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Two-dimensional response of a floating ice plate
to a line load moving at variable speed
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We significantly extend the results of Miles & Sneyd (J. Fluid Mech., vol. 497, 2003,
pp. 435-439) for an accelerating line load on a floating ice plate in their simple
linear mathematical model by proceeding to numerical calculations for the response
due to a decelerating load. Our results show: (i) how the deflections produced by an
impulsively started steadily moving line load begin to develop and eventually approach
the well-known steady load-speed-dependent quasi-static and wave-like forms, including
above the shallow water gravity wave speed where the shadow zone evolves; (ii) the
singularity in the deflection predicted in the simple linear model when the load moves
steadily is indeed avoided by a uniformly accelerating load, where the magnitude of
the deflection continually increases and its maximum lags a little further behind as the
load moves through the critical speed and beyond; (iii) there is also no singularity in the
deflection due to a uniformly decelerating load, but whereas the response from a subcritical
starting speed is preserved and travels with the load, the magnitude of the deflection
may become quite large near a load starting from supercritical speed and approaching
rest, which is attributed to constructive interference (reinforcement) as erstwhile trailing,
predominantly gravity, waves catch up with the load. While this reinforcement poses no
risk to Hercules transport aircraft landing on the thick sea ice at McMurdo Sound, it can
account for the reported rapid sinking of the detached cockpit shortly after it came to rest
in the 1974 Lockheed Electra aircraft crash in the Canadian Arctic.

Key words: elastic waves, surface gravity waves

1. Introduction

Floating ice covers have been important for transport and field operations in cold regions
for many years. For example, in Canada ice roads are used by quite heavy vehicles in
winter, and essential supplies for scientists in Antarctica have been delivered by large
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Hercules aircraft landing on the ice at McMurdo Sound. Such operations are usually
safe, but there have been occasions where vehicles have gone through the ice cover.
There is a critical speed for a moving load on an ice cover, associated with a resonant
response that can become so large it must be avoided in such operations. On the other
hand, the resonance may be exploited to break up an ice cover, as on the Saint Lawrence
Seaway using hovercraft. The monograph ‘Moving Loads on Ice Plates’ by Squire et al.
(1996) summarised the theory and various field experiments that had been undertaken
until 1996, providing scientists and practitioners with a concise source of information and
understanding of the ice response, so often very different from that due to a stationary
load.

The typical mathematical model in the literature envisages a thin elastic plate floating
on an incompressible fluid of finite depth, representing the ice sheet and underlying water,
respectively. Predictions from associated linear theory have proven remarkably consistent
with field observations by Takizawa and others, including the hierarchy of load speed
dependent responses (cf. chapters 5 and 6 of Squire et al. 1996) — and there has been
recent reconfirmation of the planar wave patterns via remote sensing (cf. Babaei et al.
2016; van der Sanden & Short 2017). The critical speed is the minimum phase speed ¢,
of flexural-gravity waves in the system where the resonant response develops over time
due to the continual accumulation of energy when the load moves steadily at that speed,
since c¢yin coincides with the group speed ¢, at the corresponding critical wavenumber
kmin'

The linear theory for a line load defined the two-dimensional response in the line
of motion of the load, but the additional dimension inherent in the theory for a point
or distributed load had notable consequences (cf. Nugroho et al. 1999). Most notably,
the three-dimensional theory showed that the gravity wave speed /gH (where g is the
gravitational acceleration and H denotes the water depth) approached as the wavenumber
k — 0 is not critical in the sense of ¢y, and the time evolution of the responses
due to an impulsively started load was found to be shorter in general. However, both
the two-dimensional and three-dimensional linear theory identified +/gH as the lower
bound on the load speed for the onset of the so-called shadow zone (cf. Squire et al.
1996), where there are no gravity-dominated waves behind the moving load. Drawing
a correspondingly higher horizontal line representing a higher load speed V in figure 1
immediately suggests that phenomenon in the two-dimensional line load theory. The
quasi-static response universally predicted by the linear theory at subcritical speeds
V < cmin likewise corresponds to no intersection at all with the phase speed curve by
a correspondingly lower horizontal line. (Incidentally, the phase speed and group speed
curves are lowered by in-plane stress, which is associated with wave blocking — cf. Das,
Sahoo & Meylan (2018).) The inclusion of anelasticity rendered the deflection pronounced
but finite at the critical speed and further reduced the evolution time for the respective
responses due to an impulsively started steadily moving load, while also accounting for
some observed features such as the lag in the maximum depression behind the load and
why the planar wave patterns may appear swept back (cf. Squire et al. 1996; Wang,
Hosking & Milinazzo 2004).

The classical linear theory has mainly addressed the response of a floating ice plate to
a steadily moving load or to an impulsively started steadily moving load. An exception is
the contribution by Miles & Sneyd (2003), which provides the analysis for the response
due to a line load moving with variable speed more thoroughly explored in this article. We
initially also adopt Takizawa data in §§ 3 and 4 to re-examine and extend their calculations
for impulsively started and uniformly accelerating line loads. Nonlinear theory is not
pursued here, but it is notable that numerical results for the evolution of solitary waves
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Figure 1. The two branches of the phase speed and group speed curves c(k) and ¢, (k) (which are symmetric
about the origin k = 0) are shown for McMurdo Sound parameters. The values k; and ky where ¢ = V are the
respective wavenumbers of the trailing predominantly gravity and leading predominantly flexural components
in the wave pattern previously discussed for loads moving at constant supercritical speeds V > ¢, where
cmin denotes the minimum phase speed (cf. Squire ez al. 1996). For a steadily moving load, the large response
at the critical speed corresponds to a continual accumulation of energy at the load, since ¢, coincides with
the group speed ¢, at the corresponding critical wavenumber kiyi,. The gravity wave speed /gH in the limit
k — 0 defines the threshold for a shadow zone where no gravity-dominated waves arise behind the load (i.e.
when V > /gH), and the response is quasi-static at subcritical speeds V < ¢y (cf. Squire et al. 1996).

due to a load moving over a finite time appear to show similar responses initially (cf.
Guyenne & Parau 2014). However, in this article we also proceed to investigate the recent
prediction by Dinvay, Kalisch & Parau (2019) that a load decelerating from supercritical
speed may trigger a remarkably large deflection as some quite early field observations
suggested in Beltaos (1981), attributed to constructive interference as erstwhile trailing
gravity-dominated waves catch up with the slowing load. Landing aircraft typically require
approach speeds that exceed the critical speed on ice runways, and land-based vehicles
may also drive at supercritical speeds on ice roads (cf. Babaei ef al. 2016; van der Sanden
& Short 2017). The unsteady motion of an air-cushion vehicle and the hard landing of an
aircraft on ice covers have previously been considered to some extent in Pogorelova (2008)
and Matiushina, Pogorelova & Kozin (2016). Here, we choose to investigate the catchup
phenomenon in the context of simulations for the landing of Hercules transport aircraft at
McMurdo Sound in the Antarctic and a Lockheed Electra aircraft accident that occurred
in the Canadian Arctic.

Reference again to figure 1 provides a premonition of our detailed results, when the
horizontal line shown is envisaged to move vertically for a variable load speed, sweeping
upward for an accelerating load or downward for a decelerating load. An increasing
load speed V(f) (where ¢ denotes the time) above c,;, may be expected to develop
trailing predominantly gravity and leading predominantly flexural waves, supplementing
a quasi-static form if the load speed had previously been subcritical (V < c¢y,), until the
trailing waves are no longer generated when V > /gH. Similarly, only the leading waves
may be expected when a decreasing load speed exceeds the gravity wave speed /gH,
but the more complete flexural-gravity wave contribution would then arise if the load
enters the supercritical regime ¢, < V < +/gH, followed by quasi-static contributions
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if it enters the subcritical regime V < c¢y,. Transients produced during a variable load
speed phase may be expected to persist for some time, whether or not the load initially or
subsequently moves steadily.

2. Deflection due to a line load

As previously discussed, the simple linear two-dimensional model of Miles & Sneyd
(2003) is further explored in this article. Thus the equations for the velocity potential
¢ (x, y, 1) in the underlying water of density p and depth H and the deflection 7 (x, f) of the
floating thin elastic plate are

3¢ 32
8_x(§+£:0 (—o0o<x<o00,—H <y<0), (2.1)
9 9¢
D— +pgn=—p—_ —px, 1), (2.2)
3x at y:O
subject to
0 0 0
a9 _o, 2 _on (2.3a,b)

where D is the flexural rigidity of the plate and p(x, ) is the pressure exerted by the load.
The plate acceleration term is ignored (cf. Squire et al. 1996). For a line load located
at x = X(t) such that p(x, ) = ppd(x — X(¢)), the one-dimensional form for the deflection
obtained via Fourier—Laplace transforms may be rewritten as — cf. equation (2.13) in Miles
& Sneyd (2003)

t
nkx,t) = ——— (/ exp(—ikX (1)) sinlkc(k)(t — 7)] d‘l,') dk, (2.4)
21p J—oo c(k) 0
where the appropriate positive branch of the phase speed
g Di3
c(k) = T + — | tanh(kH) (2.5)
o

is symmetric in the wavenumber k. The time integral in (2.4) may be expressed as
1 [ 1
% / exp(—ikX (1)) (exp(ikc(t — 1)) — exp(—ikc(t — 1))) dt = % [I(c) exp(ikct)
1.Jo 1

—I(—c) exp(—ikcr)], (2.6)
where

t
1(c) = / exp(—ik [cT + X(1)]) dx. 2.7)
0

Thus adopting the real part of interest we have

po [ tanh(kH) . .
nx,t) = — Im [I(c) exp(ik(x + ct)) — I(—c) exp(ik(x — ct))] dk,
2ntp Jo c(k)
(2.8)
involving the leftward propagating component
°° tanh(kH
n_(x. 1) = — 22 / AR 1o [1(e) explik(x + e)] di 2.9)
2ntp Jo c(k)
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and the rightward propagating component (in the direction of the load motion)

Im [I(—c) exp(ik(x — c1))] dk. (2.10)

°° tanh(kH)
Ny 1) = 2 fo

21 p c(k)

3. Impulsively started steadily moving loads

In this section, we consider the evolution of responses to steadily moving line loads that are
impulsively started, when implicitly no account is taken of prior loading (cf. Squire et al.
1996; Miles & Sneyd 2003). Thus the deflection 7(x, f) is calculated for loads that are
switched on impulsively at time # = 0 and then move steadily, such that X(r) = V¢, t > 0
where V is constant. We adopt Takizawa data similar to Miles & Sneyd (2003) — viz.

Young’s modulus E = 1.79 x 108 Pa, plate thickness 2 = 0.14 m, Poisson ratio v = 1/3,
water density p = 1026kgm~> and water depth H = 6.80m. The critical speed ¢y, is

a little over 5ms™!, and the gravity wave speed is «/gH = 8.16 ms~!. The deflections
illustrated in this section are in the frame of motion of the load.

All of the results reported in this article were obtained by analytically evaluating the
integral in ¢ that appears in (2.4), and then approximating the inverse Fourier transform
by a discrete inverse Fourier transform that produces a set of linear equations relating the
deflection at a discrete set of spatial values to the Fourier transform of the deflection at
a discrete set of wavenumber values. The fast Fourier transform was employed to solve
this system of equations to obtain the deflection. In the case of impulsively started loads,
the application of the discrete inverse Fourier transform is justified since the integrand in
(2.4) has no poles on the real axis. When the initial condition corresponding to a steadily
moving load is introduced, the modified integrand corresponding to (2.4) has poles on
the real axis for values of k where V> — ¢ = 0. The part of the integrand corresponding
to the initial conditions must then be modified, so that the contribution from the poles
can be calculated analytically and the discrete inverse Fourier transform can be applied to
approximate what remains. Appendix A provides further details.

We first present mesh plots that show the evolution of the deflection in the (x, 7)-plane,
which directly compare figures in Miles & Sneyd (2003) for two illustrative load speeds.
The x-axis in metres is again placed in the immediate foreground in figures 2 and 3, but
on the second horizontal axis we prefer to represent the equivalent time span in seconds.
For an impulsively started load that then moves at the subcritical speed V =2ms~!, we
found the deflection starts to reflect the familiar quasi-static form due to the corresponding
steadily moving load, as shown in figure 2, which resembles figure 1(a) of Miles & Sneyd
(2003). The deflection we obtained for an impulsively started load that then moves at
constant supercritical speed V = 1.17¢;;, shown in figure 3 also resembles figure 1(b)
of Miles & Sneyd (2003), where characteristic leading predominantly flexural waves and
trailing predominantly gravity waves appear. The longer time taken for the trailing waves
to more clearly emerge is shown in figure 4. The response for a higher impulsively started
constant supercritical speed V = 10ms~! > \/gH at r = 8s in figure 5 shows that the
leading predominantly flexural wave is then accompanied by a trailing transient, which
dissipates as the shadow zone emerges, as seen in figure 6. While each of the three different
steady-state forms quickly emerge near the load, the emergence of the steady-state takes
longer elsewhere — but we recognise the restricted propagation to the line of motion in the
two-dimensional model is an extenuating factor. (The present context is accordingly called
one-dimensional in Wang et al. (2004), where ‘one-dimensional’ and ‘two-dimensional’
refer to the flexural-gravity wave propagation in the floating ice plate, but in this paper
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Figure 2. The evolution of the deflection due to an impulsively started steadily moving load at the subcritical
speed V =2ms~! over the first 8 s for the Takizawa data, in a direct comparison with figure 1(a) of Miles
& Sneyd (2003). The familiar constant load speed quasi-static form shown in red begins to emerge as the
transients propagate away.
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Figure 3. The evolution of the deflection due to an impulsively started steadily moving load at the supercritical
speed V = 1.17¢;i m s~! over the first 16 s for the Takizawa data, in a direct comparison with figure 1(b) of
Miles & Sneyd (2003). The familiar constant load speed wave form shown in red begins to emerge as the
transients propagate away.

we have used the now more common terminology acknowledging the additional vertical
dimension.)

Incidentally, to render the deflections in metres at any time #, the magnitudes shown in
our graphical results throughout this paper must be multiplied by the factor po/(2mp) to
scale in the load — e.g. the skidoo and driver in Takizawa’s experiments on Lake Saroma
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Figure 4. The evolution of the deflection at the impulsively started supercritical load speed V =
1.17¢pin ms~! for the Takizawa data, showing the time taken for the longer trailing predominantly gravity

wave to more clearly develop.
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Figure 5. The deflection for the impulsively started higher supercritical load speed V = 10ms~! > /gH at
8 s for the Takizawa data. The short wavelength leading predominantly flexural wave is followed by trailing

transients propagating away from the load.

(cf. Squire et al. 1996). If |n| < h is adopted as a suitable criterion for the validity of the
linearity assumption, we note that it is satisfied for the deflections shown in figures 26,
but of course not when the deflection predicted for the steadily moving load is singular
— most notably at the critical load speed V = ¢jin, which prompted the inclusion of
anelasticity and nonlinearity in the modelling (cf. Squire et al. 1996; Parau & Dias 2002).
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Figure 6. The deflection for the impulsively started supercritical load speed V = 10ms~! > /gH at 25, 50
and 100 s for the Takizawa data. The transients behind the load propagate away rather slowly as the shadow
zone develops.

4. Response due to a uniformly accelerating line load

In the next two sections we consider the response due to a uniformly accelerating load
following Miles & Sneyd (2003). In this section, we consider a constant acceleration from
time ¢t = O such that X(¢) = %At2 (t > 0), while in the next section we consider constant

deceleration, (—A), from the initial constant speed V such that X(¢) = Vt — %Atz, t> 0.
Since in § 5 we also compare the deflection produced by a load decelerating at a constant

rate A = —1 ms~2 with the deflection produced by a load initially decelerating at the

constant rate A = —1 ms ™2, then decelerating at the increased constant rate A = —4 m g2

until it comes to rest and then at rest, we find it convenient to derive the general expression
obtained by breaking the interval [0, ¢] into sub-intervals 0 =Ty <71 < T --- < Ty <t
and summing the contributions from each sub-interval such that

tanhkH [ . .
- / exp(—ikX (7)) sinkc(t — 7)dt
c 0

tanh kH = [ Tw ) )
= Z / exp(—ikX(t)) sinkc(t — t)dt
¢ n=0"""
tanhkH [! . .
— —— | exp(—ikX(7))sinkc(t — t)dr. 4.1
C T,

Thus when A,, denotes the constant acceleration or deceleration of the load in the interval
T, <t < Ty41 and V,, denotes the speed at t = T},,, we have that

Tht1
— f exp(—ikX (7)) sinke(t — 7)dt (4.2)
T
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is equal to

exp(—ik [X(T,) + V,(t — Tw)]) [exp(ik(c + V)T —Typ)) — 1

2k c+V,
—ik(c = V,)Tpy1 —Ty) — 1
+exp( ik(c ) (Thg1 n) :| (4.3)
c—V,
for a load moving at a constant speed and
_exp(—ikX(Ty)) .
P [expike(t — T a(Tot = Ty ©)
—exp(—ike(t — Ty)y(Tys1 — Tn, —0)] 4.4)
for an accelerating load where ynz =kA,/2, oy = (c + V) /Ay,
exp(iy2a?)
11, ) = PV 5 0 (1 4 ay) — FF (racta) s (4.5)

n

F@) = /Z e’ ds= [1C (ﬁz) + i\/ES (ﬁz) (4.6)
0 2 o 2 ol

is the Fresnel integral.

The solution of (2.8) may then be expressed in terms of I,(¢, ¢). Thus taking J = 0,
To=0, Vo=0, Ag=A, y02 =kA/2 and o9 =c/A, the leftward and rightward
propagating terms in (2.8) are

I(c) exp(ik(x + ct)) = Ip(t, c) exp(ik(x + ct)), 4.7a)

and

and
I(—c) exp(ik(x — ct)) = Ip(t, —c) exp(ik(x — ct)), (4.7b)

respectively.

Figures 7-9 depict deflection snapshots we found for an impulsively started uniformly
accelerating load using the Takizawa data in each of the three regimes V > /gH, cpin <
V < /gH and V < ¢y, illustrating successive contributions as anticipated for a
time-dependent load speed at the end of § 1. Thus the early quasi-static form in figure 7 is
supplemented by supercritical contributions when the load accelerates beyond the critical
speed ¢y (cf. figure 8) and then the gravity wave speed +/gH (cf. figure 9). The position
of the load as seen by a stationary observer is here and henceforth denoted by a red or blue
arrow, showing that the maximum amplitude of the deflection tends to fall further behind
the load as the load speed increases. The very high constant acceleration A = 14 ms™2
assumed in figures 7-9 was chosen to reconsider the calculation in Miles & Sneyd (2003).
A more likely practical value A = 1 ms~—2 was chosen to re-calculate the response at the
load speed V = 9.8 ms~! as shown in figure 10, but now with the relevant initial static
response included (blue plot) for comparison with the response due to the impulsively
started load (red plot). This confirms that the response is largely determined by the
acceleration, with similar larger dominant deflection amplitudes and somewhat different
transients behind the load. The validity of the linearity criterion || < & has become less
clear, however, with nonlinear theory expected to be required at later times or for heavier
loads than in Takizawa’s experiments (cf. Squire et al. 1996). We also found there is no
singularity in the deflection due to the uniformly accelerating load, but could not reproduce
figure 1(c) of Miles & Sneyd (2003).
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Figure 7. Subcritical response at V = 0.7ms™! < ¢, for the impulsively started load uniformly accelerating
from ¢ = 0 using the Takizawa data, with a small central quasi-static feature amid leading and trailing transients.

Takizawa data
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Figure 8. The supercritical response when ¢y, < V =5.6ms™! < /gH for the impulsively started load
uniformly accelerating from #= 0 using the Takizawa data, with large emerging amplitudes in the
neighbourhood of the load amid persistent transients.
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Figure 9. Supercritical response when V =9.8ms~! > (/gH for the impulsively started load uniformly
accelerating from ¢ = 0 using the Takizawa data, showing an advancing load with further enhanced leading
and trailing deflections. There are even larger leading wave amplitudes, and more enlarged amplitudes trailing
the load where it appears the transients persist.

5. Response due to a uniformly decelerating line load

We now proceed to determine the deflection produced by the load deceleration (—A) from
the initial constant speed V such that X(¢) = Vi — %Atz, t > 0. In this case, taking J = 0,
To=0,Vog=V,Ag = —A, y02 = kAo/2 and g = (V + ¢) /Ao, the leftward and rightward
propagating terms in (2.8) are

I(c) exp(ik(x + ct)) = Ip(t, c) exp(ik(x + c1)), (5.1a)

and
I(—c) exp(ik(x — ct)) = Io(t, —c) exp(ik(x — ct)), (5.1b)

respectively.

We first reconsidered the subcritical regime, and in particular the case of a load initially
moving steadily at 0.4 ¢, that is subjected to a constant deceleration to rest in 37.75s
using the Takizawa data. As the snapshot at any arbitrary intervening time such as in
figure 11 shows, the initial quasi-static form essentially moves with the load (its position
again denoted by the red arrow), as the transient contributions from the deceleration and
initial condition propagate away. This appears to be consistent with the response illustrated
in figure 1(d) of Miles & Sneyd (2003). We again show the impulsively started case for
comparison, together with the evolution of the initial condition for completeness — cf. the
first term of the Fourier transform (A 2) for the deflection in Appendix A.

For the slightly different Lake Saroma data in table 1 of Dinvay et al. (2019), we found
evolving surface and strain profiles for a 235 kg load decelerating from the steady state at
the initial constant speed V = 10ms™' to rest, as shown in figure 12, which resembles
their figure 11(b.d,f), except that the predicted deflection and strain are larger as one
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Figure 10. The supercritical response when V = 9.8 ms~! > /gH for the uniformly accelerating load using
the Takizawa data, when the initial static response at rest is included (blue plot) and impulsively started (red
plot) for confirmation that the response is determined by the acceleration. The advancing load is associated
with further enlarged leading and trailing deflections, and even more persistent transients.

Takizawa data
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Figure 11. Snapshot at an arbitrary intervening time for a subcritical decelerating load using the Takizawa data,
showing the initial quasi-static form moving with the load as the transient contributions from the deceleration
and initial condition propagate away.
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Figure 12. Evolving surface and strain profiles for a 235 kg load decelerating from the steady state at the initial

constant speed V = 10ms~! to rest, using the Takizawa data in Dinvay ez al. (2019) for direct comparison with
their figure 11. The measurement location is at 200 m, and the load comes to rest after 50 s.

would expect in the simple line load model without dissipation. The strain was calculated
to be € = (h/2) 8217 / ax? as in Dinvay et al. (2019), and in passing we observe that the
linearity criterion || < h is challenged but still satisfied. We then chose to further pursue
the response for loads decelerating from supercritical speeds, in cases where constructive
interference due to the catch up of predominantly gravity waves can reinforce the response.
In particular, the results obtained for Hercules aircraft landing at McMurdo Sound and the
Lockheed Electra aircraft accident in the Canadian Arctic are now discussed.

On assuming an initial supercritical load speed in landing within the wavenumber

interval (ki, k») identified in figure 1, we have: (i) y ranging from ,/ %klA to ,/ %sz

and (ii) (V — ¢)/A ranging from zero to a maximum (V — ¢,,;,) /A and back to zero. The
recommended runway length for the Hercules aircraft is approximately 1500 m, so an
average deceleration A would be at least 1 ms~2 over a landing time of approximately
a minute for a steady landing approach speed V of 120 knots or so (approximately
60ms~!) as is typically recommended to pilots. This approach speed is just above the
long wavelength gravity wave speed +/gH ~ 58.6ms~! (in the limit k — 0) shown in
figure 1, when there are no trailing predominantly gravity waves supplementing the
shorter wavelength leading waves before the load decelerates below /gH, until entering
the subcritical regime below the critical load speed ¢y, =~ 22.5ms~! at wavenumber
kmin ~ 2 x 1072 m~! where the response contribution becomes quasi-static. We adopted
the parameters of Davys et al. in Squire et al. (1996), where the Young’s modulus £ = 5 x
10° Pa and the sea ice thickness & = 2.5 m. As previously indicated, for a time-dependent
load speed the representative horizontal line in figure 1 may be envisaged to sweep down
through each of the three regimes V > /gH, cyin < V < /gH and V < Cpi.
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Figure 13. Deflection evolution for an impulsively started load subject to constant load deceleration 1 m s>

to rest from a hypothetical initial speed of 60 ms~!, in the McMurdo Sound context. The successive snapshot
times shown here are t = 17.93, 29.88, 41, 83, 47.81, 53.79, 59.76 s. The leading predominantly flexural wave
stays ahead of the load, but the trailing predominantly gravity wave appears to catch up and reinforce the
deflection near the load location denoted by the red arrow.

Let us first ignore the steady-state deflection from a constant supercritical approach
speed V = 60ms~!, and consider a constant deceleration A = —1 ms~2 until the load
comes to rest after f = 60s — i.e. from V = 60ms~' just above the gravity wave speed
VgH ~ 58.6ms~! for the assumed water depth H = 350 m, encompassing all three
response regimes during the deceleration. Then, as shown in figure 13 for the McMurdo
Sound parameters, we find that the early predominantly flexural contribution generated
ahead of the decelerating load persists but its amplitude is soon exceeded near the load,
attributed to the predominantly gravity waves generated behind continually catching up.
It is also notable that there is no singularity in the predicted evolving deflection for the
uniformly decelerating load.

Let us now introduce the initial steady-state deflection in the underlying ice
runway calculated at the lower constant aircraft speed V = S0ms~! < /gH previously
considered in Davys et al. in Squire et al. (1996), as shown in figure 14. This slower
aircraft speed is just above the recognised safety minimum for touchdown. A representative
response during a continual constant deceleration A = —1ms~2 is shown in figure 15,
where a substantial reinforcement is apparent. Thus, although the early deceleration effect
over the load speed interval v/gH < V < 50 ms~! is avoided, the subsequent response in
figure 15 not only reflects the initial supercritical speed steady-state deflection in figure 14
but also a large response at the load, attributed to catchup of the trailing predominantly
gravity wave produced by the deceleration effect over the range S0ms™!' < V < ¢pin.

The trailing predominantly gravity wave is avoided in the initial steady state at

the recommended higher approach speed of approximately 60ms~! above >./gH.
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Figure 14. Steady-state deflection in the McMurdo Sound ice cover of thickness 2.5 m for the constant

supercritical approach speed 50 ms~! assumed in Davys ef al. in Squire ez al. (1996).

McMurdo sound data

~ 0.02} A t=44s
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Figure 15. Localised reinforced response at the load denoted by the red arrow, attributed to catchup of the
trailing predominantly gravity waves during constant deceleration A = —1 ms~2 to the load speed V = 6 ms~!
from the constant Hercules approach speed V = 50 ms~! at McMurdo Sound previously considered by Davys
et al. in Squire et al. (1996). Both the steady-state and impulsive starts are shown for comparison, together with
the evolution of the initial condition.
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Moreover, a pilot may apply reverse thrust retardation between 80 and 60 knots (between
40 and 30ms~! say) that can quite quickly lead to subcritical load speeds V < cpin,
largely avoiding much of the predominantly gravity wave generation over the load speed
range 40 m s7l < V < ¢in = 22.5ms™! that would otherwise accrue in the absence of
the reverse thrust. For illustration, the response for the case when the load is decelerated
at A = —1 ms~2 from the approach speed V = 60ms~! until V =40ms~' and then at
A = —4ms~? to subcritical speed in less than 5s is compared in figure 16 with the case
of constant deceleration at A = —1 ms~2. Thus, whereas panel (a) and to some extent
(b) in figure 13 may represent the deflection due to the common earlier deceleration at
A = —1ms~? from the landing speed of V =60ms~! to V =40ms~! in each case,
the reinforcement at later times suggested by the other 4 panels in figure 13 may largely
be avoided when the reverse thrust is activated. Figure 16(c—f) shows the deflection for
the reverse thrust case (load position denoted by the blue arrow) increasingly resembles
the subcritical quasi-static form whereas the constant deceleration case (load position
denoted by the red arrow) also reflects the longer supercritical exposure involved, and
the magnitudes are notably less than the reinforced deflection for the case of constant
deceleration from the lower approach speed V = 50ms~! shown in figure 15. Bearing
in mind the known weight and dimensions of the Hercules aircraft, on introducing the
po/(27p) factor it appears that the deflection on the thick ice at McMurdo Sound can
typically be a few centimetres over a hundred metres or more, which should be measurable
but hardly dangerous. The flexural-gravity waves generated were of course originally
detected several kilometres away from where the Hercules aircraft were landing by John
Davys and colleagues from the University of Waikato (New Zealand), which prompted
many of the theoretical advances discussed in chapter 5 of Squire et al. (1996).

The aircraft accident off Rea Point on Melville Island in the Canadian Arctic was
drawn to our attention long ago (cf. Wadhams 1997), and recently we ascertained the
actual circumstances that were eventually well documented in Stevenson (1976). In 1974
a Lockheed Electra L-188 Aircraft flight with 30 passengers and 4 crew mistakenly put
down onto sea ice some miles short of the intended land runway, when the cargo and
cockpit broke away from the remainder of the fuselage and continued together along the
ice surface for some 900 feet (274 m). Only the co-pilot and flight engineer survived, after
getting out onto the ice from the cockpit before it sank completely and they were rescued by
searchers from the operating company’s Rea Point base. The ground speed of the aircraft
before it came down was reported to be 120 knots (cf. Stevenson 1976), which is well into
the high supercritical regime V > /gH for an assumed water depth of 100 m say. Thus if
we take the initial speed to be 63 ms~! and again assume constant deceleration over the
reported 900 feet trajectory to rest on the ice, that corresponds to A = 7ms™2 over some
9s.

We again adopt Young’s modulus E =5 x 10°Pa, an estimated new season ice
thickness 4 = 0.5m and water depth H = 100m. The initial steady-state deflection is
first shown in figure 17, with the characteristic leading predominantly flexural wave and
shadow zone at the load speed 63ms™! considerably above the gravity wave speed
VgH = 31.3ms~! for the assumed water depth of 100 m in this context. We obtained
the evolution of the ice response shown in figure 18, assuming the aircraft approach speed
of 63 ms~! and the constant deceleration of 7 ms~2 over the trajectory of the cockpit and
cargo on the ice. The first panel of figure 19 corresponds to the final panel in figure 18 at the
time the load (cockpit and crew) comes to rest, to more clearly illustrate the antisymmetry
in the deflection over an interval of 20 m or so near the load. Assuming that the load
(cockpit and crew) was at least 2000 kg, as shown in figure 19 the maximum deflection
is several centimetres and the strain is of order 10~%. We note that the strain maximum
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Figure 16. Response due to deceleration at A = —1ms~2 from the steady-state deflection, at the
recommended higher Hercules approach speed V = 60 ms~! until the load speed V = 40ms~', and then the
increased deceleration A = —4 m s~ due to pilot activation of reverse thrust — cf. the load location denoted by
the blue arrow, already distinct in panel (b) from the load under constant deceleration A = —1 ms~2 denoted

by the red arrow. The trailing predominantly gravity wave from V = 58.6ms~! = ,/gH is evident in panel (b)
for both cases; but in panels (c—f) the quasi-static form generated when V < ¢y, = 22.5ms ™! features more
in the reverse thrust case than the flexural-gravity wave over the interval ¢, < V < /gH.

coincides with the load at rest, and that it approaches the value 2.14 x 10~* indicated in
Goodman, Wadhams & Squire (1980) when the ice is most likely to fracture. Thus the
constructive interference due to the predominantly gravity wave catching up may indeed
account for the reported rapid sinking of the cockpit as it came to rest on the ice.

6. Conclusion

We have reconsidered the two-dimensional model for a line load moving at variable load
speed on a floating ice plate, originally published in Miles & Sneyd (2003). Firstly, our
calculations clarify and extend their results for an impulsively started steadily moving
load using the Takizawa data, showing more completely how the responses due to a
steadily moving line load on a floating ice sheet evolve in all three regimes V > /gH,
Cmin <V < /gH and V < cyin (cf. Squire et al. 1996). The deflection due to a uniformly
accelerating line load was also found to always be regular and to continually increase,
with maximum amplitude becoming quite large a little further behind the load as it moves
through the critical speed (V = ¢;;in) and beyond. We first calculated the contribution
from the acceleration alone, but then introduced the initial quasi-static state to produce
the appropriate combined result.

The response due to a uniformly decelerating load was extensively investigated, with
the relevant initial steady state included or not (designated as ‘impulsively started”). The
singularities in the deflection predicted in the non-dissipative linear theory for a steadily
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Figure 17. Steady-state deflection at the reported initial ground speed 63 ms~! before the Rea Point crash.
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Figure 18. Deflection evolution in the Lockheed Electra crash on the sea ice off Rea Point for a constant
deceleration of 7ms~2 to rest at the end of the 900 feet trajectory on the ice, from the steady state at the
reported aircraft approach ground speed of 63 ms~! (blue curve). The red dashed curve shows the deflection
has additional trailing transients when the initial steady state is ignored.
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Figure 19. The ice deflection in metres and associated strain in the Lockheed Electra crash off Rea Point
when the initial steady-state deflection at the reported aircraft approach ground speed of 63 ms~! is included,
assuming a constant deceleration of 7ms~2 until the load (cockpit and crew) came to rest at the end of the
900 feet trajectory on the ice. The blue dashed curve shows the deflection has additional trailing transients
when the initial steady state is ignored.

moving line load (cf. Squire et al. 1996) were always found to be avoided when the
load is uniformly decelerated, extending the conclusion in Miles & Sneyd (2003) for the
uniformly accelerated load that we confirmed as mentioned above. We retained the earlier
Takizawa data in showing that an initial quasi-static deflection due to a constant subcritical
load speed propagates with the load as it decelerates. Evolving surface and strain profiles
were also found to resemble those in figure 11 of Dinvay et al. (2019) for their Takizawa
data, although the deflection and strain predicted by the present line load model are larger
in the absence of dissipation.

We further explored the recent prediction that the deflection due to an initially
supercritical load decelerating towards rest is significantly reinforced in the neighbourhood
of the load, attributed to constructive interference as the erstwhile trailing predominantly
gravity wave catches up with the load (cf. Dinvay et al. 2019). This phenomenon was
investigated in the context of the landing of Hercules transport aircraft on thick sea ice at
McMurdo Sound in Antarctica, and then an aircraft accident in the Canadian Arctic. The
maximum deflection of several centimetres over 100 m or more may even be smaller under
the recommended Hercules landing procedure when reverse thrust is applied — whereas in
the accident off Rea Point in the Canadian Arctic, a deflection of several centimetres over
20 m or so on the seasonal thinner sea ice can account for the reported rapid sinking of the
cockpit when it came to rest.

Linear theory originally identified the critical speed as a singularity in the deflection due
to a steadily moving load on a floating ice plate, and the singularities predicted were also
first investigated asymptotically for an impulsively started steadily moving load on a thin
elastic or anelastic plate (cf. Squire et al. 1996; Nugroho et al. 1999; Wang et al. 2004).
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The linearity assumption is expected to be acceptable when the maximum magnitudes
of the steady-state or time-dependent deflections are smaller than the assumed thin plate
thickness (as in this article), but that may not always be the case for an accelerating load
or for a load decelerating from supercritical speed. The nonlinear problem for a steadily
moving load (initially prompted by the predicted singularity at critical speed) has received
increasing attention in recent years. However, the inclusion of anelasticity and extension of
the existing nonlinear numerical calculations in Guyenne & Parau (2014) to accelerating
or decelerating loads is now suggested for future investigation.
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Appendix A

As noted in § 3, our results for the deflection due to an impulsively started load and
to a load initially moving at a constant speed and then decelerating were obtained by
approximating the inverse Fourier transform. While the integrand of (2.4) has no poles
on the real k axis and the inverse transform can be applied directly, the integrand which
results when the initial condition corresponding to an initial steady state has poles on the
real axis when V2 — ¢? = 0. Moreover, the results for accelerating and decelerating loads
are expressed in terms of Fresnel integrals. The details of approximations and calculations
required to handle these issues are provided below. Estimates of the accuracy of the
methods are also given.

A.l. Approximating the inverse Fourier transform

As in Miles & Sneyd (2003), the integral with respect to 7 corresponding to an impulsively
started load steadily moving which was previously uniformly accelerating or decelerating
is evaluated analytically. The integral in k in (2.4) is approximated as a discrete Fourier
transform and the fast Fourier transform algorithm is used to obtain an approximation of
the deflection. The discretisation starts by selecting K, corresponding to the largest
wavenumber to be resolved and the interval —Kj,, < k < Kjax 18 sub-divided into
N equal parts of size Ak = 2K,,/N. The interval on which the deflection is to be
approximated given by —LH < x < LH, where L > 0 and H is the depth of the water,
is also sub-divided into N equal parts of size Ax = 2LH/N. The result is the familiar
relationship between the discrete Fourier transform of the deflection at the points k; = j Ak
for j from —N to N and the approximation of the deflection at x; = j Ax for j from —N to N.
Provided that Ax Ak = 21t /N the fast Fourier transform algorithm can be used to obtain
the discrete approximation of the deflection from its Fourier transform.

For fixed N, Ak = n/LH and K, = (N/2)(mt/LH) so that L and N must be selected
such that the contribution to the integral in (2.4) for |k| > K4 is sufficiently small. For
the results presented in this article, N = 8192 and L = 100. Values of N between 1024
and 16 384 and values of L between 100 and 200 were used to assess the accuracy of our
approximations. As a strong accuracy test for the Rea Point data, we adopted the initial
speed 63 ms~! and the small deceleration of —1 ms~2 to rest at time £ = 63 s. In figure 20
where L = 100 is used in all cases, the blue curve corresponds to the deflection obtained
when N = 8192, the red circles when N = 4096, the green circles when N = 16384 and
the black circles to numerical integration in (2.8) from 0 to 2K,,,,. Figure 21 compares
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Figure 20. The computation for the Rea Point data using N = 4096, 8192 and 16 384 with L = 100. The blue
curve corresponds to the deflection obtained when N = 8192 and the coloured circles denote the other N values,
as indicated in the legend and stated in the text.
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Figure 21. The computation for the Rea Point data using L = 100 and 200 with N = 8192. The blue curve
corresponds to L = 100 and the green circles to L = 200, as indicated in the legend and stated in the text.

the deflections computed using N = 8192, where the blue curve corresponds to L = 100
and the green circles to L = 200. The accuracy is impressive, although larger values of N
could be needed for larger time ¢ than involved in our numerical calculations.
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A.2. Approximating the Fresnel integrals

The Fresnel integrals were approximated using formulae that appear in chapter 7 of
Abramowitz & Stegun (1964) using the series expansions for |z| < 3 and asymptotic

expansions for |z] > 3 to evaluate the real and imaginary parts of F(z) = foz els” ds.
Specifically, the first 20 terms of the series expansions 7.3.12 and 7.3.14 were used for
|z] < 3 together with 7.3.9 and 7.3.10 and the first terms of the asymptotic expansions
7.3.27 and 7.3.28 for |z| > 3. Values obtained using these approximations were compared
with values shown in the tables on pages 320-321 in the Handbook, which demonstrated
an accuracy better than 10~%. The accuracy in approximating /(c) and I(—c) was usually
sufficient. However, if yr is small the differences taken in evaluating /(c) and I(—c)
respectively could lead to inaccurate approximations, so in that case the source integrals

such as (1/y) [ l’)ﬁ’a_a) el ds were approximated numerically using Romberg integration.

A.3. The initial condition

The results in Miles & Sneyd (2003) envisage loads started impulsively at time ¢t = 0,
but for loads initially moving at constant speed V the Fourier transform of the deflection
becomes

tanh kH | cosket —i¥sinket k(! _ )
— £ + —/ exp(—ikX(t)) sinkc(t — t)dr |. (A1)
k 2 —V? c Jo

The first term is the Fourier transform at time ¢ of the component of the deflection due to
the evolution of the initial condition and the second term is the Fourier transform of the
component of the deflection at time ¢ due to the moving load at the position X(#). Since the
second term has no poles on the real k axes for the class of load positions X(#) considered
in this article, the discrete inverse Fourier transform can be applied directly to obtain an
approximation to its inverse Fourier transform. The first term has poles on the real k axes
at points where ¢ — V2 = 0 and consequently for V > ¢, the discrete Fourier transform
cannot be applied directly. However, this term can be re-written in the form

tanh kH | cos kct — i% sin kct tanhkH [ . k(c+ V)t . k(c— V)t
- = t|sm sic
k 2 - V2 c+V 2

k(c+WV)t . k(c— V)t
sinc

vV .
+i— [cos — s1nc(kVt)]:|
c

tanh kH exp(—ikVr)
k 2 —V?

(A2)

The term within the outside square brackets is regular on the real k axis so that the inverse
Fourier transform of the corresponding expression can be approximated using the discrete
inverse Fourier transform. The inverse Fourier transform of the last term (the steadily
moving load contribution) can be evaluated analytically using the method of residues. The
details of the contour integration can be found in the online Supplementary Materials
available at https://doi.org/10.1017/jfm.2022.109. See also Davys et al. and Schulkes &
Sneyd discussed in chapter 5 of Squire et al. (1996).

As an illustration, figure 22 shows the steady-state solutions corresponding to the load
moving in the three speed regimes: V < ¢pin, Cmin < V < +/gH and V > /gH.
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Figure 22. Steady-state deflections at the constant subcritical and supercritical speeds consistent with the
three limiting results produced in § 3 for the Takizawa data.
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