on line
adjustable parameters. Two techniques of back-propagation
are presented: the first one is implemented through the
reference model (FFNNS) while the second one uses the
reinforcement learning. The stability analysis of the pro-
posed structures led us to keep the second one. In order to
show the validity of this approach, a peg in a hole insertion
with complex shapes and weak tolerances has been
performed. The analysis of experimental results reveals a
satisfactory dynamic behavior, from force contact mini-
mization point of view. The proposed hybrid neural control
insures better dynamic performances than the external force
position control in an assembly task. These promising
results lead us to increase investigations in this control
approach for other kinds of tasks such as the control of
flexible structures.
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