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Contribution of direct numerical simulations
to the budget and modelling of the transport
equations for passive scalar turbulent fields
with wall scalar fluctuations
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We perform direct numerical simulations (DNS) of the fully developed turbulent channel
flow with a passive scalar subjected to constant time-averaged scalar fluxes at the wall.
The first case (case I) considers a constant time-averaged scalar flux 〈qw〉 along with the
specific condition of a non-fluctuating scalar θw imposed at the wall implying zero wall
scalar fluctuation θ ′

w = 0 and zero variance (isoscalar boundary condition) whereas the
second case (case II) accounts for a constant instantaneous scalar flux qw in time and space
leading to zero gradient of scalar fluctuation along the normal to the wall (∂θ ′/∂xn)w = 0
(isoflux boundary condition) implying a non-zero variance. The friction Reynolds number
takes on the value Rτ = 395 and the molecular Prandtl numbers considered are Pr = 0.01,
0.1, 1 and 10. The purpose is to investigate the effect of the wall scalar fluctuations on
the scalar field. Emphasis is put on the mean passive scalar 〈θ〉, the half-scalar variance
kθ , the turbulent scalar fluxes τiθ , the correlation coefficients Riθ , the passive scalar to
dynamic time-scale ratio R, the turbulent Prandtl number Prt and higher-order scalar
statistics. Systematic comparisons between these two scalar fields are undertaken. As a
result of interest, it is found that the mean scalar remains almost the same whatever the
type of the boundary layer condition but not the scalar variance. The budgets of transport
equations for the half-scalar variance and turbulent fluxes reveal that some scalar quantities
such as the dissipation-rate and the molecular diffusion terms are highly modified in the
near-wall region but not really the production, diffusion and the scalar-pressure gradient
correlation terms in a first approximation. Visualization of the instantaneous scalar fields
indicates that the topology of the structures is strongly modified as the Prandtl number
increases from Pr = 0.01 up to 10. Finally, it is shown how to use this DNS database to
devise and calibrate scalar flux equation models in the framework of both first and second
moment closures. This study suggests that accounting for wall scalar fluctuations should
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be considered in the simulation of turbulent flows involving fluid and solid combinations
at the interface and provides a useful high resolution DNS database.

Key words: turbulence simulation, turbulent boundary layers, turbulence modelling

1. Introduction

Turbulent flows accounting for the transport of a passive scalar are often encountered in
nature involving for instance the pollution dispersal in the atmosphere that has been of
concern in the environment and climate change but also in industrial processes including
alumina refinery plant, combined cycle power plant, heat exchangers, mixing and other
systems. The passive scalar hypothesis holds when the turbulent velocity field mainly
governs the transport of the scalar field while the mutual influence of the scalar field
on the velocity field is rather weak and can be neglected in a first approximation. In
various flow configurations involving heat transfer between impermeable walls, it is of
importance to accurately determine the thermal boundary condition on the wall resulting
from the interaction between the heat conduction in the solid and the turbulent flow
motion that appreciably affects the flow solution. This problem is particularly acute
in industrial applications such as for instance liquid metal-cooled reactors when the
temperature fluctuations at the wall may lead to thermal fatigue failure of solid structures.
This problem may appear in the mixing of two flows at different temperatures merging
at a T-junction (Georgiou & Papalexandris 2018). For instance, among others, thermal
striping can arise in certain liquid metal-cooled reactors. As the temperature fluctuations
play an important role in industrial devices, these effects must be deeply investigated and
calibrated. As confirmed by the experimental study of the wall temperature fluctuations
conducted by Mosyak, Pogrebnyak & Hetsroni (2001), the flow solution at the interface
for the solid–fluid conjugate system depends on the thermal effusivity ratio of the gas to the
solid given by K = a/aw, where the thermal effusivity is defined as a = √

ρcpκ involving
the density ρ, the specific heat at constant pressure cp and the scalar conductivity κ , the
subscript w referring to the properties of the wall. Usually, the ratio of the effusivity of
the gas to that of structural materials is very small K ≤ 10−3 but not for liquids, where
it is of order unity (Kasagi, Kuroda & Hirata 1989). For a turbulent flow subjected to
heat fluxes through the wall, two different boundary conditions can be usually considered
depending on the fluid and solid properties. The first one is the isoscalar boundary
condition with a constant wall temperature (case I) implying that its fluctuation at the wall
θ ′

w is zero and corresponds to the usual case where K � 1, i.e. a � aw with a large wall
thickness at the interface. The second is the isoflux boundary condition implying non-zero
temperature fluctuations at the wall (case II) and corresponds to the case where K � 1,
i.e. a � aw with an infinitesimal wall thickness. In this framework, Kasagi et al. (1989)
have developed an unsteady streamwise pseudo-vortical motion model to investigate the
near-wall behaviour of the statistical quantities of temperature fluctuations for various
Prandtl numbers with the influence of the thermal properties and thickness of the wall.
The numerical results returned by this model were found to be in agreement with the
experimental study of the wall temperature fluctuations (Mosyak et al. 2001), indicating
that the fluctuating temperatures near the wall are of higher intensity for the isoflux
condition (case II) than for the isothermal condition (case I).

Direct numerical simulation (DNS) development began with the pioneering work of
the Stanford team with the investigation of the fully developed turbulent flow in a
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Contribution of direct numerical simulations and modelling

Authors BC Rτ Pr

Kim & Moin (1989) qw 180 0.1, 0.71, 2
Lyons, Hanratty & Mclaughlin (1991) �Tw 150 1
Kasagi, Tomita & Kuroda (1992) qw 180 0.1, 0.71, 2
Kasagi & Shikazono (1995) qw 150 0.025, 0.71
Kawamura et al. (1998) qw 180 0.025, 0.05, 0.2, 0.4, 0.71, 1.0, 1.5, 6
Kawamura, Abe & Matsuo (1999) qw 180, 395 0.025, 0.2, 0.71
Na & Hanratty (2000) �Tw 150 1, 3, 10
Abe, Kawamura & Matsuo (2004) qw 180, 395, 640, 1020 0.025, 0.71
Schwertfirm & Manhart (2007) �Tw 180 3, 10, 25, 49
Kozuka, Seki & Kawamura (2009) qw 180, 395 0.71, 1, 2, 7, 10
Abe, Antonia & Kawamura (2009) qw 180, 395, 640 0.71
Pirozzoli, Bernardini & Orlandi (2016) qw, �Tw 548, 995, 2017, 4088 1
Alcántara-Ávila et al. (2018) qw 500, 1000, 2000 0.007, 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.71
Alcántara-Ávila & Hoyas (2021) qw 500, 1000, 2000 1, 2, 4, 7,10
Alcántara-Ávila, Hoyas & Pérez-Quiles (2021) qw 5000 0.71

Table 1. The DNS and under-resolved DNS of turbulent channel flow subjected to different boundary
conditions, constant heat flux qw or wall temperature difference �Tw with zero wall temperature fluctuation
T ′

w = 0 performed for various Reynolds and Prandtl numbers.

plane channel (Kim, Moin & Moser 1987) for the Reynolds number Rτ = uτ δ/ν = 180
based on the friction velocity uτ , half-channel width δ and dynamic viscosity ν, and
is now a very valuable tool (Lee & Moser 2015; Paul, Papadakis & Vassilicos 2018)
thanks to the rapid increase of super-computer power as well as the development of
computational techniques including vectorization and parallelization (Schiestel & Chaouat
2022). Numerical simulations of turbulent flows are useful also in this framework of heat
transfer for determining the thermal flow characteristics. It is the best tool to apply with
the highest accuracy possible, considering that measurements of concentration of passive
contaminants are very difficult to perform. The case of the channel flow heated on both
walls with a constant imposed heat flux qw or subjected to a wall temperature difference
�Tw and zero wall temperature fluctuation was first performed by Kim & Moin (1989) and
was since deeply investigated by several authors where a non-exhaustive list is summarized
in table 1. These papers provided useful information about the mean temperature, the
variance, the turbulent heat fluxes and other quantities. Among these, the two recent papers
of Alcántara-Ávila, Hoyas & Pérez-Quiles (2018) and Alcántara-Ávila & Hoyas (2021)
concern simulations for the Reynolds numbers Rτ = 500, 1000 and 2000 and several
Prandtl numbers varying from low, medium to high values. The budget of the temperature
variance and its dissipation rate were obtained in addition to the effect of the Reynolds
number on the statistics. In particular, it was shown that the maximum of the intensity
of the thermal field does not increase with the Reynolds number for the highest Prandtl
numbers. This well-documented data base considers only one type of boundary condition,
the present work extends the analysis to two differing boundary conditions including
both with and without wall temperature fluctuations (or wall scalar fluctuations). Some
authors reported studies with wall temperature fluctuations but these papers do not contain
comprehensive data (Lu & Hetsroni 1995; Tiselj et al. 2001; Flageul et al. 2015). These
authors showed that the effect of the wall scalar fluctuations is limited to the wall region.
For these simulations, the budget of temperature variance and heat fluxes were performed
for the Reynolds and Prandtl numbers Rτ = 171, Pr = 1; Rτ = 180, Pr = 0.72; Rτ = 150,
Pr = 0.71, respectively, and have indicated that the wall temperature fluctuations increase
the scalar variance at the wall and reduce the magnitude of the molecular diffusion
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Figure 1. Set-up of the numerical channel flow simulations subjected to constant scalar fluxes from both walls
in the normal direction xn. Two different scalar boundary conditions are applied leading to two separate cases
for the fluctuating scalar variance (a) θ ′

w = 0 (case I); (b) q′
w = κ(∂θ ′/∂xn)w = 0 (case II).

and dissipation of the scalar variance. This case was investigated more recently for the
Reynolds number Rτ = 395 and the Prandtl numbers Pr = 0.01, 0.1, 1, 10 (Chaouat 2018;
Chaouat & Peyret 2019). The results have revealed how the thermal characteristics of the
flow evolve as the molecular Prandtl number varies from low to high values but the budgets
of the scalar transport equations, the passive scalar to dynamic time-scale ratio R, amongst
others, were not performed.

The objective of this paper is twofold. On the one hand, it is to thoroughly investigate
the effect of the wall scalar fluctuations on the scalar field with emphasis on the budget
data of the transport equations for the half-scalar variance kθ and the turbulent scalar
fluxes τiθ for the Reynolds number Rτ = 395 and the Prandtl numbers Pr = 0.01, 0.1, 1
and 10, and on the other hand, to provide a useful high resolution DNS database for users
and researchers aiming to validate turbulence models with transfer of a passive scalar. This
work will contribute for a better understanding of the scalar fluctuation effect for Rτ = 395
and very low to high Prandtl numbers ranging from 0.01 to 10 in a descriptive framework
which has not yet been reported in the open literature. Physically, the range of Prandtl
numbers has been chosen to be representative of heat transfers occurring in industrial
applications involving liquid or gases. In this framework, DNSs of the turbulent channel
flow subjected to constant scalar fluxes as shown in figure 1 are performed on several
grids of very high resolution. In addition, it will be shown how to use this DNS database
to devise and calibrate scalar flux equation models. This database will constitute a useful
resource for researchers involved in Reynolds averaged Navier–Stokes model equations
(RANS) (Hamba 2004; Schiestel 2008; Gatski 2009; Hanjalic & Launder 2011), large
eddy simulation (LES) (Lesieur & Métais 1996; Meneveau & Katz 2000; Abe & Suga
2001) and also hybrid RANS/LES methodologies (Chaouat 2017b; Chaouat & Schiestel
2005, 2012, 2021a,b), considering that these methodologies are complementary tools from
each other, as mentioned recently by Schiestel & Chaouat (2022).

2. Governing equations and boundary conditions

2.1. Equations
The governing equations for the velocity and scalar fields are the incompressible
three-dimensional mass conservation, Navier–Stokes equations and the transport equation
for the passive scalar. As usual, the fully developed turbulent channel flow is driven by a
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constant streamwise pressure gradient term and the passive scalar is subjected to a constant
scalar flux at the lower and upper walls. The Navier–Stokes equations for the velocity field
expressing the conservation of mass and momentum are

∂u+
j

∂x∗
j

= 0 (2.1)

and
∂u+

i
∂t∗

+ ∂

∂x∗
j
(u+

i u+
j ) = −∂p+

∂x∗
i

+ 1
Rτ

∂2u+
i

∂x∗
j ∂x∗

j
+ Gi, (2.2)

where, in these equations, ui denotes the velocity and p is the pressure. The time t,
coordinate xi and flow variables are normalized using the channel half-width δ, the friction
velocity uτ and the kinematic viscosity ν such as t∗ = tuτ /δ, x∗

i = xi/δ, u+
i = ui/uτ ,

p+ = p/ρu2
τ . The quantity G1 included in this latter equation denotes the mean pressure

gradient term necessary to balance friction at the upper and lower walls allowing us to
get a periodic condition between the inlet and outlet sections of the channel and takes the
value unity in dimensionless form. Because of the scalar flux condition, the mean scalar
variable 〈Θ〉 as well as the bulk mean scalar variable 〈Θm〉, where the angular bracket 〈.〉
denotes the averaging in time and space in the homogeneous directions, increase linearly
in the x1 direction. With the aim to keep a constant mean value in the channel along the
streamwise direction, as proposed by Kawamura et al. (1998, 1999), a change of variable
is made by introducing the new scalar variable θ such that

θ = ∂ 〈Θm〉
∂x1

x1 − Θ, (2.3)

where the gradient ∂〈Θm〉/∂x1 takes on a constant value. With the above transformation
(2.3), the transport equation for the dimensionless passive scalar θ+ reads

∂θ+

∂t∗
+ ∂

∂x∗
j
(θ+u+

j ) = 1
Rτ Pr

∂2θ+

∂x∗
j ∂x∗

j
+ Q, (2.4)

where, in this equation, the variable θ is normalized by the wall characteristic transfer of
the passive scalar (or friction temperature) such that θ+ = θ/θτ with θτ = qw/(ρcpuτ ),
the velocity u+

i is given by (2.2) and Q denotes the source term given in dimensionless
form by Q = u+

1 /U+
b = u+

1 ∂〈Θ+
m 〉/∂x∗

1, U+
b = Ub/uτ where Ub = (1/2δ)

∫ 2δ

0 u1 dx3 is
the average velocity over the channel cross-section. Its physical meaning corresponds to
the mean scalar gradient necessary to balance wall scalar fluxes. The scalar flux applied
at the walls is given by qw = −κ(∂θ/∂x3)w, where κ = ρcpν/Pr stands for the scalar
conductivity while the scalar diffusivity is given by σ = κ/(ρcp) = ν/Pr. The averaged
transport equation for the passive scalar in a steady flow regime reads

0 = 1
Rτ Pr

∂2 〈
θ+〉

∂x∗
j ∂x∗

j
−

∂τ+
jθ

∂x∗
j

+ 〈Q〉 , (2.5)

where, in this equation, the turbulent scalar fluxes τ+
iθ = 〈u′+

i θ ′+〉 play a crucial role in flow
behaviour involving transfer of the passive scalar. The equation governing the wall-normal
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turbulent scalar flux is obtained by integrating (2.5) over the wall distance from 0 to x+
3 =

x3uτ /ν leading to

τ+
3θ (x

+
3 ) = 1

Pr

∂
〈
θ+〉

∂x+
3

− 1 + 1
Rτ U+

b

∫ x+
3

0

〈
u+

1
〉
dx′+

3 . (2.6)

2.2. Boundary conditions
The velocity boundary conditions at the lower and upper walls for x3 = 0 and 2δ are
no-slip velocity conditions u+

i = 0. Constant scalar fluxes qw are applied on the lower and
upper walls as shown in figure 1. In the general case of a solid–fluid interface at x3 = 0,
(x3 < 0 for the solid, and x3 > 0 for the fluid), it can be recalled that the dimensionless
equation to be solved in the solid reads

∂θ+

∂t∗
= 1

Rτ Pr

∂2θ+

∂x∗∗
j ∂x∗∗

j
, (2.7)

where x∗∗
i = (σ/σw)x∗

i . The matching conditions for the scalar and the normal scalar flux
at the interface are

(θ+)x∗
3=0+ = (θ+)x∗

3=0− (2.8)

and

K
(

∂θ+

∂x∗
3

)
x∗

3=0+
=

(
∂θ+

∂x∗∗
3

)
x∗

3=0−
(2.9)

(Luikov 1968). As discussed in detail by Kasagi et al. (1989), the two major parameters for
the conjugate heat transfer system are the thermal effusivity ratio K = √

ρcpκ/ρwcpwκw
and the dimensionless wall thickness d∗∗ of the solid. In the present case, a simple way
consists in considering the two limiting values of the thermal effusivity ratio (Kasagi et al.
1989; Li et al. 2009; Chaouat & Peyret 2019). Firstly, when K goes to zero, i.e. θw is close
to a constant value so that θ ′

w = 0 at the wall leading therefore to zero root-mean-square
(r.m.s.) fluctuations

〈
θ ′θ ′〉

w = 0 (case I). Secondly, when K goes to infinity, i.e. qw is
imposed to a constant value in time and space implying that q′

w = −κ(∂θ/∂x3)w = 0,
leading to non-zero r.m.s. fluctuations

〈
θ ′θ ′〉

w /= 0 (case II). Consequently, the r.m.s.
intensity of the scalar fluctuations also verifies the condition (∂〈θ ′θ ′〉/∂x3)w = 0. This
condition means that the variance of the passive scalar is almost constant along the normal
to the wall. Mathematically, the isoscalar and isoflux boundary conditions correspond
to the Dirichlet and Neumann boundary conditions, respectively, and sometimes require
numerical procedures to be applied at the solid–fluid interface (Errera & Chemin 2013;
Flageul et al. 2015).

2.3. Numerical procedure
For all simulations, the dimension of the channel in the streamwise, spanwise and normal
directions along the Cartesian axes x1, x2, x3 are L1 = 6.4δ, L2 = 3.2δ and L3 = 2δ. It
has been checked that the computational box is sufficiently long to allow the two-point
correlation tensor of the fluctuating velocities in the streamwise direction to return to zero
from the inlet to the outlet sections of the channel. The number of grid points Ni, the
spacings Δi as well as the Batchelor length scale ηθ relative to the Kolmogorov length

963 A21-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.324


Contribution of direct numerical simulations and modelling

Pr 0.01 0.1 1 10

L1 × L2 × L3 — 6.4δ × 3.2δ × 2δ — —
Mesh M1 M1 M1 M2
N1 × N2 × N3 — 512 × 256 × 256 — 1024 × 512 × 1024
Δ+

1 , Δ+
2 , Δ+

3w — 5, 5, 2 — 2.5, 2.5, 0.1
ηθ 31.6ηκ 5.62ηκ ηκ 0.316ηκ

Table 2. Domain size, grid points, grid resolution and Batchelor length scale ηθ relative to the Kolmogorov
length scale ηκ for the Prandtl numbers Pr = 0.01, Pr = 0.1, 1 and 10; N1, N2 and N3 are the number of
grid points in the streamwise, spanwise and wall-normal directions, respectively, for the meshes Mi; DNS is
performed at the friction Reynolds number Rτ = uτ δ/ν = 395 corresponding to the bulk Reynolds number
Rem = 2Ubδ/ν = 13 750.

scale ηκ = (ν3/ε)1/4 are given in table 2. The grid resolution is determined in order to
solve both the Kolmogorov scale ηκ and the Batchelor length scale ηθ (Batchelor 1971;
Tennekes & Lumley 1972) which approaches ηκ when Pr is of the order of unity, ηθ =
(σ 3/ε)1/4 = ηκ/P3/4

r at small Prandtl numbers and ηθ = (νσ 2/ε)1/4 = ηκ/P1/2
r at large

Prandtl numbers. In particular, at Pr = 0.01, ηθ ≈ 31.6 ηκ , at Pr = 0.1, ηθ ≈ 5.62 ηκ , and
at Pr = 1, ηθ ≈ ηκ but at Pr = 10, ηθ ≈ 0.316ηκ . The grid resolution is low at small
Prandtl numbers but high at large Prandtl numbers according to the power law of the
Prandtl number. It is then a simple matter to see that the number of grid points varies
according to the law N ∝ Re9/4

t P3/2
r at large Prandtl numbers where Ret = k2/(νε) is

the turbulent Reynolds number. The computational time can be estimated if we assume
that the turbulent Reynolds number is proportional to the bulk Reynolds number leading
to t ∝ Re11/4

t P3/2
r . Thus, the DNS of scalar turbulence becomes much more stringent

to perform as the Prandtl number increases. The literature indicates that most of direct
numerical simulations have been limited to Prandtl number smaller than 10 for Rτ � 395.
For the Reynolds number and Prandtl number values studied here, the grid numbers of
the meshes are M1 with the resolution 512 × 256 × 256 for Pr = 0.01, 0.1 and 1, and
M2 with the resolution 1024 × 512 × 1024 for Pr = 10. The grid spacings are given by
Δ+

i = Rτ Li/Niδ leading to Δ+
1 = Δ+

2 ≈ 5 for M1 and Δ+
1 = Δ+

2 ≈ 2.5 for M2. For these
meshes, Δ+

3 in the normal direction to the wall x3 verifies the constraint condition Δ+
3 < 2

for M1 and Δ+
3 < 0.1 for M2, this value being very small to accurately compute the thermal

boundary layer.
A grid sensitivity study has been conducted to ensure that the grid resolution is adequate.

In particular, in regard to DNS performed at the Reynolds number Rτ = 395 for the Prandtl
number Pr = 10 (Chaouat 2018; Chaouat & Peyret 2019), the grid in the present case is
more refined to compute the budgets of the transport equations for kθ and τiθ involving
higher-order statistics. Hence, the additional Mesh M1 with an extremely high resolution
1024 × 512 × 1024, especially in the normal direction to the wall, has been used to capture
adequately the correlation of the fluctuating scalar gradients 〈(∂θ ′/∂xi)(∂θ ′/∂xi)〉 or even
the correlation of the fluctuating velocity-scalar gradients 〈(∂u′

i/∂xi)(∂θ ′/∂xi)〉 associated
with the fine structures that evolve locally in time and space. Note that the ratio of
the number of grid points in the normal direction for the meshes M1 and M2 is set to
(N3)M1/(N3)M2 = 4 to take into account the decrease in the Batchelor scale as the Prandtl
number increases. Finally, it has been checked also that higher resolution of the grid size
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in all directions for each mesh yields a change in the fluctuation intensity less than the
order of a few per cent.

The governing equations (2.2) and (2.4) are integrated using the explicit Runge–Kutta
scheme with fourth-order accuracy in time and are solved in space by means of a
conservative centred fourth-order scheme in the x1, x2, x3 directions as described in
Appendix A. The time step is adjusted to get a constant Courant–Friedrichs–Lewy number
of unity. This combined time–space numerical scheme of high-order accuracy has shown
very good numerical properties in performing DNS of turbulence with a passive scalar
(Chaouat 2018; Chaouat & Peyret 2019). The computational fluid dynamics (CFD) code
developed by Chaouat (2011) is based on the finite volume technique where the mean
variables are evaluated at the centre of the computational cell whereas the convective and
diffusive fluxes are computed at the interfaces surrounding the cell. The numerical code is
highly optimized with message passing interface (MPI) thanks to the compact and explicit
formulation of all involved stencils. The present DNSs were run for a sufficiently long time
to get fully converged statistics.

3. Transport equations for scalar variables

The transport equations for the scalar quantities such as the half-variance kθ and the
turbulent fluxes τiθ are written in the fully developed turbulent flow and scalar field for
a steady statistical flow regime in a non-dimensionalized form using the wall unit x+

i . The
estimate of the terms appearing in equations (3.1) and (3.2) is given for quasi-isotropic
turbulence in Appendix B for the sake of clarity.

3.1. Transport equation for the half-scalar variance
The transport equation for the half-scalar variance k+

θ = 〈θ ′+θ ′+〉/2 reads

0 = τ+
1θ

∂〈Θ+
m 〉

∂x+
1

− τ+
jθ

∂〈θ+〉
∂x+

j︸ ︷︷ ︸
P+

θ =O(1)

− 1
2

∂

∂x+
j

〈u′+
j θ ′+2〉

︸ ︷︷ ︸
T+

θ =O(1)

+ 1
Pr

∂2k+
θ

∂x2+
j︸ ︷︷ ︸

d+
θ =O(Re−1

t P−1
r )

− 1
Pr

〈
∂θ ′+

∂x+
j

∂θ ′+

∂x+
j

〉
︸ ︷︷ ︸

ε+
θ =O(1)

, (3.1)

where, in this equation, P+
θ denotes the production, in which the first term results

from the linear increase of the bulk scalar variable, while the second term is caused
by the interaction between the turbulent heat flux and the mean scalar gradient, T+

θ

is the turbulent diffusion due to the correlation of the scalar velocity, d+
θ is the

molecular diffusion and ε+
θ is the dissipation rate of the half-scalar variance. Note

that the first production term is negligibly small compared with the second term
because ∂

〈
Θ+

m
〉
/∂x+

1 � ∂
〈
θ+〉

/∂x+
3 . As expected, the molecular diffusion term d+

θ varies
according to the Reynolds number Re−1

t so that it is negligible at low Reynolds numbers
in comparison with the other terms, in particular, far away from the wall. The transport
equation for the dissipation rate ε+

θ appearing in the last term in (3.1) is given in
Appendix C but not discussed in detail here for the sake of conciseness. In addition,
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the transport equation for the turbulent kinetic energy k is recalled in Appendix D for
comparison purpose with kθ .

3.2. Transport equation for the turbulent scalar flux
The transport equation for the turbulent scalar flux τ+

iθ = 〈u′+
i θ ′+〉 reads

0 = τ+
1i

∂
〈
Θ+

m
〉

∂x+
1︸ ︷︷ ︸

P+(1)
iθ =O(1)

−τ+
ij

∂
〈
θ+〉

∂x+
j︸ ︷︷ ︸

P+(2)
iθ =O(1)

−τ+
jθ

∂
〈
u+

i
〉

∂x+
j︸ ︷︷ ︸

P+(3)
iθ =O(1)

− ∂

∂x+
j

〈
u′+

i u′+
j θ ′+

〉
︸ ︷︷ ︸

T+
iθ =O(1)

+ ∂

∂xj

〈
θ ′+ ∂u′+

i

∂x+
j

〉
︸ ︷︷ ︸
d+(1)

iθ =O
(

Re−1/2
t

)
+ 1

Pr

∂

∂xj

〈
u′+

i
∂θ ′+

∂x+
j

〉
︸ ︷︷ ︸
d+(2)

iθ =O
(

Re−1/2
t P−1/2

r

)
−

〈
θ ′+ ∂p′+

∂x+
i

〉
︸ ︷︷ ︸

Π+
iθ =O(1)

−
(

1 + 1
Pr

)〈
∂u′+

i

∂x+
j

∂θ ′+

∂x+
j

〉
︸ ︷︷ ︸
ε+

iθ =O
(
(P−1/2

r +P1/2
r )Re−1/2

t

)
, (3.2)

where, in this equation, τ+
ij =

〈
u′+

i u′+
j

〉
, P+(1)

iθ , P+(2)
iθ and P+(3)

iθ denote the production
terms caused by the streamwise bulk scalar gradient, the interaction between the turbulent
scalar flux with the mean velocity or scalar gradients, T+

iθ is the turbulent diffusion caused
by the correlation of the velocity-scalar variable, d+(1)

iθ and d+(2)
iθ are the viscous and scalar

molecular diffusions, Π+
iθ is the correlation of the scalar-pressure gradients, ε+

iθ denotes
the scalar dissipation term. Note that the scalar-pressure gradient correlation term Π+

iθ is
usually split into a pressure scalar gradient correlation Φ+

iθ and a pressure diffusion term
d+(3)

iθ as

−
〈
θ ′+ ∂p′+

∂x+
i

〉
︸ ︷︷ ︸

Π+
iθ

=
〈

p′+ ∂θ ′+

∂x+
i

〉
︸ ︷︷ ︸

Φ+
iθ

−
〈

∂(θ ′+p′+)

∂x+
i

〉
︸ ︷︷ ︸

d+(3)
iθ

, (3.3)

where the first term Φ+
iθ is the well-known pressure-scalar gradient correlation term

leading to a better insight into the acting mechanisms involving the pressure fluctuation
whereas the second term d+(3)

iθ is usually interpreted as the turbulent diffusion due to the
pressure fluctuations. Once again, the diffusion terms d+(1)

iθ and d+(2)
iθ as well as the scalar

dissipation terms varying as Re−1/2
t are negligible at high turbulent Reynolds numbers.

The order of magnitude of ε+
iθ has been estimated considering that this term reduces

to zero for isotropic turbulence in contrast with the dissipation of the scalar variance.
A wall asymptotic analysis of the several terms appearing in these equations is made in
Appendix E.
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Figure 2. Kolmogorov length scale η+
κ and Batchelor length scale η+

θ computed for the Prandtl numbers
Pr = 0.01, 0.1, 1 and 10 in logarithmic coordinates vs the wall unit distance: - - -, Δ+

3 (M1); —, Δ+
3 (M2);

� (cyan), η+
θ , (Pr = 0.01); � (blue), η+

θ , (Pr = 0.1); � (green), η+
θ = η+

κ , (Pr = 1); • (red), η+
κ , (Pr = 10).

Here, Rτ = 395.

4. Numerical results and discussion

4.1. Kolmogorov and Batchelor turbulence scales
Figure 2 displays the evolution of the Kolmogorov and Batchelor dimensionless scales
η+

κ and η+
θ , respectively, for Prandtl numbers ranging from 0.01 to 10 in addition to the

grid spacing Δ+
3 for the meshes M1 and M2. It is found that these scales ηκ and ηθ are

approximately constant and minimum in the near-wall region but increase in the outer
region when moving away from the wall due to the fact that the turbulence field becomes
more isotropic. As expected, the grid spacing Δ+

3 (M2) given in table 2 is smaller than
η+

θ for Pr = 10, Δ+(M1) < η+
θ in the near-wall region but is, however, of the same order

of magnitude as η+
θ in the central region for Pr = 1, and Δ+(M1) < η+

θ for Pr = 0.1 and
0.01, confirming that the grid resolution is appropriate for performing the DNSs. Formally,
the Batchelor length scale ηθ considered as a function of the Kolmogorov length scale ηκ

and the molecular Prandtl number Pr (see § 2.3) is not modified by the wall boundary
condition because the dynamic of the fluid remains the same for a passive scalar.

4.2. Statistics
The statistics for the mean scalar θ , the half-scalar variance, kθ , the scalar fluxes τiθ , the
correlation tensor Riθ and the budget equations for kθ , τ1θ and τ3θ are investigated for
the Prandtl numbers Pr = 0.01, 0.1, 1 and 10. As mentioned above, DNSs are performed
considering both the isoscalar and isoflux wall boundary conditions to enable comparisons
between these two respective scalar fields. For sake of clarity, θ can be interpreted as the
temperature, and its fluctuation is denoted θ ′ but it designates here any passive scalar
variable associated with concentration or mass transfer transported by the turbulent flow.
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Figure 3. Mean scalar field 〈θ〉 and mean velocity 〈u1〉 plotted only in case (c) for Pr = 1 in logarithmic
coordinate vs the wall unit distance. Here, θ ′

w = 0 (case I), • (maroon); q′
w = 0 (case II), � (blue); 〈u1〉,

� (cyan). Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10; Rτ = 395.

In the following, the turbulence and scalar quantities are normalized using the wall unit
x+

i = xiuτ /ν.

4.3. Mean scalar field
Figure 3 displays the mean scalar profile 〈θ〉 in logarithmic coordinates vs the wall
unit distance for the Prandtl numbers Pr = 0.01, 0.1, 1 and 10. The conduction region
penetrates less deeply into the core region of the channel when the Prandtl number
increases because of the decrease of the scalar diffusivity σ = ν/Pr, giving rise to an
increase of 〈θ〉. The logarithmic region begins to appear at Pr = 1 and is highly extended
for Pr = 10. It is observed that the mean scalar profile remains the same whatever the type
of the boundary condition applied at the wall, isoscalar or isoflux boundary conditions,
indicating that there is no effect of the fluctuations at the wall, as also suggested by Kasagi
et al. (1989) for an open channel flow and Chaouat & Peyret (2019) for the bounded
channel flow, according to (E10). Figure 3(c) shows in addition the mean velocity 〈u1〉.
As expected, the two curves plotted for 〈θ〉 for Pr = 1 and the one for 〈u1〉 are exactly
the same, emphasizing the analogy between these two respective fields. Obviously, the
mean velocity profile remains exactly the same at all Prandtl numbers because the scalar is
passive but it considerably differs from the scalar profiles themselves for the other Prandtl
numbers.
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Figure 4. The r.m.s. of the scalar variance θ+
rms =

√
〈θ ′+θ ′+〉 vs the wall unit distance. Here, θ ′

w = 0 (case I),
• (maroon); q′

w = 0 (case II), � (blue) . Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10;
Rτ = 395.

4.4. The r.m.s. of the scalar variance
Figure 4 exhibits the r.m.s. of the scalar variance for the Prandtl numbers Pr = 0.01, 0.1,
1 and 10, showing clearly the effect of the wall fluctuations on the scalar field in the
immediate vicinity of the wall. A different scale in the axis depending on the Prandtl
number has been chosen here in order to highlight the differences of behaviour near the
wall, the smaller the Prandtl number is, the broader is the near-wall peak. As expected, the
r.m.s. intensity reduces to zero at the wall for the isoscalar boundary condition (case I) but
not at all for the isoflux boundary condition (case II) where it is relatively high at the wall
according to (E11). Moreover, its gradient ∂

√
〈θ ′+θ ′+〉/∂x3 along the normal direction to

the wall is zero, corresponding to the Neumann boundary condition. The maximum r.m.s.
intensity is characterized by a turbulent peak that is more pronounced for high Prandtl
numbers than for low Prandtl numbers but, surprisingly, it remains roughly of the same
order of order of magnitude for both cases when moving away from the wall to the central
region of the channel. The turbulent peak moves towards the wall region as the Prandtl
number increases from Pr = 0.01 to 10. This section therefore confirms that the impact
of the wall scalar fluctuation on the scalar field is appreciable within the vicinity of the
wall but fades rapidly as the wall distance increases. For the Prandtl number unity, the
distributions of the r.m.s. scalar variance in the absence of wall scalar fluctuations and the
one for the turbulence energy are roughly the same because of the analogy between the
velocity and scalar fields (Kim et al. 1987; Kim & Moin 1989).
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Figure 5. Turbulent scalar flux in the streamwise direction (a) τ+
1θ = 〈

u′+
1 θ ′+〉

and in the normal direction,
(b) |τ+

3θ | = − 〈
u′+

3 θ ′+〉
vs the wall unit distance. For θ ′

w = 0 (case I): Pr = 0.01, � (green); Pr = 0.1, � (blue);
Pr = 1, � (cyan); Pr = 10, • (maroon). For q′

w = 0 (case II): Pr = 0.01, � (green); Pr = 0.1, � (blue); Pr = 1,
	 (cyan); Pr = 10, ◦ (maroon). Here, Rτ = 395.

4.5. Turbulent scalar fluxes
Figure 5 describes the profile of the turbulent scalar fluxes τ+

iθ in the streamwise and
normal directions, respectively, for the Prandtl numbers Pr = 0.01, 0.1, 1 and 10. As
expected, the scalar flux is of higher magnitude in the streamwise direction than in the
normal direction to the wall. This is due to the fact that the streamwise velocity u′

1 is
much larger than the wall-normal velocity u′

3 because of the wall boundary planes. The
turbulent scalar fluxes increase in the immediate vicinity of the wall with the increase
of the Prandtl number and return to zero when moving to the centre of the channel.
Because of the change of sign of the velocity component, the streamwise scalar flux τ1θ is
symmetric whereas the wall-normal scalar flux τ3θ is antisymmetric vs the wall distance.
Contrary to the r.m.s. intensity of the scalar variance, which is significantly modified in
the wall region, it appears that the turbulent scalar fluxes look similar from each other in
appearance whatever the boundary condition applied at the wall. The reason is probably
due to the fact that the transport equation for the turbulent scalar fluxes does not contain
explicitly the scalar variance in their source terms and this is reinforced by the no-slip
velocity boundary condition applied at the wall in all cases that imposes the correlation
〈u′+

i θ ′+〉 to return to zero at the wall, even if the scalar fluctuation θ ′+ is non-zero, as
verified in (E7) and (E9).

4.6. Correlation coefficient
Figures 6 and 7 display the profiles of the correlation coefficients R1θ and R3θ , respectively,
vs the wall unit distance. The profile of the correlation coefficient R1θ is symmetric,
leading to a zero gradient value in the centreline (∂R1θ /∂x3)c = 0 whereas R3θ is
anti-symmetric, implying that it reduces to zero in the centreline (R3θ )c = 0. For this
reason, the correlation coefficient R1θ is then of higher magnitude than R3θ almost
everywhere in the channel, in accordance also with the preceding observation made in
figure 5 for the turbulent fluxes showing that the scalar fluctuation is more correlated
with the streamwise velocity fluctuation u′

1 than with the wall-normal velocity fluctuation
u′

3. The correlation R1θ reaches its maximum value in the wall region at Pr = 1 because
of the analogy between the velocity and scalar fields. This similarity becomes, however,
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Figure 6. Correlation coefficient of the streamwise turbulent scalar flux R1θ vs the wall unit distance. Here,
θ ′

w = 0 (case I), • (maroon); q′
w = 0 (case II), � (blue). Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1;

(d) Pr = 10; Rτ = 395.

weaker as the Prandtl number departs from unity because the dynamic of the velocity in
(2.2) and the one of the passive scalar in (2.4) are governed by different mechanisms.
Equations (E16a,b) and (E17a,b) indicate that these coefficients take on finite values
different from zero at the wall. The curves associated with R1θ and R3θ depart from
each other at the wall but coincide away from the wall, showing once again that the
effect of the wall scalar fluctuation is substantial but remains still limited to the vicinity
of the wall. Both correlation coefficients for case I are of higher magnitude than their
corresponding coefficients for case II. Physically, this outcome means that the passive
scalar is less correlated with the velocity for the isoflux boundary condition (case II) than
for the isoscalar boundary condition (case I) because the velocity fluctuation is always
zero at the wall but not anymore the scalar fluctuation, the similitude between the velocity
and scalar fields being lost. In case II, the scalar fluctuations are mainly diffused from the
production zone (the maximum of production located somehow away from the very wall)
towards the wall losing their interaction with the velocity fluctuations.

4.7. Budget for the turbulent kinetic energy k

The budget equation for the turbulent kinetic energy k+ =
〈
u′+

j u′+
j

〉
/2 is briefly presented

in figure 8 showing the profiles of the production P+
k , the dissipation rate ε+, the pressure
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Figure 7. Correlation coefficient of the wall-normal turbulent scalar flux R3θ vs the wall unit distance. Here,
θ ′

w = 0 (case I), • (maroon); q′
w = 0 (case II), � (blue). Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1;

(d) Pr = 10; Rτ = 395.

diffusion Φ+
k , the turbulent T+

k and the molecular diffusion d+
k . These terms appearing in

the transport equation for k, recalled in Appendix D, are non-dimensionalized by the factor
u4
τ /ν. As known, P+

k balances with ε+ away from the wall but not in the vicinity of the
wall where the molecular diffusion becomes important and even equal to the dissipation
(d+

k )w = (ε+)w while the turbulent diffusion T+
k due to the triple velocity correlations is

zero but gradually increases and decreases when moving away from the wall. The pressure
diffusion Φ+

k remains negligibly small everywhere in the channel compared with the other
terms.

4.8. Budget for the scalar variance kθ

Figure 9 exhibits the budget of the transport equation for k+
θ given in (3.1). The budget

terms are non-dimensionalized by the factor u2
τ θ

2
τ /ν.

4.8.1. Case I (θ ′
w = 0)

The different terms appearing in this equation are the production, where the main
contribution is here P+(1)

θ = −τ+
3θ ∂

〈
θ+〉

/∂x+
3 the dissipation-rate ε+

θ = 〈(∂θ ′+/∂x+
j )

(∂θ ′+/∂x+
j )〉/Pr, where among the different terms, the main contribution is given by

963 A21-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.324


B. Chaouat

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

G
ai

n
L

o
o
s

x3
+

Figure 8. Budget of the transport equation for the turbulent kinetic energy k+ =
〈
u′+

j u′+
j

〉
/2 vs the wall unit

distance. Mesh M2. • (maroon), P+
k ; � (red), ε+; � (blue), d+

k ; � (green), T+
k ; � (cyan), Φ+

k . Here, Rτ = 395.

〈(∂θ ′+/∂x+
3 )(∂θ ′+/∂x+

3 )〉, the molecular diffusion d+
θ and the turbulent diffusion T+

θ .
The peaks of high thermal production are somewhat flattened for low Prandtl numbers
but become very sharp for high Prandtl numbers and also move closer to the wall as the
Prandtl number increases. Overall, these terms are of higher magnitude for high Prandtl
numbers. The dominant processes in the central region of the channel are always the
production as a gain term and the dissipation rate as a sink term that balance each other
at all Prandtl numbers. The production increases in the near-wall region and presents a
peak of intensity and then decreases gradually whereas the dissipation rate reaches its
maximum only at the wall. The viscous and turbulent diffusion terms are of appreciable
magnitude in the very near-wall region, showing that they both play an important role
in the transfer of the passive scalar. This outcome suggests therefore that the scalar
conduction cannot be neglected throughout the flow field. As known, the molecular
diffusion and dissipation processes are dominant in the immediate vicinity of the wall
and furthermore, d+

θ and ε+
θ take on the same value at the wall, (d+

θ )w = (ε+
θ )w as

analytically demonstrated in Appendix E using the Taylor series expansion in space. The
turbulent diffusion becomes increasingly important as the Prandtl number increases while
the viscous turbulent diffusion, on the contrary, becomes smaller. For instance, in the case
of a high Prandtl number Pr = 10, the turbulent diffusion maxima even reach a value
comparable to that of the dissipation rate but it becomes almost negligible at Pr = 0.01.
As a whole, some of these results compare well with previous DNS data although the
Reynolds number is here higher (Kawamura et al. 1998, 1999), and with the recent DNS
performed by Alcántara-Ávila et al. (2018) and Alcántara-Ávila & Hoyas (2021) for the
Reynolds number Rτ = 400 and the Prandtl numbers considered here. It is of interest to
remark that the budget for the half-scalar variance kθ in figure 9(c) is quite similar to
the budget for the turbulence kinetic energy k in figure 8, suggesting that the physical
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Figure 9. Budget of the transport equation for the scalar variance k+
θ =

√
〈θ ′+θ ′+〉/2 vs the wall unit distance.

For θ ′
w = 0 (case I): •, P+

θ ; � (red), ε+
θ ; � (blue), d+

θ ; � (green), T+
θ . For q′

w = 0 (case II): ◦, P+
θ ; 
 (red), ε+

θ ;
♦ (blue), d+

θ ; � (green), T+
θ . Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10; Rτ = 395.

mechanisms governing these equations (3.1) and (D1), respectively, are of the same nature
and magnitude but only at the Prandtl number unity.

4.8.2. Comparisons between case I (θ ′
w = 0) and case II (q′

w = 0)
The curves for case I and case II, plotted on the same figures, exhibit significant changes
in the immediate vicinity of the wall but they almost overlap when moving away from
the wall and practically they cannot be distinguished. In particular, the dissipation-rate
term ε+

θ and the viscous diffusion term d+
θ are still of the same order of magnitude but

they are significantly smaller at the wall in case II. This outcome must be attributed to
the Neumann boundary condition implying that the correlation 〈(∂θ ′+/∂x+

3 )(∂θ ′+/∂x+
3 )〉

reduces to zero at the wall. Besides the dissipation and the viscous diffusion processes that
are strongly modified in the near-wall region, the production term P+

θ and the turbulent
diffusion term T+

θ are roughly the same. These terms remain relatively unaffected by
the type of boundary condition, although the turbulent diffusion T+

θ is, however, slightly
attenuated in the near-wall region. As these present simulations lead to new results for the
Reynolds and Prandtl numbers considered, the only source of possible comparison is with
the previous data of Lu & Hetsroni (1995) for Rτ = 180, Pr = 0.72 and Tiselj et al. (2001)
for Rτ = 171, Pr = 1, showing a qualitative agreement for Pr equal or close to unity.
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Figure 10. Budget of the transport equation for the streamwise turbulent scalar flux τ+
1θ = 〈u′+

1 θ ′+〉 vs the
wall unit distance. For θ ′

w = 0 (case I): •, P+
1θ ; � (red), ε+

1θ ; � (blue), d+
1θ ; � (green), T+

1θ ; � (cyan), Π+
1θ . For

q′
w = 0 (case II): ◦, P+

1θ ; 
 (red), ε+
1θ ; ♦ (blue), d+

1θ ; � (green), T+
1θ ; 	 (cyan), Π+

1θ . Panels show (a) Pr = 0.01;
(b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10; Rτ = 395.

In term of turbulence modelling for RANS and LES simulations making use of transport
equations for kθ and εθ , it can be finally mentioned that the boundary conditions for kθ and
εθ must be properly specified whether wall scalar fluctuations θ ′

w are considered or not in
engineering applications (Sommer, So & Zhang 1994).

4.9. Budget for the turbulent scalar fluxes τiθ

Figures 10 and 11 exhibit the budget of the transport equation for τiθ given in (3.2). The
budget terms are non-dimensionalized by the factor u3

τ θτ /ν.

4.9.1. Streamwise turbulent scalar flux τ1θ case I (θ ′
w = 0)

According to this equation, the production P+
1θ is decomposed into the sum of three terms

as P+(1)
1θ + P+(2)

1θ + P+(3)
1θ where the main contributions are attributed to the two terms

P+(2)
1θ = −τ+

13∂〈θ+〉/∂x+
3 and P+(3)

1θ = −τ+
3θ ∂〈u+

1 〉/∂x+
3 involving the interaction between

the turbulent shear stress and the mean scalar gradient as well as the interaction between
the wall-normal turbulent scalar flux and the mean streamwise velocity gradient. The
dissipation term ε+

1θ remains large all over the channel cross-section due to the high
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Figure 11. Budget of the transport equation for the wall-normal turbulent scalar flux τ+
3θ = 〈u′+

3 θ ′+〉 vs the
wall unit distance. For θ ′

w = 0 (case I): •, P+
3θ ; � (red), ε+

3θ ; � (blue), d+
3θ ; � (green), T+

3θ ; � (cyan), Π+
3θ . For

q′
w = 0 (case II): ◦, P+

3θ ; 
 (red), ε+
3θ ; ♦ (blue), d+

3θ ; � (green), T+
3θ . 	 (cyan), Π+

3θ . Panels show (a) Pr = 0.01;
(b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10; Rτ = 395.

correlation of the fluctuating velocity-scalar gradients 〈(∂u′+
1 /∂x+

j ) (∂θ ′+/∂x+
j )〉. By the

way, it is found that the rough assumption of isotropic dissipation ε+
1θ = 0 often used

in RANS closures does not hold in the near-wall region. A more appropriate order
of magnitude would be ε+

iθ = (λ/l)τ+
iθ as suggested by an extended development along

Lumley’s principles recalled in Appendix B. It appears also that the production and
dissipation terms P+

1θ and ε+
1θ are dominant in the whole region except in the immediate

vicinity of the wall where the production reduces to zero. Figure 10 reveals that the
production term P+

1θ balances with the sum of the dissipation-rate term ε+
1θ and the

scalar-pressure gradient correlation term Π+
1θ = −〈θ ′+∂p′+/∂x+

1 〉 away from the wall
where both the molecular and turbulent diffusion terms are negligible. The molecular
diffusion term d+

1θ composed by the sum of d+(1)
1θ and d+(2)

1θ becomes large only in the
near-wall region for all Prandtl numbers. The turbulent diffusion term T+

1θ is very small
for low Prandtl numbers but it gradually increases as the Prandtl number increases from
0.01 to 10. This result arises from the high correlation between the velocity fluctuation
u′

i and the scalar fluctuation θ ′+ acting in the triple correlation term 〈u′+
1 u′+

3 θ ′+〉 in the
same way as for the double correlation term 〈u′+

i θ ′+〉 (see figure 5). As demonstrated in

963 A21-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.324


B. Chaouat

Appendix E, the molecular diffusion is compensated by the scalar dissipation rate at the
wall (d+

1θ )w = (ε+
1θ )w.

4.9.2. Comparisons between case I (θ ′
w = 0) and case II (q′

w = 0)
The results returned by the DNSs with wall scalar fluctuations for the streamwise turbulent
scalar flux present the same similarities as in the preceding results obtained for the scalar
variance kθ . Indeed, it is found that the curves corresponding to the different terms
appearing in (3.2) depart further in the wall region but start to merge as the wall distance
increases from the wall. In particular, the dissipation-rate and molecular diffusion terms
are considerably attenuated at the wall when wall fluctuations are present, unlike their
respective counterparts computed with no wall scalar fluctuation. But the production and
turbulent diffusion terms remain again almost unchanged, whatever the type of boundary
condition.

4.9.3. Wall-normal turbulent scalar flux τ3θ case I (θ ′
w = 0)

The production term P+
3θ appearing in (3.2) is here mainly governed by the two terms

P+(2)
3θ = −τ+

33∂〈θ+〉/∂x+
3 and P+(3)

3θ = −τ+
3θ ∂〈u+

3 〉/∂x+
3 involving the interaction of the

wall-normal turbulent stress τ+
33 and the mean scalar gradient as well as the interaction

between the wall-normal turbulent scalar flux and the mean normal velocity gradient. The
scalar dissipation rate ε+

3θ is caused by the correlation of the fluctuating velocity-scalar
gradients 〈(∂u′+

j /∂x+
j ) (∂θ ′+/∂x+

j )〉 while the scalar-pressure gradient correlation term
is computed as Π+

3θ = −〈θ ′+∂p′+/∂x+
3 〉. At all Prandtl numbers, the production is here

negative, while the dissipation rate as well as the pressure gradient correlation terms
are positive. It appears that the scalar-pressure gradient correlation term Π+

3θ gradually
increases as the Prandtl number increases so that it contributes more significantly to the
budget. Contrary to the findings obtained for the streamwise turbulent scalar flux τ1θ

in § 4.9.1 showing that the budget for τ1θ remains relatively unaffected by the Prandtl
number, it is found in the present case that the budget for τ3θ highly depends on the Prandtl
number, as shown in figure 11. In particular, for Pr = 0.01, the production term P+

3θ and
the scalar dissipation term ε+

3θ accounting for eddies of larger scale are prominent, the
correlation term Π+

3θ , the molecular d+
3θ including d+(1)

3θ and d+(2)
3θ , as well as the turbulent

diffusion T+
3θ are entirely negligible, whereas for Pr = 10, another situation occurs, i.e. the

production term P+
3θ balances with the sum of the scalar-pressure gradient correlation

term Π+
3θ , the turbulent diffusion T+

3θ and the molecular diffusion d+
3θ , while the scalar

dissipation rate ε+
3θ is very small except, however, in the viscous sublayer near the wall

region where it is appreciable. For Pr = 0.1, the pressure-scalar gradient correlation and
the dissipation terms which are the dominant sink terms balance with the production term.
But for Pr = 1, the production term mainly balances with the sum of the pressure gradient
correlation and turbulent diffusion terms while the dissipation-rate and viscous diffusion
terms are rather negligibly small. These results imply that the modelling of the dissipation
rate ε+

3θ must be undertaken for Prandtl numbers smaller than unity and that the assumption
of isotropic dissipation ε+

3θ = 0 is verified only for Prandtl numbers greater than unity. An
approach like the one suggested in the previous section could be fulfilled. In addition,
the contribution of the scalar pressure gradient correlation term Π+

3θ appears essential
to take into account for the budget of (3.2), at least at high Prandtl numbers, so that it

963 A21-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.324


Contribution of direct numerical simulations and modelling

cannot be ignored in conventional turbulence modelling. Hence, Π+
3θ , or more formally,

the pressure-scalar correlation term Φ+
iθ appearing in (3.3) must be carefully modelled

in the framework of second moment closure (Schiestel 2008; Hanjalic & Launder 2011).
More generally, these results associated with the budget of the transport equation for τ3θ

suggest that RANS or LES modelling of (3.2) must account for the influence of Prandtl
number.

4.9.4. Comparisons between case I (θ ′
w = 0) and case II (q′

w = 0)
At a first sight, no apparent difference between these curves associated with cases I and
II, respectively, can be observed from the wall to the centreline of the channel. This is
probably related to the fact that all these curves collapse near the wall.

4.10. Structure of the scalar fields

4.10.1. Contours of the instantaneous scalar field θ

Figure 12 shows the contours plots of the instantaneous scalar field θ in the (x1, x3)
mid-plane, respectively, for the Prandtl numbers Pr = 0.01, 0.1, 1 and 10; θ ′

w = 0 (case
I). The case q′

w = 0 is not illustrated because the visualization of the contour lines
is almost identical, at least when the Prandtl number is moderate near unity or high
like 10. It requires a very enlarged view of the contour plots to shed light on some
perceptible differences, the only modification been the intensity of the scalar fluctuations
that is enhanced. The interesting finding, however, is that the topology of these structures
considerably changes as the Prandtl number increases from Pr = 0.01 to 10. These
structures get thinner as the Prandtl number increases because of the important decrease of
the Batchelor length scale ηθ according to the power law ηθ = ηκ/P1/2

r . These eddies are
relatively smooth and organized at the lower Prandtl number Pr = 0.01 but become more
and more chaotic as the Prandtl number increases from 0.01 to 10, the gradients being
sharper. This observation suggests that the scalar field is almost large scale dominant for
Pr = 0.01 but highly turbulent with fragmented structures for Pr = 10. As the Prandtl
number increases, it is possible to clearly identify substantial detachment of swirling
vortex elements growing from the boundary layer to the central region of the channel
along the normal direction to the wall.

Figure 13 displays the contour plots of the instantaneous streamwise velocity u1 in the
(x1, x3) mid-plane for illustrating the analogy with the scalar field showed in figure 12(c)
at Pr = 1. Indeed, as can be observed, a great similarity exists between the streamwise
velocity field and the passive scalar field, showing almost identical eddies, even if the
interfaces of θ are sharper than those of u1 (Antonia, Abe & Kawamura 2009; Pirozzoli
et al. 2016). In addition, it is of interest to see that an increase in Prandtl number leads
to more pronounced wall-attached eddies (Marusic & Monty 2019) which is consistent
with the appearance of mean logarithmic shape of 〈θ〉 seen in figure 3. Figure 14 is a
snapshot view of the scalar field θ in the (x1, x2) plane at the wall distance x+

3 = 10.
This figure highlights some streaky structures that are elongated in the streamwise
direction for the Prandtl number Pr = 1 in agreement with the experimental observation
of Iritani, Kasagi & Hirata (1983) as well as the DNS of Li et al. (2009). They are still
clearly visible and even more elongated in the streamwise direction for the Prandtl number
Pr = 10 and appear randomly in space. But on the other hand, these streaky structures are
less pronounced at the Prandtl number Pr = 0.1 and even tend to entirely disappear for the
Prandtl number Pr = 0.01. More generally, considering that the turbulent passive scalar is
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(a)

(b)

(c)

(d )

Figure 12. Contours of the instantaneous scalar field θ in the (x1, x3) mid-plane. Here, θ ′
w = 0 (case I):

(a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10.

purely transported and diffused by the flow without any reciprocal interaction, this scalar
can be viewed as a marker which provides additional information or data about the purely
dynamic turbulent flow. For instance the different plots in figure 12 are dealing with the
same and unique dynamic structures but the scalar allows us to capture (and picture) large

963 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.324


Contribution of direct numerical simulations and modelling

Figure 13. Contours of the instantaneous streamwise velocity field u1 in the (x1, x3) mid-plane.

structures at low Prandtl numbers and fine structures at high Prandtl numbers, a sort of
‘integral spectral’ decomposition.

4.10.2. Contours of the instantaneous wall-normal scalar flux τ̄3θ

Figure 15 displays the contours of the wall-normal scalar flux τ̄3θ = u′+
3 θ ′+ for the

different Prandtl numbers. The positive and negative regions of τ̄3θ are characterized by
a high correlation between the velocity u′

3 and the scalar θ ′ in the near-wall region for all
Prandtl numbers. These contours lines describe more or less intermittent regions (Kim &
Moin 1989; Abe et al. 2004).

5. Modelling of the passive scalar transport equations

5.1. The kθ − εθ transport equations
In the RANS methodology, computation of turbulent flows including scalar fields needs
to solve the transport equation for the turbulent energy k or the transport equation for the
Reynolds stress τij =

〈
u′

iu
′
j

〉
in addition to the dissipation rate ε, as well as the transport

equations for the half-scalar variance kθ and its dissipation rate εθ that read

Dkθ

Dt
= Pθ − εθ + Jkθ , (5.1)

Dεθ

Dt
= cεθθ1

Pθ

εθ

kθ

+ cεθk1
Pk

εθ

k
− cεθk2

εθε

k
− cεθθ2

ε2
θ

kθ

+ Jεθ , (5.2)

where D/Dt = ∂/∂t + 〈uk〉∂/∂xk, Pθ , Pk and Jkθ , Jεθ are the production and diffusion
terms, cεθθ1

= 1, cεθk1
= 1/2, cεθk2

= 1/2 and cεθθ2
= 1.30 (Chaouat & Schiestel 2021b).

Several formulations of the transport equation for εθ have been proposed (Newmann,
Launder & Lumley 1981; Jones & Musonge 1988; Nagano & Kim 1988; Yoshizawa 1988;
Shikazono & Kasagi 1996) but (5.2) is one of the most general forms obtained in the
spectral space by a theoretical formalism (Chaouat & Schiestel 2021b). Because of the
mathematical complexity of solving these equations arising from the occurrence of the
two time scales k/ε and kθ /εθ , it is advantageous for engineering applications to compute
the passive scalar to dynamic time-scale ratio R = (kθ ε)/(kεθ ) to get an estimate of the
dissipation rate εθ = (kθ ε)/(Rk). This practice is usually retained for the simulation of
scalar fields around Pr unity considering that R ≈ 1 but the issue to address is to know
whether this value can be retained or not for small and large Prandtl numbers, with and
without wall scalar fluctuations. To answer this question, figure 16 describes the evolution
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(a)

(b)

(c)

(d )

Figure 14. Snapshot view of the scalar field θ in the (x1, x2) plane at the wall distance x+
3 = 10. Here,

θ ′
w = 0 (case I): (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10.

of the ratio R for the Prandtl numbers Pr = 0.01, 0.1, 1 and 10 vs the wall unit. First
at all, it can be observed that this ratio is not a universal constant but is a function of
both the wall unit distance and the molecular Prandtl number R = R(x3, Pr). For both
cases, I (θ ′

w = 0) and II (q′
w = 0), it gradually decreases from high to low values in the

immediate vicinity of the wall and reaches a common asymptotic value when moving
away from the wall for x+

3 > x+
3m(Pr) where the minimum distance x+

3m(Pr) is a function
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(a)

(b)

(c)

(d )

Figure 15. Contours of the instantaneous wall-normal scalar flux τ̄3θ = u′+
3 θ ′+ in the (x1, x3) mid-plane.

Here, θ ′
w = 0 (case I): (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10.

of the molecular Prandtl number. Moreover, its order of magnitude highly increases as the
molecular Prandtl number increases from 0.01 to 10, leading to the following numerical
values returned by DNS, R(0.01) ≈ 0.1, R(0.1) ≈ 0.40, R(1) ≈ 0.9 and R(10) ≈ 2.5.
Because of the dissipation rate εθ that is close to zero at the wall for the case II, R takes on
extremely high values at x3 = 0 in comparison with its corresponding values obtained for
the case I. Physically, this observation means that the time scale of the dynamic turbulent
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Figure 16. Dimensionless ratio R = (kθ ε)/(kεθ ) in logarithmic coordinate vs the wall unit distance. Here,
θ ′

w = 0 (case I), • (maroon); q′
w = 0 (case II), � (blue). Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1;

(d) Pr = 10; Rτ = 395.

field k/ε differs from the time scale of the passive scalar field kθ /εθ when the molecular
Prandtl number deviates from unity, suggesting once again that the analogy between these
two fields is lost. In practice, interpolation between these several values can be made to
compute the adequate ratio R(x3, Pr) for a given molecular Prandtl number as a function
also of the dimensionless distance x+

3 accounting for the wall effects.

5.2. Turbulent fluxes τiθ

The knowledge of the turbulent scalar fluxes τiθ = 〈
u′

iθ
′〉 is of particular interest in mass

and heat transfer. In eddy viscosity models it is computed assuming a gradient hypothesis
introduced first by Daly & Harlow (1970) and often applied in practice by many authors
(Hanjalic & Launder 2011):

τiθ = − νt

Prt

∂〈θ〉
∂xi

, (5.3)

where Prt is the turbulent Prandtl number and νt denotes the turbulent viscosity. The
assessment of τiθ must be accurate because it also stands as input in the scalar variance
equation (5.1) and its dissipation-rate equation (5.2). The Prandtl number is defined itself
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Figure 17. Profiles of the turbulent Prandtl number vs the wall unit distance. Here, θ ′
w = 0 (case I),

• (maroon); q′
w = 0 (case II), � (blue). Panels show (a) Pr = 0.01; (b) Pr = 0.1; (c) Pr = 1; (d) Pr = 10;

Rτ = 395.

as the ratio of the turbulent eddy viscosity νt to the turbulent eddy diffusivity σt as

Prt = νt

σt
= τ13

τ3θ

∂〈θ〉
∂x3

(
∂〈u1〉
∂x3

)−1

. (5.4)

Figure 17 exhibits the profile of the turbulent Prandtl number vs the wall unit distance for
all DNSs. In the numbers range Pr = 0.01 to 10, the turbulent Prandtl number reaches
a decreasing asymptotic behaviour that is almost independent of the molecular Prandtl
number except for Pr = 0.01 but reveals in the near-wall region a small variation of
a few per cent for the case I and a large variation for the case II. The effect of the
wall scalar fluctuations is then to appreciably reduce the turbulent Prandtl number in the
immediate vicinity of the wall leading to a large deviation from the asymptote, especially
at low Prandtl numbers. This result validates the hypothesis of an approximately constant
turbulent Prandtl number with and without wall scalar fluctuations roughly around unity
away from the wall for moderate and high molecular Prandtl numbers but not for the very
low Prandtl number Pr = 0.01. From a physical point of view, the shape of these profiles
is attributed to the strong conductive effects acting in low Prandtl number flows; the
scalar fluctuations are then dissipated faster as the Prandtl number decreases. As the mean
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velocity and scalar gradient terms appearing in (5.4) are almost identical in the presence or
not of the wall scalar fluctuations, the only difference between these profiles is attributed
to the correlation τ3θ appearing in the denominator of (5.4) that is modified by the wall
scalar fluctuations. In practice, the channel flow is generic to many industrial applications
involving heat transfer, so that the assumption of a constant turbulent Prandtl number still
holds at moderate and high molecular Prandtl numbers regardless of the thermal boundary
condition applied at the wall, except, however, in the near-wall region where wall profiles
can be calculated to fit the DNS data. In the near-wall region, figure 17 suggests that these
wall functions must gradually increase from zero to 3 (Pr = 0.01) or roughly to unity
(Pr = 0.1, 1, 10) as a first approximation in case of wall scalar fluctuations.

In the framework of second moment closure (Launder et al. 1984; Schiestel 2008;
Hanjalic & Launder 2011), the scalar flux τiθ is computed by its modelled transport
equation corresponding to the exact equation (3.2) that reads in a form

Dτiθ

Dt
= Piθ + Φiθ + Jiθ − εiθ , (5.5)

where Piθ is the production term composed of the three terms P(1)
iθ , P(2)

iθ and P(3)
iθ , Φiθ is

the redistribution term associated with the pressure-scalar gradient correlation appearing
in (3.3), Jiθ is the total diffusion term including the three terms d(1)

iθ , d(2)
iθ and Tiθ . In this

short section, the objective is to test the basic model (5.5), some routes of modelling are
also briefly suggested but without going as far as to fully validate new models, that is
beyond the scope of this paper.

The Prandtl number is fixed to unity in a first step. The basic formulation of the
pressure-scalar gradient term Φiθ used for high Reynolds number in the framework of
second moment closure is (Launder et al. 1984; Schiestel 2008; Hanjalic & Launder 2011)

Φiθ = −C(i)
1θ

ε

k
τiθ + C2θ τjθ

∂ 〈ui〉
∂xj

, (5.6)

where C(i)
1θ and C2θ are constant coefficients. The modelling of the first term of (5.6)

denoted Φ
(1)
iθ and due to the correlation of the velocity and scalar fluctuations is inspired

by the Rotta hypothesis (Monin 1965) whereas the second term Φ
(2)
iθ due to the mean

velocity gradient is referred to as the quasi-isotropic model, assuming that the departure
from homogeneity is not too large (Launder 1976). The usual values retained for the
coefficients are around C(i)

1θ = 3 (i = 1, 2, 3) and C2θ = 0.5, although there is no precise
consensus (Launder 1976, 1988; Gibson & Launder 1978; Jones & Musonge 1988). It
is worth pointing out that the tensorial model closure is only generally valid if the three
coefficients C(i)

1θ are all equal to a single true constant, otherwise the applicability is limited
to the specific case studied. The previous sections have shown that Φiθ remains broadly
unaffected by the wall scalar fluctuations and thus for its modelling (5.6). The model Φiθ
in (5.6) is tested using the DNS data according to figures 10 and 11 that display the budgets
of the transport equations for the turbulent fluxes. Figure 18(a) shows the profile of Φ+

iθ
indicating clearly that the linear model using these constant coefficients is not at all able
to match the DNS flux Φ+

1θ that diverges near the wall region although the agreement for
the DNS flux Φ+

3θ is, however, relatively good. The disagreement with the data arises from
the streamwise turbulent flux τ1θ that exhibits a turbulent peak in the immediate vicinity
of the wall while the wall-normal turbulent flux τ3θ is very small in comparison, as shown
in figure 5.
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Figure 18. (a) Profile of the exact/modelled pressure-scalar gradient term Φ+
iθ = 〈p′+∂θ ′+/∂x+

i 〉 vs the wall
unit distance. The DNS Φ+

1θ , • (blue); standard modelling (5.6), � (green); DNS Φ+
3θ , � (cyan); standard

modelling (5.6), � (maroon). (b) Profiles of C(1)
1θ � (blue) and C(3)

1θ � (cyan) computed from (5.6) using the
DNS fluxes. Here, Pr = 1; Rτ = 395.

Thanks to the present simulation, it is then possible to solve (5.6) using the
exact DNS terms Φe

1θ and Φe
3θ and C2θ = 0.5 leading to the coefficients C(1)

1θ =
−k(Φe

1θ − C2θ τ3θ ∂ < u1 > /∂x3)/(ετ1θ ) and C(3)
1θ = −k(Φe

3θ )/(ετ3θ ) that are plotted
on figure 18(b). Obviously, C(2)

1θ is irrelevant because of transverse homogeneity. The
discrepancy between these two coefficients shows clearly that the modelling (5.6) is
inappropriate to simulate the turbulent channel flow subjected to constant scalar fluxes
at the wall. This outcome can be compared with what was found for the modelling of
the pressure strain correlation term concerning the Rotta hypothesis (Weinstock 1981,
1982). A more general formulation for the slow term Φ

(1)
iθ can be then considered such

as the tensorial model accounting for the quadratic term so that Φiθ takes the general form
(Launder 1976)

Φiθ = −ε

k
(C(i)

1θ τ1θ + C′(i)
1θ aijτjθ ) + C2θ τjθ

∂ 〈ui〉
∂xj

− ε

k
fw,θC(i)

1θ τkθnkni, (5.7)

where aij is the dimensionless anisotropic part of the Reynolds stress aij = (τij −
2/3kδij)/k and C(i)

1θ , C′(i)
1θ are now some functions of several arguments of the invariant

turbulent parameters or the turbulent Reynolds number (Dol, Hanjalic & Versteegh 1999),
fw,θ is a damping function of the near-wall model correction and ni is the wall-normal unit
vector component. The function fw,θ is embedded in (5.7) in the present case to satisfy the
wall limiting behaviour. Setting C′(i)

1θ /C(i)
1θ = α, it is then possible to compute C(i)

1θ from
(5.7) with the DNS data of the fluxes Φe

iθ yielding

C(i)
1θ = −k

ε

(
Φe

iθ − C2θ τjθ
∂ 〈ui〉
∂xj

)
τiθ + αaijτjθ + fw,θ τkθnkni

. (5.8)

The modelling of the coefficient C(i)
1θ is made by using the first, second and flatness

invariant parameters, A2 = aijaji, A3 = aijajkaki and A = 1 − 9(A2 − A3)/8 that has the
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Figure 19. (a) Profile of the exact/modelled pressure-scalar gradient term Φ+
iθ = 〈p′+∂θ ′+/∂x+

i 〉 vs the wall
unit distance. The DNS Φ+

1θ , • (blue); tensorial modelling (5.7), � (green); DNS Φ+
3θ , � (cyan); tensorial

modelling (5.7), � (maroon). (b) Profiles of C(1)
1θ � (blue) and C(3)

1θ � (cyan) computed from (5.7) using the
DNS fluxes. Profile of C1θ = 3A, • (maroon). Here, Pr = 1; Rτ = 395.

property to reduce to zero for two-component turbulence, in particular when approaching
walls, and goes to unity for isotropic stress fields because A2 and A3 go to zero. As a result,
the model (5.7) has been calibrated with a single function of the type C(i)

1θ = 3 A (i =
1, 2, 3) corresponding to the shapes of the exact functions defined in (5.8) as indicated in
figure 19(b), C2θ = 0.5A, α = −0.25 and the damping wall function fw,θ = 5A2 exp (−A).
This model returns a relatively good agreement with the DNS, as shown in figure 19(a)
although a small error in the magnitude is observed. This is a good compromise to get
acceptable results without unnecessarily increasing the model complexity (Shikazono &
Kasagi 1996). Of course, more complete testing would be necessary before recommending
this choice of model coefficients in various flow applications, but this can open a pathway
to further exploration. Extension to different Prandtl numbers can be undertaken by means
of the use of additional functions of the molecular Prandtl number (Chaouat & Schiestel
2021b).

The turbulent diffusion term Tiθ is approximated assuming a gradient law (Daly &
Harlow 1970):

Tiθ = ∂

∂xm

(
Cθ

k
ε
τml

∂τiθ

∂xl

)
, (5.9)

where Cθ is a constant coefficient set to 0.11. An extension of (5.9) is often retained as
(Launder 1976)

Tiθ = ∂

∂xm

[
Cθ

k
ε

(
τil

∂τmθ

∂xl
+ τml

∂τiθ

∂xl

)]
, (5.10)

while a more elaborate modelling that deserves interest is (Schiestel 2008; Hanjalic &
Launder 2011)

Tiθ = ∂

∂xm

[
Cθ

k
ε

(
τil

∂τmθ

∂xl
+ τml

∂τiθ

∂xl
+ τlθ

∂τim

∂xl

)]
. (5.11)

It is recalled that the turbulent diffusion process is not affected by the wall scalar
fluctuations (see figures 10 and 11 in § 4.9). Figure 20 displays the profiles of the diffusion
terms T+

1θ and T+
3θ computed using (5.9), (5.10) and (5.11), respectively, with the DNS

data vs the wall unit distance. Among these modellings, it appears that (5.11) agrees best
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0 20 40 60 80 100

x3
+

–0.2
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Tiθ

Figure 20. Diffusion term T+
1θ : DNS, • (cyan); modelling (5.11), � (maroon); modelling (5.10), � (green);

modelling (5.9), � (red). Diffusion term T+
3θ : DNS, � (cyan); modelling (5.11), � (maroon); modelling (5.10),

+ (green); modelling (5.9), � (red). Here, Pr = 1; Rτ = 395.

with the DNS data although the turbulent diffusion peak for T+
1θ is under-estimated and

the one for T+
3θ is not at all reproduced. This analysis finally allows us to see that none

of these diffusion models is really satisfactory. The molecular diffusion diθ as well as the
dissipation rate εiθ are generally neglected and not included in the transport equation (5.5)
when the turbulence is close to an isotropy state involving the small universal scales in the
Kolmogorov region of the energy spectrum. However, these models lead to an inconstant
behaviour in the near-wall region where the molecular diffusion balances the dissipation
rate if no wall correction is achieved and the effect of the wall scalar fluctuations (see
§ 4.9) must be here accounted for in the model considering that both (diθ )w and (εiθ )w are
close to zero. In view of this analysis, the value (εiθ )w = 0 is suggested in (5.5) as well as
(εθ )w ≈ 0 if wall scalar fluctuations are considered. Accordingly, (5.2) could be modified
to get the correct wall behaviour.

5.3. Turbulent fluxes τiθ in LES
This high resolution DNS database can also be used to validate subgrid turbulence
models used in LES and hybrid RANS/LES methodologies keeping in mind, however,
that instead of RANS, LES usually depends on the grid spacings (Lesieur & Métais 1996;
Meneveau & Katz 2000; Chaouat 2017b; Schiestel & Chaouat 2022). Strictly speaking,
the RANS and LES motion equations take exactly the same mathematical form if we
assume that the commutation terms arising from the filtering operation are negligible;
the difference relies only on the closure of equations (Chaouat 2017a,b). Among these
numerous models, the well-known Smagorinsky model with its dynamic version is the
most popular model (Germano et al. 1992) to perform simulation of turbulent flows on
refined grids. In the present case, focus is on the partially integrated transport model
(PITM) in the framework of the second moment closure that allows us to simulate large
scales of turbulent flow on relatively coarse grids (Chaouat & Schiestel 2005, 2012).
This model relies on the transport equations for the subfilter turbulent stresses τ

(s)
ij and
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Figure 21. Turbulent scalar flux in the normal direction |τ+
3θ | = − 〈

u′+
3 θ ′+〉

vs the wall unit distance returned
by the PITM simulation (Chaouat & Schiestel 2021b). Here, θ ′

w = 0. Subfilter scale, � (cyan); resolved scale,
� (cyan); total scales, � (blue); DNS, • (maroon). Here, Pr = 1; Rτ = 395.

its dissipation rate ε and has been recently extended to the turbulent transfer of a passive
scalar including both the transport of the subfilter variance k(s)

θ and its dissipation rate εθ

(Chaouat & Schiestel 2021b). These equations look like (5.1) and (5.2) where k and kθ are
replaced by k(s) and k(s)

θ , respectively, but the coefficient cεθθ2
appearing in the destruction

term of the dissipation rate εθ is now a function c(s)
εθθ2

(L, κc, Pr) of the turbulence length
scale L = k3/2/ε, the cutoff wavenumber κc = π/Δ computed using the grid size and the
molecular Prandtl number. The subfilter scalar flux τ

(s)
iθ is modelled in analogy with (5.3)

that is transposed here in LES as

τ
(s)
iθ = − cτθ

Prt
τ

(s)
im

k(s)

ε

∂θ̄

∂xm
, (5.12)

where cτθ = 0.22 is a numerical coefficient, Prt is set to unity, θ̄ is the filtered passive
scalar. Two PITM simulations of the heated channel flow (see figure 1) for case I have
been performed on several meshes of coarse and medium grid resolutions if compared
with DNS (see table 2), Δ+

1 = Δ+
2 ≈ 60 and Δ+

1 = Δ+
2 ≈ 30, respectively, to study the

grid effect on the scalar variable. Figure 21 exhibits the profiles of the subfilter, resolved
and total turbulent scalar fluxes vs the wall distance for Pr = 1. As a result, the sharing
out of the turbulent flux between the small and resolved scales is modified according to
the grid size. In the case where the grid step size decreases, a part of the scalar flux
coming from the modelled zone is injected into the resolved scale, and conversely, when
the grid step size increases, then a part of the energy contained in the resolved scales
is removed and fed into the modelled spectral zone, but the total turbulent scalar flux
remains, however, very close to DNS, confirming that the closure (5.12) is appropriate.
More generally, it can be mentioned that it is therefore perfectly possible to compare
directly any filtered quantity φ̄ of the turbulent field returned by the large eddy simulation
performed on medium/coarse grids with its corresponding value φ̄G = G ∗ φ determined
by a filtering operation as the convolution with a filter G in space where φ is given by the
DNS (Chaouat & Schiestel 2021a).
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6. Conclusion

Thanks to the rapid increase of super-computer power, DNSs of turbulent channel flows
with passive scalar transport subjected to constant scalar fluxes at the wall accounting for
zero scalar fluctuation θ ′

w = 0 (case I) and zero scalar gradient fluctuation (∂θ ′/∂x3)w = 0
(case II), respectively, have been performed on several meshes of high grid resolution at
the Reynolds number Rτ = 395 and Prandtl numbers ranging from Pr = 0.01 to 10. The
evolutions of the mean scalar field

〈
θ+〉

, the r.m.s. scalar fluctuations
〈
θ ′+θ ′+〉

, the turbulent
scalar flux τ+

iθ , the correlation coefficient Riθ and the budgets of transport equations for k+
θ

and τ+
iθ have been investigated in detail.

It was highlighted that the mean scalar field as well as the turbulent scalar fluxes are not
affected by the wall scalar fluctuations condition in sharp contrast with the r.m.s. scalar
fluctuations and the correlation coefficient Riθ , which are highly modified in the immediate
vicinity of the wall. It has been found that the budget for k+

θ is largely dominated by
the production and the dissipation terms that balance each other at all Prandtl numbers,
whereas the molecular and turbulent diffusion terms are effective in the vicinity of the
wall. The dissipation-rate ε+

θ and the molecular diffusion d+
θ terms are highly modified

in the vicinity of the wall depending on the wall scalar boundary condition. In practice,
relative to case I, the very near-wall region in case II is filled with extra scalar fluctuations,
the intensity of which is determined by the level of the peak of variance in the turbulence
production zone. This amount of r.m.s. fluctuating scalar is blocked at the wall because of
the Neumann boundary condition that cancels any diffusion flux at the wall, creating an
almost uniform intensity zone. However, this extra level of scalar variance has no impact
on other quantities such as τ+

iθ because the r.m.s. itself does not appear in the source terms
of the corresponding equations.

Most of these results are consistent with the findings obtained from DNS by Li et al.
(2009) in a turbulent boundary layer. As expected, the Reynolds analogy is found to
be satisfied when the Prandtl number is unity but only in case I because the boundary
conditions for velocities and the transported scalar must be the same for the analogy to
hold. As for k+

θ , the budget for τ+
1θ is mainly controlled by the production term P+(1)

1θ

and the dissipation-rate term ε+
1θ away from the wall but the diffusion terms d+

1θ and T+
1θ

are, however, appreciable in the vicinity of the wall. Once again, both the dissipation and
molecular diffusion terms are highly influenced by the wall scalar fluctuations but the
scalar-pressure gradient term Π+

1θ remains unaffected by the type of boundary condition.
In contrast to the budget for τ+

1θ , the budget for τ+
3θ is highly dependent on the Prandtl

number and is essentially governed by the production term P+
3θ , the dissipation term ε+

3θ

but also the scalar-pressure gradient correlation term Π+
3θ that greatly contributes to the

budget of τ+
3θ . But surprisingly, no substantial perceptible differences are observed for the

budget τ+
3θ with respect to the wall boundary condition.

The structures of the scalar fields have been visualized by means of the instantaneous
passive scalar and wall-normal scalar flux showing that the topology of these structures
is strongly modified when increasing the Prandtl number. Further arguing in this sense,
the passive scalar field can be viewed as a useful marker that allows us to picture hidden
properties of the dynamic field.

Finally, it has been shown how to use this DNS database to devise and calibrate
scalar flux equation models in the framework of both first and second moment closures.
The passive scalar to dynamic time-scale ratio R, the turbulent Prandtl number Prt, the
pressure-scalar gradient term Φiθ , the turbulent diffusion term Tiθ and the dissipation εiθ
have been analysed and modelled from a physical point of view.
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Although beyond the scope of the present study, new additional work could be pursued
usefully in order to investigate the effect of the boundary conditions on the shape of spectra
from a pure spectral point of view (Batchelor 1971; Tennekes & Lumley 1972; Chaouat
& Schiestel 2007, 2021b). Within this framework, it should be interesting for instance to
compare the velocity-scalar flux spectrum Eτ3θ

(κ) with the Reynolds shear stress spectrum
Eτ13(κ) and examine the scale-by-scale similarity between the turbulent momentum and
scalar transfers, as done by Kawata & Tsukahara (2022).

The author hopes that this high resolution DNS database will be helpful for users and
researchers involved in the community of the simulation and turbulence modelling from
both a theoretical and practical point of view.
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Appendix A. Numerical scheme of accuracy

The equations are integrated in time using the explicit Runge–Kutta scheme as

Un+1 = Un + δt
K∑

k=1

βkF(U (k)), (A1)

with
U (k) = Un + αk δtF(U (k−1)), (A2)

where U denotes the unknown variable and F corresponds to the flux contribution.
The Runge–Kutta scheme of fourth-order accuracy in time (K = 4) is obtained for the
coefficients of values α1 = 0, α2 = α3 = 1/2, α4 = 1, β1 = β4 = 1/6, β2 = β3 = 1/3.
The CFD code developed by Chaouat (2011) is based on the finite volume technique.
Considering the grid cell around the point (i, j, k), the variation of U on the control
volume v(Ω) is obtained by the computation of the fluxes through the surfaces. These
fluxes require knowledge of the right and left states UR and UL of the fluid at the grid
interface. The variables UL

i−1/2,j,k and UR
i−1/2,j,k at the left and right sides of the interface

(i − 1
2 , j, k) are computed by a centred formulation of fourth-order accuracy in space as

UL
i−1/2,j,k = UR

i−1/2,j,k =
2∑

p=−1

ζi−p,j,kU i−p,j,k, (A3)

where the coefficients ζi,j,k are determined by means of a Taylor series expansion in space
of U i−p,j,k as

U i−p,j,k = U i−1/2,j,k +
3∑

n=1

(xi−p,j,k − xi−1/2,j,k)
n

n!

(
∂nU
∂xn

)
i−1/2,j,k

(A4)

in (A3). By introducing the grid size Δi,j,k = xi+1/2,j,k − xi−1/2,j,k denoted as Δi for
convenience, it is then a simple matter to show that the ζi,j,k coefficients are solutions
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of the system of equations

ζi−2,j,k + ζi−1,j,k + ζi,j,k + ζi+1,j,k = 1(
Δi−1 + Δi−2

2

)
ζi−2,j,k + Δi−1

2
ζi−1,j,k − Δi

2
ζi,j,k −

(
Δi−1 + Δi−2

2

)
ζi+1,j,k = 0

(
Δi−1 + Δi−2

2

)2

ζi−2,j,k + Δ2
i−1

4
ζi−1,j,k + Δ2

i
4

ζi,j,k +
(

Δi + Δi+1

2

)2

ζi+1,j,k = 0

(
Δi−1 + Δi−2

2

)3

ζi−2,j,k + Δ3
i−1

8
ζi−1,j,k − Δ3

i
8

ζi,j,k −
(

Δi + Δi+1

2

)3

ζi+1,j,k = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

In the case of a uniform grid Δi, one can easily obtain the particular values ζi−2,j,k =
−1/16, ζi−1,j,k = 9/16, ζi,j,k = 9/16 and ζi+1,j,k = −1/16.

Appendix B. Estimate of the terms in transport equations for scalar variables

The case of quasi-isotropic turbulence is considered. The straightforward estimate rules
proposed by Tennekes & Lumley (1972) are here followed. Each variable φ is then
decomposed into its mean and fluctuation parts such as φ = 〈φ〉 + φ′. The characteristic
scale of the velocity fluctuations denoted u is roughly given by u ∝ k1/2 and the
characteristic scale of the passive scalar fluctuations denoted θT is obtained by θT ∝ k1/2

θ .
Several scales are introduced such as the energetic length scale l assumed to be of the
same order as the macro-scale lθ used to estimate the gradient of mean scalar quantities,
the Taylor micro-scale λ defined such that ε = 15νu2/λ2 and its variant for the passive
scalar εθ defined such that εθ = 12σθ2

T/λ2
θ , the Kolmogorov length scale ηκ = (ν3/ε)1/4

and the Batchelor dissipative length scale ηθ = ηκ/Pα
r where α is a given coefficient equal

to 3/4 for small Prandtl numbers, 1 for Prandtl numbers close to unity, and 1/2 for large
Prandtl numbers. It is then simple to see that l/λθ = Re1/2

t P1/2
r and that l/ηθ = Re3/4

t Pα
r

where Ret = ul/ν = k2/νε denotes the turbulent Reynolds number as already defined in
§ 2.3.

Assuming that the macro-length-scale of the flow l is of the same order as the time scale
of the turbulence lθ corresponding to a self-preserving solution, the spatial derivatives
of the mean quantities are given by ∂〈ui〉/∂xi = O(u/l) and ∂〈θ〉/∂xi = O(θT/l) while
the derivatives of the fluctuating quantities are computed as order ∂u′

i/∂xi = O(u/λ) =
O((ε/ν)1/2) and ∂θ ′/∂xi = O(θT/λθ ). The scale of the derivative ∂u′

i/∂xi is, however,
revised as O(ε1/3η

−2/3
θ ) in the case where ηθ is larger than η for low Prandtl numbers to

get a quantity independent of ν. As indicated by Tennekes & Lumley (1972), the second
spatial derivative is given by ∂2u′

i/∂x2
i = O(u2/λη) and ∂2θ ′/∂x2

i = O(θ2
T/λθηθ ) in order

to satisfy the balance equation at high Reynolds numbers. These given relations given
previously allow us then to estimate the order of magnitude of every term appearing in the
transport equations for the half-scalar variance, turbulent scalar fluxes and dissipation rate
with respect to the Reynolds and Prandtl numbers.
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Appendix C. Transport equation for the dissipation rate of the scalar variance

The transport equation for the dissipation rate of the half-scalar variance ε+
θ reads

0 = − 2
Pr

〈
∂θ ′+

∂x+
m

∂u′+
j

∂x+
m

〉
∂

〈
θ+〉

∂x+
j︸ ︷︷ ︸

P+(1)
εθ

=O(1)

− 2
Pr

〈
∂θ ′+

∂x+
m

∂θ ′+

∂x+
j

〉
∂

〈
u+

j

〉
∂x+

m︸ ︷︷ ︸
P+(2)

εθ
=O

(
P−1/2

r

)

− 2
Pr

〈
u′+

j
∂θ ′+

∂x+
m

〉
∂2 〈

θ+〉
∂x+

j ∂x+
m︸ ︷︷ ︸

P+(3)
εθ

=O
(

P−1/2
r Re−1/2

t

)
− 2

Pr

〈
∂θ ′+

∂x+
m

∂θ ′+

∂x+
j

∂u′+
j

∂x+
m

〉
︸ ︷︷ ︸

P+(4)
εθ

=O
(

Re1/2
t P2α−1

r

)
− 1

Pr

∂

∂x+
j

〈
u′+

j
∂θ ′+

∂x+
m

∂θ ′+

∂x+
m

〉
︸ ︷︷ ︸

T+
εθ

=O(1)

+ 1
Pr

∂2ε+
θ

∂x2+
j︸ ︷︷ ︸

d+
εθ

=O
(

P−1
r Re−1

t

)
− 2

P2
r

〈
∂2θ ′+

∂x+
j ∂x+

m

∂2θ ′+

∂x+
j ∂x+

m

〉
︸ ︷︷ ︸

γ +
εθ

=O
(

Re1/2
t P2α−1

r

)
, (C1)

where α is a given coefficient equal to 3/4 for small Prandtl numbers, 1 for Prandtl
numbers close to unity and 1/2 for large Prandtl numbers. In this (C1), the production
terms are decomposed into several contributions, P+(1)

εθ , P+(2)
εθ and P+(3)

εθ caused by the
mean scalar and velocity gradients involving the correlation of the scalar-velocity gradients
while P+(4)

εθ is a purely turbulent term associated with the correlation of the scalar-velocity
gradients, T+

εθ
denotes the turbulent diffusion, whereas d+

εθ
is the molecular diffusion

and γ +
εθ

is the destruction term of the dissipation rate ε+
θ . The terms P+(4)

εθ and γ +
εθ

varying as Re1/2
t are then dominant far away from the wall. Note that the difference

P+(4)
εθ − γ +

εθ
= O(1) because these two respective terms P+(4)

εθ and γ +
εθ

are of the same
positive sign.

Appendix D. Transport equation for the turbulent kinetic energy

The transport equation for the turbulent kinetic energy k+ =
〈
u′+

j u′+
j

〉
/2 reads

0 = −τ+
ij

∂
〈
u+

i
〉

∂x+
j︸ ︷︷ ︸

P+
k =O(1)

− 1
2

∂

∂x+
j

〈
u′+

i u′+
i u′+

j

〉
︸ ︷︷ ︸

T+
k =O(1)

+ ∂2k+

∂x2+
j︸ ︷︷ ︸

d+
k =

(
Re−1

t

)
− ∂

∂x+
j

〈
u′+

j p′+
〉

︸ ︷︷ ︸
Φ+

k =O(1)

−
〈

∂u′+
i

∂x+
j

∂u′+
i

∂x+
j

〉
︸ ︷︷ ︸

ε+=O(1)

.

(D1)

Appendix E. Wall asymptotic analysis

A wall asymptotic analysis is conducted by means of Taylor series expansions in space
with respect to the wall coordinate x3 of the instantaneous velocity and scalar fields in the
near-wall region. Only a few terms appearing in the transport equations (3.1) and (3.2) are
examined in the following mainly for verifying consistency. The Taylor series expansion
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for the dimensionless fluctuating velocity u′+
i is

u′+
i =

n∑
j=1

aij (x+
3 ) j, (E1)

where a31 reduces to zero because of the continuity equation. The coefficients aij are
functions of x+

1 , x+
2 and t. The fluctuation of the dimensionless fluctuating scalar θ ′+ can

be expanded in the general case as

θ ′+ =
n∑

j=0

cj (x+
3 ) j, (E2)

where ci are numerical coefficients dependent of the Prandtl number but the new expansion
proposed by Kawamura et al. (1998) as

θ ′+ = Pr

n∑
j=0

bj (x+
3 ) j (E3)

is here chosen because the coefficients bi are considered in a first approximation as
independent of the Prandtl number. Thus, (E3) is more convenient than (E2) for the
analytical developments. In (E3), bi are then some functions of x+

1 , x+
2 and t only. On

the one hand, the condition θ ′
w = 0 leads to b0 = 0 for the isoscalar boundary condition

(case I). On the other hand, the condition (∂θ ′/∂x3)w = 0 leads to b1 = 0 for the isoflux
boundary condition (case II). First at all, it is useful to determine the expansion of the
velocity in the near-wall region. In the fully developed turbulence channel flow, the mean
velocity is governed by the momentum equation as

∂
〈
u+

1
〉

∂x+
3

− τ+
13 = 1 − x+

3
Rτ

. (E4)

Using (E1), it is simple matter to see that the correlation τ+
13 is given by

τ+
13 = a11a32(x+

3 )3 + O((x+
3 )4), (E5)

showing that the mean velocity in the near-wall region varies linearly as

〈
u+

1
〉 = x+

3 − 1
2Rτ

(x+
3 )2 + O((x+

3 )4). (E6)

In fully developed thermal flow, the turbulent scalar flux τ+
iθ in each direction can be

computed easily as

τ+
1θ

Pr
= 〈a11b0〉 x+

3 + (〈a11b1〉 + 〈a12b0〉) (x+
3 )2 + O((x+

3 )3), (E7)

τ+
2θ

Pr
= 〈a21b0〉 x+

3 + (〈a21b1〉 + 〈a22b0〉) (x+
3 )2 + O((x+

3 )3), (E8)

τ+
3θ

Pr
= 〈a32b0〉 (x+

3 )2 + 〈a32b1〉 (x+
3 )3 + O((x+

3 )4), (E9)
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leading to the result τ+
iθ = 0 at the wall whatever the value of the coefficient b0. The mean

passive scalar 〈θ〉 can be determined by means of (2.6), (E6) and (E9) as〈
θ+〉
Pr

= x+
3 − 1

3Reb
(x+

3 )3 + O((x+
3 )4), (E10)

where Reb = Ub2δ/ν denotes the bulk Reynolds number. As expected, (∂〈θ+〉/∂x+
3 )w =

Pr at the wall. Moreover, ∂〈θ+〉/∂θ0 = 0 showing that the mean scalar profile in the
near-wall region is not affected by the wall scalar fluctuations. The half-scalar variance
k+
θ is given by

k+
θ

P2
r

=
〈
b2

0
〉

2
+ 〈b0b1〉 x+

3 + 1
2
(2〈b0b2〉 + 〈b2

1〉)(x+
3 )2 + O((x+

3 )3), (E11)

while the turbulent energy k reads

k+ = 1
2(〈a2

11〉 + 〈a2
31〉)(x+

2 )2 + O((x+
3 )3). (E12)

Consequently, the half-scalar variance kθ is not reduced to zero for the isoflux boundary
condition. The molecular diffusion term d+

θ can be computed using (E11) as

d+
θ

Pr
= 2〈b0b2〉 + 〈b2

1〉 + 12 〈b1b2〉 x+
3 + O((x+

3 )2). (E13)

The dissipation rate of the half-variance limited to the first-order terms is expended as

ε+
θ

Pr
= 〈b2

1〉 + 〈b2
0,1〉 + 〈b2

0,2〉

+ 2[2〈b1b2〉 + 〈b0,1b1,1〉 + 〈b0,2b1,2〉]x+
3 + O((x+

3 )2), (E14)

where bi,j = ∂bi/∂xj showing that it is a function of the derivatives b0,j. To go further
ahead in the analysis, the production Pθ can be then computed using (E10) as

Pθ

P2
r

= − 〈a32b0〉 (x+
3 )2 + 〈a32b1〉 (x+

3 )3 + O((x+
3 )4) (E15)

that reduces to zero at the wall whatever the value of b0. It is then possible to calculate the
correlation coefficient Riθ = τiθ /

√
τii

√
τθθ at the wall for x3 = 0 using the Taylor series

expansion (E1) and (E3). For zero wall scalar fluctuation,

(R1θ )w = 〈a11b1〉√〈
a2

11
〉√〈

b2
1
〉 , (R3θ )w = 〈a32b1〉√〈

a2
32

〉√〈
b2

1
〉 , (E16a,b)

whereas in presence of wall scalar fluctuations,

(R1θ )w = 〈a11b0〉√〈
a2

11
〉√〈

b2
0
〉 , (R3θ )w = 〈a32b0〉√〈

a2
32

〉√〈
b2

0
〉 . (E17a,b)

Some useful relations can also be obtained using (E1) and (E3). In the absence of
scalar fluctuations at the wall, the molecular diffusion balances with the dissipation rate
at the wall (d+

θ )w = (ε+
θ )w = Pr〈b2

1〉, the diffusion of the streamwise turbulent scalar
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Pr 0.1 1 10〈
b2

1
〉

0.147 0.146 0.122〈
a2

11
〉

0.144 0.132 0.145
〈a11b1〉 0.070 0.126 0.070
〈b0b2〉 0.016 0.016 0.016

Table 3. Numerical data returned by DNS.

flux is equal to the streamwise dissipation rate (d+
1θ )w = (ε+

1θ )w = (1 + Pr)〈a11b1〉, and
finally, the diffusion of the wall-normal turbulent scalar flux is equal to the wall-normal
dissipation rate (d+

3θ )w = (ε+
3θ )w = 0. In the presence of scalar fluctuations, it is not

possible to get simple relations unless to assume that the correlations
〈
b0,1b0,1

〉
and〈

b0,2b0,2
〉

in the streamwise and spanwise directions are of low order of magnitude, as
indeed verified by DNS (see figures 9, 10 and 11). In that case, (ε+

θ )w ≈ 0, (ε+
1θ )w =

(ε+
2θ )w = 0. The diffusion terms can be calculated as (d+

θ )w = 2Pr〈b0b2〉 and (d+
1θ )w =

2Pr〈a12b0〉, (d+
3θ )w = 2Pr〈a32b0〉. The DNS provides data for a few correlation terms

summarized in table 3.
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