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The present contribution is a significant extension of the work by Kelbin et al.
(J. Fluid Mech., vol. 721, 2013, pp. 340–366) as a new time-dependent helical
coordinate system has been introduced. For this, Lie symmetry methods have
been employed such that the spatial dependence of the originally three independent
variables is reduced by one and the remaining variables are: the cylindrical radius r
and the time-dependent helical variable ξ = (z/α(t))+ bϕ, b= const. and time t. The
variables z and ϕ are the usual cylindrical coordinates and α(t) is an arbitrary function
of time t. Assuming α= const., we retain the classical helically symmetric case. Using
this, and imposing helical invariance onto the equation of motion, leads to a helically
symmetric system of Euler and Navier–Stokes equations with a time-dependent pitch
α(t), which may be varied arbitrarily and which is explicitly contained in all of the
latter equations. This has been conducted both for primitive variables as well as for
the vorticity formulation. Hence a significantly extended set of helically invariant
flows may be considered, which may be altered by an external time-dependent strain
along the axis of the helix. Finally, we sought new conservation laws which can
be found from the helically invariant Euler and Navier–Stokes equations derived
herein. Most of these new conservation laws are considerable extensions of existing
conservation laws for helical flows at a constant pitch. Interestingly enough, certain
classical conservation laws do not admit extensions in the new time-dependent
coordinate system.

Key words: general fluid mechanics, mathematical foundations, Navier–Stokes equations

1. Introduction
Helical vortices appear in various technological devices with swirl, e.g. in the

wake of windmills (Vermeer, Sorensen & Crespo 2003), or as wing tip vortices, in
particular, on delta wings (Mitchell, Morton & Forsythe 1997). Furthermore, helical
vortex structures were observed by Sarpkaya (1971) who performed experiments
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with swirling flows in a cylindrical tube and observed three different types of vortex
breakdown, where one of them is of helical type.

Helically symmetric flows are further observed as natural phenomena, e.g.
in laboratory plasma applications (kink instabilities in the ‘straight tokamak’
approximations, e.g. Johnson et al. (1958), Schnack, Caramana & Nebel (1985)),
and astrophysical phenomena such as astrophysical jets (Bogoyavlenskij 2000).

In a more theoretical context, flows with a helical symmetry in general have been
considered in various contributions in the past. For example, Delbende, Rossi &
Daube (2012) developed a direct numerical simulation code for the helical invariant
Navier–Stokes equations in a generalized vorticity–streamfunction formulation.
Dritschel (1991) reduced the three-dimensional Euler equations to a linear equation,
assuming that the flow has helical symmetry and consists of a rigidly rotating basic
part and a Beltrami disturbance part. Further, he derived exact solutions for flows in
a straight pipe of circular cross-section. Helical flows for a Maxwell fluid between
two infinite coaxial circular cylinders were considered by Jamil & Fetecau (2010).
Using the finite Hankel transform, they obtained exact solutions which satisfy all
imposed initial and boundary conditions. A detailed overview on helical flows may
be taken from Kelbin, Cheviakov & Oberlack (2013).

In mathematical physics, symmetries and conservation laws (CLs) are considered
to be one of the most fundamental objects. For example, in fluid mechanics, CLs
describe physical quantities such as the conservation of mass, energy, momentum or
angular momentum. In practice, local CLs are of fundamental importance for several
reasons. They are essential for numerical simulations with modern numerical methods,
where the equations are assumed to be in divergence form, e.g. for discontinuous
Galerkin methods (see Zienkiewicz et al. 2003). Additionally, they give the possibility
to easily find potential variables (see Bluman, Cheviakov & Anco 2010), which in turn
leads to a reduction of the dependent variables and new analytical solutions. Further,
CLs are used to establish the existence and uniqueness of solutions as well as in the
analysis of stability and global behaviour of solutions (Bluman et al. 2010).

For three-dimensional time-dependent fluid flows, CLs were studied in very much
detail in Cheviakov & Oberlack (2014). Therein, they considered higher-order CL
multipliers and obtained an infinite family of vorticity CLs. Further, Rosenhaus &
Shankar (2015) considered the correspondence between symmetries and CLs. They
introduced subsymmetries to find further infinite sets of CLs of the Euler equations,
involving arbitrary functions of the dependent variables.

Most importantly, additional CLs appear to exist in reduced dimensions such as
in plane or axisymmetric flows. Recently new CLs for Euler and Navier–Stokes
equations were found for helically invariant flows (see Kelbin et al. 2013). Therein
they considered a helical coordinate system, given by the radius r and a helical
variable ξ = az+ bϕ, arising from a linear combination of the cylindrical coordinates
z and ϕ. The parameters a and b, involved in this coordinate, were assumed to be
constant. Further, the authors expressed the three-dimensional, incompressible Euler
and Navier–Stokes equations in a helical symmetric setting and finally obtained new
CLs for primitive variables as well as for the vorticity formulation. Interestingly
enough, they also derived new CLs for plane and axisymmetric flows. Due to many
citations the publication of Kelbin, Cheviakov & Oberlack (2013) is subsequently
denoted as KCO.

In a fluid dynamical context, divergence-type local CLs usually have the form

∂tΘ +∇ ·Φ = 0, (1.1)
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346 D. Dierkes and M. Oberlack

where ∇ · Φ = ∂iΦ
i = ∂1Φ

1 + ∂2Φ
2 + · · · + ∂n−1Φ

n−1 denotes the spatial divergence.
The quantity Θ is called density, whereas Φ i are the spatial fluxes of the CL.

In order to compute a globally conserved quantity one may integrate (1.1) over a
fluid domain Ω and apply Gauss’s theorem∫

Ω

∂tΘdnx+
∫
∂Ω

Φ · n da= 0, (1.2)

where dnx defines the volume element while da corresponds to a surface element on
∂Ω . Assuming that the fluxes Φ i vanish on the boundary ∂Ω or if periodicity is
assumed and the domain Ω is time-independent (Ω 6=Ω(t)), one obtains the global
conserved quantity given by

∂

∂t

∫
Ω

Θ dx= 0 ⇔ J =
∫
Ω

Θ dx= const. (1.3a,b)

In practice, one is interested in finding non-trivial CLs (1.1) since trivial CLs usually
do not carry a physical or mathematical meaning. To distinguish between trivial and
non-trivial CLs, we first explicate the meaning of trivial CLs.

Following Bluman et al. (2010), a trivial CL of the first type arises when each of
its fluxes Φ vanish identically on the solutions of a given system of partial differential
equations. A trivial CL of the second type is a CL that vanishes identically as a
differential identity, e.g. (div(curl(·))≡ 0).

The definition of trivial CLs leads to the definition of equivalence and linear
dependence of CLs: two CLs ∂iΦ

i = 0 and ∂iΨ
i = 0 are equivalent if ∂i(Φ

i −Ψ i)= 0
is a trivial CL. An equivalence class of CLs consists of all CLs that can be reduced
to a class of non-trivial CLs.

A set of l CLs {∂iΦ
i
j = 0}lj=1 is linearly dependent if there exists a set of constants

{a( j)}lj=1 which are not all zero such that the linear combination

∂i
(
a( j)Φ i

( j)

)= 0 (1.4)

is a trivial CL (Bluman et al. 2010). The direct method (see e.g. Anco & Bluman
2002a), described and employed in the following, seeks non-trivial sets of local CLs
of a given PDE system in non-conservative form.

The direct method is based on two key ideas. The first idea can be explained as
follows: consider an arbitrary and non-conservative PDE system given by

Rσ (x, u, ∂iu)= 0, σ = 1, . . . ,N, i= 1, . . . , k. (1.5)

It is proven in Anco & Bluman (2002b) that a PDE system only admits non-trivial
CLs arising from linear combinations of these equations with multipliers of kth order
given by

{Λσ (x,U, ∂1U, . . . , ∂kU)}Nσ=1 . (1.6)

If the multipliers (1.6) are known, they yield divergence expressions of the form

ΛσRσ ≡DiΓ
i (1.7)

for arbitrary functions U(x) and Di= ∂/∂xi. The multipliers Λσ are of the form (1.6)
and can be chosen to depend on all dependent and independent variables x and U
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as well as on derivatives ∂kU up to a certain order k. A priori it is not known up to
which order one may choose the multipliers. On solutions U(x) = u(x) of the PDE
system (1.5) one obtains the CL

DiΓ
i = 0. (1.8)

To calculate the multipliers Λσ , the second key idea is to apply the Euler operator
EUj with respect to Uj to (1.7). The Euler operator has the property to annihilate an
expression if, and only if, it is a divergence expression DiΓ

i, and is given by

EUj = ∂

∂Uj
−Di

∂

∂Uj
i

+ · · · + (−1)s Di1 · · ·Dis
∂

∂Uj
i1···is
+ · · · (1.9)

for each j= 1 . . .m, while Di is defined above.
In order to derive the multipliers Λσ , we apply the Euler operator (1.9) to (1.7).

Based on the above, the right-hand side vanishes identically and one obtains

EUj (ΛσRσ )= 0, j= 1 . . .m, (1.10)

which holds for arbitrary functions U(x). Expanding all derivatives in (1.10), a set
of linear determining equations for all multipliers Λσ arises, where the quantities
x, U, ∂1U, . . . , ∂kU have to be treated as independent variables. Once the CL
multipliers are derived, one may compute the density and fluxes using (1.8). For
details, see e.g. Bluman et al. (2010).

The main goal of the current contribution is twofold. First, we develop a new
helical coordinate system with a time-dependent pitch and, thereof, derived a reduced
system of helically invariant Euler and Navier–Stokes equations in primitive variables
and vorticity formulation. Second, for both formulations, we derive new local CLs
applying the direct construction method. The new results will be compared to the
classical case with constant pitch considered in KCO, where various new CLs in
primitive variables and in vorticity formulation were derived.

2. Helically invariant Navier–Stokes equations in a time-dependent helical
coordinate system
In a cylindrical coordinate system the three-dimensional time-dependent Navier–

Stokes equations for a viscous and incompressible fluid without external forces are
given by

1
r

ur + ∂ur

∂r
+ 1

r
∂uϕ

∂ϕ
+ ∂uz

∂z
= 0, (2.1a)

∂ur

∂t
+ ur ∂ur

∂r
+ 1

r

(
uϕ
∂ur

∂ϕ
− (uϕ)2

)
+ uz ∂ur

∂z
=−∂p

∂r
+ ν

[
1ur − 1

r2

(
ur + 2

∂uϕ

∂ϕ

)]
,

(2.1b)
∂uϕ

∂t
+ ur ∂uϕ

∂r
+ 1

r

(
uϕ
∂uϕ

∂ϕ
+ uruϕ

)
+ uz ∂uϕ

∂z
=−1

r
∂p
∂ϕ
+ ν
[
1uϕ − 1

r2

(
uϕ − 2

∂ur

∂ϕ

)]
,

(2.1c)
∂uz

∂t
+ ur ∂uz

∂r
+ 1

r
uϕ
∂uz

∂ϕ
+ uz ∂uz

∂z
=−∂p

∂z
+ ν1uz. (2.1d)

In the inviscid case, i.e. ν = 0, the system (2.1) reduces to the Euler equations.
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348 D. Dierkes and M. Oberlack

The Navier–Stokes equations (2.1) are invariant under the helical symmetry, which
relies on the combination of two common Lie symmetry groups: (i) generalized
Galilean invariance, which comprises axial translation and classical Galilean boost,
and (ii) a rotation group about the same axis. Without restricting generality we choose
the coordinate system as such that the common symmetry axis lies along the z-axis.

The global form of the two parameter Lie symmetry group is given by

ϕ̃ = ϕ + c, (2.2a)
z̃= z+ α(t), (2.2b)
ũz = uz + α̇, (2.2c)
p̃= p− zα̈. (2.2d)

The dot denotes the time derivative and the upper index describes the components of
the corresponding velocity field, respectively. For α(t)= const. we obtain translational
invariance in the z-direction, while α(t) = at corresponds to the classical Galilean
group in the same direction.

Using the symmetry group (2.2a)–(2.2d), we derived a set of independent variables
(i.e. the time-dependent helical coordinates) and dependent variables (for details see
appendix A), which are given by

η= bϕ, (2.3a)

ξ = bϕ + z
α
, (2.3b)

r̃= r, (2.3c)
τ = t, (2.3d)

uξ =
(

b
r

uϕ + 1
α
(uz + α̇bϕ)

)
· B(r, t), (2.3e)

uη =
(

1
α

uϕ − b
r
(uz + α̇bϕ)

)
· B(r, t), (2.3f )

ũr = ur, (2.3g)

p̃= p+ 1
2
α̈

α
z2. (2.3h)

The geometric function B(r, t) in (2.3e) and (2.3f ) is given by B(r, t)= rα/
√

r2 + b2α2.
By assuming α(t) = const. = 1/a one easily retains the classical helical velocity
components, pressure, similarity variable and form function B(r) given in KCO.

In the limiting case b= 0, the helical symmetry reduces to an axial symmetry and
the similarity variable (2.3b) becomes ξ = z/α, although it is still time-dependent
owing to the scaling of the z-coordinate by the parameter function α(t). In the
opposite case 1/α = 0, in which helical symmetry reduces to a planar symmetry, the
time dependence of the coordinate system vanishes and the classical planar case as
discussed in KCO is retained.

Inverting the equations (2.3e)–(2.3h) and replacing the cylindrical coordinates
(r, ϕ, z) by the helical coordinates (r, ξ , η), one obtains the relations given by

uϕ = B(r, t) ·
(

b
r

uξ + 1
α

uη
)
, (2.4a)
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x
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z

FIGURE 1. An illustration of the helix ξ = const. with parameter function α(t) (cf. KCO).

uz = B(r, t) ·
(

1
α

uξ − b
r

uη
)
− α̇η, (2.4b)

ur = ũr, (2.4c)
p= p̃− 1

2 α̈α (ξ − η)2 . (2.4d)

The additional term −α̇η in the z-component of the velocity (2.4b) describes a relative
movement between the time-dependent and the time-independent coordinate system
(see figure 1).

2.1. The Navier–Stokes equations in primitive variables
In order to obtain the reduced system of helically invariant Navier–Stokes equations
we introduce the new variables (2.3e)–(2.3h) into the system (2.1) and impose helical
invariance, i.e. ∂/∂η ≡ 0, which eliminates η from the system. From this, we obtain
the helical invariant continuity equation and the three components of the momentum
equations in the r-, η- and ξ -direction

ur

r
+ ur

r +
1
B

uξξ = 0, (2.5a)

− α̇
α

ur
ξξ + ur

τ + urur
r +

1
B

uξur
ξ −

B2

r

(
b
r

uξ + 1
α

uη
)2

=−p̃r + ν
[

1
r

(
rur

r

)
r +

1
B2

ur
ξξ −

1
r2

ur − 2bB
r2

(
1
α

uηξ +
b
r

uξξ

)]
, (2.5b)

α̇
b
r

uξ + α̇ b2B2

r2α
uη − α̇

α
ξuηξ + uητ + uruηr +

B2

rα2
uruη + 1

B
uξuηξ

=−Bα̈
b
r
ξ+ ν

1
r

(
ruηr
)

r+
1
B2

uηξξ +


B2

α2

(
B2

α2
− 2
)

r2

uη+ 2bB
r2α

(
ur
ξ −
(
Buξ
)

r

), (2.5c)
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−2α̇
bB2

rα2
uη − α̇ b2B2

r2α
uξ − α̇

α
ξuξξ + uξτ + uruξr +

b2B2

r3
uruξ + 1

B
uξuξξ +

2bB2

r2α
uruη

=− 1
B

p̃ξ + B
α̈

α
ξ + ν

1
r

(
ruξr
)

r +
1
B2

uξξξ +
B4

α4
− 1

r2
uξ + 2bB

r

(
b
r2

ur
ξ +
(

B
αr

uη
)

r

).
(2.5d)

It is worth noting that in the case α= const.= 1/a terms involving the first or second
time derivative of α vanish and one retains exactly the same equations derived for
classical helical flows, e.g. in KCO.

2.2. Navier–Stokes equations in vorticity formulation
The generic Navier–Stokes equations in vorticity formulation are given by

∇ ·ω= 0, (2.6a)
ω=∇× u, (2.6b)

ωt +∇× (ω× u)− ν1ω= 0, (2.6c)

which consist of the continuity equation, the definition of vorticity, and the vorticity
transport equation.

Following KCO, we introduce a local orthogonal basis system to compute the
helical vorticity components ωr, ωξ , ωη. The unit vectors are given by

er = ∇r
|∇r| , eξ = ∇ξ|∇ξ | , e⊥η = eξ × er. (2.7a−c)

The vorticity vector in the helical basis is given by

ω=ωrer +ωϕeϕ +ωzez =ωrer +ωηe⊥η +ωξeξ . (2.8)

The helical vorticity components are related to the cylindrical vorticity components
given by

ωη =ω · e⊥η = B
(

1
α
ωϕ − b

r
ωz

)
, ωξ = B

(
b
r
ωϕ + 1

α
ωz

)
. (2.9a,b)

The definition of vorticity (2.6b) in cylindrical coordinates is given by

ω=∇× u=
(

1
r

uz
ϕ − uϕz

)
er +

(
ur

z − uz
r

)
eϕ +

(
1
r

uϕ + uϕr −
1
r

ur
ϕ

)
ez. (2.10)

Replacing the expressions for the velocity components (2.4a)–(2.4c) and their
derivatives and, further, assuming helical invariance (∂/∂η ≡ 0) one obtains the
respective components of ω given by

ωr =− 1
B

uηξ −
b
r
α̇, (2.11a)
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ωη = 1
B

ur
ξ −

1
r

(
ruξ
)

r −
2bB2

αr2
uη + B2

α2r
uξ , (2.11b)

ωξ = uηr +
B2

α2r
uη. (2.11c)

Employing a transformation similarly to the Navier–Stokes equations in primitive
variables, one obtains the helically invariant Navier–Stokes equations in vorticity
formulation given by

ωr

r
+ωr

r +
1
B
ω
ξ
ξ = 0, (2.12a)

− α̇
α
ωr
ξξ +ωr

τ + urω
r
r +

1
B

uξωr
ξ

=ωrur
r +

1
B
ωξur

ξ + ν
[

1
r

(
rωr

r

)
r +

1
B2
ωr
ξξ −

1
r2
ωr − 2bB

r2

(
1
α
ω
η
ξ +

b
r
ω
ξ
ξ

)]
, (2.12b)

b
r
α̇

(
−b2

r2
+ 1
α2

)
B2ωξ − α̇

α
ω
η
ξ ξ −

b2α̇

αr2
B2ωη +ωητ + urωηr +

1
B

uξωηξ

− B2

rα2
(urωη − uηωr)+ 2bB2

αr2
(uξωr − urωξ )

=ωruηr +
1
B
ωξuηξ + ν

1
r

(
rωηr
)

r +
1
B2
ω
η
ξξ +

B2

(
1
α2

B2 − 2
)

α2r2
ωη + 2bB

αr2

(
ωr
ξ − (Bωξ )r

),
(2.12c)

− α̇
α
ω
ξ
ξ ξ +

b2α̇

r2α
B2ωξ +ωξτ + ur(ωξ )r + 1

B
uξωξξ +

1− B2

α2

r
(uξωr − urωξ )

=ωruξr +
1
B
ωξuξξ + ν

1
r

(
rωξr
)

r +
1
B2
ω
ξ
ξξ +

1
α4

B4 − 1

r2
ωξ

+2bB
r

(
b
r2
ωr
ξ +
(

B
αr
ωη
)

r

) . (2.12d)

Likewise in KCO, the first two terms on the right-hand side of each equation in
(2.12b)–(2.12d) correspond to vortex stretching.

3. Conservation laws of the helically invariant Euler system in time-dependent
helical coordinates

In order to seek local CLs, we subsequently apply the direct construction method
(Bluman et al. 2010) to the Euler system (2.5a)–(2.5d) with ν = 0 in primitive
variables as well as in vorticity formulation (2.12a)–(2.12d) with ν= 0. In both cases,
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the CL multipliers Λσ are chosen to be of zeroth order and, thus, only depend on
the dependent and independent variables

Λσ =Λσ

(
t, r, ξ , ur, uη, uξ , p̃

)
. (3.1)

Computations with CL multipliers of first order, i.e. Λσ in (3.1) containing first
derivatives of u and p̃, have also been done. However, no additional multipliers exist
and, hence, also no extended set of CLs.

All computations to derive local CLs were conducted with the aid of the symbolic
software package GEM for MAPLE (Cheviakov 2007) and the MAPLE RIFSIMP tool.
Further, with these tools we also obtained the corresponding fluxes of the general form
Γ i in equation (1.8). The relation between the fluxes Γ i and the density Θ and the
spatial fluxes Φ i in equation (1.1) can be derived as follows.

In the helical setting, any divergence form reads

∂Γ t

∂t
+ ∂Γ

r

∂r
+ ∂Γ

ξ

∂ξ
= 0, (3.2a)

while a divergence expression of an evolution process in helically symmetric form
reads

∂Θ

∂t
+∇ ·Φ = ∂Θ

∂t
+ 1

r
∂

∂r
(rΦr)+ 1

B
∂Φξ

∂ξ
= 0, (3.2b)

which is apparently not identical to (3.2a) due to metric terms. However, multiplying
(3.2b) by r and using (3.2a) leads to

∂Γ t

∂t
+ ∂Γ

r

∂r
+ ∂Γ

ξ

∂ξ
= ∂

∂t
(rΘ)+ ∂

∂r
(rΦr)+ ∂

∂ξ

( r
B
Φξ
)
. (3.3)

Comparing the left- and right-hand side of (3.3) one obtains

Γ t = rΘ, Γ r = rΦr, Γ ξ = r
B
Φξ . (3.4a−c)

Subsequently, we always list the density Θ and the spatial fluxes Φ for each CL.
The obvious CLs, such as the continuity equations ∇ · u = 0, ∇ · ω = 0 and the
scaling of these equations with a time-dependent function leading to ∇ · (G(t)u)= 0,
∇ · (G(t)ω)= 0, will not be listed explicitly.

In the next section we seek local CLs that arise from the helically invariant Euler
equations in primitive variables, given by (2.5) with ν= 0. These CLs will be denoted
by the prefix ‘EP’. The CLs obtained from the helically invariant Euler system in
vorticity formulation will be denoted by the prefix ‘EV’.

3.1. Primitive variables
EP1. Extension of the conservation of the z-projection of momentum

The first CL is given by

Θ = α2B
(

1
α

uξ − b
r

uη
)
, (3.5a)

Φr = α2

(
urB

(
1
α

uξ − b
r

uη
)
− α̇ξur − 1

2
α̈rξ
)
, (3.5b)
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Φξ = α2

(
uξB

(
1
α

uξ − b
r

uη
)
+ B
α

p
)
− α2α̇ξuξ − αα̇ξB2

(
1
α

uξ − b
r

uη
)
. (3.5c)

Compared to the classical conservation of the z-projection of momentum, one
determines that the density and the spatial fluxes are multiplied by the square of
the arbitrary function α(t). It may further be noted that Θ in (3.5a) is linked
to uz in cylindrical coordinates by Θ = α2(uz + α̇η). Moreover, the spatial fluxes are
extended by terms involving first and second time derivatives of the arbitrary function.
(α = const. corresponds to EP2 in KCO).

EP2. Extension of the conservation of the z-projection of angular momentum
The second CL is given by

Θ = αrB
(

1
α

uη + b
r

uξ
)
= αruϕ, (3.6a)

Φr = αruruϕ, (3.6b)
Φξ = α (ruξuϕ + bBp

)− α̇rξBuϕ. (3.6c)

In contrast to the velocity component in the z-direction, the component in the angular
direction has no relative movement. Therefore, we are able to express the density and
the fluxes in terms of cylindrical velocities (α = const. corresponds to EP3 in KCO).

EP3. Extension of the conservation of the generalized momenta/angular momenta
Here we obtain an infinite family of CLs

Θ = αF
(αr

B
uη + bαα̇ξ

)
− bα2α̇ξ , (3.7a)

Φr = αF
(αr

B
uη + bαα̇ξ

)
ur + 1

2
α2α̈brξ, (3.7b)

Φξ = αF
(αr

B
uη + bαα̇ξ

)
uξ − Bα̇ξF

(αr
B

uη + bαα̇ξ
)
+ Bbαα̇2ξ 2, (3.7c)

where F(·) is a once differentiable arbitrary function.
The density and the spatial fluxes contain the first and second time derivative of α.

Referring to KCO, the quantity

ζ = αr
B

uη + bαα̇ξ (3.8)

can be physically interpreted as a ‘blend’ of momentum and angular momentum
density in the η-direction since with the use of (2.3e) and z= α(ξ − η) the quantity
reads

ζ = αr
B

uη + bαα̇ξ = ruϕ − αbuz + bα̇z (3.9)

= α

(
r
α

uϕ − buz + b
α
α̇z
)
, (3.10)

where the term (b/α)α̇z describes the relative movement. For the special cases b= 0
the quantity is proportional to the angular momentum density in the z-direction
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ζ̃ ∼ (r/α)uϕ in (3.10) while for 1/α = 0 it is proportional to the linear momentum
density in the z-direction ζ̃ ∼ uz in (3.10) (α = const. corresponds to EP4 in KCO).

Comparing the above results to the classical cases one observes that the only
quantity which is not conserved is kinetic energy. In the next section we will see that
also helicity is not conserved. In order to ensure that this proposition is appropriate
in any helical, time-dependent coordinate system, we will prove the non-existence of
conservation of energy and helicity in appendices B and C.

3.2. The vorticity formulation
The following CLs are derived from the helically invariant Euler equations in vorticity
formulation, consisting of the continuity equation for velocity as well as for vorticity,
equations (2.5a) and (2.12a), the equations defining the vorticity components (2.11)
and the vorticity dynamics equations (2.12b)–(2.12d) with ν = 0. Similar to the
multipliers (3.1) for the primitive variables we assume the present multipliers to be
of the form

Λσ =Λσ

(
t, r, ξ , ur, uη, uξ , p̃, ωr, ωη, ωξ

)
, (3.11)

i.e. we limit ourselves again to zeroth-order multipliers.

EV1. Extended family of conservation laws involving ωϕ

The family of CLs is given by

Θ = q(t)
r
ωϕ, (3.12a)

Φr = 1
r

(
q(t) [urωϕ −ωruϕ]+ q̇(t)B

(
1
α

uξ − b
r

uη
)
− α̇q(t)B

(
1
α2

uξ − b
rα

uη
))

,

(3.12b)

Φξ =− B
rα

(
q(t)

(
uηωξ − uξωη

)+ q̇(t)ur + q(t)α̇ξωϕ − q(t)
α̇

α
ur

)
, (3.12c)

where q(t) and q̇(t) is an arbitrary function and its time derivative, respectively (α=
const. corresponds to EV3 in KCO).

EV2. Vorticity conservation law
The CL is given by the density and fluxes

Θ = −α4rB
(

1
α3
ωη − b3

r3
ωξ
)
, (3.13a)

Φr = α4

(
− B

r2

(
r3

α3
(urωη − uηωr)− b3

(
urωξ − uξωr

))− 2B
α2

ur

(
−b

r
uη + 1

α
uξ
))

+ B
r2
α̇

(
−r3uξ − 2α3b3uη − αr2buη + 2

B
α2r2ξur

)
, (3.13b)

Φξ = α4

(
B
α3

(
(ur)

2 + (uη)2 − (uξ)2 + r
(
uηωξ − uξωη

))+ 2bB
α2r

uηuξ
)

− B2

r2
α̇

(
b3α3ξωξ − 2b2α2ξuξ − r3ξωη − 2r2ξuξ − r3

B
ur

)
. (3.13c)
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The assumption b = 0 leads to Θ = −α2rωϕ . Corresponding to KCO problems,
where the velocity vanishes on the boundary of the time-independent flow domain
Ω 6= Ω(t), the quantity α2rωϕ corresponds to the conservation of linear momentum
in the z-direction since

1
2
α2
∫ ∫

Ω

rωϕ dA= α2
∫ ∫

Ω

uz dA, (3.14)

where α(t) is the parameter function (α = const. corresponds to EV4 in KCO).

EV3. Vorticity conservation law
The CL is given by

Θ = −α4 B
r2

(
r2b2

B2
ωξ + r4

α3

(
−b

r
ωη + 1

α
ωξ
))

= −α4 B
r2

(
r2b2

B2
ωξ + r4

α3B
ωz

)
, (3.15a)

Φr = α4 rB
α3

(
2ur

(
1
α

uη + b
r

uξ
)
+ b (urωη − uηωr)

− r4 + r2α2b2 + b4α4

r3α

(
urωξ − uξωr

)+ α̇ ( b
α

uξ + 2α2 b4

r3
uη + b2

r
uη
))
, (3.15b)

Φξ = α4

(
− 1
α3

bB
)(

(ur)
2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

)
− 2

r
αb

uηuξ + α̇
(

B
r
α
ξωη + r

α
ur − r4 + r2α2b2 + b4α4

r2α2b
Bξωξ

))
. (3.15c)

As already seen, the vorticity component ωz has no relative movement. Hence, the
helical vorticity components ωξ , ωη were replaced by ωz in the density (3.15a). For
rotationally symmetric flows, b= 0, the density reduces to −αr2ωz/2. In a similar way
to (3.14), for problems with vanishing flow velocities on the boundary and Ω 6=Ω(t),
it corresponds to the conservation of angular momentum in the z-direction. As before,
the time-dependent parameter function α(t) is still involved (α= const. corresponds to
EV5 in KCO).

EV4. Vorticity conservation law
We further obtain a family of CLs given by the density and fluxes

Θ = 0, (3.16a)

Φr =Nωr − 1
B

Nξuη + b
r
α̇N, (3.16b)

Φξ =Nωξ +Nruη, (3.16c)

where N = N(r, ξ , t). This CL is a linear combination of the continuity equation for
the vorticity (2.12a) and the equations defining the vorticity components (2.11). For
α = const. we obtain an additional CL of the classical case that has not been listed
in KCO. In KCO only a dimensionally reduced form of (3.16b)/(3.16c) was found,
where the function only depended on ξ and t, i.e. N =N(ξ , t) (EV6 in KCO).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.74


356 D. Dierkes and M. Oberlack

EV5. Vorticity conservation law
In this case the CL multipliers again depend on an arbitrary function M=M(ξ , r, t)

and one obtains the following family of CLs, given by the density and fluxes

Θ =Mrω
r + Mξ

B
ωξ , (3.17a)

Φr = Mξ

B

(
urωξ − uξωr

)−Mtω
r + α̇

α
ωr
(
M + ξMξ

)
, (3.17b)

Φξ =Mr
(
uξωr − urωξ

)−Mtω
ξ + α̇

α

(
Mωξ − BξMrω

r
)
. (3.17c)

This CL is a subset of the infinite family of vorticity CLs for helical flows presented
in Cheviakov & Oberlack (2014) for arbitrary time-dependent three-dimensional flows
and is closely linked to Ertel’s theorem.

4. Conservation laws of the helically invariant Navier–Stokes system in time-
dependent coordinates

Presently, the application of the direct method to the reduced Navier–Stokes system
(2.5a)–(2.5d) in primitive variables leads to two new CLs. For the related vorticity
formulation (2.12a)–(2.12d) five new CLs will be derived. For the present calculations
all multipliers (3.1) have been chosen to be of zeroth order. Similarly to the classical
case, all new present CLs are subsets of those admitted by the helically symmetric
Euler equations in the previous section. Whereas the densities are the same, the fluxes
are extended by additional viscous terms.

4.1. Primitive variables
NSP1. Extension of the conservation of the z-projection of momentum

The CL is respectively defined by the density and fluxes

Θ = α2B
(

1
α

uξ − b
r

uη
)
, (4.1a)

Φr = α2

(
urB

(
1
α

uξ − b
r

uη
)
− α̇ξur − 1

2
α̈rξ
)
− α2ν

(
B
(

1
α

uξ − b
r

uη
))

r

, (4.1b)

Φξ = α2

(
uξB

(
1
α

uξ − b
r

uη
)
+ B
α

p
)

−α2α̇ξuξ − αα̇ξB2

(
1
α

uξ − b
r

uη
)
− ν α

2

B

(
B
(

1
α

uξ − b
r

uη
))

ξ

. (4.1c)

Equation (4.1) is a viscous extension of the CL (3.5). In order to clearly see the
momentum conservation, we may write the density Θ in terms of a cylindrical
coordinate system to obtain

Θ = α2 (uz + α̇η) (4.2)

(α = const. corresponds to NSP1 in KCO).
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NSP2. Extension of the conservation of generalized momentum
For the present viscous case, the family of CLs for the helical Euler system (3.7)

reduces to one single CL, given by the density and fluxes

Θ = α2 r
B

uη, (4.3a)

Φr = α2

(
r
B

uηur + α̇ξbur + 1
2
α̈brξ

)
− α2ν

[
−2

B
α

(
1
α

uη + b
r

uξ
)
+
( r

B
uη
)

r

]
(4.3b)

= α2

(
r
B

uηur + α̇ξbur + 1
2
α̈brξ

)
− α2ν

[
− 2
α

uϕ +
( r

B
uη
)

r

]
, (4.3c)

Φξ = α2
( r

B
uηuξ + α2α̇ξbuξ

)
− αα̇rξuη − α2ν

1
B

[
2bB2

αr
ur +

( r
B

uη
)
ξ

]
. (4.3d)

Presently, the analysis and interpretation below (3.7) also holds true, namely that
(4.3a)–(4.3d) refers to a blend of momentum and angular momentum (α = const.
corresponds to NSP2 in KCO).

4.2. The vorticity formulation
In the case of CLs in vorticity formulation we obtained five distinct cases all of which
are one-to-one extensions of the five cases in KCO.

NSV1. Extension of an infinite family of vorticity conservation laws
The family of CLs (3.12) is extended by the viscous terms and the density and

fluxes are given by

Θ = q(t)
r

B
(

1
α
ωη + b

r
ωξ
)
= q(t)

r
ωϕ, (4.4a)

Φr = 1
r

(
q(t) [urωϕ −ωruϕ]+ q̇(t)B

(
1
α

uξ − b
r

uη
)
− α̇q(t)B

(
1
α2

uξ − b
rα

uη
))

− q(t)
r
ν

 B
rα
ωη + b2

r
(

r2

α2
+ b2

)ωϕ + B
(

1
α
ωηr +

b
r
ωξr

) , (4.4b)

Φξ = − B
rα

(
q(t)

(
uηωξ − uξωη

)+ q̇(t)ur + q(t)α̇ξωϕ − q(t)
α̇

α
ur

)
− q(t)

r4
Bν
[

r3

B

(
1
α
ω
η
ξ +

b
r
ω
ξ
ξ

)
+ 2brωr

]
, (4.4c)

where q(t) is an arbitrary function of time (α= const. corresponds to NSV1 in KCO).

NSV2. Extension of the vorticity conservation law
This CL is given by

Θ = −α4rB
(

1
α3
ωη − b3

r3
ωξ
)
, (4.5a)
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Φr = α4

(
− B

r2

(
r3

α3
(urωη − uηωr)− b3

(
urωξ − uξωr

))− 2B
α2

ur

(
−b

r
uη + 1

α
uξ
))

+ B
r2
α̇

(
−r3uξ − 2α3b3uη − αr2buη + 2

B
α2r2ξur

)
−α4 B

r2
ν

[
r2

B2

(
1
α
ωη + b

r
ωξ
)
− r3

(
1
α3
ωηr −

b3

r3
ωξr

)
+ b
α

B2r
(

b3

r3
ωη + 1

α3
ωξ
)]
,

(4.5b)

Φξ = α4

(
B
α3

(
(ur)

2 + (uη)2 − (uξ)2 + r
(
uηωξ − uξωη

))+ 2bB
α2r

uηuξ
)

− B2

r2
α̇

(
b3α3ξωξ − 2bα2ξuξ − r3ξωη − 2r2ξuξ − r3

B
ur

)
+α4 2bB

α2r
ν

[(
1− b2α2

r2

)
ωr + r2α2

2bB

(
1
α3
ω
η
ξ −

b3

r3
ω
ξ
ξ

)]
, (4.5c)

which is a viscous extension of the CL (3.13) (α = const. corresponds to NSV2 in
KCO).

NSV3. Extension of the vorticity conservation law
This CL is given by

Θ = −α4 B
r2

(
r2b2

B2
ωξ + r4

α3

(
−b

r
ωη + 1

α
ωξ
))

= −α4 B
r2

(
r2b2

B2
ωξ + r4

α3B
ωz

)
, (4.6a)

Φr = α4 rB
α3

(
2ur

(
1
α

uη + b
r

uξ
)
+ b (urωη − uηωr)

− r4 + r2α2b2 + b4α4

r3α

(
urωξ − uξωr

)+ α̇ ( b
α

uξ + 2α2 b4

r3
uη + b2

r
uη
))

+α4ν

[
4

B
α3

(
1
α

uη + b
r

uξ
)
− br
α3

Bωηr +
B
r3

(
b4 − r4

α4
− r6

α4r2 + α6b2

)
ωξ

+ B
α4r2

(
r4 + α2r2b2 + α4b4

)
ωξr +

b
αB

(
2+ r4(

r2 + α2b2
)2

)
ωη
]
, (4.6b)

Φξ = α4

(
− 1
α3

bB
)(

(ur)
2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

)
− 2

r
αb

uηuξ + α̇
(

B
r
α
ξωη + r

α
ur − r4 + r2α2b2 + b4α4

r2α2b
Bξωξ

))
+α4ν

[
1
α4r2

(
r4 + α2r2b2 + α4b4

)
ω
ξ
ξ −

br
α3
ω
η
ξ −

4bB
α3r

ur + 2B4b
r3

ωr

]
, (4.6c)

which is a viscous extension of (3.15) (α = const. corresponds to NSV3 in KCO).
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NSV4. Extension of an infinite family of vorticity conservation laws
The family of CLs (3.16), which holds for the helically invariant Euler equations,

is carried over to the viscous case without change, as the viscosity does not appear
explicitly (α = const. corresponds to NSV4 in KCO).

NSV5. Extension of an infinite family of vorticity conservation laws
The infinite set of CLs (3.17) is extended by a viscous term. Its density and fluxes

read

Θ = Mrω
r + Mξ

B
ωξ , (4.7a)

Φr = Mξ

B

(
urωξ − uξωr

)−Mtω
r + α̇

α
ωr
(
M + ξMξ

)
+ ν

[
−Mξξ

B2
ωr − Mr

r
(rωr)r −

2bBMξ

αr2
ωη +

(
BMξ

α2r
+ Mrξ

B

)
ωξ − Mξ

rB

(
rωξ
)

r

]
,

(4.7b)

Φξ = Mr
(
uξωr − urωξ

)−Mtω
ξ + α̇

α

(
Mωξ − BξMrω

r
)+ ν [( 2B

α2r
− 2

rB

)
Mξω

r

+ Mrξ

B
ωr − Mr

B
ωr
ξ +

2bB2Mr

αr2
ωη −

(
2B2Mr

α2r
+ r
(

Mr

r

)
r

)
ωξ − Mξ

B2
ω
ξ
ξ

]
, (4.7c)

while M=M(ξ , r, t). As for (3.17) the previous CLs are a special case of the infinite
family for viscous helical flows in Cheviakov & Oberlack (2014).

5. Summary and conclusions
In the current contribution the classical case of a helical coordinate system is

extended to a new time-dependent helical coordinate system by applying the method
of group invariant reduction. Based on these new coordinates, a reduced system of
time-dependent helically invariant Euler and Navier–Stokes equations was derived,
where the spatial dependence of all dependent variables has been reduced by one.
For the development of the new helical coordinate system, we considered the helical
symmetry of the Euler and Navier–Stokes equations, which relies on the combination
of two Lie symmetry groups: (i) generalized Galilean invariance, which comprises
classical Galilean group and axial translation and (ii) the rotation about the same
axis. Compared to the coordinate system that is used for classical helical flows (see
e.g. KCO), where all coordinates are time-independent, the present helical coordinate
ξ is time-dependent. Nevertheless, particularly for the helical coordinate, there is a
good analogy between the classical and the extended case. The only difference is
that the parameter a in the classical helical setting is replaced by the time-dependent
parameter 1/α(t). Moreover, the helically invariant Euler and Navier–Stokes equations
are extended by terms involving the time derivative of the parameter function α(t).

Furthermore, new local CLs were sought, which were obtained from the new
helically invariant system of equations. However, for every CL in KCO, a correspo-
nding CL has been found for time-dependent coordinates, except for the conservation
of energy and helicity. Due to their great importance in a physical context, their
absence was proven in appendices B and C.

For the helically invariant Euler equations in primitive variables an extension
of the conservation of the z-projection of momentum and angular momentum was
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obtained. Further, an infinite family of CLs holds for helical flows in time-dependent
coordinates, which may be considered a blend of momentum and angular momentum.

For the helically invariant Euler equations in vorticity formulation, three extended
families of CLs were obtained. The family of CLs EV1 (3.12) involves the vorticity
component ωϕ and depends on the arbitrary function q(t). The family of CLs EV4
(3.16) is a combination of the continuity equation for vorticity (2.12a) and the
equations defining the vorticity components (2.11). The family of CLs (EV5) is a
subset of the infinite family of CLs for helical flows presented in Cheviakov &
Oberlack (2014). Further, two new CLs, which are extensions of the classical case,
hold (formulae (3.13) and (3.15)).

For the viscous case in primitive variables, extensions of the conservation of the
z-projection of momentum and generalized momentum were obtained (formulae (4.1),
(4.3)).

Finally, for the viscous case in vorticity formulation, all the CLs obtained for the
inviscid case are carried over and extended by a viscous term. They were listed in the
§ 4.2.

In summary, with the use of the Lie symmetries, a setting to describe helical
flows with a time-dependent moving pitch could be derived in a straightforward way.
Moreover, the assumption of helical invariance gives rise to new CLs which exist in
addition to the known CL in three dimensions, e.g. conservation of mass, momentum
and energy.

One objective for future work is seeking exact solutions of the helical invariant
Navier–Stokes equations (2.5). However, it is rather difficult to find an appropriate
ansatz for a solution of the equations even for the classical helical case with a constant
pitch. The stability of special solutions to the Navier–Stokes equations is a topic of
countless publications, although very little is known for helical flows. However, it is
known that many swirling flows are unstable to helical disturbances, in fact, very often
these are the most unstable modes. In this sense, the present study may be valuable
for the understanding of the nonlinear stability of these flows.
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Appendix A. Derivation of the time-dependent helical coordinates
Presently, we derived a new time-dependent helical coordinate system for the Euler

and Navier–Stokes equations by using the method of group invariant reduction. Here,
group invariance is meant in the sense of reduction of the spatial coordinates such as
e.g. a reduction to plane flows.

The derivation is based on the helical symmetry which is a combination of
the generalized Galilean invariance and the rotation group, given by (2.2). The
corresponding infinitesimal generators for rotation and generalized Galilean invariance
of the Euler and Navier–Stokes equations are given by (see e.g. Oberlack 2000)

XR = ∂

∂ϕ
, (A 1a)

XG = α(t) ∂
∂z
+ α̇(t) ∂

∂uz
− zα̈(t)

∂

∂p
. (A 1b)
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A new extended helical symmetry of the Euler and Navier–Stokes equations consists
of a superposition of a rotation group XR and the generalized Galilean symmetry XG.
To maintain the nomenclature to earlier results on helical flows (see e.g. KCO), we
choose the following linear combination of symmetries (A 1a) and (A 1b) to obtain

X = 1
b

XR − XG (A 2)

= 1
b
∂

∂ϕ
− α(t) ∂

∂z
− α̇(t) ∂

∂uz
+ zα̈(t)

∂

∂p
. (A 3)

For the final aim of a helically symmetric coordinate system we need to define
η(r, ϕ, z, t) to be the variable, which should be eliminated from the system of
equations such that the reduced system only contains two spatial variables.

Based on this idea, we derive a new set of variables, i.e. the reduced helical
coordinates (r̃, ξ), the helical velocities (ũr, uη, uξ ) and the pressure p̃ summarized in
the vector

σ := (ξ , r̃, τ , ũr, uη, uξ , p̃). (A 4)

For their derivation we employ the method of canonical coordinates (see e.g. Bluman
et al. 2010), which results in two linear partial differential equations of first order,
given by

Xη= 1, (A 5a)
Xσ = 0. (A 5b)

Their solutions generate the new variables (η, σ ) and the symmetry (A 3) transforms
into the symmetry

X = ∂

∂η
, (A 6)

which is a translational symmetry in η.
Substituting (A 3) in (A 5a) leads to

Xη= 1
b
∂η

∂ϕ
− α(t)∂η

∂z
− α̇(t) ∂η

∂uz
+ zα̈(t)

∂η

∂p
= 1, (A 7)

which can be equivalently written in the form of a characteristic system

b dϕ =− dz
α(t)
=− duz

α̇(t)
= dp

zα̈(t)
= dt

0
= dr

0
= duϕ

0
= dur

0
= dη

1
. (A 8)

Solving the system (A 8), we obtain a general solution of equation (A 7) for the
helical variable η given by

η= bϕ + F
(

r, t, bϕ + z
α
, p+ 1

2
α̈

α
z2, uϕ, ur, uz + α̇bϕ

)
. (A 9)

Similarly, substituting (A 3) in (A 5b) yields

Xσ = 1
b
∂σ

∂ϕ
− α(t)∂σ

∂z
− α̇(t) ∂σ

∂uz
+ zα̈(t)

∂σ

∂p
= 0, (A 10)
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and, written in the equivalent form of the characteristic system, we obtain

b dϕ =− dz
α(t)
=− duz

α̇(t)
= dp

zα̈(t)
= dt

0
= dr

0
= duϕ

0
= dur

0
= dσ

0
. (A 11)

A general solution of (A 11) reads

σ = F
(

r, t, bϕ + z
α
, p+ 1

2
α̈

α
z2, uϕ, ur, uz + α̇bϕ

)
, (A 12)

where F= ( f 1, f 2, f 3, f 4, f 5, f 6, f 7) is a vector consisting of seven arbitrary functions
depending on the arguments given in (A 12).

The specific new helical coordinates may now be manufactured from (A 9) and
(A 12), respectively. In order to keep the complexity for the resulting Euler and
Navier–Stokes equations in the helical coordinate system as low as possible, we
choose the new independent coordinates as given in (2.3a)–(2.3d).

Analogous to the classical case the helical velocity components and the pressure are
given by (2.3e)–(2.3h). They are a particular choice of the special solutions of (A 12).

Appendix B. Proof of the absence of conservation of kinetic energy in time-
dependent helical coordinates

It is well known that for the three-dimensional time-dependent Euler system, the
kinetic energy is conserved in every coordinate system. In the present section we
will prove that in our spatially reduced time-dependent helically symmetric coordinate
system the conservation of kinetic energy does not hold.

The proof can be done by contradiction: we rewrite the kinetic energy in conserved
form in the helical time-dependent coordinates, i.e. (r, ξ , η) defined in (2.3a)–(2.3d).
However, after imposing helical invariance, i.e. eliminating any η-dependence from the
velocity and pressure, we would expect an energy equation, which is independent of η.
However, we obtain an equation involving the helical coordinate η itself. As a result,
it is not possible to write an energy conservation equation in a helically symmetric
time-dependent coordinate system. The following steps may clarify the proceeding.

The energy equation can be written in a cylindrical coordinate system

∂Γ t

∂t
+ ∂Γ

ϕ

∂ϕ
+ ∂Γ

r

∂r
+ ∂Γ

z

∂z
= 0, (B 1)

where the fluxes read

Γ t = rK, (B 2)
Γ ϕ = uϕ (K + p) , (B 3)
Γ r = rur (K + p) , (B 4)
Γ z = ruz (K + p) . (B 5)
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K denotes the kinetic energy density, given by

K = 1
2
|u|2 = 1

2

(
(ur)

2 + (uϕ)2 + (uz)
2) (B 6a)

= 1
2

[
(ur)

2 + B2

(
b
r

uξ + 1
α

uη
)2

+
(

B
(

1
α

uξ − b
r

uη
)
− α̇η

)2
]
. (B 6b)

Replacing the cylindrical derivatives by the helical derivatives, the energy equation
reads

∂

∂τ
(rK)+ ∂

∂r
(rur (K + p))− α̇

α
ξ
∂

∂ξ
(rK)

+ ∂

∂ξ

(
α̇

α
η (rK)+

(
r
α

uz − α̇
α
η

)
(K + p)

)
+ ∂

∂η
(buϕ (K + p))= 0. (B 7)

Since the helical invariant coordinate η itself only occurs in the velocity component uz

and in the pressure p, these variables will be replaced by their corresponding helical
expressions. Assuming helical invariance and simplifying, the energy equation reads

R
(
σ , ∂jσ

)+ [α̇ (r
α̇

α
ξ ûξ − rûτ − buϕξ û+ buϕα̇ + buϕ ûξ − r

α
ûξ û

+ (ur + rur
r

) (−û− rurûr
)− 2ûûξ −

(
urur

ξ + uϕuϕξ
)− p̃ξ

)
+ α̈ (−rû+ rαbuϕξ ξ +

(
ur + rur

r

)
αξ + rξ ûξ + αû

)]
η

+
[
α̇

(
rα̈ − α̇

α
rûξ + 1

2

(
ur + rur

r

)
α̇ + 1

2
uϕξ α̇ +

1
2

r
α
α̇ûξ + α̇ûξ − α̈α

)
+ α̈

(
−1

2
rαbuϕξ −

1
2

(
ur + rur

r

)
α − 1

2
r
)]

η2 = 0, (B 8)

where R is the collection of all η-independent terms and thus is a function of the
helical dependent and independent variables σ ∈ R7 defined in (A 4) and their first
derivatives ∂jσ ( j ∈ {r, ξ , τ }).

Here, the quantity û is the short form of the η-independent part of the uz-velocity
component, given by

û := B
(

1
α

uξ − b
r

uη
)
. (B 9)

Apparently, (B 8) displays the above-mentioned contradiction as velocity and pressure
are assumed to be independent of η, while the equation still contains η. For α= const.
all η-dependent terms vanish in equation (B 8) and, hence, the conservation of energy
only holds true for the classical helically symmetric case.

Appendix C. Proof of the absence of conservation of helicity in time-dependent
helical coordinates

In this section we prove that for the case of Euler’s equations the conservation of
helicity in helically symmetric flows in a spatially reduced time-dependent coordinate
system does not hold. The proof is done in the same manner as for the conservation of
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kinetic energy. In cylindrical coordinates the density and fluxes of helicity conservation
are given by

Γ t = rh, (C 1)
Γ ϕ =ωϕ (E− (ur)

2 − (uz)
2)+ uϕ (h− uϕωϕ) , (C 2)

Γ r = rωr
(
E− (uϕ)2 − (uz)

2)+ rur (h− urωr) , (C 3)

Γ z = rωz
(
E− (ur)

2 − (uϕ)2)+ ruz (h− uzωz) , (C 4)

where h= u ·ω= urωr + uϕωϕ + uzωz is helicity and

E = E
1
2
|u|2 + p= 1

2

(
(ur)

2 + (uϕ)2 + (uz)
2)+ p (C 5a)

= 1
2

[
(ur)

2 + B2

(
b
r

uξ + 1
α

uη
)2

+
(

B
(

1
α

uξ − b
r

uη
)
− α̇η

)2
]

+ p̃− 1
2
α̈α (ξ − η)2 (C 5b)

is the total energy density (see e.g. KCO).
Rewriting the helicity conservation equation in the full three-dimensional helical

coordinate system (r, ξ , η) we obtain

∂

∂τ
(rh)+ ∂

∂r

(
rωr

(
K + p− (uξ)2 − (uη)2 + 2B

(
1
α

uξ − b
r

uη
)
α̇η− α̇2η2

))
− α̇
α
ξ
∂

∂ξ
(rh)+ ∂

∂ξ

(
α̇

α
η (rh)+

( r
B
ωξ
) (

K + p− (ur)
2)+( r

B
uξ − α̇

α
η

)
h

− r
B
ωξ
((

uξ
)2 + (uη)2 − 2B

(
1
α

uξ − b
r

uη
)
α̇η+ α̇2η2

))
+ ∂

∂η

(
bωϕ

(
K + p

− (ur)
2
)
− bωϕ

((
uξ
)2 + (uη)2 − 2B

(
1
α

uξ − b
r

uη
)
α̇η+ α̇2η2

)
+ buϕh

)
= 0.

(C 6)

In a second step imposing helical invariance onto equation (C 6), i.e. vorticity, velocity
and pressure are η-independent, the helicity equation yields

R̃
(
σ , ∂jσ

)+ [α̇(ωz
ξ

r
α

û− rωz
τ +

α̇

α
ξrωz

ξ + b
(
ω
ϕ
ξ û− α̇ωϕ ûξ − uϕξω

z − uϕωz
ξ

)
+ (rωr)r û+ rûrω

r − (rurωz)r

)
+ α̈

(
ωz
ξ rξ + bαωϕξ + (rωr)r 2αξ

)]
η

+
[
α̇

1
2

(
− rωz

ξ

α̇

α
+ bωϕξ α̇ − (rωr)r α̇

)
+ α̈

(
1
2

rωz
ξ − bωϕξ α − (rωr)r α

)]
η2 = 0,

(C 7)

where R̃ is a collection of all η-independent terms and thus is a function of the
reduced helical independent and dependent variables σ̃ ∈ R10, which consist of the
two helical coordinates (r, ξ), the time (t), the three velocity components, pressure
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and the three vorticity components and their first derivatives ∂jσ̃ , for j ∈ {r, ξ , τ }.
As for the energy equation, the contradiction becomes apparent, as in (C 7)
η-independence of all dependent variables was employed, still the equation contains
η explicitly.

Likewise for the kinetic energy, for α= const. all η-dependent terms vanish in (C 7)
and the conservation of helicity holds for the classical helically symmetric case.
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