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1. Introduction

Let Ω be a finite measure space, let H = L2(Ω) be endowed with the norm denoted
by ‖ · ‖L2(Ω) = ‖ · ‖2 and let V be a real Hilbert space endowed with the norm
denoted by ‖ · ‖ such that

V ⊂ H ⊂ V ′

with continuous and dense embeddings, where V ′ is the topological dual of V .
We denote by (·, ·) the inner product in H and by 〈·, ·〉 the duality product

between V and V ′·
In this paper, we look for a sharp ultimate bound of the solution to a dissipa-

tive second-order nonlinear evolution equation. More precisely, let us consider the
nonlinear evolution equation

utt(t, x) + |ut(t, x)|αut(t, x) + Au(t, x) = f(t, x) in R
+ × Ω,

u(0, x) = u0, ut(0, x) = u1 on Ω,

}
(1.1)

where α � 0 and f ∈ L∞(R+, L2(Ω)).
A : V → V ′ is the duality map with domain denoted by

D(A) = {v ∈ V : Av ∈ H}.

We observe that A is characterized by the property

∀(u, v) ∈ V × V, 〈Au, v〉V ′,V = (u, v)V .
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We set
λ1(A) = λ1 = inf{‖u‖2; u ∈ D(A), ‖u‖2

2 = 1}. (1.2)

Throughout the paper, we shall denote the norm in Lp(Ω) by

‖z‖p =
( ∫

Ω

|z|p dx

)1/p

for any p ∈ [1, +∞[.

Assuming V ⊂ Lα+2(Ω) with continuous embedding, we define

c1(α) = sup{‖u‖α+2; u ∈ V, ‖u‖ = 1}. (1.3)

Under this condition, we observe that v 	→ |v|αv sends V to V ′ continuously.
We set

‖f‖∞,2 = ess sup
t�0

‖f(t, ·)‖2.

Writing (1.1) as a system by introducing u′ = v, we obtain

U ′(t) + AU(t) = F (t), 0 � t � T, (1.4)

where U = (u, u′), F = (0, f) and the operator A is defined on the Hilbert space
H = V × H by

D(A) = {(u, v) ∈ V × V ; Au + |v|αv ∈ H}
and

A(u, v) = (−v, Au + |v|αv) ∀(u, v) ∈ D(A).

As in [1, 2, 4], it is not difficult to establish that the operator A is a maximal
monotone operator in V × H. Since A is a maximal monotone, for each T > 0,
U0 ∈ D(A) and F ∈ W 1,1(0, T ; H) there is a unique solution U ∈ W 1,1(0, T ; H)
with U(t) ∈ D(A) for almost all t ∈ (0, T ), U(0) = U0, satisfying (1.4) for all
t ∈ (0, T ).

As a consequence, for any f ∈ L1
loc(R

+, H) and for each (u0, u1) ∈ V × H there
is a unique weak solution u ∈ C(R+, V )∩C1(R+, H) of (1.1) defined by density on
(f, u0, u1) such that u(0) = u0 ∈ V , u′(0) = u1 ∈ H.

Our goal is to obtain an estimate for the ultimate bound

lim
t→∞

[max(‖u(t)‖, ‖u′(t)‖2)].

In order to do this, we use a method introduced by Prouse in 1965 [10]. For t � 0,
the main idea is to distinguish two possible cases concerning the energy E(t) of a
given solution u:

(a) E(t + l) � E(t),

(b) E(t + l) > E(t),

where l = 8λ
−1/2
1 .

Prouse [10] applied this method with l = 1 to prove the boundedness of solutions
on R

+ of the nonlinear dissipative wave equation

utt − ∆u + β(ut) = f(t, x) in R
+ × Ω,

u(t, x) = 0 on R
+ × ∂Ω,
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where Ω is an open subset of R
N with regular boundary, β is coercive with poly-

nomial growth at infinity and f ∈ L∞(R+, L2(Ω)).
Nakao [8, 9] used the approach of Prouse [10] with l = 1 to prove the energy

decay of the solutions of the following two equations.
The first is a nonlinear evolution equation:

u′′(t) + B(t)u′(t) + A(t)u(t) = f(t), t ∈ R
+.

Let W and Z be two Banach spaces such that W ⊂ Z with dense injection and
let W ∗ and Z∗ be the topological duals of W and Z.

A(t) : W → W ∗ and B(t) : Z → Z∗ are nonlinear bounded time-dependent oper-
ators. f ∈ L

(r+2)/(r+1)
loc (R+, Z∗), r � 0, such that( ∫ t+1

t

‖f(s)‖(r+2)/(r+1)
Z∗ ds

)(r+1)/(r+2)

tends to 0 fast enough as t → ∞.
The second is a nonlinear dissipative wave equation:

utt − ∆u + β(ut) + λ2(x)u = f(t, x) in R
+ × R

N ,

u(0, x) = u0, ut(0, x) = u1 on R
N ,

where β is a C1 function defined on R, λ(x) � 0 is a locally bounded measurable
function defined on R

N , and

f ∈ L
(r+2)/(r+1)
loc (R+, L(r+2)/(r+1)(RN )), r � 0,

such that ( ∫ t+1

t

‖f(s)‖(r+2)/(r+1)
(r+2)/(r+1) ds

)(r+1)/(r+2)

→ 0

fast enough as t → ∞.
In [3], Haraux and Biroli studied the following equation:

utt − ∆u + β(ut) − λut = f(t, x) in R
+ × Ω,

u(t, x) = 0 on R
+ × ∂Ω,

}
(1.5)

where λ > 0, β is a maximal monotone graph in R × R with 0 ∈ β(0) and

f ∈ S2(R+, L2(Ω)) =
{

f ∈ L2
loc(R

+, L2(Ω)); sup
t�0

∫ t+1

t

‖f(s)‖2
2 ds < +∞

}
.

By using the method of Prouse [10], they chose l = 4λ
−1/2
0 with

λ0 = inf
u∈H1

0 (Ω),u �=0

‖∇u‖2
2

‖u‖2
2

to establish the boundedness of solutions of (1.5) in H1
0 (Ω) × L2(Ω) for t � 0.

In 1982, Haraux [6] established the boundedness properties for global solutions
of the abstract evolution equation

u′′ + g(t, u′(t)) + Φ′(u) = 0, t ∈ R
+,
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where Φ ∈ C1(V, R) and g : R
+ × V → V ′ is a possibly multi-valued operator

satisfying relevant coercivity and growth conditions. Here, the method of Prouse
was applied with l = 4λ

−1/2
0 α−1/2β−1, where α and β appear in the assumptions

on g and Φ and

λ0 = inf
u∈V,u �=0

‖u‖2

‖u‖2
2
.

Moreover, he established that there exists R > 0 for which

∀t � 0, lim
t→∞

[max(‖u(t)‖, ‖u′(t)‖2)] � R,

where R depends only on the assumptions of g and Φ. R is called an ultimate bound
of the solutions U(t) = (u(t), u′(t)).

The remainder of the paper is organized as follows: in § 2 we estimate the ultimate
bound of solutions of (1.1) by using the method of Prouse with l = 8λ

−1/2
1 . Section 3

is devoted to some applications.

2. Main theorem

Theorem 2.1. Let u ∈ C(R+, V ) ∩ C1(R+, L2(Ω)) be a weak solution of (1.1).
Then u ∈ L∞(R+, V ), u′ ∈ L∞(R+, L2(Ω)) and we have

lim
t→∞

[max(‖u(t)‖, ‖u′(t)‖2)] �
√

2K,

where

K =
(

1
λ1

+ 4|Ω|α/(α+2)(c1(α))2 +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2
∞,2

+
(

3|Ω|α/(α+1) +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2/(α+1)
∞,2 .

Remark 2.2. The result of the above theorem is sharp in the sense that both terms
in K are necessary in general and cannot be replaced by any other power of the
norm. Indeed, let us consider the following special cases.

(1) If f(t, ·) = f0(·), we consider the following equation, whose solutions can be
considered as special solutions of (1.1):

Au = f0.

If f0 = λϕ1, then

u = A−1(λϕ1) =
λ

λ1
ϕ1,

where λ is a positive constant. Hence,

‖u‖2 =
(

λ

λ1

)2

‖ϕ1‖2 = Cλ2

and
‖f0‖2/(α+1)

2 = (λ‖ϕ1‖2)2/(α+1) = C ′λ2/(α+1).

If λ → ∞, then the term ‖f‖2/(α+1)
2 cannot control the ultimate bound. More

precisely, the term ‖f‖2
2 is necessary for all α � 0.
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(2) For any solution v of

v′′ − ∆v = 0, v|∂Ω = 0,

we can write
v′′ − ∆v + |v′|αv′ = |v′|αv′, v|∂Ω = 0.

Let us consider the special solution v(t, x) = ε sin(
√

λ1t)ϕ1(x).

Then
‖v′(t, ·)‖2 = ε

√
λ1|cos(

√
λ1t)|‖ϕ1‖2

and
lim

t→∞
‖v′(t, ·)‖2 = sup

t�0
‖v′(t, ·)‖2 = ε

√
λ1‖ϕ1‖2.

Setting f = |v′|αv′, we have∫
Ω

|f |2 dx =
∫

Ω

|v′|2α+2 dx �
∫

Ω

ε2α+2λα+1
1 |ϕ1|2α+2 dx � Aε2α+2

for some positive constant A.

The term ‖f‖2
2 cannot control the ultimate bound for ε small. To be more

precise, the term ‖f‖2/(α+1)
2 is also necessary for all α � 0.

Proof of theorem 2.1. Let u ∈ W 1,∞
loc (R+, V ) ∩ W 2,∞

loc (R+, L2(Ω)) be a solution of
(1.1) such that u(0) = u′(0) = 0. The energy of u is defined by

E(t) = 1
2 (‖u(t)‖2 + ‖u′(t)‖2

2) for t � 0. (2.1)

Multiplying (1.1) by u′ and integrating over Ω, we have, for t � 0,

d
dt

E(t) = (f(t, ·), u′(t, ·)) − ‖u′(t, ·)‖α+2
α+2. (2.2)

Let us introduce
l = 8λ

−1/2
1 .

We first estimate supt�0 E(t) and to do that we distinguish the following two cases:

E(t + l) � E(t), (2.3)
E(t + l) > E(t). (2.4)

By using Young’s inequality in (2.2), we obtain

d
dt

E(t) � α + 1
α + 2

‖f(t, ·)‖(α+2)/(α+1)
(α+2)/(α+1) +

1
α + 2

‖u′(t, ·)‖α+2
α+2 − ‖u′(t, ·)‖α+2

α+2.

Writing β = (α + 2)/(α + 1), we get

d
dt

E(t) � ‖f(t, ·)‖β
β . (2.5)

Let s ∈ [t, t + l]. Integrating (2.5) from t to s, we deduce

E(s) � E(t) + l‖f‖β
∞,β .
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As a consequence of (2.4), we obtain

sup
s∈[t,t+l]

E(s) � E(t + l) + l‖f‖β
∞,β . (2.6)

By integrating (2.5) from s ∈ [t, t + l] to t + l, we obtain

E(t + l) � E(s) + l‖f‖β
∞,β .

Integrating the last inequality from t to t + l and dividing through by l, we find

E(t + l) � 1
l

∫ t+l

t

E(s) ds + l‖f‖β
∞,β . (2.7)

Then, we find

sup
s∈[t,t+l]

E(s) � 1
l

∫ t+l

t

E(s) ds + 2l‖f‖β
∞,β · (2.8)

Now multiplying (1.1) by u′, integrating from t to t + l and using (2.4), we obtain∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds �

∫ t+l

t

(f(s, ·), u′(s, ·)) ds.

By Hölder’s inequality, we get∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds �

∫ t+l

t

‖f(s, ·)‖β‖u′(s, ·)‖α+2 ds,

and by using Young’s inequality we obtain∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds � l‖f‖β

∞,β . (2.9)

Multiplying (1.1) by u and integrating from t to t + l, we have∫ t+l

t

‖u(s, ·)‖2 ds =
∫ t+l

t

(f(s, ·), u(s, ·)) ds +
∫ t+l

t

‖u′(s, ·)‖2
2 ds

− [〈u(s, ·), u′(s, ·)〉]t+l
t −

∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds.

(2.10)

Applying Young’s inequality to the first term and using (1.2), we have∫ t+l

t

(f(s, ·), u(s, ·)) ds � l

2λ1
‖f‖2

∞,2 + 1
2

∫ t+l

t

‖u(s, ·)‖2 ds. (2.11)

By using Hölder’s inequality in the second term, we obtain

∫ t+l

t

‖u′(s, ·)‖2
2 ds � (l|Ω|)α/(α+2)

( ∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds

)2/(α+2)

. (2.12)
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From (2.9), it follows that∫ t+l

t

‖u′(s, ·)‖2
2 ds � l|Ω|α/(α+2)‖f‖2/(α+1)

∞,β . (2.13)

By using Young’s inequality in the third term, we have

|[〈u(s, ·), u′(s, ·)〉]t+l
t | � 1√

λ1
[‖u′(s, ·)‖2‖u(s, ·)‖]t+l

t � 2λ
−1/2
1 sup

s∈[t,t+l]
E(s). (2.14)

Using Hölder’s inequality in the last term, we have∣∣∣∣
∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds

∣∣∣∣ �
∫ t+l

t

‖u′(s, ·)‖α+1
α+2‖u(s, ·)‖α+2 ds.

By using (1.3), we get

‖u‖α+2 � c1(α)‖u‖.

Therefore, we find∣∣∣∣
∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds

∣∣∣∣ � c1(α)
∫ t+l

t

‖u′(s, ·)‖α+1
α+2‖u(s, ·)‖.

Then, by Hölder’s inequality, it follows that∣∣∣∣
∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds

∣∣∣∣
� l1/(α+2)c1(α)

( ∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds

)(α+1)/(α+2)

sup
s∈[t,t+l]

‖u(s, ·)‖.

Using (2.1), we obtain

∣∣∣∣
∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds

∣∣∣∣
�

√
2c1(α)l1/(α+2)

( ∫ t+l

t

‖u′(s, ·)‖α+2
α+2 ds

)(α+1)/(α+2)√
sup

s∈[t,t+l]
E(s).

Finally, by (2.9) we obtain∣∣∣∣
∫ t+l

t

〈|u′(s, ·)|αu′(s, ·), u(s, ·)〉 ds

∣∣∣∣ �
√

2c1(α)l‖f‖∞,β

√
sup

s∈[t,t+l]
E(s). (2.15)

Then, by (2.11) and (2.13)–(2.15), we obtain

1
2

∫ t+l

t

‖u(s, ·)‖2 ds � l

2λ1
‖f‖2

∞,2 + l|Ω|α/(α+2)‖f‖2/(α+1)
∞,β

+
2√
λ1

sup
s∈[t,t+l]

E(s) +
√

2c1(α)l‖f‖∞,β

√
sup

s∈[t,t+l]
E(s).

(2.16)
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Hence, by (2.13) and (2.16),

1
l

∫ t+l

t

E(s) ds � 1
2λ1

‖f‖2
∞,2 + 3

2 |Ω|α/(α+2)‖f‖2/(α+1)
∞,β

+
2

l
√

λ1
sup

s∈[t,t+l]
E(s) +

√
2c1(α)‖f‖∞,β

√
sup

s∈[t,t+l]
E(s)·

Using Young’s inequality in the last term of the above inequality, it follows that

1
l

∫ t+l

t

E(s) ds � 1
2λ1

‖f‖2
∞,2 + 3

2 |Ω|α/(α+2)‖f‖2/(α+1)
∞,β

+ 1
2

sup
s∈[t,t+l]

E(s) + 2(c1(α))2‖f‖2
∞,β . (2.17)

By (2.17) and (2.8), we find

sup
s∈[t,t+l]

E(s) � 1
λ1

‖f‖2
∞,2 + 3|Ω|α/(α+2)‖f‖2/(α+1)

∞,β

+ 4(c1(α))2‖f‖2
∞,β +

32√
λ1

‖f‖β
∞,β . (2.18)

Since Ω is bounded, we have

‖f‖β � |Ω|α/2(α+2)‖f‖2. (2.19)

Then

sup
s∈[t,t+l]

E(s) � 1
λ1

‖f‖2
∞,2 + 3|Ω|α/(α+1)‖f‖2/(α+1)

∞,2

+ 4|Ω|α/(α+2)(c1(α))2‖f‖2
∞,2 +

32√
λ1

|Ω|α/2(α+1)‖f‖β
∞,2.

Applying Young’s inequality, we have

‖f‖β
2 = ‖f‖(α+2)/(α+1)

2 = ‖f‖2‖f‖1/(α+1)
2 � 1

2‖f‖2
2 + 1

2‖f‖2/(α+1)
2 .

Hence, we get

sup
s∈[t,t+l]

E(s) �
(

1
λ1

+ 4|Ω|α/(α+2)(c1(α))2 +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2
∞,2

+
(

3|Ω|α/(α+1) +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2/(α+1)
∞,2 .

We set

K =
(

1
λ1

+ 4|Ω|α/(α+2)(c1(α))2 +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2
∞,2

+
(

3|Ω|α/(α+1) +
16√
λ1

|Ω|α/2(α+1)
)

‖f‖2/(α+1)
∞,2 .
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Hence,
sup

s∈[t,t+l]
E(s) � K. (2.20)

Then, from (2.3) and (2.20), we conclude that in all cases,

∀t � 0, E(t + l) � sup{E(t), K}.

Therefore, we deduce

∀t � 0, E(t) � max
(
K, sup

0�s�l
E(s)

)
.

Thus,
sup
t�0

E(t) � max
(
K, sup

0�s�l
E(s)

)
.

For s ∈ [0, l], by using (2.5), we have

E(s) = E(0) +
∫ s

0

d
dτ

E(τ) dτ

� E(0) +
∫ s

0
‖f(τ, ·)‖β

β dτ

� E(0) + ‖f‖β
∞,β .

Then, since u(0) = u′(0) = 0, we have

∀s ∈ [0, l], E(s) � ‖f‖β
∞,β .

By using (2.19), we have
‖f‖β

∞,β � K.

Then we get

sup
0�s�l

E(s) � K.

Finally, we obtain

sup
t�0

E(t) � K.

Once this estimate has been established for a strong solution, we can extend it to
the weak solution u ∈ C(R+, V ) ∩ C1(R+, H) of (1.1), corresponding to the initial
data (u0, u1) = (0, 0), by a density argument.

Indeed, from [1], if f ∈ L∞(R+, L2(Ω)), then there exists a sequence fn ∈
C∞(R+, L2(Ω)) with fn − f ∈ L1(R+, L2(Ω)) for all n ∈ N and

‖fn − f‖L1(R+,L2(Ω)) � εn

with εn → 0 as n → ∞.
Let f̃n = PBM

fn ∈ W 1,∞(R+, L2(Ω)) with BM = {u ∈ L2(Ω); ‖u‖ � M} and
M = ‖f‖∞,2.

Then
‖f̃n‖L∞(R+,L2(Ω)) � M
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and

‖f̃n − f‖L1(R+,L2(Ω)) = ‖PBM
fn − f‖L1(R+,L2(Ω))

= ‖PBM
fn − PBM

f‖L1(R+,L2(Ω))

� ‖fn − f‖L1(R+,L2(Ω))

� εn.

Let un(0) = u′
n(0) = 0. We consider the strong solution un ∈ W 1,∞

loc (R+, V ) ∩
W 2,∞

loc (R+, L2(Ω)) of

u′′
n(t) + |u′

n(t)|αu′
n(t) + Aun(t) = f̃n(t), t ∈ R

+.

Then, as a consequence of [1], we have the following inequality:

‖un − u‖L∞(R+,V )∩W 1,∞(R+,L2(Ω)) � ‖f̃n − f‖L1(R+,L2(Ω)) � εn·

On the other hand, un converges to u in L∞(R+, V ) ∩ W 1,∞(R+, L2(Ω)) as n → ∞.
Therefore,

En(t) = 1
2 (‖un(t)‖2 + ‖u′

n(t)‖2
2)

�
(

1
λ1

+ 4|Ω|α/(α+2)(c1(α))2 +
16√
λ1

|Ω|α/2(α+2)
)

‖f̃n‖2
∞,2

+
(

3|Ω|α/(α+1) +
16√
λ1

|Ω|α/2(α+2)
)

‖f̃n‖2/(α+1)
∞,2 . (2.21)

So, by passing to the limit in (2.21), we find

lim
t→∞

E(t) � sup
t�0

E(t) � K.

This is valid for the special solution with (u(0), u′(0)) = (0, 0) and then as an
immediate consequence of theorem 3.1 of [7] for any solution with initial data
(u0, u1) ∈ V × H, since lim supt→∞ E(t) is independent of the initial data.

3. Some applications

Let Ω be a C2-bounded open domain of R
N and α � 0.

We apply theorem 2.1 to the following examples.

Example 3.1. We consider the equation

utt − ∆u + |ut|αut = f(t, x) in R
+ × Ω,

u = 0 on R
+ × ∂Ω.

}
(3.1)

Here V = H1
0 (Ω) is endowed with the norm ‖u‖ = ‖∇u‖, H = L2(Ω) and the

duality map A = −∆.
We have H1

0 (Ω) ⊂ Lα+2(Ω) with

α ∈
{

[0, 4/(N − 2)] if N > 2,

[0,∞[ if N � 2.
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Then

c1(α) = sup{‖u‖α+2; u ∈ H1
0 (Ω), ‖∇u‖2 = 1}

and

λ1(A) = inf{‖∇u‖2
2; u ∈ D(A), ‖u‖2

2 = 1}.

Example 3.2. We consider the equation

utt + ∆2u + |ut|αut = f(t, x) in R
+ × Ω,

u = ∆u = 0 on R
+ × ∂Ω.

}
(3.2)

Here V = H2(Ω) ∩ H1
0 (Ω) is endowed with the norm ‖u‖ = ‖∆u‖2, H = L2(Ω)

and the duality map A = ∆2.
By [5] we know that, for all α � 1, V ⊂ Lα+2 with

α ∈

⎧⎪⎨
⎪⎩

[1,∞] if N < 4,

[1,∞[ if N = 4,

[1, 8/(N − 4)] if N > 4.

Then

c1(α) = sup{‖u‖α+2; u ∈ H2(Ω) ∩ H1
0 (Ω), ‖∆u‖2 = 1}

and

λ1(A) = inf{‖∆u‖2
2; u ∈ D(A), ‖u‖2

2 = 1}.

Example 3.3. We consider the equation

utt + ∆2u + |ut|αut = f(t, x) in R
+ × Ω,

u = |∇u| = 0 on R
+ × ∂Ω.

}
(3.3)

Here V = H2
0 (Ω) is endowed with the norm ‖u‖ = ‖∆u‖2, H = L2(Ω) and the

duality map A = ∆2.
We have V ⊂ Lα+2 for any α � 1 with

α ∈

⎧⎪⎨
⎪⎩

[1,∞] if N < 4,

[1,∞[ if N = 4,

[1, 8/(N − 4)] if N > 4.

Then

c1(α) = sup{‖u‖α+2; u ∈ H2
0 (Ω), ‖∆u‖2 = 1}

and

λ1(A) = inf{‖∆u‖2
2; u ∈ D(A), ‖u‖2

2 = 1}.
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