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Abstract

The current livestock management landscape is transitioning to a high-throughput digital era
where large amounts of information captured by systems of electro-optical, acoustical, mechan-
ical, and biosensors is stored and analyzed on a daily and hourly basis, and actionable decisions
are made based on quantitative and qualitative analytic results. While traditional animal breed-
ing prediction methods have been used with great success until recently, the deluge of informa-
tion starts to create a computational and storage bottleneck that could lead to negative long-term
impacts on herdmanagement strategies if not handled properly. A plethora of machine learning
approaches, successfully used in various industrial and scientific applications, made their way in
the mainstream approaches for livestock breeding techniques, and current results show that
such methods have the potential to match or surpass the traditional approaches, while most
of the time they are more scalable from a computational and storage perspective. This article
provides a succinct view on what traditional and novel prediction methods are currently used
in the livestock breeding field, how successful they are, and how the future of the field looks
in the new digital agriculture era.

Introduction

The advent of modern biotechnologies, bio-sensing hardware, and information technology
infrastructure mark the beginning of an ever-increasing high-throughput data collection
livestock management era that pushes the development of computationally more efficient
and faster methods to supreme levels. Animal breeding makes no exception and it is currently
facing a methodological and conceptual transition to a colloquially called ‘big data era’. While
traditional information sources for animal breeding included phenotype and pedigree infor-
mation, nowadays there is a large influx of genomic data consisting of single nucleotide
polymorphisms (SNPs), gene annotations, metabolic pathways, protein interaction networks,
gene expression, and protein structure information that could potentially be used to improve
the reliability of genetic predictions and further the understanding of phenotypes biology.

The livestock industry has also been under major technological changes in genetic selec-
tion, herd and operations management, and more importantly automated sensor-based data
collection in the last decade. Sensor technology has a big potential to increase production
efficiency by monitoring the activity of animals in large herds and by sending alerts for health
and fertility events or collecting expensive-to-measure phenotypes. Such large data collections
in combination with other sources of data (e.g. genomic) bring an opportunity to create
predictive models for health, fertility, and other traits or events.

While the integration of such heterogeneous information in several bio-medical areas has
been proven successful for the past 15 years, it is still in its infancy in animal breeding
(Pérez-Enciso, 2017). The integration of large genome data, such as SNP markers, in animal
breeding is typically hampered by the lack of sufficient observations, N, and the deluge of
predictive variables, P (also known as the ‘large P, small N’ paradigm or the ‘curse of dimen-
sionality’). Complex relationships hidden within large, noisy, and redundant data are hard to
unravel using traditional linear models. This requires the application of nonparametric
models from the machine learning (ML) repository, which is known to be particularly fit
for addressing these problems.

The availability of exponentially increasing information of mixed content (homogeneous
and heterogeneous) and a concomitant boost in computational processing power lead to
the development of more advanced ML approaches and to the ‘rediscovery’ of the utility of
specific types of artificial neural network (ANN) methods that form a special class called
‘deep learning’. ML techniques such as deep learning (DL) can greatly help to extract pattern
and similarity relationships when traditional models fail to handle and model big data with
complex data structures. Similarly, advanced Artificial Intelligence (AI) methods can drastic-
ally change herd management processes by providing solid evidence leading to informed deci-
sions using real-time data collection from various types of sensors (electro-optical, audio, etc.).
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This article provides a succinct description of traditional and
novel prediction methods used in animal breeding to date and
sheds light on potential trends and new research directions that
could change the landscape of livestock management in a digital
future.

Traditional animal breeding prediction methods

Quantitative or complex traits (including milk production and
fertility traits) are influenced by many genes (>100 to thousands)
with small individual effects (Glazier et al., 2002; Schork et al.,
2013). Selection for these traits was first based on phenotype
and pedigree information and the knowledge of the genetic para-
meters for the trait of interest (Dekkers and Hospital, 2002).

The best linear unbiased prediction (BLUP) model

One of the most widely used models, the BLUP mixed linear
model (Henderson, 1985; Lynch and Walsh, 1998) was imple-
mented on extensive databases of recorded phenotypes for the
trait of interest or their correlated traits to estimate the breeding
value (EBV) of selection candidates (Dekkers, 2012). The accuracy
of this method is defined as the correlation between the true and
estimated breeding value and is one of the determinants of the
rate of genetic improvement in a breeding program per unit of
time (Falconer et al., 1996). The success rate of selection programs
based on EBV estimated from phenotype was high; however, it
was accompanied by a number of limitations including the need
for routinely recording phenotypes on selection candidates or
their relatives in a timely manner and at early ages.
Additionally, some traits of interest are only recorded late in life
(e.g. longevity) or are either limited by the sex of the animal
(e.g. milk yield in dairy cattle, semen for bulls), difficult to meas-
ure (e.g. disease resistance) or require animals to be sacrificed (e.g.
meat quality). Subsequently, these phenotyping constraints pose
serious limitations to genetic progress (Dekkers, 2012).

Single-step genomic best linear unbiased prediction (ssGBLUP)

Currently, the genomic best linear unbiased prediction (GBLUP)
model is used in a two-step (or multi-step) approach for genomic
predictions (Misztal, 2016). This implies running the regular
BLUP evaluation to compute EBVs. Then the EBVs are
de-regressed (dEBV) to extract the pseudo-observations for geno-
typed individuals and are eventually used as input variables for
genomic predictions (Misztal et al., 2009; Misztal et al., 2013;
National Genomic Evaluations Info –Interbull Centre, 2019).
However, using the genetic relation matrix (G) for genomic selec-
tion (GS) through a two-step methodology is complicated and
includes several approximations (Misztal et al., 2013).
Pseudo-observations are dependent on other estimated effects
and approximate accuracy of EBVs. All the approximations
reduce the accuracy of EBVs, which subsequently can inflate
the genomic breeding values (GEBVs) (Misztal et al., 2009).
Furthermore, the availability of genotype information on only a
limited proportion of animals in some developing countries has
promoted the implementation of the single-step methodology
(ssGBLUP) (Misztal et al., 2009). In this model, pedigree and
genomic relationships are combined into an H matrix to predict
the genetic merit of the animal, which results in higher accuracy
due to the utilization of all the available data (Misztal et al., 2009;
Cardoso et al., 2015; Valente et al., 2016). Aguilar et al. (2010)

showed that a single-step methodology can be simple, fast, and
accurate.

Quantitative trait loci (QTL) mapping and marker-assisted
selection (MAS)

Improvement in molecular genetics provided new opportunities to
enhance breeding programs for selected candidates through the
application of DNA markers and the identification of genomic
regions (QTL) that control the trait of interest (Dekkers, 2012). In
earlier QTL mapping studies, sparse genetic markers and linkage
disequilibrium (LD) analysis were used to identify genes and
markers that can be implemented in breeding programs via MAS
(Weller et al., 1990; Dekkers, 2004). MAS increased the rate of
genetic gain especially when the traditional selection was less
effective (Spelman et al., 2001; Abdel-Azim and Freeman, 2002).
Additionally, these analyses resulted in the discovery of a great
number of QTLs and marker-phenotype associations, and identifi-
cation of some causative mutations (Andersson, 2001; Dekkers and
Hospital, 2002; Dekkers, 2004). However, the success of these selec-
tions was limited mainly due to the very small variance explained by
the identified QTLs (Schmid and Bennewitz, 2017).

The advent of high-density genotyping panels and
Whole-Genome Selection continue the advancement of molecular
genetic technologies (Meuwissen et al., 2001; Matukumalli et al.,
2009; Dekkers, 2012), and in conjunction with bovine SNP discov-
ery and sequencing projects (Bovine HapMap Consortium et al.,
2009; Stothard et al., 2011; Daetwyler et al., 2014), have led to
availability of high-density SNP arrays for most livestock species
and the application of GS. Meuwissen et al. (2001) transferred
marker-assisted selection on a genome-wide scale and developed
statistical models to estimate GEBVs that rely on genome-wide
dense markers. The first high-density genotyping panel available
for livestock was the 50 K Bovine Illumina SNP platform
(Matukumalli et al., 2009). This SNP panel has been since widely
used in genotyping dairy and beef cattle bulls and similar SNP
panels of between 40 and 65 thousand SNPs are now available
for other livestock species (Dekkers, 2012). Higher density chips
became available in cattle in 2010 (e.g. the BovineHD beadchip
from Illumina) covering 777,000 markers and such higher density
panels are also under development in other species (Matukumalli
et al., 2009). To calculate GEBVs, first all SNPs are fit simultan-
eously in the models with their effects considered as random vari-
ables and then the effects of markers (mostly in the form of SNPs)
are estimated in a reference population (consisting of animals that
are genotyped and phenotyped for the traits of interest). These
effects are used to build a prediction equation that is then applied
to a second population, consisting of selection candidates, for
which the genotype information is available while the phenotype
information is not necessarily known. The estimated effects of
the markers that each animal carries are summed across the
whole genome to calculate the GEBV (Meuwissen et al., 2001;
Hayes et al., 2009) representing the genetic merit of the individual
(Meuwissen and Goddard, 2007). The GS approach can increase
the accuracy of selection (Meuwissen et al., 2001; Schaeffer,
2006) and can reduce generation intervals. Many statistical models
and approaches have been proposed for genomic predictions.
These models can be classified broadly into linear and non-linear
methods (Daetwyler et al., 2010). GBLUP is an example of a linear
model while the Bayesian approaches such as Bayes-(A/B/C/etc.)
using Monte Carlo Markov Chain (MCMC) methodology are
examples of non-linear methods (Gianola et al., 2009; Habier
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et al., 2011). The major difference between these two methods is
their prior assumptions about the effect of SNPs as explained
in Neves et al. (2012) and Campos et al. (2013). The GBLUP
assumption states that the genetic variation for the trait is equally
distributed across all SNPs on the genotyping panel, similar to the
infinitesimal model of quantitative genetics (Strandén and Garrick,
2009). The GBLUP model is more commonly used in routine gen-
omic evaluations where high-density SNP genotypes can be used to
construct a genomic relationship matrix (G) among all individuals
in the population and the Gmatrix is used instead of the traditional
pedigree-based relationship matrix (A) in the BLUPmodel (Habier
et al., 2007; Ødegård and Meuwissen, 2014, 2015). Bayesian meth-
ods are different in the adoption of priors while sharing the same
sampling model (Zhu et al., 2016). For example, BayesA assumes
all SNPs have effects and each SNP has its own variance while
the prior distribution of SNP effects in BayesB are assumed zero
with probability of π, and normally distributed with a zero mean
and locus specific variance with probability (1−π) (Meuwissen
et al., 2001). Bayesian methods that are implemented using
MCMC algorithms are time-consuming and computationally
demanding when they handle large number of SNPs. Therefore,
several iterative (non-MCMC-based Bayesian) methods such as
VanRaden’s non-linear A/B (VanRaden, 2008), fastBayesB
(Meuwissen et al., 2009), MixP (Yu and Meuwissen, 2011) or
emBayesR (Habier et al., 2007) were developed to overcome the
computational demands (Iheshiulor et al., 2017). The aforemen-
tioned methods are computationally fast, and they result in predic-
tion accuracies similar to those of the MCMC-based methods.
Compared to GBLUP, non-linear methods can better exploit the
LD information gained through mapping of QTLs (Habier et al.,
2007). The result of investigations, however, have indicated that
GBLUP is generally as accurate as Bayes-A/B/C procedures
(Hayes et al., 2009; VanRaden et al., 2009). This implies that the
number of QTLs is high and the infinitesimal model is approxi-
mately correct for most traits (Daetwyler et al., 2010). Therefore,
an increase in the accuracy of GS mainly results from a better
and more accurate estimation of the genomic relation matrix (G)
among animals rather than by estimating effects of major genes
such as using Bayesian models (Misztal et al., 2013).

Genome-wide association studies (GWAS)

A large amount of high-density SNP data generated from genomic
sequencing technologies can be also used in GWAS to identify
genetic markers or genomic regions associated with the traits of
interest based on population-wide Linkage-Disequilibrium (LD).
These associations are due to the existence of small segments of
chromosomes in the current population that descended from a
common ancestor (Hayes, 2013). Researchers have used a number
of different statistical methodologies to exploit these associations.
These methods included single-SNP GWAS analysis, haplotype
GWAS analysis, the Identical By Descent approach, and GWAS
analysis fitting all markers simultaneously (Hoggart et al., 2008;
Hayes, 2013; Wu et al., 2014; Richardson et al., 2016; Abo-Ismail
et al., 2017; Akanno et al., 2018; Chen et al., 2018; do
Nascimento et al., 2018). The GWAS method, however, comes
with its own challenges. For example, in the single marker regres-
sion model, one SNP at a time is fitted as a fixed effect in a BLUP
animal model to account for the family structure of the data by fit-
ting a polygenic effect with pedigree-based relationships (Kennedy
et al., 1992; Mai et al., 2010; Cole et al., 2011). This model is accom-
panied by several disadvantages such as the marker effect

overestimation due to multiple testing and the single SNP approach
relying on the pairwise LD of a QTL with individual SNPs.
Therefore, a region containing the true mutation can be hard to
find, as a large number of SNPs can be in LD with the QTL
(Pryce et al., 2010). Population structure or relatedness between
individuals can result in a high rate of false positives (FP), a
lower mapping precision and lower statistical power (Li et al.,
2017). The Linear Mixed Model (LMM) is an effective method
to handle population structure (Yu et al., 2006), though computa-
tionally demanding. The best solution to overcome these issues is
to fit all the SNPs simultaneously, which involves using the same
models that have been proposed for genomic predictions
(Meuwissen et al., 2001; Hayes, 2013). In this model, the SNP effect
is fit randomly (derived from a distribution) with different prior
assumptions on the distribution of possible SNP effects via
SNPBLUP or ridge regression (Meuwissen et al., 2001), BayesA
(Meuwissen et al., 2001; Gianola et al., 2013), Bayes SSVS
(Verbyla et al., 2009, 2010), BayesCπ (Habier et al., 2011), and
BayesR (Erbe et al., 2012). These methods have been used in several
GWAS studies (Veerkamp et al., 2010; Kizilkaya et al., 2011; Sun
et al., 2011; Peters et al., 2012) with priors of multiple normal
distributions and different SNP classifications on the basis of
their posterior probabilities of being in each distribution as zero
effect or small effect (Erbe et al., 2012).

Although the available technologies have revolutionized the
paradigm of the prediction of genetic merit or phenotypes of indivi-
duals (Campos et al., 2013), serious over-fitting problems may be
encountered where the ratio between the number of variables (P)
and the number of observations (N) exceeds 50–100. Additionally,
in genomic predictions, there is still an issue on whether or not all
SNPs should be included in a predictive model. For example, in
an association analysis, the exclusion of irrelevant SNPs led to a
more accurate classification (Long et al., 2007). ML is an alternative
approach for prediction, classification, and dealing with the ‘curse of
dimensionality’ problem in a flexible manner (González-Recio et al.,
2014). Compared with Bayesian models, ML approaches may pro-
vide larger and more general flexible methods for regularization
by assigning different prior distributions to marker effects. There
has been a number of studies using various ML methods including
Support Vector Machines (SVMs), Random Forests (RF), Boosting,
and ANNs applied to livestock data that will be introduced and
presented in detail in the next sections.

ML prediction and evaluation methods

A large number of ML approaches were developed since the early
1960s and they had a significant impact on various types of pro-
blems, such as regression, classification, clustering, and dimen-
sionality reduction (Fig. 1) from multiple areas of studies. We
provide below a short description of a handful of such methods
(listed alphabetically) and we describe their successful application
in livestock studies in the next section.

Artificial neural networks

ANNs represent a group of biologically inspired models frequently
employed by computational scientists for prediction and classifica-
tion problems. Typically, an ANN consists of one or more layers of
interconnected computational units called neurons.

A neuron is typically represented as a summation function
upon which an activation function is applied (Fig. 2). The neuron
receives one or more separately weighted inputs and a bias, which
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in turn are summed up and represent the activation potential of
the neuron. The sum is then passed as argument to an activation
function typically having a sigmoid shape. They represent a
thresholding approach that allows only strong signals to be further
transmitted to other neurons. The connection strength among
neurons is represented by weights and the weights get updated
during the training stage of an ANN. The training stage of an
ANN consists of presenting the network with a set of inputs for
which the desired output is known, and the learning aspect is rea-
lized by minimizing the differences between the calculated and
desired outputs. The weights and biases of an ANN are typically
initialized by drawing values from a random normal distribution.
A popular algorithm that allows the propagation of error back
through the network and the continuous update of weights and
biases is called backpropagation and was proposed in 1986
(Rumelhart et al., 1986). The main advantages of ANNs are
their ability to learn and model non-linear and complex systems,
the ability to generalize from limited amounts of data, and their
lack of restrictions with respect to input variables (e.g. no assump-
tions about their distribution).

Bagging or bootstrap aggregation (BA)

BA or bagging (Breiman, 1996) is a simple and efficient ensemble
method that combines the prediction of multiple ML algorithms
to make more accurate predictions. It works particularly well
when the individual ML algorithms have a high prediction vari-
ance such as decision trees (DT). The aggregation of predictions
constitutes either the average of numeric values or the majority
of predicted non-numeric class labels. Its main purpose is to
boost up the robustness of predictors for problem sets where
small variations in the data cause significant changes in predic-
tions. In principle, BA improves prediction accuracy by bootstrap-
ping the initial training step multiple times and then training
various ML models on each training subset. The results are either
averaged out if numeric or a majority voting principle is applied
to identify the majority class.

Decision trees

DT are data structures that use nodes and edges to represent a
problem. Internal nodes in a tree represent attribute tests while

terminal nodes represent the answers to such tests. Branches are
used to connect two nodes in a DT and model the possible
outcomes of an attribute test. In ML, DT are among the most
intuitive and simplest to interpret models and widely used for
classification and prediction problems. While the overall architec-
ture of a DT is highly dependent on small changes in the input
data, they are very flexible means to represent mixed data (cat-
egorical and numerical) and data with missing features. While
DT are particularly well fit to represent classification problems,
they can be easily modified to represent regression problems
and, once constructed, they are among the fastest ML approaches
for classification problems. A more succinct description of DT
can be found in Kingsford and Salzberg (2008).

Deep learning

DL is a subset of ANN-based ML techniques that have been
recently applied predominantly on previously computationally
hard classification problems in natural language processing and
computer vision. Based on ANNs with multiple processing layers
and using backpropagation for training, DL makes use of recent
advancements in hardware technology (better CPUs, extended
RAM and storage space) to make such ANNs computationally
efficient for solving classification problems that require very
large data sets. Major breakthroughs in object recognition,
image classification and speech and audio processing were
achieved when convolutional neural networks and recurrent
nets were used. A detailed description of DL approaches and
their results can be found in (LeCun et al., 2015).

eXtreme gradient boosting (XgBoost)

Yet another ensemble method, the XgBoost method (Chen and
Guestrin, 2016) is an implementation of the gradient boosting
machines (GBMs) that is focused on computational speed and
model performance. The additional performance is achieved
with the aid of an efficient linear model solver and a tree learning
algorithm combined with parallel and distributed computing and
efficient memory usage. The method is typically used to solve
regression and classification problems and it is also heavily used
for ranking tasks.

Fig. 1. Types of machine learning problems. Based on data type (discrete and con-
tinuous) and learning style (supervised and unsupervised), machine learning pro-
blems can be grouped into four main classes: classification, clustering, regression,
and dimensionality reduction.

Fig. 2. Schematic representation of an artificial neuron. An artificial neuron has five
main parts: inputs i1…n, weights w1…n (and bias b), a summation function, an activa-
tion function (typically defined as a sigmoid), and output.
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Gradient boosting machine

GBM is a ML approach that combines the gradient descent error
minimization approach with boosting and fits new models with
the overall goal to more accurately estimate the desired response.
Boosting is typically used in ML to convert weak prediction mod-
els (typically referred to as ‘weak learners’) into stronger ones.

y = m+
∑M

i=1

y× hi(y;X) + e

where y is the vector of observed data (e.g. phenotypes), μ is the
population mean, υ is a shrinkage factor, hi is a prediction
model, X is a matrix (e.g. corresponding genotypes), and e is a
vector of residuals.

GBM is applicable to classification and regression problems
and encapsulates an ensemble of weak prediction models. While
traditional ensemble ML techniques such as RF rely on averaging
of model predictions in the ensemble, GBM adds new models to
the ensemble sequentially. At each step, a new weak learner is
added and trained with respect to the error of the whole ensemble
learnt up to this point such that the newly added model is max-
imally correlated with the negative gradient of the loss function,
associated with the whole ensemble. Examples of successful
GBMs include AdaBoost (Freund and Schapire, 1997), RF
(Breiman, 2001), and XGBoost (Chen and Guestrin, 2016). A
more detailed description of GBMs can be found in Natekin
and Knoll (2013).

Naïve Bayes (NB)

NB (Clark and Niblett, 1989) is an inductive learning algorithm
widely used in ML (classification, regression, prediction) and
data mining due to its simplicity, computational efficiency,
robustness, and linear training time directly proportional with
the number of training examples. The algorithm uses the Bayes
rule (Bayes, 1763) and strong independence assumptions about
the attributes of the class. The NB classifier assumes that the effect
of the value of a predictor (x) on a given class (c) is independent
of the values of the other predictors. The NB algorithm uses the
information from training data to estimate the posterior probabil-
ity P(c|x) of each class c, given an object x, which subsequently
can be used to classify other objects. According to Bayes theorem:

P(c|x) = P(x|c) × P(c)
P(x)

where P(c|x) is the posterior probability of class c given predictor
x, P(x|c) represents the likelihood, i.e. the probability of predictor
x given class c, P(c) is the prior probability of class c and P(x) is
the probability of predictor x.

Given the class conditional independence assumption for NB,
the posterior probability can be expressed as follows:

P(c|x) = P(x1|c) × P(x2|c) × P(x3|c) × . . .× P(xn|c) × P(c)

where xi with i = 1:n represent all the features in predictor x.
While in practice the attributes of a class are not always

independent, the NB algorithm can tolerate a certain level of
dependency between variables and can easily outperform more
complex methods such as DT and rule-based classifiers on

various classification problems (Ashari et al., 2013), while it is
easily outperformed by other methods on regression problems
(Frank et al., 2000).

Partial least squares regression (PLSR)

The PSLR method (also known as the Projection to Latent
Structures Regression method) was developed in the early 1960s
by Herman Wold and his son as an econometric technique, but
it becomes quickly adopted as a state-of-the-art technique in che-
mometrics and other engineering areas. The method is typically
used to construct predictive models when there are many highly
colinear (high redundancy) variables describing the problem to
be solved. In such particular case multiple linear regression is
not applicable and PLSR becomes the method of choice. The
method’s focus is on prediction and not on underlying the intrin-
sic relationships between variables or reducing their number.

Random forests (RF)

Originally proposed by Tin Kam Ho (1995) and later perfected by
Breiman (Breiman, 2001), a RF is an ensemble-based ML tech-
nique that uses multiple DT and Bootstrap Aggregation (BA) to
perform classification or regression tasks. Multiple sampling
with replacement is performed on the data and a DT is trained
on each sample. In essence, the DT approach relies on the com-
plementary generalization capability of multiple DT built on ran-
domly selected subspaces of the whole data feature space and the
ability to improve the classification power of the whole ensemble
of models. While the interpretability of the models obtained with
RFs is less than ideal, a great advantage of RFs is their robustness
and ability to handle missing data, which is a predominant factor
in biological studies.

Reproducing Kernel Hilbert spaces (RKHS)

A Hilbert space is typically defined as a generalization of an
Euclidian space where vector algebra and calculus can be applied
on mathematical spaces with more than 2 or 3 dimensions. In
retrospective, a RKHS is a Hilbert space of functions where two
functions, f and g, with close norms (∥f− g∥→ 0) are also close
in their values (| f(x)− g(x)→ 0|), which is equivalent of saying
that the Hilbert space has bounded and continuous functionals.
The RKHS theory can be successfully applied to three main
types of problems as suggested by Manton and Amblard
(2014). The first type of problems suggests that if a problem is
defined over a subspace that is proven to be RKHS, the properties
of the RKHS will help with solving that problem. This implies that
sometimes, problem space can be mapped onto a different space
where the problem becomes easier solvable. The second type of
problems refers to those that have positive semi-definite func-
tions, which can be solved by introducing an RKHS with a kernel
that is equivalent to the positive semi-definite functions. The
third type of problem refers to those situations where, given all
the data points and a function defining the distance between
them, the points can be embedded into an RKHS with the kernel
function capturing the properties of the distance function.
Overall, RKHS can help solving problems where problems in
one space become easier to solve in a different space and the
optimality of their solutions remains unchanged in both spaces
(Berlinet and Thomas-Agnan, 2004).
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Rotation forests (ROF)

Introduced in 2006 by Rodriguez et al. (2006), ROF constitute a
method for generating an ensemble of classifiers relying on
extraction of better features with the aid of the Principal
Component Analysis method after the training data is split into
a fixed number of subsets (K). The resulting principal compo-
nents obtained after K-axis rotations will then serve as new
features for the base DT classifiers (thus the name ‘forest’),
which are trained on the whole data, thus maintain high accuracy
and diversity within the ensemble. Preliminary results showed
that ROF ensembles contain more accurate individual classifiers
compared with AdaBoost and RF and more diverse than the
ones obtained with bagging techniques.

Support vector machines

Proposed in 2001 (Ben-Hur et al., 2001), SVM is a supervised ML
approach predominantly used to solve classification problems.
However, it is also used successfully to solve regression problems.
SVMs function based on the notions of dimension separability by
decision planes and boundaries and rely on construction of multi-
dimensional hyperplanes that separate similarly grouped/labeled
items into linearly separable sets. SVMs can handle both, categor-
ical (discrete) and numeric (continuous) variables. The construc-
tion of optimal hyperplanes is performed by an iterative training
algorithm used to minimize an error function. SVMs use kernels
to map the original objects into a new space described by support
vectors (coordinates of objects), which make the separability task
feasible. SVMs are effective methods when applied to non-linearly
separable data with a high number of dimensions, particularly
for ‘small n, large p’, problems where the number of dimensions
( p) is higher than the number of observations (n). SVM is mem-
ory efficient since it is using a subset of the training data points
to build the support vectors. Nevertheless, SVM is not computa-
tionally efficient when applied to very large data sets since the
required training time is high. Also, SVM tends to perform poorly
when the data is noisy, and the classes or labels are overlapping.

ML evaluation methods

The evaluation of ML methods is a very important part of any
project employing such approaches and it is very important to
choose the right metrics to measure their performance. Below
we enumerate some of the most used evaluation methods in the
ML field. Most of the metrics rely on the definition of a confusion
matrix, where true and false positives and negatives (TP, TN, FP,
FN) are defined as described in Fig. 3. TP represent the total
number of examples or data points that have been correctly
predicted as positive examples, while TN include the total number
of examples that were correctly predicted as negative examples.
On the other hand, FP represent the total number of examples
that were predicted as positive examples when, in fact, they
were negative examples, while false negatives (FN) include the
total number of examples that predicted as negative examples,
when, in fact, they were positive examples.

Prediction accuracy (PAC)
Prediction or classification accuracy represents the ratio between
the number of correct predictions versus the total number of
input samples. Based on the confusion matrix, the PAC is defined

as below:

PAC = TP + TN
TP + FP + TN + FN

While accuracy is widely used in many studies, it doesn’t per-
form well then, the data set is imbalanced and therefore extra cau-
tion must be taken when using this metric in isolation.

Precision or positive prediction value
Precision is defined as a function of the total number of TP and
FP examples:

precision = TP
TP + FP

Recall, sensitivity, Hit rate or true positive rate (TPR)
Recall or sensitivity is defined as a function of the total number of
TP and FN examples:

recall = sensitivity = TP
TP + FN

In principle, sensitivity measures the proportion of correctly
identified positive examples.

Specificity, selectivity or true negative rate (TNR)
Specificity is defined as a function of the total number of TN and
FP examples:

specificity = TN
TN + FP

Specificity measures the proportion of correctly identified
negative examples.

F1 score
The F1 score combines precision and recall in a harmonic mean:

F1 score = 2× precision× recall
precision+ recall

Matthews correlation coefficient (MCC)
Introduced in 1975 by Brian Matthews (Matthews, 1975) and
regarded by many scientists as the most informative score that
connects all four measures in a confusion matrix, the Matthews
Correlation Coefficient is typically used in ML to measure the
quality of binary classifications and it is particularly useful

Fig. 3. The confusion matrix. The confusion matrix is typically used for evaluating the
performance of machine learning classifiers.
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when there is a significant imbalance in class sizes (data). MCC is
calculated according to the following expression:

MCC = TP × TN − FP × FN���������������������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√

If any of the denominator terms equals zero, it will be set to 1
and MCC becomes zero, which has been shown to be the correct
limiting value for MCC. It returns a value between −1 and 1,
where 1 means a perfect prediction, 0 means no better than
random and −1 means a total disagreement between predicted
and observed values.

Area under the receiver operating characteristic (AUC)
A Receiver Operating Characteristic (ROC) curve is a visual way
of describing the tradeoff between sensitivity and specificity
(Fig. 4). The closer the curve is to the left-hand and top borders
of the plot, the more accurate the method is. The closer the curve
is to the main diagonal, the less accurate the method is. AUC is a
direct measure of the accuracy of a method. When two or more
methods are compared using this approach, the one with the
highest AUC value is deemed to be superior. For more informa-
tion about using the area under the ROC curve please consult
(Metz, 1978).

Application of ML prediction techniques in animal breeding

Given the known boundaries and limitations of traditional breed-
ing models and techniques, ML approaches have started to slowly
but steadily being applied in livestock breeding and traits selec-
tion. While their current adoption level in the breeding research
community is still low, these advanced methods provide mechan-
isms to improve regularization by assigning different prior distri-
butions to marker effects and to efficiently select subsets of
markers that have better predictive capabilities for specific traits
of interest. Below we provide a succinct description of how ML
methods are applied in various livestock breeding fields (summar-
ized in Table 1). We grouped the reviewed work in 6 main appli-
cation domains relevant for animal scientists: health, production,
fertility, mortality, nutrition, and breeding.

Health

Prediction of subclinical ketosis risk
Subclinical ketosis is one of the most important metabolic dis-
eases in high-producing dairy cattle (Collard et al., 2000). This
trait is commonly affected by multiple factors and therefore, con-
structing a reliable predictive model is challenging. Assessing the
applicability of different sources of information in predicting
subclinical ketosis in early lactation using ANNs has been per-
formed in German Holstein cattle by Ehret et al. (2015). In
their study, first genomic and metabolic data and the information
on milk yield and composition of 218 high-yielding dairy cows
during their first 5 weeks of lactation were collected and then
the ANN was applied to investigate the ability to predict milk
levels of β-hydroxybutyrate (BHB) within and across consecutive
weeks postpartum. All animals were genotyped with a 50,000 SNP
panel and information on the milk composition data (milk yield,
fat and protein percentage) as well as the concentration of milk
metabolites, glycerophosphocholine, and phosphocoline, were
collected weekly. The concentration of BHB acid in milk was

used as target in all prediction models (Ehret et al., 2015). For
the prediction analysis, a multilayer feed-forward ANN with a
single hidden layer containing five neurons in the hidden layer
was designed and a learning rate equal to 0.02 was chosen.
Considering the small sample size used in the Ehret et al.
(2015) study, a 5-fold cross validation with 100 individual repeti-
tions (500 independent cross-validations in total) was used to
properly assess the predictive ability of the different models within
and between consecutive weeks. The predictive ability of each
model was calculated using a Pearson correlation (r) between
the observed and predicted BHB concentrations averaged over
all 500 cross-validation runs (Kohavi and Kohavi, 1995; Ehret
et al., 2015). Their study showed that by considering all imple-
mented models, correlation averages of 0.348, 0.306, 0.369, and
0.256 was obtained for the prediction of subclinical ketosis in
weeks 1, 3, 4, and 5 postpartum, respectively. The highest average
correlation (0.643) was obtained when milk metabolite and rou-
tine milk recording data were combined for prediction on the
same day within weeks. A combination of genetic and metabolic
predictors did not show a significant increase in the predictive
ability of subclinical ketosis, which was explained by the statistical
limitations and the complexity of the model when the number of
parameters to be estimated increased. Ehret et al. (2015) suggested
that a higher sample size (animals) for ML approaches is required
to make SNP-based predictions valuable.

Estimation of genomic breeding values for disease susceptibility
Naderi et al. (2016) carried out a simulation study to investigate
the performance of RF and genomic BLUP (GBLUP) for genomic
prediction using binary disease traits based on cow calibration
groups. They compared the accuracy of genomic predictions
through altering the heritability, number of QTL, marker density,
the LD structure of the genotyped population and the incidence of
diseased cows in the training population. They also investigated
the RF estimates for the effects and locations of the most import-
ant SNPs with true QTL (Naderi et al., 2016). Several scenarios
were considered where the included genotypes were 10 K

Fig. 4. The Receiver Operating Characteristic (ROC) curve.
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Table 1. Machine learning methods applied to livestock breeding

Application
domain Problem type Problem ML Methods

Animal
species Learning type Data sets References

Health

Prediction of disease
phenotypes

Postpartum disease prediction RF Bos taurus
(cattle)

Supervised 1470 cattle Hidalgo et al.
(2018)

Subclinical mastitis prediction SVM Bos taurus
(cattle)

Supervised 170 Holstein Friesian Mammadova and
Keskin (2013)

Estimation of genomic
breeding values for
disease susceptibility

Simulation data for binary disease RF Bos taurus
(cattle)

Supervised 20,000 cows (simulation
study)

Naderiet al. (2016)

Prediction of
subclinical ketosis risk

Construction of reliable predictive
models for subclinical ketosis
detection early in lactation

ANN Bos taurus
(Dairy cattle)

Supervised 218 cows Ehret et al. (2015)

Production

Prediction of complex
quantitative traits

Predicting phenotypes of fat,
protein and milk yield

Bayesian ANN Bos taurus
(Jersey cattle)

Unsupervised 297 cows Gianola et al.
(2011)

Prediction of
production and type
traits

Increase predictive ability and
decrease computation time of
genome-assisted evaluation

GBM Bos taurus
(cattle)

Supervised 1601 bulls for production
traits
1574 for type traits

González-Recio
et al. (2013)

Fertility

Prediction of
insemination
outcomes

Prediction of pregnant versus
nonpregnant cows at insemination
time

BA, BN, DT,
NB, RF

Bos taurus
(cattle)

Supervised 129,245 breeding records
(primiparous) and 195,128
breeding records
(multiparous) Holstein cows

Shahinfar et al.
(2014)

Prediction of conception success
after artificial insemination

C4.5, NB, BN,
LR, SVM, PLSR,
RF, ROF

Bos taurus
(cattle)

Supervised 1789 cows Hempstalk et al.
(2015)

Mortality

Prediction of mortality
rates

Identification of SNPs related to
progeny mortality

NB Gallus gallus
(chicken)

Supervised 231 sires Long et al. (2007)

Genetic evaluation of sires using
broilers mortality rates

RKHS
regression

Gallus gallus
(chicken)

Unsupervised 12,367 broiler chicken (200
sires, 12,167 progeny)

González-Recio
et al. (2008)

Nutrition

Prediction of feed
intake

Increase accuracy of genomic
prediction for novel traits with
small reference populations

SVM Bos taurus
(Dairy cattle)

Semi-supervised 3729 dairy cows Yao et al. (2016)
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(10,005 SNPs) and 50 K (50,025 SNPs) evenly spaced SNPs on 29
chromosomes. The training and testing sets included 20,000 cows
(4000 sick and 16,000 healthy with 20% disease incidence) from
the last two generations. The number of QTLs was considered
10 (290 QTLs) or 25 (725 QTLs) on each chromosome and the
heritabilities of traits were assumed h2 = 0.10 (low) and h2 =
0.30 (moderate). The GEBV was estimated using the AI-REML
algorithm from the DMU software package (Madsen and
Jensen, 2013), which allows the specification of a generalized
LMM. The RF analysis was applied using the Java package
RanFoG (González-Recio and Forni, 2011) where thousands of
classification trees were constructed through bootstrapping of
the data in the training set (Efron and Tibshirani, 1994;
Breiman, 2001). RF used on average about two-thirds of the
observations and a random subset p of the m SNP ( p∼ 2/3 ×
m). For both GBLUP and RF, PAC was evaluated as the correla-
tions between genomic and true breeding values. Results indicated
that for 10 K SNP chip panels and for all percentages of sick cows
in the training set, prediction accuracies from GBLUP always out-
performed the ones obtained with RF estimations. In the RF
method, the prediction was based on a random subsample of
SNs. Therefore, with low-density marker panels, the QTL signal
of a distant SNP might not be captured due to insufficient sam-
pling of that SNP. The application of the 50 K SNP panel for ana-
lyzing binary data resulted in a more accurate ranking of the
individuals with the RF method compared with GBLUP. In add-
ition, RF could distinguish more precisely between healthy and
affected individuals in most allocating schemes. The highest
PAC was obtained for a disease incidence of 0.20 in the training
sets and was equal to 0.53 for RF and 0.51 for GBLUP (using a
50k SNP panel, a heritability of 0.30 and 725 QTLs). Naderi
et al. (2016) concluded that in general, prediction accuracies are
higher when using the GBLUP methodology and the decrease
in heritability and number of QTLs was associated with a decrease
in prediction accuracies for all the scenarios where it was more
pronounced for the RF method. The RF method performed better
than GBLUP only when the highest heritability, the denser
marker panel and the largest number of QTLs were used for
the analyses. Furthermore, the RF method could successfully
identify important SNPs in close proximity to a QTL or a candi-
date gene.

Prediction of disease phenotypes
Hidalgo et al. (2018) used the RFML approach to predict the
probability of occurrence of postpartum disease (60 days) in
1470 dairy cattle based on prepartum data (250 days). Data
were collected from six Dutch farms encompassing a total of
59,590 records split into 70–30% training-testing data sets and
46 features were used to train their algorithm. They reported an
AUC score of 0.77 for data that did not include breeding values
as training features. When such features were included in the
training of the model, the AUC increased to 0.81, showing an
improved performance of the RF approach on this dataset
(Hidalgo et al., 2018).

Mammadova and Keskin (2013) used SVMs to ascertain the
presence of subclinical and clinical mastitis in dairy cattle. They
used 346 (61 mastitis cases) measurements of milk yield, electrical
conductivity, average milking duration and somatic cell count col-
lected from February 2010 to April 2011 for 170 Holstein Friesian
dairy cows. They reported high sensitivity (89%) and specificity
(92%) values for the SVM approach in comparison with a trad-
itional binary logistic regression model, whose sensitivity and
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specificity values were 75 and 79%, respectively (Mammadova
and Keskin, 2013).

Production

ANNs have been introduced as a new method that can be
employed in genetic breeding for selection purposes and decision-
making processes in various fields of animal and plant sciences
(Gianola et al., 2011; Nascimento et al., 2013). These learning
machines (ANN) can act as universal approximators of complex
functions (Alados et al., 2004). Additionally, these learning
approaches can capture non-linear relationships between predic-
tors and responses and learn about functional forms in an
adaptive manner (Gianola et al., 2011). Gianola et al. (2011)
investigated various Bayesian ANN architectures to predict milk,
fat, and protein yield in Jersey. A feed-forward neural network
with three layers and five neurons in the hidden layer was consid-
ered. Predictor variables for Jersey cows were derived from pedi-
gree and 35,798 SNPs from 297 cows. The results showed that the
predictive correlation in Jerseys was clearly larger for non-linear
ANN, with correlation coefficients between 0.08 and 0.54, while
the linear models had correlation coefficients between 0.02 and
0.44. Furthermore, the ability to predict fat, milk, and protein
yield was low when using pedigree information and improved
when SNP information was employed in the prediction analysis
as measured by the predictive correlations (Gianola et al.,
2011). In summary, Gianola et al. (2011) concluded that the
predictive ability seemed to be enhanced by the use of Bayesian
neural networks, however, due to small sample sizes, further
analysis on different species, traits and environment was
recommended.

González-Recio et al. (2013) proposed a modified version of
the gradient boosting (GB) algorithm called random boosting
(RB), which increases the predictive ability and significantly
decreases the computation time of genome-assisted evaluation
for large data sets when compared to the original GB algorithm.
They applied their technique on a data set comprising 1797 gen-
otyped bulls including 39,714 SNPs and using four yield traits
(milk yield, fat yield, protein yield, fat percentage) and one type
trait (udder depth) as dependent variables. They used sires born
before 2005 as a training set and younger sires as a testing set
to evaluate the predictive ability of their algorithm on
yet-to-be-observed phenotypes. The results of the RB method
produced comparable accuracy with the GB algorithm whereas
it ran in 1% of the time needed by GB to produce the same
results (González-Recio et al., 2013). The Pearson correlation
between predicted and observed responses for GB and RB ranged
between 0.43 and 0.77 for different values of percentages of SNP
sampled at each iteration and 3 smoothing parameters (0.1, 0.2,
and 0.3).

Fertility

Shahinfar et al. (2014) compared five ML techniques (BA, BN,
DT, NB, RF) to predict insemination outcomes in Holstein
cows. They used data collected over a 10-year period (2000–
2010) from 26 Wisconsin dairy farms that included 129,245
breeding records from primiparous Holstein cows and 195,128
breeding records from multiparous Holstein cows. Each breeding
information record included production data, EBV, health events,
and reproduction information. While all five algorithms were
effective at predicting pregnant versus nonpregnant cows, RF

outperformed the other four in terms of classification accuracy
(72.3% for primiparous cows and 73.6% for multiparous cows)
and area under the ROC curve (75.6% for primiparous cows
and 73.6% for multiparous cows). They identified five factors to
be the most informative features for predicting insemination out-
come: the mean within-herd conception rate in the past 3 months,
herd-year-month of breeding, days in milk at breeding, number of
inseminations in the current lactation, and stage of lactation when
the breeding occurred (Shahinfar et al., 2014).

Hempstalk et al. (2015) used herd- and cow-level factors such
as parity number, animal breed, PTA (measure of genetic merit),
calving interval, milk production, live weight, longevity, the Irish
Economic Breeding Index and mid-infrared (MIR) spectral data
(1060 points) to predict the likelihood of conception success to
a given insemination. They also investigated the usefulness of
adding the MIR data to augment the accuracy of the prediction
models. Their study used a dataset comprising 4341 insemination
records with conception outcome information from 2874 lacta-
tions on 1789 cows (61.1% Holstein-Friesian, 12% Jersey, 5.8%
Norwegian Red, and 21.1% crossbred animals) from seven
research herds for a 5-year period between 2009 and 2014.
They tested eight ML algorithms including C4.5 DT, NB,
Bayesian network (BN), logistic regression, SVM, PSLR, RF, and
ROF. The performance of the 8 algorithms with respect to the
area under the ROC curve was deemed to be fair with values
between 0.487 and 0.675, the overall best performing algorithm
being the logistic regression, followed closely by ROF and SVM.
These results were expected given the presence of many factors
that are not known a priori, which significantly contribute to
the prediction outcome, such as herd-year-season of insemin-
ation, insemination technician capability, and mate fertility.
They also concluded that the inclusion of MIR data in the models
did not improve the accuracy of prediction for this particular
classification problem (Hempstalk et al., 2015).

Mortality

Long et al. (2007) explored ML methods for identifying SNPs
associated with chick mortality in broilers. They used mortality
records for early age (0–14 days) progenies of 231 randomly cho-
sen sires, which were part of an elite broiler chicken line raised in
high and low hygiene environments (Long et al., 2007). The ML
approach applied discretization of continuous mortality rates of
sire families into two classes and consisted of a 2-step SNP discov-
ery process. The first step was based on dimensionality reduction
and used information gain to reduce the initial number of SNPs
to a more manageable subset. The second step used a Bayes clas-
sifier to optimize the performance of the selected SNPs. Results
suggested that the SNP selection method, coupled with sample
partition and subset evaluation procedures, provided a useful
tool for finding 17 important SNPs relevant to chick mortality
in broilers.

González-Recio et al. (2008) compared five regression
approaches (E-BLUP, F∞-metric model, kernel regression, repro-
ducing kernel Hilbert spaces (RKHS) regression, Bayesian regres-
sion) with a standard procedure for genetic evaluation (E-BLUP)
of sires using mortality rates in broilers as a response variable and
SNP information. They used mortality records on 12,167 progen-
ies of 200 sires and two sets of SNPs: one set of 24 SNPs poten-
tially associated with mortality rates for three of the methods used
for genomic assisted evaluations and a set of 1000 SNPs covering
the whole genome for the Bayesian regression (González-Recio
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et al., 2008). The RKHS regression approach consistently outper-
formed the other methods with an accuracy gain between 25%
and 125%. The global Pearson correlation coefficient between pre-
dicted and actual values of the progeny average of each sire for late
mortality was 0.20 for RKHS and significantly lower for E-BLUP
(0.10), F∞-metric model (0.08), kernel regression (0.14) and
Bayesian regression (0.16).

Nutrition

Accuracy of genomic prediction for novel traits is often hampered
by the limited size of the reference population and the number of
available phenotypes. ML tools have the potential to address this
challenge through a semi-supervised learning method (Zhu and
Goldberg, 2009). Yao et al. (2016) investigated a semi-supervised
learning method called the self-training model wrapped around a
SVM algorithm and applied this method to genomic prediction of
residual feed intake (RFI) in dairy cattle. In the Yao et al. (2016)
study, a total number of 57,491 SNPs were available for 3792 dairy
cows. From this number of animals, 792 cows were measured for
RFI phenotype and 3000 cows were without a measured RFI
phenotype. The SVM model was trained using the 792 animals
with measured phenotypes and then the result was used to gener-
ate a self-trained phenotype for 3000 animals without phenotype.
Eventually, the SVM model was re-trained using data from 3792
animals with measured and self-trained RFI phenotypes. Their
study indicated that for a given training set of animals with
measured phenotype, improvements in PAC (measured as the
correlation associated with semi-supervised learning) increased
as the number of additional animals with self-trained phenotypes
increased in the training set. The highest correlation was 5.9%
when the ratio of animals with self-trained phenotype models
to the animals with actual measured phenotypes was 2.5. The
authors suggested that the semi-supervised learning method
may be a helpful tool to enhance the accuracy of genomic predic-
tion for novel traits (that are difficult or expensive to measure)
with small reference population size. However, further research
is recommended.

Breeding

Prediction of genomic predicted transmitted ability
Bootstrap aggregation sampling (bagging) is a resampling method
that can increase the accuracy of predictions at the time that sam-
pling from the training set leads to large variance in the predictor
(Breiman, 2001). Mikshowsky et al. (2017) applied a variation of
the bootstrap aggregation (bagging) in GBLUP (BGBLUP) to
predict genomic predicted transmitting ability (GPTA) and
reliability values of 2963, 2963 and 2803 young Holstein bulls
for protein yield, somatic cell score and daughter pregnancy
rate (DPR), respectively. For each trait, 50 bootstrap samples
were randomly selected from a reference population as recom-
mended by Gianola et al. (2014) and GBLUP was used to com-
pute the genomic predictions for each trait in the testing set.
The results found bootstrap standard deviation (SD) of GBLUP
predictions to be statistically significant for identifying bulls
with future daughters having significantly better performance
(deviate significantly from early GPTA) for protein and daughter
pregnancy rate. Furthermore, bulls with more close relatives in the
training and testing population showed less variation in their
bootstrap predictions. Bootstrap samples containing the sire had
a smaller range of bootstrap SD, which confirmed that the

presence of sires in the reference population helps to stabilize
predictions. The authors observed that the maximum BGBLUP
correlation (0.665 for proteins, 0.584 for SCS, 0.499 for DPR)
for any sample was always below that of the GBLUP correlation
(0.690 for proteins, 0.609 for SCS, 0.557 for DPR) from the full
reference population, and the minimum BGBLUP mean-squared
error (MSE) for any individual sample was always larger than that
of the GBLUP MSE. Mikshowsky et al. (2017) suggested that
bootstrap prediction reliability is an effective method to construct
useful diagnostic tools for assessment of genomic prediction
systems or to evaluate the composition of a genomic reference
population.

Genomic breeding values for growth
Li et al. (2018a) used three ML approaches (RF, GBM, XgBoost)
and 38,082 SNP markers and live body weight phenotypes from
2093 Brahman cattle (1097 bulls as a discovery population and
996 cows as a validation population) to identify subsets of SNPs
to construct genomic relationship matrices (GRMs) for the estima-
tion of genomic breeding values (GEBVs). Of all three methods,
GBM had the best performance and was then followed by RF
and XgBoost. The average PAC values across 400, 1000, and
3000 SNPs were 0.38 for RF, 0.42 for GBM, and 0.26 for
XgBoost, when applied to identify potential candidate genes for
the growth trait (Li et al., 2018a). When the authors used all
SNPs with positive variable importance values, they achieved simi-
lar PAC (0.42 for RF, 0.42 for GBM and 0.39 for XgBoost) when
compared with the 0.43 overall accuracy from the whole SNP
panel. The results suggest that when it comes to the genomic pre-
diction of breeding values, more SNPs in a model do not necessar-
ily translate to a better accuracy. The authors concluded that the
subsets of SNPs (400, 1,000, and 3000) selected by the RF and
GBM methods significantly outperformed those SNPs evenly
spaced across the genome. Nevertheless, the superiority of the
GBM performance comes at the expense of longer computational
time when compared to RF and other methods.

Prediction of breeding values and genetic gains
In another study carried out by Silva et al. (2014), the ability of
ANN for the prediction of breeding values was evaluated using
simulated data and other relevant statistics as well as the mean
phenotypic value. In the simulation scenarios, two sets of simu-
lated characteristics were considered with heritabilities between
40 and 70%. They employed a randomized block design with
100 genotypes and six blocks, and the mean values and coefficient
variation were assumed to be 100 and 15%, respectively. The data
expansion process was performed using the integration module in
the computer application GENES. The expansion process applied
statistical methods that allowed the preservation of traits such as
the mean, variance and covariance among information of the gen-
otypes, which were considered pairs of blocks from the original
data (Silva et al., 2014). Feed-forward back propagation multilayer
perceptron networks were created in Matlab using the integration
module in the computer application of GENES. The network
architecture consisting of three hidden layers in the training algo-
rithm trainlm and activation functions transig or logsig was used.
The number of neurons were varying from one to seven and a
maximum of 2000 iterations was considered. The result of this
study showed that the estimates of prediction accuracies by the
ANN, considering of 120 validation experiments, were on average
1% (heritability 40%) and 0.5% (with heritability of 70%) higher
compared with the traditional methodologies (based on least
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Table 2. Comparison of ML methods applied in different areas of animal science and their corresponding evaluation methodologies

Reference ML Evaluation Methods ML Evaluation Values Ranking of ML and Other Methods

Health

Hidalgo et al. (2018) AUC 1. 0.77–0.81 2. RF

Mammadova and Keskin (2013) Sens | Spec 1. 0.89|0.92 1. SVM

2. 0.75|0.79 2. Binary logistic regression

Naderi et al. (2016) PAC 1. 0.16–0.48 1. GBLUPa

2. 0.07–0.35 2. RFa

Ehret et al. (2015) Average PCOR 1. 0.643 1. ANN

Production

Gianola et al. (2011) PCOR | MSE 1. 0.08–0.54|0.71–1.02 1. Bayesian ANN

2. 0.02–0.44|0.75–1.19 2. Linear model

González-Recio et al. (2013) PCOR 1. 0.43–0.77 1. GBM

Fertility

Shahinfar et al. (2014) Mean AUC | Mean CCI 1. 75.6 (73.6)|72.3 (73.6)b 1. RF

2. 67.6 (67.0)|72.3 (70.4)b 2. BG

3. 64.6 (60.8)|66.5 (68.9)b 3. DT

4. 62.0 (61.6)|63.5 (68.1)b 4. BN

5. 60.8 (60.8)|60.7 (63.5)b 5. NB

Hempstalk et al. (2015) AUC 1. 0.60 1. LR

2. 0.58 2. ROF

3. 0.55 3. SVM

4. 0.54 4. PLSR

5. 0.51 5. BN

6. 0.50 6. NB

7. 0.50 7. RF

8. 0.49 8. C4.5

Mortality

Long et al. (2007) PAC 1. 0.90 1. NB

González-Recio et al. (2008) PCOR 1. 0.20 1. RKHS

2. 0.16 2. Bayesian Regression

3. 0.14 3. Kernel

4. 0.10 4. E-BLUP

5. 0.08 5. F∞-metric

Nutrition

Yao et al. (2016) PAC 1. 0.23–0.29 1. SVM

Breeding

Li et al. (2018a) PAC 1. 0.36–0.46 1. GBM

2. 0.35–0.42 2. RF

3. 0.20–0.39 3. XgBoost

4. 0.18–0.29 4. Evenly distributed SNPs

5. 0.43 5. All SNPs (reference)

Li et al. (2018b) PAC 1. 0.45–0.60 1. RF

2. 0.18–0.29 2. Evenly distributed SNPs

3. 0.44 3. All SNPs (reference)

(Continued )
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squares estimates). Therefore, Silva et al. (2014) concluded that
ANNs have great potential for the use as an alternative model
in genotypic selection to predict genetic values.

Genomic prediction of body weight
In a study carried out by Li et al. (2018b) a RF method was used
as a prescreening tool to identify subsets of SNPs for genomic pre-
diction of total genetic values of yearling weight in beef cattle. The
purpose of their study was to investigate the effect of unknown
non-additive factors (e.g. epistatic effects of SNPs) in the PAC
of total genetic values using ML methods. The dataset consisted
of 651,253 genotyped SNPs from 2109 Brahman beef cattle and
the phenotypes were measured on the animals and adjusted for
fixed effects (contemporary group, age and the average of hetero-
zygosity) of all SNPs for each animal. The residuals from the ana-
lysis of variance (linear model) were then used as the phenotype
for the evaluation of RF. The details of the RF method used in
their study was explained in Breiman (2001) where training and
validation procedures were used to build DT with a subset of ani-
mals and SNPs. They used a SNP variable important value mea-
sured as the percentage of increased MSE after a SNP is randomly
permuted in a new sample (Breiman, 2001). Additive and domin-
ance genomic relationship matrices, GRM and DRM, respectively
(Vitezica et al., 2013) were constructed for a subset of 500, 1,000,
5,000, 10,000, and 50,000 SNPs and were included in the model to
predict the genomic value. A 5-fold cross validation approach was
used to compute the accuracy. The results of their study using the
RF method showed that including the dominance variation in the
genomic model neither had impact on the estimate of heritability
nor on the additive variance and accuracy of prediction. However,
RF could identify subsets of SNPs that had significantly higher
genomic PAC (0.45–0.60) than using all SNPs (0.44). Taking all
these results together, Li et al. (2018b) suggested that the RF
method has the potential to be used as a pre-screening tool for
reduction of high dimensionality of the large genomic data and
identification of the subset of useful SNPs for genomic
prediction of breeding values.

Summary of results

A summary of the results obtained with ML techniques applied to
the 6 animal science domains of activity is summarized in
Table 2. As it can be easily observed, the metrics used to evaluate
and compare the results obtained with various traditional and
ML methods include only a limited subset of evaluation metrics
traditionally used in the ML field and listed in a previous section
in this manuscript. Some of the used evaluation methods, such as
PAC and correctly classified instances (CCI) are either very

sensitive to the distribution of the data or capture only the
positive examples correctly predicted by the ML approaches,
thus making the overall interpretation and comparison of the
results problematic.

It can be also observed, that regardless of the application
domain, there is no clear ML method winner. While some meth-
ods such as RF, GBMs), ANNs and SVM tend to outperform
other ML methods or traditional approaches (Gianola et al.,
2011; Shahinfar et al., 2014; Li et al., 2018a, 2018b), there are
instances where traditional approaches such as linear regression,
GBLUP and BGBLUP outperform the ML ones (Hempstalk
et al., 2015; Naderi et al., 2016; Mikshowsky et al., 2017). This
suggests that it is not always the case that ML methods apply
well to all problems and their successful performance strongly
depends on many factors such as the nature of the problem
(e.g. classification, clustering, dimensionality reduction, regres-
sion), choosing a correct and direct problem encoding (e.g. deci-
sion versus prediction), the quality of the data (e.g. noisy, highly
redundant, missing values) and various data types (e.g. discrete,
continuous, categorical, numeric).

In some cases, the evaluation results of various ML and trad-
itional methods summarized on column 3 from Table 2 are low
compared with similar studies performed in different areas of
research. For example, Naderi et al. (2016) obtained prediction
accuracies <0.55 for both GBLUP and RF, which indicate low-
performance classifiers. Nevertheless, the low-density SNP-based
datasets and simulated data used in their study most probably
contributed to the low accuracy values.

In a handful of studies, Pearson correlations are applied tomeas-
ure the agreement between predicted and observed results. While
this approach is a valid statistical measure to estimate linear corre-
lations and can be potentially applied in the study, the obtained
correlation coefficients were, for example, lower than 0.2 for all
the five methods reported by González-Recio et al.(2008). In a typ-
ical study, this might suggest no correlation among results, but
given the very low genome coverage of SNP data (only 1000
SNPs for the whole genome) and the possibility that not all mortal-
ity events might be related to the 24 SNPs potentially associated
with mortality, the results are not surprising.

In summary, it is recommended that the employment of ML
methods applied in animal science breeding should be accompan-
ied by the adoption and careful selection of appropriate and
homogeneous metrics for estimating the quality of predictive
results. It is also desirable that more than one ML method is
selected for a study and the results must be compared against
each other and against results obtained with more traditional
approaches as it was already reported previously (Mammadova
and Keskin, 2013; Hempstalk et al., 2015; Naderi et al., 2016).

Table 2. (Continued.)

Reference ML Evaluation Methods ML Evaluation Values Ranking of ML and Other Methods

Mikshowsky et al. (2017) PAC 1. 0.56–0.69 1. GBLUP

2. 0.50–0.67 2. BGBLUP

3. 0.37–0.62 3. BA

Silva et al. (2014) Other 1. n.a. 2. ANN

AUC, area under the ROC curve; Sens, sensitivity; Spec, specificity; PAC, prediction accuracy; PCOR, Pearson product moment correlation coefficient; CCI, correctly classified instances; MSE,
mean-squared error; other, other evaluation method not typically used in the ML field; n.a., not applicable.
aOrder of ranked methods reversed for high heritability.
bPrimiparous (Multiparous) values.
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Conclusions

In summary, the work reviewed in this article showcases a meth-
odological transition in livestock breeding, from traditional
prediction strategies such as single-step GBLUP, MAS and
GWAS to more advanced ML approaches including ANNs, DL,
BN, and various ensemble methods. While the adoption of the
more advanced methods happened much faster in the human
health and plant breeding sectors, it is still in its infancy in the
livestock breeding sector and more work must be done on both,
research and applied fronts, to create more convincing and easier
to adopt strategies for the livestock breeding community of
practice. One potential first step to achieve this goal would be
to merge traditional and novel approaches into a hybrid solution
that would offer a smoother transition to newer and more power-
ful predictive systems that are easier to adopt by practitioners and
researchers alike. We also believe that the adoption of ML meth-
ods to be applied in animal breeding research must be accompan-
ied by the adoption of corresponding and, when necessary,
introduction of new evaluation metrics that better capture the
quality of the results. Thus, innovative methods and strategies
are needed to handle the deluge of data and facilitate a smoother
transition, which should be the focus of future research efforts in
the near future.
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