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Abstract
Benefiting from video surveillance systems that provide real-time traffic conditions, automatic vessel detection
has become an indispensable part of the maritime surveillance system. However, high-level vision tasks generally
rely on high-quality images. Affected by the imaging environment, maritime images taken under poor lighting
conditions easily suffer from heavy noise and colour distortion. Such degraded images may interfere with the
analysis of maritime video by regulatory agencies, such as vessel detection, recognition and tracking. To improve
the accuracy and robustness of detection accuracy, we propose a lightweight generative adversarial network (LGAN)
to enhance maritime images under low-light conditions. The LGAN uses an attention mechanism to locally enhance
low-light images and prevent overexposure. Both mixed loss functions and local discriminator are then adopted to
reduce loss of detail and improve image quality. Meanwhile, to satisfy the demand for real-time enhancement of
low-light maritime images, model compression strategy is exploited to enhance images efficiently while reducing
the network parameters. Experiments on synthetic and realistic images indicate that the proposed LGAN can
effectively enhance low-light images with better preservation of detail and visual quality than other competing
methods.

1. Introduction

A maritime video surveillance system accurately records the real-time situation of surrounding waters,
which is an essential part of vessel traffic supervision (Huang et al., 2021; Liu et al., 2021). Through
the video surveillance system, managers can effectively and efficiently carry out early warning, remote
emergency handling and forensic investigations (Nie et al., 2019; Chen et al., 2021). Moreover, vessel
detection has been widely used in maritime surveillance, vessel rescue and other fields with significant
application value. It greatly promotes the intelligence of maritime traffic supervision, and becomes
an important auxiliary means of maritime video supervision. Many vessel detection methods have
been proposed, which have accurate detection results under normal lighting conditions. However, the
current mainstream vessel detection methods mostly rely on high-quality inputs. Due to the poor
weather and low illumination in the marine environment, it is difficult for shore-based cameras to obtain
clear images. The maritime images captured by shore-based surveillance cameras tend to have low
contrast and high noise, making it difficult for supervisors to automatically detect targets hidden in
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the dark (Guo et al., 2022). Such degraded images make it more difficult to perform target detection
robustly and accurately. In addition, influenced by the traffic environment, the images captured by
surveillance cameras are characterised by a complex background and small (vessel) targets. These result
in less structural information that can be used for image restoration, thereby increasing the difficulty
of maritime surveillance. Image enhancement aims to improve the quality of images commonly using
computer vision technologies. Low-light image enhancement can provide clear and reliable inputs
for vessel detection tasks, which has positive significance for improving the intelligence of maritime
supervision.

Traditional enhancement methods are mainly classified into two categories: histogram equalisation-
based methods and retinex-based methods. Retinex-based methods are widely used to enhance
non-uniformly illuminated images. This kind of method first estimates the light component of a low-
illumination image by manual priors and parameter adjustment, then obtains the enhanced image directly
or indirectly according to the retinex theory (Land, 1964). For example, Wang et al. (2013) proposed
a bi-log transformation for mapping illumination to strike a balance between details and naturalness.
A method was proposed by Guo et al. (2016) effectively to achieve low-illumination image enhance-
ment (LIME) by estimating only the illumination map. A weighted variable model was proposed by
Fu et al. (2016) to estimate the illumination and reflection components of low-illumination images
to improve non-uniform illumination images. As traditional methods suffer from problems such as
artificial prior and parameter optimisation, deep learning-based methods are widely used to enhance
images, such as SICE (Cai et al., 2018), RetinexNet (Wei et al., 2018), etc. These mainstream meth-
ods have been proven to have good enhancement effects in traditional imaging scenarios. However,
most deep learning-based methods are not feasible in aiding vessel detection because they do not take
into account the characteristics of marine images. Maritime images are characterised by a high per-
centage of sky background and small vessel targets, which makes less information available for image
recovery. All of these undoubtedly increase the difficulty of low-light image enhancement in maritime
applications.

Therefore, the existing image enhancement methods need further improvement when applied to mar-
itime scenes. To efficiently enhance image quality in practical applications, we develop a lightweight
generative adversarial network (LGAN) to facilitate maritime supervision tasks. The LGAN uses the
residual networks and pyramidal dilated convolutional (PDC) layer for powerful feature extraction.
Meanwhile, the attention mechanism is introduced to enable adaptive enhancement of different illumi-
nation regions based on the light distribution maps. In addition, a local discriminator is designed to guide
LGAN to obtain more realistic enhancement results. The following points are the main contributions of
this paper.

• To guarantee efficient image enhancement under low-light imaging conditions, LGAN is proposed
for promoting video-based maritime surveillance systems.

• An attention mechanism, which captures the robust illumination map, is further incorporated into
the proposed LGAN network. It is capable of handling low light and preventing overexposure.

• Comprehensive experiments on image enhancement and vessel detection are performed to evaluate
the method in terms of both effectiveness and robustness.

The remaining part of this paper is divided into the following sections. A brief review of related works
is provided in Section 2. Section 3 introduces the LGAN in detail. Section 4 shows the experimental
details and demonstrates the effectiveness of the LGAN through extensive experiments. Finally, the
work is summarised and future work is discussed in Section 5.

2. Related works

There are numerous low-visibility image enhancement methods, which can be broadly classified into
three classes: histogram equalisation-based methods, retinex-based methods and deep learning-based
methods. In this section, these three methods will be introduced separately.
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2.1. Histogram equalisation-based methods

Histogram equalisation (HE) improves image contrast by smoothing and non-linearly stretching the
dynamic range of an image histogram (Pizer et al., 1987). This kind of method can be subdivided into
global and local HE, i.e., GHE and LHE (Senthilkumaran and Thimmiaraja, 2014). GHE directly adjusts
the overall greyscale of the degraded image according to the global information (Reza, 2004). Quadrant
dynamic HE (QDHE), proposed by Ooi and Isa (2010), obtains better enhanced images without noise
amplification and excessive enhancement. However, the GHE-based enhancement method cannot extract
detailed information from low-light images. In contrast, LHE could effectively acquire small-scale details
in low-light images to achieve local enhancement (Kim et al., 2001). Valuchamy and Subramani (2019)
introduced an efficient enhancement method based on improved adaptive gamma correction and HE.
Although the HE-based methods can be implemented efficiently, they do not suppress noise generation
and may lead to image distortion (Wang et al., 2020).

2.2. Retinex-based methods

Retinex theory (Land, 1964) was first introduced by Edwin Land in the 1970s. It states that the physical
properties of an object seen by human eyes are independent of the external environment and the
illumination of incident light, but only directly related to the reflective properties of this observed
object. The classical retinex-based imaging methods include single-scale retinex (SSR), multi-scale
retinex (MSR), and MSR with colour restoration (MSRCR) (Choi et al., 2008). SSR (Jobson et al.,
1997b) cannot compensate for both details and illumination enhancement at the same time. Although
MSR (Lin and Shi, 2014) has been proposed based on SSR, it suffers from edge blurring when enhancing
images. MSRCR (Petro et al., 2014) can be effective in reducing random noise and restoring image
colours. As the correlation between different colour components is neglected in colour restoration, it
often suffers from colour inversion and distortion problems (Jobson et al., 1997a; Ma et al., 2017). Kim
et al. (2019) used the maximum value obtained during diffusion as the illumination component. After
adjusting the illumination component by global stretching, it is combined with the reflection component
to generate the final enhancement image with local refinement.

2.3. Deep learning-based methods

Compared with traditional imaging methods, deep learning-based low-light image enhancement methods
have gained significant attention from both academia and industry. These methods are mainly divided
into two classes: supervised and unsupervised learning methods (Zhao and Shi, 2019). The supervised
learning methods require training model with labelled paired data to optimise network parameters.
For example, Lore et al. (2017) designed a stacked sparse denoising autoencoder to enhance low-light
images, demonstrating the effectiveness under different imaging conditions. Cai et al. (2018) trained
an enhancer for improving the contrast of underexposed or overexposed images. As these methods
require paired low-visibility and normal images for supervised training, there is a higher demand on the
datasets. In contrast, the unsupervised or self-supervised learning methods are free from the intrinsic
limitation of labelled data. The unsupervised learning-based methods train models based on the loss
functions and the light components of degraded images. Guo et al. (2020) proposed to consider the
low-light image enhancement as an image-specific curve estimation task. Xu et al. (2020) developed a
decomposition-and-enhancement framework in the frequency domain, which obtains the enhancement
results by recovering low-frequency information and high-frequency details from degraded images. More
recently, a novel multi-branch topology residual block (MTRB) strategy (Lu et al., 2022) was proposed
to restore low-light images. Benefiting from the development of generative adversarial networks (GAN),
Jiang et al. (2021) proposed the EnlightenGAN to train the model using unpaired images. However, it
is intractable to effectively restore the low-light images directly using existing deep learning methods in
maritime scenes.
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Figure 1. Attention-guided generative adversarial network. It consists of attention network and enhance-
ment network. Further, the enhancement network includes three parts: Res-Net, PDC module and FFM.

3. LGAN: lightweight generative adversarial network

In low-illumination environments such as cloudy weather or nighttime, the images captured by shore-
based video cameras may lose important image details. This phenomenon would lead to a negative
impact on maritime surveillance tasks. Currently, there are few low-illumination image enhancement
methods suitable for marine scenes. To assist vessel detection, we design a LGAN for maritime image
enhancement. The LGAN tends to deliver a self-regularised light distribution map as a self-adjusting
attention map to the network for better enhancement results. In this section, the network architecture
and loss function will be introduced in detail.

3.1. Network architecture

We design the LGAN with reference to the attention-guided GAN, as shown in Figure 1. In the generator,
the attention network estimates the light distribution of low-light images to distinguish the underexposed
and normally exposed regions. The attentional feature maps enable the enhancement network to focus on
local information of the degraded images, which can effectively solve the problem of over-enhancement.
The enhancement network obtains an enhanced image by performing a series of transformations on the
degraded image. It mainly consists of three components, i.e., residual network (Res-Net), PDC module,
and feature fusion module (FFM). Res-Net is a residual network with 15 residual blocks for extracting
deep features of low-light images. Each residual block contains two convolutions and a shortcut path.
The residual blocks learn features by skip connection, which is a flexible structure (Liu et al., 2022).

Although the attention-guided GAN can effectively enhance low-illumination images, the long
computational time does not satisfy the requirement of real-time vessel detection. To reduce the com-
putational effort and to realise real-time computation, we propose the lightweight version (i.e., LGAN)
based on the attention-guided GAN shown in Figure 1. When designing the LGAN, the attention net-
work was first removed to reduce the number of network parameters. Accordingly, the self-regularised
light distribution map is exploited to implement the attention mechanism, which can effectively prevent
overexposure while reducing the computational effort. At the same time, the feature extraction network
is changed from Res-Net-15 to Res-Net-5 to further simplify the network. Further, we replace the stan-
dard convolution in the model with the depthwise separable convolution, and replace the residual block
in Res-Net with the inverse residual. To avoid information loss, only the activation function of the last
point convolution is retained, and the batch normalisation is removed. The structure of the generator
in LGAN is shown in Figure 2. The generator G of LGAN consists of three main parts, i.e., inverted
residual network (Inverted Res-Net), PDC module and FFM.

The Inverted Res-Net is the backbone of our LGAN, which avoids information loss while deepening
the network hierarchy. The addition of the inverse residual module can effectively strengthen the ability
of the LGAN to extract features from low-illumination images. The PDC module is applied to multi-
scale spatial feature extraction, which minimises the loss of structural information. FFM fuses the deep
and multi-scale features extracted by the Inverted Res-Net and PDC module.
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Figure 2. Flowchart of LGAN. LGAN has three main components, i.e., Inverted Res-Net, PDC module and FFM. In particular, the attention mechanism
is implemented by introducing a self-regularised light distribution map in LGAN.
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The original low-illuminance images and the brightness distribution maps are stitched together as the
inputs of LGAN. The inputs first pass through a residual network structure with five inverted residual
modules to extract features of the low-light images. Dilated convolution can increase the receptive fields
and capture multi-scale context information without increasing the amount of network calculations. We
thus add the PDC module after the Inverted Res-Net to extract multi-scale spatial features to avoid or
minimise the loss of structural information. The PDC module includes a group of dilated convolutions
which have different dilation rates. It has four parallel paths, each of which contains a dilated convolution
and a convolution kernel of size 1× 1. The related dilation rates are one, two, four and six, respectively.
The features extracted by Inverted Res-Net are spliced with the features extracted by each path of
the PDC module. Four convolutional layers are then exploited to fuse the spliced features. They are
multiplied with the illuminance distribution map and then added to the original low-illuminance image
for final output.

Normally, there is an inconsistent degree of information loss in different illuminance regions of
an image, thus we designed a discriminator, D, which could autonomously give different attention to
different illuminance regions. The discriminator D consists of seven convolutional layers and two fully
connected layers. In particular, multiple convolutional layers are used progressively to extract image
features. The fully connected layers determine whether the image is real based on the extracted features.

The input images of the discriminator D are first passed through five convolutional layers for feature
extraction. The feature maps extracted from the fifth convolutional layer pass through two branches.
One branch is used to calculate the loss with the illuminance distribution map. The other branch works
as input to the sixth convolutional layer. After two convolutional layers and fully connected layers, the
extracted features are summarised to obtain the discriminant results. In order to reduce the parameter
redundancy, we obtain a lighter GAN model by re-training this discriminator after pruning it.

3.2. Loss function of LGAN

Different optical devices and sensors may cause different non-linear distortions. Although the images
are processed when constructing the dataset, there are still varying degrees of pixel-level offset between
images. Therefore, it is obviously difficult to obtain accurate outputs using only loss functions based on
pixel point differences, such as 𝐿1 and 𝐿2 loss functions. To improve the overall perceptual quality of
the recovered image, we propose an improved loss function, which mainly consists of the generator loss
𝐿𝐺 and the discriminator loss 𝐿𝐷 .

3.2.1. Perceptual loss
The VGG-16 network pre-trained on the ImageNet dataset has strong feature extraction capabilities. It
is typically applied to extract high-level features from both generated images and target images. The
similarity among images is measured by calculating the pixel-level differences between these higher-level
features. Therefore, the content perception loss defined in this paper is as follows:

𝐿con =
1
𝑁
| |𝜙 𝑗 (𝐺 (𝐼)) − 𝜙 𝑗 (𝐼) | |

2
2, (1)

where 𝜙 𝑗 represents the high-level feature extracted in the j-th convolutional layer of VGG-16, G
represents the network of generator, N is the total number of training samples, I and 𝐼 denote the input
and target images, respectively.

3.2.2. Colour loss
It is necessary to measure the differences in colour between the enhanced and normally-illuminated
images. To better evaluate the colour differences, the Gaussian blur function is employed to weaken
edge details in an image (Ignatov et al., 2017). In this work, the Euclidean distance between the images
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after Gaussian blurring is given by

𝐿col = | |𝑔(𝐺 (𝐼)) − 𝑔(𝐼) | |22, (2)

where g denotes the Gaussian blur function.

3.2.3. Adversarial loss
Adversarial loss urges the generator to generate a more natural enhanced image in terms of colour,
texture, contrast, etc. Its definition is as follows:

𝐿𝑎𝑑𝑣 = log(1 − 𝐷 (𝐺 (𝐼))), (3)

where D represents the network of the discriminator.

3.2.4. Gradient loss
As maritime images captured in low-visibility environments tend to be heavily affected by noise, image
quality may suffer to some degree. The gradient loss is thus designed to achieve the denoising effect by
calculating the square of the gradient difference between images. It makes the enhanced image spatially
smooth. The gradient loss can be expressed as

𝐿𝑔𝑑 = | |∇𝑥 𝐼 − ∇𝑥 𝐼 | |
2
2 + ||∇𝑦 𝐼 − ∇𝑦 𝐼 | |

2
2, (4)

where ∇𝑥 and ∇𝑦 , respectively, denote the gradients in the x and y directions.
Compared with normal convolutions, deep separable convolutions can reduce the amount of parame-

ters while causing a partial loss of network performance. The 𝐿2 loss is then applied to ensure structural
similarities between the generated and clear images. The 𝐿2 loss function is defined as follows:

𝐿2 = | |𝐼 ′ − 𝐼 | |22, (5)

where 𝐼 ′ represents the feature obtained by the Inverted Res-Net.
Therefore, the total loss of generator in LGAN is defined as follows:

𝐿𝐺 = 𝜔con𝐿con + 𝜔col𝐿col + 𝜔adv𝐿adv + 𝜎𝐿gd + 𝜇𝐿2, (6)

where 𝐿con, 𝐿col, 𝐿adv, 𝐿gd denote the content perceived loss, colour loss, adversarial loss and gradient
difference loss, respectively, 𝜔con, 𝜔col, and 𝜔adv represent the corresponding weight parameters, 𝜎 and
𝜇 are weighting parameters.

Based on the distribution of light in different light regions between the enhanced and sharp images,
the discriminator D obtains the probability that the input is true or false. Thus, the discriminator loss
𝐿𝐷 can be written as follows:

𝐿𝐷 = − log(𝐷 (𝐼)) − log(1 − 𝐷 (𝐺 (𝐼))) + 𝛾𝐿map, (7)

where 𝛾 denotes the weight parameter, 𝐿map represents the loss between the feature maps extracted from
discriminator and the light distribution maps. The 𝐿map can be written as follows:

𝐿map =
1
𝑁
| |𝐷 (𝐺 (𝐼))5 − 𝐴| |22 +

1
𝑁
| |𝐷 (𝐼)5−0| |22, (8)

where 𝐷 (·)5 represents the fifth layer convolution of discriminator, A indicates the light distribution
map. Since 𝐼 indicates a real clear image, zero means it has no specific region on which to focus.
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Figure 3. Some examples of paired clear/low-light images. The original sharp images are on the top
row, above the corresponding synthetic low-light images.

4. Experimental results and analysis

The synthesis dataset adopted for network training is described in this section. Details of the experimental
platform and experimental parameter settings are also introduced. To demonstrate the effectiveness of
the LGAN, both quantitative and qualitative experiments were conducted on both synthetically-degraded
and original images.

4.1. Synthetically-degraded image generation

The LGAN is proposed to enhance low-light maritime images. It learns how to map from degraded
images to latent sharp images through supervised learning. It thus needs many paired images to complete
the network training. However, it is hard to capture both low-visibility and sharp images jointly in a
dynamic environment. The existing datasets could not be directly employed to train our network for the
enhancement of low-light maritime images.

In this paper, a mixed dataset of realistic and synthetic images is used to complete the network
training. The synthetic low-illumination images are obtained by globally reducing the brightness of
normal images. The dataset we used is partially derived from the publicly available SeaShips dataset
(Shao et al., 2018). By filtering out poor-quality images (e.g., motion blur and focus blur), 500 normally-
illuminated images of size 1920× 1080 were randomly obtained. Each clear image was translated
from the RGB (red, green, blue) colour space to the Hue-Saturation-Value (HSV) colour space. The
illumination component V of each image was then reduced by a randomly selected scale factor in the
range from 0 to 0 · 5. After transforming them back into RGB colour space, we finally obtained 500
pairs of clear/low-light images. Figure 3 shows the synthesised results from some clear images.

To increase the diversity of training data samples, another part of the training dataset was derived
from the LOL dataset (Wei et al., 2018), which has 500 pairs of low-illumination/clear images acquired
from the real world with a resolution size of 600× 400. To reduce the training time, the training images
were first randomly cropped into image blocks of size 128× 128 before being fed into the network. In
addition, the dataset was enlarged using popular augmentation methods, such as random translation and
horizontal and vertical flipping. Such operations can effectively strengthen the generalisation ability of
an image enhancement network. Results with different augmentation methods are shown in Figure 4.

4.2. Implementation details

During the network training, the initial learning rate, decay rate and decay coefficient are set to 0 · 002,
1,000 and 0 · 96, respectively. Moreover, the exponential decay method is used to reduce the learning
rate. Both Adam optimiser and momentum optimiser are exploited in the generator and discriminator
for network parameter optimisation. The LGAN is trained using a small batch training method with a
batch size of eight and a number of iterations of 200. The weight parameters 𝜔con, 𝜔col, 𝜔adv, 𝛾, 𝜎 and
𝜇 are 2, 11, 0 · 01, 0 · 05, 10 and 1, respectively.
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Figure 4. Examples of different augmentation methods: (a) original images, and augmented images
obtained by (b) horizontal flipping, (c) vertical flipping, (d) random translation.

In this paper, each convolutional layer adopts the same filling method. Meanwhile, to increase the
nonlinearity of the LGAN, only the last convolutional layer of the generator uses the sigmoid function
as the activation function. Leaky rectified linear unit (Leaky ReLU) is added after all other convolution
layers, and the negative slope of Leaky ReLU is set to 0 · 2.

To reduce the computing time of the LGAN, the self-regularised light distribution map (Jiang et al.,
2021) can be obtained through the following equation

𝐴 = 1 −
max𝑐 (𝐼)

255
, (9)

where max𝑐 (·) represents the maximum value of each channel of input I. The light distribution maps
obtained by Equation (9) are stitched with the low-visibility image as the inputs to LGAN.

4.3. Comparisons with other competing methods

In this subsection, the following comparison methods are chosen to participate in the image enhancement
experiments.

• SRIE: Simultaneous reflectance and illumination estimation (Fu et al., 2016) divides the low-visibility
image into reflectance and illumination components. The recovered image could be obtained using
the retinex theory. It effectively improves the whole brightness and contrast of low-visibility images.

• LIME: LIME (Guo et al., 2016) is a simple and efficient enhancement method that refines the initial
light map through a prior as the final light map, and generates the result based on the light map.

• RetinexNet: RetinexNet (Wei et al., 2018) constrains the consistency of reflectance for
low-light/clear images. Numerous experiments have shown that it can obtain a better low-visibility
enhancement effect and represent image decomposition well.

• DPED: DSLR photo enhancement dataset (DPED) (Ignatov et al., 2017) is an end-to-end
enhancement method, which can directly generate enhanced images from low-visibility images
through the network.

• LightenNet: LightenNet (Li et al., 2018) directly learns the mapping of low-illumination images to
light components through the convolutional neural network, then enhances the images based on
retinex theory.
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4.4. Evaluation metric

To evaluate the performance of different methods, two full reference evaluation metrics, i.e., peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM), are employed to evaluate the
similarity between images. Moreover, two no-reference metrics, i.e., NIQE and BRISQUE, are chosen
to assess the visual effect of generated images.

• PSNR: PSNR (Wang and Bovik, 2009) is an objective measure of the level of image distortion or
noise. The higher its value, the less noise the image contains. The formula for calculating PSNR is as
follows:

PSNR(𝑌,𝑌 ) = 10 log
𝑀2

MSE(𝑌,𝑌 )
, (10)

where M denotes the maximum pixel value, and MSE(·) indicates the mean square error.

• SSIM: SSIM (Wang et al., 2004) is used to measure the brightness, contrast and structural similarities
between two images. Therefore, SSIM displays favourable agreement with human observers. Its
value has a range from 0 to 1. The closer the value is to 1, the more similar the two images are.

• NIQE: NIQE (Mittal et al., 2012b) does not need to adopt a reference image, but simply uses the
measurable deviation of the target image to obtain the image quality evaluation value according to
the natural statistical characteristics. The NIQE metric is calculated as follows:

(𝑣1, 𝑣2,Σ1,Σ2) =

√
(𝑣1 − 𝑣2)

T
(
Σ1 + Σ2

2

)−1

(𝑣1 − 𝑣2), (11)

where 𝑣1, 𝑣2 and Σ1, Σ2 denote the mean vectors and covariance matrices of the Gaussian distribution
models of the natural and enhanced images, respectively.

• BRISQUE: BRISQUE (Mittal et al., 2012a) is a reference-free spatial domain image quality
evaluation algorithm. The principle of BRISQUE is to extract local normalisation coefficients
(MSCN) from images to fit them to generalised Gaussian distribution and asymmetric generalised
Gaussian distribution. In addition, it extracts 36 features using multi-scale images and derives
objective quality scores using support vector machine.

4.5. Experimental results on syntactic maritime images

Figures 5–7 visualise the enhancement results of LGAN and other comparable methods on synthetic
low-illumination images. It can be seen that SRIE and DPED have limited ability to enhance images
with dark regions. Their results have lower overall brightness compared with other enhanced images.
The images produced by RetinexNet have obvious differences in structure and colour compared with
the sharp images. LightenNet has limited effect on image enhancement, whose restored images have
irregular colour spots. As shown in Figure 7, LIME has better visual effect, but suffers from colour
distortion. In contrast, the proposed LGAN has a more stable enhancement effect on images with
different illumination levels. This is mainly due to the incorporation of attention mechanism, which
enables the LGAN to perform adaptive enhancement and have powerful generalisation ability.

PSNR and SSIM are used to further verify the enhancement ability and structure preservation ability
of LGAN. From Table 1, it can be seen that LGAN performs well in PSNR and SSIM evaluation metrics
compared with others. It indicates that LGAN not only significantly improve the contrast of images
and retain more detailed information, but also suppress unwanted noise. Thus, the visual qualities of
low-light images are significantly improved accordingly.
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Figure 5. Visual comparisons of proposed LGAN and mainstream methods on Image 1: (a) synthetic
low-light image, outputs obtained by (b) SRIE, (c) LIME, (d) RetinexNet, (e) DPED, (f) LightenNet, (g)
LGAN, (h) ground truth (GT).

Figure 6. Visual comparisons of proposed LGAN and mainstream methods on Image 2: (a) synthetic
low-light image, outputs obtained by (b) SRIE, (c) LIME, (d) RetinexNet, (e) DPED, (f) LightenNet, (g)
LGAN, (h) ground truth (GT).

Figure 7. Visual comparisons of proposed LGAN and mainstream methods on Image 3: (a) synthetic
low-light image, outputs obtained by (b) SRIE, (c) LIME, (d) RetinexNet, (e) DPED, (f) LightenNet, (g)
LGAN, (h) ground truth (GT).

https://doi.org/10.1017/S0373463322000467 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000467


The Journal of Navigation 1111

Table 1. Comparisons of PSNR and SSIM values for different competing methods on Images 1–3.

Methods

Image Evaluation metric SRIE LIME RetinexNet DPED LightenNet LGAN

Image 1 PSNR 13001 6 · 858 15 · 044 12 · 893 4 · 383 21 · 904
SSIM 0 · 658 0 · 416 0 · 771 0 · 642 0 · 298 0 · 955

Image 2 PSNR 13 · 596 6 · 708 14 · 353 10 · 479 6 · 259 20 · 521
SSIM 0 · 582 0 · 342 0 · 866 0 · 480 0 · 327 0 · 953

Image 3 PSNR 13 · 403 7 · 535 15 · 636 13 · 180 6 · 084 20 · 910
SSIM 0 · 701 0 · 540 0 · 794 0 · 727 0 · 459 0 · 944

Table 2. Comparisons of NIQE and BRISQUE values for different competing methods on Images 4–6.

Methods

Image Evaluation metric SRIE LIME RetinexNet DPED LightenNet LGAN

Image 4 NIQE 4 · 934 4 · 522 4 · 652 4 · 625 5 · 546 4 · 241
BRISQUE 0 · 491 0 · 493 0 · 487 0 · 502 0 · 534 0 · 482

Image 5 NIQE 5 · 961 6 · 567 5 · 513 5 · 068 7 · 492 5 · 502
BRISQUE 0 · 489 0 · 492 0 · 495 0 · 492 0 · 501 0 · 487

Image 6 NIQE 4 · 824 6 · 082 9 · 867 5 · 351 6 · 781 4 · 627
BRISQUE 0 · 501 0 · 492 0 · 483 0 · 497 0 · 472 0 · 395

4.6. Experimental results on realistic maritime images

To further verify the superiority of LGAN for low-light maritime image enhancement, numerous
experiments were conducted on realistic low-illumination images. The comparisons of visual effects
from different methods are shown in Figure 8. LIME can effectively improve the brightness of low-
light images. However, the enhanced results often suffer from the problem of local overexposure. The
images enhanced by LIME are not natural enough in practice. RetinexNet can cause colour distortion
in the images which is not suitable for auxiliary vessel detection. The images generated by LightenNet
have trouble with unnatural colour transitions. Although the images produced by DPED and SRIE are
visually pleasing, they both have a certain level of detail loss. Compared with LGAN, the enhanced
images of SRIE are more blurred, which indicates that SRIE is less effective in recovering details.
Although DPED can achieve the purpose of improving illumination, the enhanced images show colour
deviation and colour distortion. In contrast, the LGAN is more capable of enhancing the brightness
and contrast, while being able to retain more image details. The images enhanced by LGAN are more
natural and have better visual appearances.

In addition, NIQE and BRISQUE were selected to evaluate quantitatively the imaging quality for
different image enhancement methods. As illustrated in Table 2, although the NIQE score of LGAN is
lower than DPED in Image 5, the BRISQUE metrics of LGAN perform better than other competing
methods. It shows that LGAN performs better enhanced effects on low-illumination maritime images.

4.7. Running time analysis

To verify the advantages of LGAN in terms of model size and running time, this subsection com-
pares the proposed LGAN method with three other methods, i.e., RetinexNet, DPED and LightenNet.
As shown in Table 3, two maritime images with different resolutions were chosen to compare the
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Figure 8. Visual comparisons of proposed LGAN and mainstream methods on Images 4–6. The three rows, from top to bottom, are Image 4, Image 5 and
Image 6, respectively.
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Table 3. Comparisons of running time (in seconds) and model size for different competing methods.

Image size

Method Platform Model size (in Megabytes or Kilobytes) 480× 270 640× 360

RetinexNet Python 8 · 069M 1 · 700 1 · 793
DPED Python 1 · 532M 0 · 051 0 · 062
LightenNet Matlab 227K 4 · 452 5 · 127
LGAN Python 282K 0 · 022 0 · 036

running time for different image enhancement methods. All experiments were performed on a com-
puter with the Intel (R) Core (TM) i5-10600KF CPU @ 4.10 GHz and Nvidia GeForce GTX 2080
Ti GPU.

Although the model size of the LGAN is slightly larger than LightenNet, LGAN generates shorter
running time than both DPED and LightenNet. This is because only standard convolution is used in
DPED for feature extraction. LightenNet uses an additional intermediate operation such as bootstrap
filtering in the image enhancement process, which consumes some extra time. In contrast, LGAN uses
deeply separable convolution instead of standard convolution to significantly reduce computational
effort. In addition, the model pruning and compression operations allow the model size to be greatly
compressed without compromising the imaging performance. These operations allow LGAN to satisfy
the demands of real-time low-light image enhancement in maritime surveillance tasks.

4.8. Experiment on vessel detection under low-light environment

This subsection presents vessel detection experiments designed to demonstrate that the proposed LGAN
can improve the robustness and accuracy of maritime target detection in low-light imaging environments.
In the current literature, many target detection methods have been proposed to promote traffic situation
awareness. In this paper, the popular YOLOv4 (Bochkovskiy et al., 2020) is used to perform the vessel
detection experiments. The YOLOv4 model employed in our experiments is trained using the SeaShips
dataset. We adopt two main vessel detection schemes. One solution directly uses YOLOv4 to detect
vessels on low-light images. The other solution first uses the LGAN to recover degraded images, and
then performs the YOLOv4-based vessel detection.

The vessel detection results on synthetic and realistic scenarios are shown in Figures 9 and 10,
respectively. It is obvious that the implementation of YOLOv4 alone in a low-illumination environment
is prone to missed and undetectable detection. If the proposed LGAN is first exploited to perform low-
light image enhancement, the intrinsic features of targets of interest could be highlighted from low-light
environments. Therefore, the robustness and accuracy of vessel detection are significantly improved
accordingly.

5. Conclusion and future work

This paper presents a lightweight image enhancement network, called LGAN, designed for enhanc-
ing maritime images under low-light imaging conditions. The LGAN uses an attention mechanism
to enhance low-light images locally and prevent overexposure. Both mixed loss functions and local
discriminators are introduced to reduce the loss of detail as well as to improve visual image quality.
Extensive experiments demonstrated that the proposed LGAN can enhance low-illumination maritime
images effectively compared with other competing methods.

Although this paper presents an effective method to enhance low-light images in maritime surveillance
videos, there are still some shortcomings. (1) Images taken on sunny days are prone to local high
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Figure 9. Vessel detection experiments on synthetic low-visibility maritime images (a). Vessel targets are not easily detected in the synthetic low-illumination
images. After enhancement by LGAN (b), the target detection results are very close to ground truth (GT) (c).
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Figure 10. Vessel detection experiments on real maritime images (a). Some vessels are not detected on real low-visibility images and there is a problem of
repeated detection. In contrast, using LGAN to pre-process low-visibility images can significantly improve the robustness and accuracy of vessel detection
(b).
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illumination such as water reflections. The proposed method only enhances maritime images under low-
light imaging environments and does not consider such problem. It is thus necessary to further extend the
LGAN to handle water reflections. (2) Maritime images often suffer from a variety of adverse weather
conditions, e.g., low light, haze, rain and snow, etc. However, our LGAN is only capable of enhancing
low-light images. To meet the requirement of high-quality image enhancement under complex imaging
conditions, there is thus a great potential to develop a unified network to restore degraded images
under different adverse weather conditions. In addition, due to its superior performance in robustness
and efficiency, the lightweight LGAN can be naturally deployed on devices such as unmanned surface
vehicles (USVs) and unmanned aerial vehicles (UAVs). Therefore, with the LGAN-based low-light
image enhancement, the accuracy and robustness of target detection, recognition and tracking would be
accordingly improved for USVs and UAVs in practical applications.
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