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Abstract

With the advent of intense, coherent light sources in the XUV and soft X-ray regime, X-ray Thomson scattering becomes a
unique tool for the diagnostics of dense plasmas. The scattering spectrum gives direct access to plasma properties like
density, temperature, and composition. In dense systems, collisions among constituents are of primary importance for
the prediction and interpretation of the scattering signal. We present a systematic approach to the dynamical structure
factor using the Born-Mermin ansatz to include collisions via the dynamical collision frequency. Calculations of the
scattering spectrum are performed for X-ray scattering on solid and compressed beryllium targets as well as for XUV-
photons scattering on hydrogen at near solid density.
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1. INTRODUCTION

Plasma diagnostics using electromagnetic probes
(Hutchinson, 1987) has been successful to characterize a
great variety of states of matter relevant for, e.g., fusion
research or technical applications. Recent developements of
spatially and or temporally coherent sources of intense short
wavelength radiation in the X-ray-ultraviolet (XUV) and
soft X-ray regime (Ackermann et al., 2007; Landen et al.,
2001; Lee et al., 2003a) allow for the application of spec-
troscopy (Zastrau et al., 2008) and scattering techniques
(Glenzer et al., 2003; Riley et al., 2007) also in the field of
warm dense matter (WDM) (Riley et al., 2002; Lee et al.,
2003b). Thereby we refer to states of matter at densities
ranging from slightly below condensed matter to electron den-
sities ne corresponding to several times the solid densities, i.e.,
compressed matter, and temperatures T of several eV.

At those conditions, optical lasers, the traditional “working-
horse” of plasma spectroscopy and plasma scattering, cannot
be used in WDM related experiments due to the short critical
wavelength lcrit ¼ 2p=vpl,e, where vpl,e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=e0me

p
is the

electronic plasma frequency. For instance, at electron densities
of ne ¼ 1023 cm23, the critical wavelength is lcrit’ 100 nm,
i.e., radiation of longer wavelength is reflected at the surface,

only photons of shorter wavelength can penetrate the
medium and probe the inner layers of the plasma. Recently, col-
lective Thomson scattering on solid density targets using few
keV X-ray sources has been demonstrated (Glenzer et al.,
2007; Kritcher et al., 2008; Garcia Saiz et al., 2008). A
similar experiment, using the free electron laser facility
FLASH at DESY, Hamburg, to scatter from solid density
kryogenic hydrogen, was designed by Höll et al. (2007),
see also Cao et al. (2007) for the same setup using a
PMMA target.

Under WDM conditions, the plasma coupling parameter

Ge ¼
e2

4pe0 kBT

4pne

3

� �1=3

, (1)

i.e., the ratio of correlation (Coulomb) energy to kinetic
energy, as well as the degeneracy parameter

u ¼
kBT

EF
, (2)

are close to unity; EF ¼ h� 2(3p2ne)2=3=2me is the electronic Fermi
energy. This means that the system can neither be described as
an ideal, classical plasma, neglecting the interaction among
particles, nor as an ideal quantum gas at zero temperature.
Both particle interactions and strong correlations as well as
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partial quantum degeneracy have to be accounted for in theor-
etical models for WDM.

Besides state-of-the-art computer simulation methods
based on, e.g., finite-temperature density functional theory
(Holst et al., 2008) or Quantum Monte Carlo techniques
(Militzer & Pollock, 2005), analytical approaches to WDM
are indispensable. They provide benchmark calculations for
the purely numerical methods and allow to treat also
regions of the parameter space not accessible by numerical
methods, such as lower densities or high temperatures (clas-
sical, weakly coupled plasmas), or very high densities and
low temperatures (completely degenerate systems).

In this article, we elaborate an analytical approach to the
dynamical structure factor, which is the central quantity in
determining the Thomson scattering spectrum from a corre-
lated plasma. By using the Born-Mermin ansatz for the con-
tributions from free electrons to the scattering spectrum, we
go beyond the widely used random phase approximation
(see Gregori et al., 2003). The aim is to present a closed
set of formulae that allow the quick and reliable calculation
of Thomson scattering spectra as a function of the transfer
wavenumber k and the transfer energy h�v which depend on
the plasma parameters density, temperature, and ionization
stage as well as the photon energy of the probe and the scat-
tering angle. The approach is valid for classical, non-
degenerate plasmas as well as for moderately degenerate
plasmas, where 0.1 , u , 1. Thus, it can be applied to scat-
tering from classical, weakly coupled plasmas, WDM, as
well as from cold targets (metals). For example, a system
being transferred from a condensed matter state at low temp-
eratures and high densities to WDM conditions by, e.g.,
interaction with intense, short pulse laser radiation, and
being probed by Thomson scattering at various times of its
evolution (Kritcher et al., 2008) can be described within a
common, unified approach.

A central issue is in this context how collisions among the
different particles and their impact on the scattering spectrum
can be described in a consistent way. This will be achieved via
the Born-Mermin ansatz, which will be discussed in detail.
It will be shown that collisions are most important in the
regime of WDM. At much higher temperatures or lower den-
sities (weakly coupled plasmas) as well as in the case of
strongly degenerate systems near T ¼ 0 K and at high
densities, the collisionless theory is sufficient to describe
the scattering spectrum (Thiele et al., 2006; Thiele, 2007).

For the sake of completeness, we should mention that
inverse Thomson scattering has recently known increasing
interest as a mechanism to generate short-wavelength coher-
ent radiation by scattering optical laser radiation on a coun-
terpropagating relativistic electron beam (Bessonov et al.,
2008; Kulagin et al., 2008). Pulses of X-ray radiation with
9 � 106 photons per pulse have been predicted, e.g., by
Priebe et al. (2008), using this technique.

The work is organized as follows: After this introduction,
the theory of Thomson scattering will be outlined. A thorough
analysis of the scattering geometry is followed by the

introduction of the dynamical structure factor, i.e., the
density autocorrelation function that gives the scattering
intensity in a many-particle system. Its high-frequency part,
containing the scattering on collective plasma waves (plas-
mons), is tightly connected to the electronic density response
function or dielectric function. In Section 3, the Born-Mermin
approach for the dielectric function will be introduced, which
allows to include collisions into the high-frequency part of the
dynamic structure factor via the collision frequency. The col-
lision frequency determines the width of the plasmon reson-
ance in addition to Landau damping, which is described by
the random phase approximation (RPA), i.e., the mean-field
approximation, where collisions are neglected. Section 4 con-
tains synthetic spectra for various experimental conditions. In
particular, scattering of X-rays on solid density and com-
pressed beryllium will be calculated as well as scattering of
XUV free electron laser radiation on near solid density hydro-
gen. Section 5 contains a summary and the conclusions.

2. THEORY OF THOMSON SCATTERING AND
DYNAMICAL STRUCTURE FACTOR

Consider the scattering of a plane electromagnetic wave
moving along the z-axis of the reference frame with wavevec-
tor ki ¼ kiez and frequency vi and with its electric field vector
oriented parallel to the x-axis (cf. Fig. 1), scattering on an
electron. Classical eletrodynamics tells us that the electron
will rescatter the incoming light into a solid angle dV with
a differential scattering cross-section defined by the scatter-
ing angle q and the azimuthal angle w through

ds

dV
¼

e2

4pe0mec2

� �2

(1� cos2 w sin2 q): (3)

Note that the accurate treatment of this problem within the fra-
mework of quantum electrodynamics leads to the same result
in the limit of small photon energies, i.e., h� vi � mec2. The
total scattering cross-section, obtained after integration over
the solid angle dV ¼ sinqdqdw, yields the well-known

Fig. 1. Schematic view of the scattering geometry. The incoming wave,
characterized by the wavevector ki and polarization plane (plane of the elec-
tric field vector Ei) is scattered into the direction of the detector, which fixes
the direction of the final wavevector kf, k ¼ kf 2 ki is the transfer wavevec-
tor, q is the scattering angle, w is the angle between the plane of polarization
of the initial wave and the plane spanned by ki and kf.
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Thomson cross-section

sT ¼
8p
3

e2

4pe0mec2

� �2

¼ 6:65� 10�29m2: (4)

Besides the shift in the wavevector k, determined by the scat-
tering geometry, also the frequency of the scattering wave is
shifted due to the Doppler effect,

k ¼ jkf � kij ¼ (k2
i þ k2

f � 2kikf cosq) ’ 2ki sin (q=2), (5)

v ¼ vf � vi ¼ k � v, (6)

with the velocity of the electron v.
The scattering from a many-particle system takes place on

the density fluctuations. Thus, one needs to know the total elec-
tron density autocorrelation function kntot

e (k, t)ntot
e
�(k, t þ t)lt to

determine the scattering cross-section. By k. . .lt, we denote the
averaging over the equilibrium ensemble, i.e., the correlation
function is independent of the time argument t. Its Fourier
transform, the dynamical structure factor (DSF)

See(k, v) ¼
1

Ne

ð1

�1

dt exp (ivt) kntot
e (k, t)ntot

e
�(k, tþ t)lt , (7)

yields the scattering spectrum as function of the frequency shift
and the transfer wavevector,

d2s(k, v)
dv dV

� �
corr

¼
d2sT

dv dV
See(k, v)

¼
e2

4pe0mec2

� �2

(1� cos2 w sin2 q) See(k, v):

(8)

Due to the cos w term in the scattering cross-section, the
scattering most efficiently takes place into a plane that is per-
pendicular to the polarization plane of the incoming wave,
i.e., for w ¼ 908. For unpolarized light, the cross-section
should be averaged over all initial polarizations, yielding

d2 �s(k, v)
dv dV

� �
corr

¼
e2

4pe0mec2

� �2
1þ cos2 q

2
See(k, v): (9)

The DSF is a key quantity in many-particle theory, measur-
ing the degree of correlation in the system. Besides the Doppler
broadened single-particle spectrum, it also contains the collec-
tive excitations in the plasma, such as ion acoustic waves and
longitudinal plasma oscillations (plasmons). The latter are
visible in the scattering spectrum as inelastic contributions,
shifted from the frequency of the incoming photon by
roughly the plasma frequency vpl,e. Ion acoustic waves, on
the other hand, are not detectable in X-ray scattering spectra
due to the finite probe and detector bandwidth and, thus,
merge with the elastically scattered part of the spectrum.

In general, the scattering parameter

a ¼
kD

k
, (10)

separates between collective and non-collective scattering.
Here, the inverse Debye screening length kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=e0kBT

p
was introduced. In the collective scattering regime, i.e.,
a . 1, the collective motion is detected, whereas in the non-
collective scattering regime, small length scales are resolved,
i.e., the scattering is sensitve to the individual particles.

Due to Eq. (8), Thomson scattering provides a mean to
perform a direct measurement of the DSF; and thus to
check concepts of many-particle theory in this strongly cor-
related regime. After integrating the DSF over its frequency
argument, the static structure factor is obtained,

ð1

�1

dv

2p
See(k, v) ¼ See(k): (11)

The latter is related to the well-known pair correlation func-
tion gee(r), i.e.,

See(k) ¼
ð

d3k

(2p)3 exp (ik � r)[gee(r)� 1]: (12)

This relation allows for the comparison between analytical
approaches to the DSF and molecular dynamics (MD) or
quantum molecular dynamics (QMD) simulations of strongly
correlated systems, which usually provide particle trajec-
tories (orbitals) and thereby allow the determination of the
pair correlation functions. Furthermore, the static structure
factor is directly related to equation-of-state properties and
thermodynamic functions. For instance, the isothermal com-
pressibility of the electron subsystem ke

T ¼ �(@V=@p)T=V is
given by the value of the static structure factor at vanishing
wavenumber, i.e. ke

T=k
e,0
T ¼ See(k ¼ 0), where k

(0)
e,T is the iso-

thermal compressibility of the ideal gas.
Various approaches exist to determine the DSF in corre-

lated systems. Among these are analytical techniques,
based on many-body perturbation theory (Mahan, 1981)
and linear response theory (Zubarev et al., 1996). In this
article, we apply the Born-Mermin approach (Redmer
et al., 2005; Höll et al., 2007; Thiele et al., 2008) to
the DSF.

In the chemical picture, i.e., treating electrons, ions of
different charge states, and neutrals as separate species and
neglecting transitions between these species (i.e., recombina-
tion or ionization), one can decompose the DSF into various
contributions, as was shown by Chihara (2000),

See(k, v) ¼ j fi(k)þ q(k)j2Sii(k, v)þ Zc

ð1

�1

dv0Sc(k, v)

� Ss(k, v� v0)þ ZfS
0
ee(k, v): (13)
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The first part gives the correlation of electrons that are weakly
and tightly bound to the ions and follow the ion’s movement
adiabatically. The amplitude is determined by the atomic
form factor fi(k), i.e., the charge distribution of the electrons
in the valence shell orbitals and the screening cloud q(k),
which gives the distribution of quasi-free electrons screening
the ion’s charge (Gregori et al., 2007). Due to the ion’s com-
paratively large mass, they carry only a very small recoil
energy and hence, the ion contribution forms a narrow reson-
ance aroundv ¼ 0, i.e., at the initial frequency of the scattering
photon. For the present conditions (photon energies between
0.1 and 10 keV), the ion feature cannot be resolved.
Therefore, the frequency dependence of the ion feature is
usually condensed into a delta function, i.e., Sii(k, v) ¼
Sii(k) d (v). Note however, that the ion feature can be measured
with high resolution in optical Thomson scattering on dilute
plasmas (e.g., magnetic fusion plasmas), see Snyder et al.
(1994).

The second term contains the contribution of core elec-
trons, Sc(k, v) and describes Raman type transitions of
inner shell electrons to the continuum, modulated by the
ion’s movement that is contained in Ss(k, v) (Sahoo et al.,
2008). Since the energy transferred from the photon to
the electron has to overcome the binding energy EB, the
core-electron contribution forms a continuous spectrum
from v ¼ 21 up to v ¼ 2EB/h� .

Finally, See
0 (k, v) is the free electron contribution. It deter-

mines the behavior of the total electron structure factor at fre-
quencies close to the plasma frequency. It is often referred to
as the high-frequency part of See(k, v).

In Eq. (13), the effective charge numbers are used. Zf is the
mean ionization of ions. The remaining charge Z 2 Zf is sub-
divided into the number of valence electrons Zv and the
number of core electrons Zc, such that Z 2 Zf ¼ Zv þ Zc.

We will focus here on the free electron contribution to the
DSF, i.e., the last term in the Chihara separation (13). The
treatment of the ion-feature, which is predominantly deter-
mined by the static ion-ion structure factor can be found in,
e.g., Gregori et al. (2007).

We use the fluctuation-dissipation theorem to calculate the
DSF

S0
ee(k, v) ¼ �

e0h� k2

pe2ne

Ime�1
e (k, v)

1� exp (� h�v=kBT)
, (14)

with the number density of free electrons ne, the electron
temperature Te, and the electronic dielectric function ee(k, v).

3. CALCULATION OF THE DSF

3.1. Random Phase Approximation

The simplest approach to the dielectric function is the random
phase approximation, i.e., the mean-field theory, also known
as Lindhard-formula (Mahan, 1981). We adopt the notation of

Arista and Brandt (1984) in which the RPA dielectric function
is given by

eRPA(k, v) ¼ e1(k, v)þ ie2(k, v), (15)

e1(k, v) ¼ 1þ
x2

0

4z3
[g(uþ z)� g(u� z)], (16)

e2(k, v) ¼
px2

0

8z3
u ln

1þ exp (h� (u� z)2=u)

1þ exp (h� (uþ z)2=u)

� �
, (17)

with the dispersion function

g(x) ¼
ð1

0

ydy

exp (y2=u� h)þ 1
ln

xþ y

x� y

����
����, (18)

u ¼
v

kvF
, z ¼

h� k

2pF
, x2

0 ¼
h�

ppFaB
, h ¼

m

kBT
: (19)

The Fermi momentum pF, velocity vF, and energy 1F are given,
respectively, by

pF ¼ h� (3p2ne)
1=3

, vF ¼ pF=me, 1F ¼ p2
F=2me, u ¼ kBTe=1F:

(20)

The electron feature using the RPA has been analyzed in detail
by Gregori et al. (2003). Here, we go beyond the RPA and
include electron-ion collisions.

3.2. Inclusion of collisions: Mermin approach

In X-ray Thomson scattering experiments on solid-density
Be plasmas (Glenzer et al., 2007), it was observed that col-
lisionless theories of the DSF do not reproduce the correct
width of collective plasmon excitations in the scattering
spectrum. The additional width stems from collisions
among the plasma constituents. Since at small wavenum-
bers, where the plasmons are found, electron-electron col-
lisions can be neglected (the corresponding cross-section
behaves like k2) (Röpke et al., 1999), we consider only
electron-ion collisions. The Born-Mermin approximation
(Höll et al., 2007; Redmer et al., 2005) combines the
Mermin approach for the dielectric function (Selchow
et al., 2001) with the energy-dependent collision frequency
(or inverse relaxation time) (Röpke et al., 1999; Reinholz
et al., 2000) that is calculated in second-order perturbation
theory with respect to the statically screened electron-ion
potential.

The Mermin formula for the dielectric function reads
(Mermin, 1970)

eM
e (k,v)�1¼

(1þ i(n(v)=v))[eRPA
e (k,vþ in(v))�1]

1þ [in(v)eRPA
e (k,vþ in(v))�1]=[eRPA

e (k, 0)�1]v
,

(21)

with the dynamic collision frequency n(v) and the collision-
less dielectric function ee

RPA(k, v). The RPA dielectric
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function is computed without any further approximation, i.e.,
it is valid for any degeneracy parameter u.

3.3. Collision frequency

The collision frequency is taken in Born approximation
(Reinholz et al., 2000),

nB(v) ¼ �i
e0ni

6p2e2mene

ð1

0
dq q6 VS

ei(q)
� �2

� Sii(q)
1
v

eRPA
e (q, v)� eRPA

e (q, 0)
� �

: (22)

VS
ei(q) ¼ Zfe2=e0q2(1þ k2

sc=q
2) is the statically screened poten-

tial with the inverse screening length ksc. Sii(q) is the afore-
mentioned static ion-ion structure factor.

Special care has to be taken that correlations are not
counted twice. In particular, correlations that are accounted
for in the screened potential Vei

S (q) must not be considered
in the static structure factor Sii (q) again. Therefore, two var-
iants of the collision frequency are possible. On the one hand,
all correlations are condensed into the screened potential via
the screening parameter ksc, which in this case is the sum of
ionic and electronic contributions:

k2
sc ¼ k2

e þ k2
i ¼

nee2

e0kBT

F�1=2(he)
F1=2(he)

þ
Z2

f nie2

e0kBT
: (23)

Note that quantum degeneracy of electrons is fully accounted for
via the Fermi integrals Fn(x) ¼

Ð1

0 yn=[ exp (x� y)þ 1] dy=
G(nþ 1). G(n) is the well-known Gamma function, (see
Abramowitz & Stegun, 1970). Ions can be treated as classical
particles, i.e., the Debye expression is valid. In this case, the
ion-ion structure factor in Eq. (22) is Sii (q) ¼ 1. This variant
of the collision frequency is referred to as the two-component
screening variant (TCS) in the remaining part of this article.

On the other hand, considering only electrons as contribut-
ing to the screening of the electron-ion potential, the non-ideal
ionic structure factor has to be taken into account. We note
that in the Debye-Hückel approximation for the ion-ion struc-
ture factor, this procedure is equivalent to the TCS-method,
since the product of the screened potential with only elec-
tronic screening and the Debye-Hückel structure factor yields

VS,e
ei (q)SDH

ii (q) ¼
Zfe2

e0[q2 þ k2
e ]

q2

q2 þ k2
i

¼
Zfe2

e0[q2 þ k2
e þ k2

i þ k2
ek

2
i =q

2]

¼
Zfe2

e0[q2 þ k2
sc]
þO(n2

e ), (24)

i.e., the TCS-approximation is restored when terms on the order
of n2 are neglected. This applies to weakly coupled plasmas
where the Debye-Hückel approximation is sufficient.

Nevertheless, the use of the second variant (OCS, one-
component screening), allows the use of more sophisticated
models for the ion-ion structure factor in the collision

integral, such as HNC calculations (Schwarz et al., 2007)
or (Q)MD simulations (Holst et al., 2008).

A refinement with respect to the electronic screening of
the electron-ion potential can be achieved by replacing the
denominator q2

þ ke
2 in the screened potential by the

q-dependent screening factor q2Re ee
RPA (q, 0), i.e., taking

into account the wavenumber dependence of the screening
length. This ensures the convergence of the Born approxi-
mation with the Lenard-Balescu type collision integral in
the case of vanishing frequency (Thiele et al., 2006).
Table 1 gives a summary of the variants of the collision fre-
quency, i.e., the possible approximations regarding the
screened potential and the ion-ion structure factor. Figure 2
shows the real part of the dynamical collision frequency in
Born approximation, Eq. (22) treating electronic and ionic
correlations in the collision integral in various approxi-
mations, cf. Table 1, i.e., in TCS approximation and in
OCS approximation. In the latter case, the ion-ion structure
factor is taken in the Debye-Hückel approximation
(OCS-DH) and from HNC calculations (OCS-HNC). All
nine curves show a similar behavior as a function of the fre-
quency argument. Below the plasma frequency, v ¼ vpl,e,
the real part of the collision frequency evolves independently
of the frequency. In the vicinity of the plasma frequency, the
collision frequency bends downward and quickly decreases
at frequencies large against the plasma frequency. In
this case, the power-law behavior Re n(v)/ v27/2 is
found (Reinholz et al., 2004). The imaginary part of the
collision frequency can easily be obtained by using the
Kramers-Kronig relation.

Comparing the collision frequency at various densities, the
following interesting observations are made: The increase in
density from 1022 cm23 (green curves) to 1023 cm23 (red
curves) gives also an increase in the collision frequency.
This is due to the increased coupling parameter, the electrons
scatter more likely on ions in the case of higher density.
However, comparing the case ne ¼ 1023 cm23 to the highest
density, ne ¼ 1024 cm23 (black curves), this argument does

Table 1. Summary of different approximations for electronic and
ionic correlation in the collision integral. TCS denotes the
two-component screening approximation, OCS-DH stands for
one-component screening with Debye-H”uckel static ion-ion
structure factor, and OCS-HNC is the one-component screening
approximation with the static ion-ion structure factor taken from
twocomponent HNC calculations

Abbreviation Inverse screening length ksc

Ionic structure factor
Sii(q)

TCS (ne e2/e0 kBT ) (F21/2 (he)/F1/2

(he)) þ (Zf
2 ni e2/e0 kB T )

1

OCS-DH (ne e2/e0 kB T ) (F21/2 (he)/F1/2

(he))
q2/(Zf

2 e2 ni/e0

kBT þ q2)
OCS-HNC (ne e2/e0 kBT ) (F21/2 (he)/F1/2

(he))
HNC
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not hold any longer in the case of the TCS model (solid
curves), where a decrease in the collision frequency is
observed. This can be understood by inspecting the degener-
acy parameter u for the three different densities. While the
lowest density case is non-degenerate (u ¼ 5.9), the plasma
at ne ¼ 1023 cm23 is weakly degenerate (u ¼ 1.3), and in
the highest density case u is decreased down to 0.27. In this
case, scattering processes that involve transfer energies
smaller than the Fermi energy are largely suppressed due to
the Pauli exclusion principle, i.e., scatterings inside the
Fermi sphere are forbidden since the final state is already
occupied. This leads to the observed lowering of the collision
frequency when increasing the density from 1023 cm23 to
1024 cm23. In the OCS models, this effect is not observed,
since in the collision integral (22), contributions from small
transfer momenta are suppressed due to the ionic structure
factor Sii(q), such that the effect of Pauli blocking is reduced.

Finally, we compare the different models, i.e., the TCS (solid
curves), OCS-DH (dashed curves), and the OCS-HNC calcu-
lations (dash-dotted curves). In the lowest density case, the
TCS results and the OCS calculation with the Debye-Hückel
type ion-ion structure factor (OCS-DH) are close together.
This stems from the aforementioned equivalence of both
models in the case of classical, weakly coupled plasmas, cf.
Section 3. At higher densities the difference between TCS
and OCS-DH increases. The reason for this behavior is that,
on the one hand, the terms on the order of ne

2, which are neg-
lected in the TCS approximation as compared to the
OCS-DH approximation become important. On the other
hand, the electronic screening parameter ke starts to deviate
from the classical Debye expression kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=e0kBT

p
.

In all three cases of density, the HNC calculation yields the
largest collision frequency. This is due to the finite compressi-
bility obtained in the the two-component HNC calculation, i.e.,
the finite value for the ion-ion structure factor at vanishing

wavenumber Sii(k ¼ 0). Therefore, the integrand in Eq. (22)
becomes large compared to the OCS-DH case, where the beha-
vior Sii

DH (k)/ k2 at small k leads to a much smaller collision
frequency. On the other hand, the screening parameter ksc is
purely electronic in the OCS calculations, leading to a larger
collision frequency compared to the TCS approximation.

4. SYNTHETIC SPECTRA

In order to generate synthetic scattering spectra comparable to
experimental data from Thomson scattering experiments, the
Thomson scattering cross-section needs to be convoluted with
an appropriate weighting function that models the finite band-
width of the probe radiation source and the finite detector’s spec-
tral resolution. Here, we use a normalized Gaussian function

g(v) ¼
1ffiffiffiffiffiffi
2p
p

s
exp �

v2

2s2

� �
: (25)

The variance s2 is fixed by the full width at half maximum
(FWHM) of the probe and the detector bandwidth as

s ¼ FWHMtot=2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

’ 0:425 FWHMtot (26)

with

1=FWHM2
tot ¼ 1=FWHM2

detector þ 1=FWHM2
probe: (27)

Summarizing, we have to compute the following expression for
the synthetic spectrum

S(k, v) ¼
1ffiffiffiffiffiffi
2p
p

s
Zf

ð1

�1

S0
ee(k, v0) exp �

v� vi � v0

2s2

� �
dv0

�

þ ( fi(k)þ q(k))2Sii(k) exp �
(v� vi)2

2s2

� �	
: (28)

4.1. X-ray scattering on beryllium targets

Figure 3 shows the electronic contribution to the DSF, ZfSee
0 (k,

v), assuming scattering of X-ray photons with photon energy
h�vi ¼ 2:96 keV (Cl-Lyman a) under q ¼ 408 scattering angle
on a Be plasma at a temperature of kBT ¼ 10 eV and at densities
ne ¼ 1.1023 cm23 (right curves) and ne ¼ 1.0.1024 cm23 (left
curves). The results are shown as a function of the energy
shift from the photon energy, i.e., h�v ¼ 0 corresponds to the
photon energy of the probe. The collisionless (RPA) calcu-
lation is shown as thin dotted line, while the thicker curves
show the results obtained by using the Born-Mermin scheme
as outlined in Section 2. The different collisional calculations
correspond to different models for the electronic and ionic cor-
relations in the collision integral, cf. Section 3.3.

The differences in the collision frequency (cf. Fig. 2),
directly translate into differences in the plasmon resonance
in the dynamic structure factor. Larger values for Re n(v) in

Fig. 2. Real part of the collision frequency in Born approximation using
various approximations for electronic and ionic correlations in the collision
integral, see Tab. 1. Results are shown for three different electron densities
ne, i.e. 1022; 1023; and 1024 cm23. The mean ion charge is Zf ¼ 2.0 and
the plasma temperature is Ti ¼ Te ¼ 10 eV, u is the degeneracy parameter,
see Eq. 2.
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the vicinity of the plasma frequency lead to broader plasmon
resonances. Since the dynamic structure factor is normalized
to the density of the system, the peak of the plasmon resonance
decreases when the width increases, such that the integral over
all energies is a conserved quantity.

Comparing the spectra for both densities, one finds that in
the case of compressed Be (ne ¼ 1024 cm23), the account for
collisions leads to a smaller change in the overall behavior
than in the case of near solid density Be (ne ¼ 1023 cm23).
This is again due to suppression of collisions (Pauli block-
ing) that was already observed in the behavior of the collision
frequency itself, (cf. Section 3).

4.2. Scattering of XUV photons on hydrogen
at near solid density

As a further application of the presented formalism, we show in
Figure 4 calculations for the fraction of scattered photons during
scattering of XUV photons on a hydrogen target at three differ-
ent near-solid densities (solid curves: ne ¼ 1021 cm23, dashed
curves: ne ¼ 5 � 1021 cm23, dotted curves: ne ¼ 1022 cm23.
Three different photon energies of the probe beam have been
adopted, h�vi ¼ 50 eV (upper graph), h�vi ¼ 92 eV (middle),
and h�vi ¼ 206 eV (lower graph). The scattering angle is fixed
at 908. In all calculations, convolution with a Gaussian has
been performed to model the finite spectral bandwidth of the
detector and the beam. The relative bandwidth was assumed
as Dv/vi ¼ 1%, and the plasma length was fixed at 10 mm.

At higher densities, one observes a larger separation between
the elastic scattering feature and the inelastic plasmon feature.
The same effect is obtained by increasing the photon energy
and thereby the scattering wavevector. On the other hand, a
larger photon energy leads to a larger absolute spectral band-
width (the relative bandwidth being kept constant in all three

cases). Thus, in the case of h�vi ¼ 206 eV, the plasmon reson-
ance at ne ¼ 5 � 1021 cm23 (green curve) merges with the
Rayleigh peak and only the ne ¼ 1022 cm23 curve (magenta)
yields a measurable plasmon feature. The black curve (ne ¼

1021 cm23) does not show any plasmon feature at all. This is
due to the scattering parameter a ¼ kD/k being already
smaller than one in this case.

From these results, we conclude, that a Thomson scatter-
ing experiment at near solid density hydrogen should favour-
ably be performed at photon energies of around 90 eV which
are available at the Free Electron Laser Hamburg (FLASH).
This setting assures a nicely separated plasmon feature.

5. CONCLUSIONS

In this article, we have presented a systematic approach to the
calculation of the Thomson scattering cross-section in a
strongly correlated plasma. The focus was on the free electron
feature of the dynamical structure factor which contains the
plasmon resonances in the case of collective scattering, i.e.,
at transfer wavenumbers small compared to the inverse
Debye screening length. Special emphasis was paid on the con-
sistent treatment of electron-ion collisions. This is crucial in the
case of plasmas under warm dense matter conditions, since the
plasma is both moderately coupled (G ’ 1) and weakly degen-
erate (u . 1). To achieve this, the Born-Mermin approximation
for the dynamical structure factor was introduced. The DSF is
related to the dielectric function via the fluctuation-dissipation
theorem, which itself is calculated using the generalized
Mermin ansatz (cf. Eq. (21)), with the frequency-dependent
collision frequency n(v). The latter is calculated in Born
approximation.

Results have been presented for the dynamical collision
frequency at various densities using different approximations
for the ion-ion structure factor that enters the collision

Fig. 3. (Color online) Electron feature of the DSF for compressed Be (left
curves, ne ¼ 1024 cm23) and near solid density Be (right curves, ne ¼

1023 cm23). The dashed curve shows the RPA result, i.e the collisionless
plasma. The other curves have been obtained taking into account the col-
lision frequency. The curves differ with respect to the model for the ionic
structure factor and the inverse screening length used in the collision integral.
Parameters: Zf ¼ 2.0, Te ¼ Ti ¼ 10 eV, photon energy h� vi ¼ 2.96 keV
(Cl-Lyman a), scattering angle q ¼ 408.

Fig. 4. Scattered fraction of photons as a function of the energy shift for
three different initial photon wavelengths (25 nm (top), 13.5 nm (middle),
and 6 nm (bottom)). Results are shown for ne ¼ 1 � 1021 cm23 (solid
curve), ne ¼ 5 � 1021 cm23 (dashed curve), and ne ¼ 10 � 1021 cm23

(dotted curve). L ¼ 10 mm is the plasma length.
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frequency. It was shown, that the collision frequency
increases with rising density as long as the degeneracy par-
ameter is larger than one, but decreases when degeneracy
becomes important, i.e., u , 1. This behaviour is expected
since in degenerate systems Pauli blocking suppresses scat-
tering inside the Fermi sphere. The restoration of the colli-
sionless approximation (RPA) for high densities is well
known.

Scattering spectra were calculated for two different exper-
imental scenarios: First, scattering of keV-photons on uncom-
pressed and compressed Be targets was studied. Here again,
collisions are most significant as long as the plasma is not
degenerate, i.e., in the uncompressed material. Second, scat-
tering of XUV photons (photon energies between 50 and
200 eV) on hydrogen at near solid density was investigated
to infer optimal experimental parameters. Under 908 scatter-
ing angle, one obtains a well-defined plasmon resonance
which is satisfyingly separated from the central Rayleigh
peak at a photon energy of 92 eV, i.e., at 13.5 nm wavelength.
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MARTINS, M., MEYER, M., MICHELATO, P., MILTCHEV, V., MÖLLER,
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