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Water wave diffraction by a cylinder array.
Part 1. Regular waves

By C. O. G. O H L†, R. E A T O C K T A Y L O R, P. H. T A Y L O R
AND A. G. L. B O R T H W I C K
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(Received 15 June 2000 and in revised form 14 December 2000)

Diffraction of regular waves by arrays of vertical bottom-mounted circular cylinders is
investigated using theoretical, computational, and experimental methods. Experiments
in an offshore wave basin are designed to measure free surface elevation η at multiple
locations in the vicinity of a multi-column structure subjected to regular waves
of frequency 0.449 < ka < 0.524 and steepness 0.122 < kA < 0.261, where k is the
wavenumber, a the cylinder radius and A the wave amplitude. Results from regular
wave data analysis for first-order amplitudes are compared with those from analytical
linear diffraction theory, which is shown to be accurate for predicting incident waves
of low steepness. Second- and third-order terms are also estimated from the measured
time series, and the effects near a second-order near-trapping frequency are compared
to semi-analytical second-order diffraction theory. Linear diffraction theory is shown
to be very accurate at predicting the global surface elevation features, even for waves
of high steepness. However, violent events and significant nonlinear interactions,
including breaking induced by wave scattering, have been observed. Furthermore,
second-order near-trapping was observed to affect the magnitude of local free surface
oscillations as well as scattered far-field radiation.

1. Introduction
Two closely related problems considered in the design of offshore platforms are

‘upwelling’ and ‘runup’. Upwelling is the local modification (and possible amplifi-
cation) of the incident surface wave in the vicinity of the structure, whereas runup
is the local modification immediately adjacent to a given surface-piercing element,
associated with fluid flow on the surface of the body. These phenomena can cause the
local wave elevations to be significantly greater than that of the undisturbed incident
wave and are of particular interest due to the growing number of large diameter,
multi-column offshore structures.

The reason for predicting upwelling and runup is the necessity for designers to
maintain a sufficient air gap, which is the vertical distance from the underside of
the platform deck to the wave crest in extreme design storm conditions. While this
clearance must be sufficient that the wave does not strike the lower deck, it must
also be minimized in order to avoid raising the centre of gravity and exposed vertical
surface area of the platform, which may affect the wind loading and will increase the
wind overturning moments. Keeping the air gap of a tension leg platform as small
as possible also has the desirable effect of minimizing the weight of the structure.

† Present address: c/o Human Resources, Costain Limited, Costain House, Nicholson’s Walk,
Maidenhead, Berkshire SL6 1LN, UK.
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2 C. O. G. Ohl, R. Eatock Taylor, P. H. Taylor and A. G. L. Borthwick

Aside from elevation effects, upwelling alters the local wave kinematics near the
platform. If such an alteration results in increased horizontal velocity, drag forces
may be amplified on low-level appendages such as conductors and risers. Damage
to the lowest decks of semi-submersible platforms (Eatock Taylor & Wu 1997) and
gravity platforms (Swan, Taylor & Van Langen 1997) has been reported within the
offshore industry. In addition, experiments on various multi-column structures (Owen
& Padilla Perez 1987 and Swan et al. 1997) have demonstrated higher than expected
local wave elevations, which suggest the presence of significant nonlinearities. The
presence of significant runup around the columns and upwelling beneath the centre of
the platform deck was also observed in model tests on the Brent Bravo GBS (Gravity
Based Structure) undertaken by Swan et al. (1997); the main effect was in high waves
(large steepness) of high frequency (short wavelength).

A possible contributing factor giving rise to high localized wave elevations is
the phenomenon known as near-trapping. This has been shown theoretically to
occur at critical frequencies dependent upon the geometry of the structure (cylinder
diameter and spacing) relative to the wavelength. Discussed in more detail below,
the terminology is based upon the similarity to trapping of waves near a body in a
long narrow channel: at specific incident wave frequencies, there is no radiation of
wave energy to infinity. This is closely related to the well-known phenomenon of edge
waves at a plane sloping beach, as identified by Stokes (1846).

1.1. Diffraction theory

Wave–body interaction analysis is a three-dimensional, fully nonlinear problem, which,
even in regular seas, unsurprisingly remains unsolved. There have been recent attempts
to approximate the solution, for example using boundary element (Ferrant 1996 and
Celebi, Kim & Beck 1998) and finite element (Ma, Wu & Eatock Taylor 2000)
methods, but these are still incomplete. However, given certain assumptions and sim-
plification, low-order analytical models have been derived. If the typical dimension
(i.e. column diameter) is large compared with the surface wave amplitude and wave-
length, then viscous effects can be neglected and diffraction effects are dominant. In
addition, the flow may be assumed to be incompressible and irrotational, and surface
tension effects assumed to be negligible. These last three assumptions imply that the
flow field can be represented by a scalar velocity potential, satisfying the Laplace
equation within the fluid domain. While there is an implicit time dependence in the
velocity potential, the problem is often studied in the frequency domain, which reduces
computation time and eases analytical progress. Through a perturbation expansion,
the potential may be expressed as the sum of linear and higher-order components
associated with powers of some small expansion parameter. The potential may then
be solved at each order successively by using the lower-order solutions to generate
the boundary conditions necessary to solve for the higher-order components. Com-
prehensive reviews of analytical and numerical linear diffraction analyses have been
undertaken by Yeung (1982) and Mei (1983).

The primary obstacle in developing higher-order diffraction theory in the frequency
domain is the inhomogeneous free surface boundary condition, which must be ad-
dressed at second order. This problem requires integration of an equation over the
entire free surface, containing quadratic products of the first-order velocity potential
and its derivatives.

Kriebel (1990) developed a second-order solution based on a velocity potential
decomposition for the diffraction of a monochromatic wave (a regular wave of single
frequency component) in the presence of a bottom-mounted, circular cylinder. Kriebel
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Wave diffraction. Part 1. Regular waves 3

predicted that the maximum second order runup on the cylinder exceeded that from
linear theory by more than 50% in cases of steep waves where kA > 0.25 (k and A
are the wavenumber and wave amplitude, respectively). Subsequently, Kriebel (1992)
conducted laboratory experiments to measure wave runup around a large-diameter,
vertical circular cylinder in monochromatic nonlinear waves. These confirmed that
the second order theory explains a significant portion of the nonlinear runup.

Malenica & Molin (1995) used eigenfunction expansions and an integral equation
technique to develop expressions for the third-order velocity potential for a vertical
bottom-mounted circular cylinder in regular waves. However, Malenica & Molin only
considered velocity potential components relevant to the calculation of third-order
forces and did not develop any expressions for the third-order diffracted free surface
elevation. While first- and second-order results were verified by comparison with the
free surface elevation calculations of Kim & Yue (1989), third-order force calculations
were compared with experimental data (Moe 1993) for a single truncated cylinder.
Second-order loads measured during these experiments showed very close agreement
with calculated values. However, the third-order force measurements showed sig-
nificant scatter, causing comparison with the theoretical values to be inconclusive.
Subsequent experimental data obtained by Huseby & Grue (1998) provided much
closer agreement with Malenica & Molin’s third-order force predictions, and also
with the fully nonlinear simulations of Ferrant (1996).

1.2. Diffraction from cylinder arrays

In the case of a wave incident on an array of bodies, computation of the veloc-
ity potential must account for both the diffraction of the incident field by each
body and the multiple scattering due to the other bodies. By developing a simple
formulation for this multiple scattering phenomenon, Linton & Evans (1990) pro-
vided formulae for the first- and mean second-order forces on one cylinder in an
array of bottom-mounted circular cylinders, and also an efficient method for the
calculation of the first-order velocity potential (from which follows the free surface
amplitude). A semi-analytical solution of second-order diffraction from an array of
vertical bottom-mounted circular cylinders was presented by Malenica, Eatock Taylor
& Huang (1999). A continuation of similar approaches that were initiated indepen-
dently by Huang & Eatock Taylor (1996) and Malenica (1997), the method obtains
the second-order potential by combining eigenfunction expansions with an integral
representation. This allows computation of local flow characteristics, such as free
surface elevation, pressure, and velocities, as well as the evaluation of third-order
force components due to first- and second-order effects.

1.3. Trapping and near-trapping of waves

Ursell (1951) first identified trapped modes in an open channel (corresponding to a
long narrow wave tank) using first-order wave theory in his study of a submerged
horizontal cylinder. With the restrictions of small radius and infinite depth, he proved
that, while some energy radiated to infinity, energy at discrete frequencies below
a certain cutoff was trapped near the cylinder and did not radiate. Subsequently,
Jones (1953) extended this to include submerged horizontal cylinders of arbitrary
cross-section (i.e. not limited to small radius), but symmetrical about a vertical plane.

Evans & Linton (1991) made numerical calculations for a vertical cylinder of
rectangular cross-section placed at the centre of a long narrow wave channel (see
the Appendix). With frequency dependent upon the dimensions of the rectangular
cylinder relative to the channel, trapped modes were found to be antisymmetric about
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the vertical centreplane of the wave tank and either symmetric or antisymmetric
about a transverse vertical plane through the cylinder centre (i.e. normal to the tank
sides). Evans, Levitin & Vassiliev (1994) subsequently proved existence of trapped
modes in channels for all symmetric cross-sections.

Maniar & Newman (1997) utilized Linton & Evans’ (1990) method to study the
forces on long finite linear arrays of bottom-mounted circular cylinders in open sea,
the axes of which are separated by the distance h. The spacing to wavelength ratio kh
was identified as most significant for the magnitude of free surface oscillations and
scattering, although it was also dependent on the ratio a/h. At certain values of kh,
large free surface oscillations in the vicinity of cylinders near the array centre decay
only rather slowly with distance from the array. This corresponds to near-trapping,
and leads to large forces on some of the cylinders. Maniar & Newman (1997) made
the practical suggestion that the very large free surface amplitudes and peak loads
predicted at near-trapping would be substantially reduced due to viscous damping
and other nonlinear effects.

Lastly, employing a semi-analytical diffraction theory for arrays of bottom-mounted
circular cylinders, Evans & Porter (1997) made a detailed investigation of near-
trapping by circular arrays of vertical cylinders. Malenica et al. (1999) subsequently
extended the studies of near-trapping in an array to second order. They divided the
total second-order free surface elevation η(2) into the following two parts: η(21), due to
quadratic products of first-order quantities, and η(22), directly from the second-order
potential. For an array of four cylinders at the corners of a square of side length 2h
in water of depth d = 3a, the free surface elevation was studied along the centreline
for two configurations, a/h = 0.5 and 0.6, for which Evans & Porter (1997) and
Malenica et al. (1999) had identified first-order near-trapping at ka = 1.66 and 2.27.
While both η(21) and η(22) were large at these first-order frequencies, their relative
phases were such that η(2) showed no significant response. At half the first-order
near-trapping frequencies, corresponding to ka = 0.468 and 0.600 for the case here of
d/a = 3, the first-order free surface and corresponding quadratic products, η(1) and
η(21), were found to have low values. In contrast, the contribution from the second-
order potential at these frequencies for these cases led to large free surface responses:
the total second-order free surface elevation, η(2), exhibited amplification as high as
|η(2)|/kA2 = 40 for a/h = 0.6. Coupled with studies of first- and second-order runup
in the array as a function of ka for a/h = 0.6, these results suggest that second-order
near-trapping occurs when the frequency of the second-order components is equal to
the frequency of first-order near-trapping.

1.4. Objectives

The validation of higher-order diffraction theories has typically consisted of compari-
son with limited results from numerical analyses. Comparisons with experimental
results have been primarily based upon the forces and/or moments experienced by
structures, which are integrated quantities, as opposed to the more rigorous test of
comparing free surface elevations. Where comparisons of theoretical free surface
elevation to experimental measurements have been conducted, these have been for
experiments involving single cylinders and small wave heights. These single cylinder
cases do not constitute a test of the complex scattering problem for the interactions
of multiple bodies and are of little interest for the practical design of large offshore
structures. While more complex geometries such as a TLP (Tension Leg Platform)
or GBS with truncated or tapering columns have been tested, these have been
of sufficient complexity to render direct comparison with the most basic theories
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Wave diffraction. Part 1. Regular waves 5

impossible. Furthermore, the small-amplitude waves tested bear little similarity to
the highly nonlinear, steep ocean waves encountered in typical design environmental
conditions (i.e. severe storms offshore). Finally, the near-trapping phenomenon for
cylinder arrays in the open ocean has not been experimentally verified.

In light of the above, this paper discusses experiments in an offshore wave basin
at HR Wallingford, for which free surface elevation measurements have been made
for direct comparison with diffraction theory. The simplified geometry of the exper-
imental model (a square array of bottom-mounted cylinders) and the examination
of free surface elevation allow relatively straightforward comparison with alternative
theoretical and numerical data. This paper presents results for the diffraction of steep
regular waves, while a companion paper (Ohl et al. 2001) examines the diffraction of
irregular waves, focused wave groups, and random seas. The effects of alterations in
the frequency and steepness of incident waves on the diffracted field are examined as
well as the near-trapping of second-order components observed in the experiments.
First-order near-trapping was not attempted due to model and facility constraints.

2. Wave diffraction experiments
Testing was undertaken in the Offshore Wave Basin at HR Wallingford Ltd. Both

regular and irregular incident waves were produced in 104 individual tests on the
multi-cylinder model. Results from these experiments are discussed in subsequent
sections for regular waves and in the companion paper by Ohl et al. (2001) for
irregular waves. Only a summary of the experimental methods is presented here; an
extensive discussion is given by Ohl (1999).

2.1. Description

The three-dimensional offshore wave basin at HR Wallingford has a plan area of
25 m× 25 m and operates with a working depth of 2 m. The 80 computer controlled
individual paddles at the basin’s upstream end are capable of generating either
regular or irregular waves with directional spreads of up to ±45◦. However, only uni-
directional waves were analysed in these experiments, with the wave crests parallel to
the wave paddles. At the downstream end of the basin is a beach to prevent significant
reflection of wave energy. A moveable bridge spanning the basin provided access to
the deck of the model structure and the wave probes. Video cameras (discussed further
below) were located at the side of the wave basin both upwave and downwave of the
model.

The model was placed in the centre of the wave basin, where the origin (x = 0, y = 0)
is taken for reference purposes. The x-axis is in the direction of incident wave
propagation (the longitudinal direction), while the y-axis is perpendicular to the
incident wave direction and parallel to the wave paddles (the transverse direction).

The diffraction model comprised a square array of four bottom-mounted vertical
circular cylinders and was fabricated from standard 406 mm (16 in.) diameter steel pipe
with thickness 6.35 mm (0.25 in.) and uniform circular cross-section (i.e. a = 203 mm).
Figure 1(a, b) provides plan view and side elevation schematics of the model. As
shown, the cylinders are arranged at the corners of a square, with centre to centre
distance equal to twice the cylinder diameter and a gap between cylinders of one
diameter. The air gap between the mean still water level and the deck structure
supporting the wave probes was selected to be 450 mm, which was assumed to be
higher than the likely diffracted free surface elevation for any of the incident waves
to be considered.
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Figure 1. Schematic diagram of the model structure in plan view (a) and side elevation (b).

Due to the large mass of each cylinder (approximately 1150 kg), the model was
assembled inside the basin with the cylinders fixed to a square steel template on
the basin floor. Two holes on the periphery of the template allowed the model to
be positioned in two configurations. The first configuration, hereafter referred to
as heading 0◦, is that presented in figure 1, with two cylinders upstream and two
downstream. The second configuration, hereafter referred to as heading 45◦, is with
one cylinder upstream (centre along y = 0), one downstream (centre along y = 0),
and two along the transverse centreline of the wave basin (centres along x = 0).

A total of 13 channels was available for wave probe measurements, allowing the use
of one permanently fixed wave probe (hereafter referred to as the reference probe or
probe 0) at (x = −114 mm, y = 3500 mm) or (x = −0.56a, y = 17.2a) and 12 moveable
wave probes in the vicinity of the model structure. A wave probe support system
was mounted on the top of the cylinders. This deck structure contained a matrix of
positions for the wave probes to be attached.

Video cameras were positioned to provide views from the upstream and downstream
ends of the wave basin as well as between the cylinders. Signals from the cameras
were fed into a split screen television, allowing both camera angles to be viewed
simultaneously. This made it possible to follow the progression of a wave as it
approached the model, reached the cylinders, and progressed further downstream.

2.2. Experimental procedures

Following model installation in the 0◦ heading configuration and the subsequent filling
of the basin, the wave probes were individually calibrated. A series of pre-calibration
regular wave tests (PRWT) was then performed to identify frequencies of interest for
the final test matrix as well as regions of significant upwelling and runup for wave
probe placement. Following these PRWT, a test matrix was developed to examine
the effects of varying both frequency and steepness for regular and irregular incident
waves for both model headings. Testing then began for the 0◦ heading case, during
which the wave probes were placed in two separate configurations. Following these
tests, the model was rotated through 45◦, and the same series of incident regular and
irregular waves repeated, again with two wave probe configurations. After the model
tests, the deck structure supporting the wave probes was fixed in place on the basin
bridge directly above the model. The basin was then emptied for model removal and
subsequently refilled for a repetition of the tests, producing equivalent regular and
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Wave diffraction. Part 1. Regular waves 7

Test f [Hz] ka λ/h0 λ/h45 Ai [m] A [m] kA

1a 0.8000 0.524 6.00 2.70 0.1016 0.0925 0.238
1b 0.0508 0.0490 0.126
2a 0.7838 0.503 6.25 2.82 0.1058 0.0985 0.244
2b 0.0529 0.0493 0.122
3a 0.7686 0.483 6.50 2.93 0.1101 0.1075 0.256
3b 0.0550 0.0571 0.136
4a 0.7542 0.465 6.75 3.04 0.1143 0.1138 0.261
4b 0.0572 0.0589 0.135
5a 0.7406 0.449 7.00 3.16 0.1185 0.1129 0.249
5b 0.0593 0.0613 0.135
6a 0.7277 0.433 7.25 3.27 0.1228 0.1150 0.245
6b 0.0614 0.0597 0.127

Table 1. Test matrix for regular waves (Ai is the amplitude input to the paddles, while A is the
measured incident amplitude).

irregular wave results in the absence of the model. (This case is referred to below as
the ‘empty tank’.)

From observations made during the PRWT, it was concluded that the highest
frequency waves (ka > 0.4) showed the most significant free surface disturbances.
In addition, this disturbance was related to the ratio of incident wavelength to
cylinder diameter or spacing (as discussed in the Introduction). A test matrix was
then constructed to analyse the effects of varying incident wave frequency based on
the ratio of wavelength to cylinder diameter (λ/2a). However, also of importance is
the ratio of wavelength to cylinder spacing (taken as half the distance between the
centres of the most upstream and most downstream cylinders), which is λ/h0 and

λ/h45 for the 0◦ and 45◦ heading configurations respectively (h0 = 2a and h45 = 2
√

2a).
Six regular wave frequencies were selected for testing. For each of these frequencies,

two separate values of steepness were chosen, one near to breaking (subscript a) and
the other half as steep (subscript b) (target values were λ/Aa = 24, kAa = 0.262 and
λ/Ab = 48, kAb = 0.131, respectively). Tests were also conducted in irregular waves,
and these are discussed in a companion paper (Ohl et al. 2001).

The resulting test matrix for regular waves is displayed in table 1. It is important to
note that all values in the test matrix related to wavenumber or wavelength have been
computed through the linear dispersion equation. In addition, Ai is the amplitude
input to the wave generating equipment, while A and non-dimensionalized kA are
the incident amplitude as measured during the experiments, and are discussed further
below.

Two probe configurations were used for each model heading, designated A and
B for the 0◦ heading and C and D for the 45◦ heading. With 12 movable wave
probes and the reference probe, this provided a total of 13 wave probes in each probe
configuration, with 25 distinct measurement positions for each model heading. The
reference probe (probe 0) position was constant for the duration of the experiments.

The relevant probe positions are listed in table 2, in the Cartesian coordinate system
introduced above, and a diagram of the approximate locations is provided in figure 2.
The probes are referenced according to probe configuration and probe number (e.g.
B9 is wave probe 9 in configuration B for the 0◦ heading case). For the empty tank
regular wave tests, the probes were placed in configuration D.

Between tests, a settling period of approximately 30 to 45 minutes was allotted to
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(a)  Heading 0° (b)  Heading 45°

17 probes along
model centreline

2 probes
offset upwave 5 probes offset

between cylinders

y

x

Incident wave ray

3 probes
offset upwave 6 probes offset

downwave

15 probes along
model centreline

y

x

Figure 2. Plan view of approximate wave probe locations (see table 2 for exact positions).

Probe x [mm] y [mm] Probe x [mm] y [mm]

A0 −114 3500 C0 −114 3500
B0 −114 3500 D0 −114 3500
B10 −1150 0 C9 −350 0
B9 −1050 0 D6 −300 0
B8 −950 0 C8 −250 0
B7 −850 0 D5 −200 0
B6 −750 0 C7 −150 0
B5 −650 0 D4 −100 0
B4 −550 0 C6 −50 0
B3 −450 0 C5 0 0
A12 −350 0 C4 50 0
A11 −250 0 D3 100 0
A10 −150 0 C3 150 0
A9 −50 0 D2 200 0
A8 50 0 C2 250 0
A7 150 0 D1 300 0
A6 250 0 C1 350 0
A5 350 0 C12 −325 −575
A4 450 0 C11 −275 −575
B12 −765 −407 C10 −225 −575
B11 −665 −407 D12 220 −575
B2 −150 −407 D11 320 −575
B1 −50 −407 D10 370 −575
A3 50 −407 D9 420 −575
A2 100 −407 D8 470 −575
A1 150 −407 D7 520 −575

Table 2. Wave probe positions for 0◦ (A and B) and 45◦ (C and D) headings.

allow for the damping of any standing waves in the basin. This settling time also
allowed the wave probes to be zeroed prior to the start of each test. Data acquisition
began when the wave paddles were first activated and continued until input to the
paddles ceased, a total duration of 100 wave periods (i.e. 125 s of data for the highest
regular wave frequency of f = 0.8000 Hz, T = 1.25 s).
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Wave diffraction. Part 1. Regular waves 9

Measurements of free surface elevation by the wave probes were recorded at a rate
of 40 measurements per wave period, corresponding to a sampling rate of 40f (i.e.
sampling at 32 Hz for f = 0.8000 Hz).

2.3. Potential errors and limitations

Possible errors in the data could result from either the presence of undesirable
disturbances in the wave basin or motion of the wave probes. Undesirable disturbances
could be caused by residual energy from previous tests due to insufficient settling time
or the slow accumulation of reflected energy from incomplete damping by the beach.
Any motion of the wave probes could be due to direct stimulation by incident waves
or indirectly through motion of the model and deck structure caused by wave forces.
However, none of the above sources of error were observable during the testing, and
the data collected are believed to be of high quality.

Possible limitations should be noted with regard to the measurement of the free
surface during particularly violent events. The resistance wave probes utilized in
the experiments depend on a continuous free surface between the rods in order to
register an elevation reading. Given the spacing between the rods (12 mm distance
centre to centre), it is reasonable to suggest that any spray or foam generated for
waves of high steepness would not have been recorded. In addition, the wave probes
and associated data collection equipment are capable of registering only one distinct
elevation per time interval, thus assuming that the free surface is single-valued (i.e.
non-overturning).

3. Results of regular wave diffraction experiments
The data analysis from the multi-cylinder diffraction experiments is now described

in detail, and the results from the regular wave tests are discussed with reference
to linear and second-order diffraction theory. While regular waves were tested for
six frequencies as presented in the test matrix of table 1, results are presented here
for only the highest and lowest test frequencies, with some discussion of the near-
trapping phenomenon observed at an intermediate frequency. Complete results at all
test frequencies are presented by Ohl (1999).

In the following discussion, cylinders are distinguished as upwave and downwave
in both heading cases and as offset for the centreline cylinders of the 45◦ heading
cases. The upwave and downwave cylinder edges are referred to as the front and rear
faces, respectively. The terms inboard and outboard are used to describe direction
toward and away from the centre of the model, respectively, and longitudinal and
transverse describe general orientation parallel and perpendicular to the incident
wave ray, respectively.

3.1. Video observations

The camera angles chosen are detailed in figures 3(a) and 3(b), and are discussed
further below. Videos of the regular wave tests are used primarily for qualitative
analysis to provide a general description of the wave scattering processes. Such a
general description is presented first, with subsequent presentation of comparable
theoretical results in the form of contour plots. The qualitative video observations are
then compared with the theoretical contour plots.

Discussion of video observations is divided according to wave heading. The overall
observed process is first discussed based upon the lower steepness cases, as these
involve less spray and foam and are thereby easier to characterize. Simplistic plan
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Figure 3. Diagram of general video observations with camera angles indicated:
(a) β = 0◦, (b) β = 45◦.

drawings in figure 3 show these general processes. Cylinder positions are clearly
defined with thick line circles, arrows indicate the direction of the incident wave and
any scattered waves, arcs show the presence of radiating waves, and ellipses and
partial ellipses are at the locations of upwelling and runup on the cylinders.

This overview of the video observations is then followed by a description of the
time evolution of a wave approaching the model. Finally, differences in the behaviour
due to changes in wavelength and the higher steepness cases are discussed.

3.1.1. Heading 0◦

During the 0◦ heading tests, the behaviour of the free surface is primarily charac-
terized by a large upwelling at the centre of the model, beneath the deck structure.
This event causes the radial flow of liquid from the centre of the model. As illustrated
in figure 3(a), this upwelling and subsequent radial flow generates far-field radiating
waves as well as large sites of increased wave amplitude upwave and to either side of
the model.

As a wave crest approaches the model, its amplitude visibly increases just upwave
of the model as it meets a stream of fluid being expelled upwave from the model
centre. The amplitude again increases at the point of runup at the upwave cylinder
front face. Subsequently, as the wave proceeds beneath the deck structure, a massive
upsurge is observed at the model centre. This central upsurge is accompanied by
upwelling to either side of the model, approximately 2.5 diameters from the model
centre. As the central mound of water collapses, liquid moves outward radially from
beneath the structure. This results in a high-frequency radiating wave at two or three
times the incident frequency; and, as previously mentioned, a stream is forced upwave
to interact with the next incoming wave.

More specifically, as the wavelength of the incident wave increases (decreasing
frequency), the two primary locations of upwelling (at the model centre and just up-
wave of the model) move progressively upwave. As incident wave steepness increases,
the overall observed processes are similar, but there is significant enhancement in
the violence of the aforementioned upwelling and radiation events. There is a large
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Wave diffraction. Part 1. Regular waves 11

amount of foam and spray generated by the central upwelling at higher steepness, but
the free surface does not contact the lower deck structure, and the spray generated
by upwelling and runup does not extend appreciably above deck level. In addition,
at higher steepness, the liquid expelled upwave appears to breakup as it meets the
incoming incident wave.

3.1.2. Heading 45◦

Again, the most visible event during the 45◦ heading tests is massive upwelling,
and possible formation of a clapotis (a large reflected wave resembling a standing
wave), at the model centre. This upwelling generates radiating waves, but liquid
expulsion from the centre does not appear as dramatic as that observed during the
0◦ heading tests described above. Figure 3(b) indicates the centre upwelling as well as
the principal regions of runup, observed at the front and rear faces of the offset and
downwave cylinders.

Upwave of the model, the incident wave remains undisturbed until the crest reaches
the upwave cylinder and runup amplification occurs. After the wave crest passes the
upwave cylinder, runup amplification occurs again at the front faces of the offset
cylinders. Again, large upwelling occurs as the wave proceeds beneath the deck
structure and appears to be the direct source of far-field waves radiating away from
the model at two or three times the incident wave frequency. This amplified wave
progresses towards the downwave cylinder, where significant runup occurs, while
expelling fluid between the offset and downwave cylinders. This stream of fluid causes
large runup both at the rear faces of the offset cylinders and, as the incident wave
passes the downwave cylinder, at the rear face of the downwave cylinder.

The timing of observed events at the model centre varies somewhat with the
incident wave frequency. At the highest two frequencies, f = 0.8000 and 0.7838 Hz,
runup at the front face of the downwave cylinder occurs shortly before runup at
the rear faces of the offset cylinders. With increasing wavelength, runup at the offset
cylinders begins to precede that at the downwave cylinder. As above for the 0◦
heading, the location of the maximum centre upwelling moves steadily upwave with
increasing wavelength (decreasing frequency). Again, at higher wave steepness, the
centre upwelling and runup at the cylinders produces large amounts of spray and
foam, but the free surface does not make contact with the deck structure, and the
spray does not extend appreciably or consistently above the deck (except in one case
discussed further below).

In addition, with increasing wavelength the location of maximum runup at the
rear face of the offset cylinder shifts steadily further away from the model centre.
This shift is more noticeable in the higher steepness cases, in which this runup occurs
directly downwave at f = 0.8000 Hz but swings steadily outboard to approximately
45◦ at f = 0.7227 Hz.

Finally, there is a notable increase in the overall violence of the process, to include
the centre upwelling and runup at the offset cylinder’s rear face, at f = 0.7542 Hz. For
the higher steepness case at this frequency, spray generated by front face runup on
the downwave cylinder rises to approximately 200 mm above the deck (the underside
of which, it may be recalled, is 450 mm above the still water level).

3.2. Contour plots of linear free surface amplitude

As a means of comparison with the video data, contour plots of the local linear
free surface amplitudes were produced through the analytical method of Linton &
Evans (1990). These contour plots are presented here in figure 4(a) for heading 0◦ and
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Figure 4. Linear free surface amplitude; β = 0◦: (a) f = 0.8000 Hz, (b) f = 0.7277 Hz.
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Figure 5. Linear free surface amplitude; β = 45◦: (a) f = 0.8000 Hz, (b) f = 0.7277 Hz.

figure 4(b) for heading 45◦. Solid circles denote the cylinder positions. Key contours
are labelled with magnitude in terms of the amplification modifying the incident
wave. For example, a contour labelled 1 indicates no modification to the incident
wave amplitude along that line, while a value of 1.5 corresponds to a 50% increase
in amplitude. As before, discussion of these plots is separated according to heading.

3.2.1. Heading 0◦

The principal features of the plots are broad regions of upwelling upwave of
the model and at the model centre. Between these peaks of upwelling, a region
of diminished wave amplitude runs transversely between the two upwave cylinders,
while small lobes of decreased amplitude exist outboard of the upwave cylinders.
Significant runup is indicated at the front and rear faces of the upwave cylinders
and at the front faces of the downwave cylinders. Any modifications to the incident
wave amplitude diminish greatly with increased distance away from the model, most
particularly downwave, where very little modification is observed past the downwave
cylinders.
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Wave diffraction. Part 1. Regular waves 13

With increasing wavelength and decreasing frequency, the upwave upwelling broad-
ens longitudinally but decreases in amplitude (by approximately 25%). In contrast, the
centre upwelling remains reasonably constant at approximately 1.65 times the incident
wave amplitude. Both upwelling regions shift steadily upwave with increasing wave-
length, while the diminished amplitude region between the upwave cylinders becomes
less pronounced. Indeed, at f = 0.7277 Hz in figure 4(b), virtually no modification of
the incident wave amplitude occurs between the upwave cylinders.

3.2.2. Heading 45◦

The contour plots feature a significant region of upwelling and runup throughout
the centre of the model, which includes runup at all inboard cylinder edges. In
addition, some runup occurs at the front face of the upwave cylinder and at the
rear face of the downwave cylinder. Notably, no major areas of diminished wave
amplitude are observed apart from small lobes at the outboard edges of the offset
cylinders and the transverse edges of the upwave cylinder, which are present only at
the highest frequencies (such as f = 0.8000 Hz in figure 5(a)).

At the higher frequencies, a small region of upwelling upwave of the model meets
the runup at the front face of the upwave cylinder. In addition, the upwave cylinder
is flanked by upwelling approximately 2.5 diameters from the cylinder centre, and
runup is indicated at both the front and rear faces of the offset cylinder. With
decreasing frequency and increasing wavelength, the upwelling and runup at the
upwave cylinders diminish considerably in height and the flanking regions disappear
entirely. Again, the strength of the centre upwelling remains reasonably constant,
decreasing from approximately 1.65 to 1.55 times the incident wave amplitude with
increasing wavelength. As in the 0◦ heading case described above, the position of
maximum upwelling at the model centre shifts upwave with increasing wavelength.
Finally, from an aesthetic perspective, the contour plots become fairly symmetric at
the lowest test frequencies (such as f = 0.7277 Hz in figure 5(b)). This symmetry is
unique to these frequencies and is not present in contour plots at lower frequencies
outside the test range (not presented here).

3.3. Comparison of video observations with contour plots

For the most part, the global features that can be observed in the videos are very
similar to those found in the contour plots. For the 0◦ heading cases, the extreme
upwelling observed upstream and near the model centre agree well with the first-
order theoretical predictions. This is also true for the runup at the front face of both
upwave and downwave cylinders. However, the offset upwellings observed some 2.5
diameters to either side of the model are not predicted by the theory. It is possible
that this offset upwelling is generated by a second- or third-order event related to
energy radiation from the structure in the near field. Regions of diminished wave
amplitude in the contour plots, such as the lobes outboard of the upwave cylinders
and the region in between these two cylinders, are difficult to identify in the video
data. Similarly, at 45◦, the locations of significant upwelling and runup at the model
centre are predicted well by the theory. In addition, the runup sites at the upwave
cylinder’s front face and the downwave cylinder’s rear face are as in the contour plots.
Finally, the upwave shift of the global features in the contour plots of both cases is
consistent with the video observations.
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3.4. Data manipulation

Free surface elevation data η(t) from the regular wave tests with the model present
were analysed to provide first-, second- and third-order free surface amplitudes at
each wave probe position. These amplitudes were then compared to incident wave
amplitudes as computed from empty tank tests.

3.4.1. Data record truncation

The initial data records from the regular wave tests begin at the start of the
wavemaker motion and end approximately 2 minutes later. As such, they include an
initial timespan during which full wave height had not been achieved as well as an end
period during which reflected waves from the tank boundary opposite the wavemaker
had arrived at the model. The usable middle section of the data was then identified
by analysing complete time histories to determine the point after which waves had
stabilized near their intended height and, subsequently, the point after which some
reflection or other interference was visibly altering this sustained height.

This data record truncation is illustrated in figure 6(a), which contains the majority
of three data records, and figure 6(b), which provides more detail of the isolated seg-
ments. This figure plots free surface elevation versus time from wave probe locations
near the tank centre from model tests at 0◦ and 45◦ headings as well as the empty
tank tests, for the lower-steepness case at f = 0.7542 Hz. It is clear from figures 6(a)
and 6(b) that, by the start of the truncated data section, waves at the model centre are
approaching a steady-state condition. While it is more difficult to discern the point
at which reflections in the wave basin have disturbed this steady-state condition, it is
reasonable to suggest that this occurs after the truncated section.

3.4.2. Frequency analysis, amplitude computation, set-up and set-down computation

Fast Fourier transforms (FFTs) of the data were used to produce a frequency
domain analysis for each wave probe. Spectral peaks at the incident frequency,
double frequency and triple frequency (frequencies equivalent to f = fi, 2fi and
3fi, where fi is the incident wave frequency) were then separated by removing all
spectral components other than those at or near the peak (within 0.25fi above or
below). Components at these frequencies will hereafter be referred to as first-, second-
and third-order harmonics for the single, double and triple frequencies, respectively.
Inverse FFTs of the modified spectra produced time series plots of the separate
components, from which a mean amplitude could be computed. In addition, the
magnitude of the set up and set down was calculated from the mean value of the
time histories.

3.5. Data presentation and observations

To best represent the data, computed experimental values were plotted versus the
wave probe location. In the descriptions of observed phenomena, a distinction is
made between centreline plots (along the tank and model longitudinal centreline at
y = 0) and offset plots (to the side of the model at y = −2a or y ≈ −2.83a). For
reference, the transverse centreline runs parallel to the wave paddles at x = 0.

3.6. Definition of incident wave amplitude

In order to properly non-dimensionalize the data, the incident wave amplitude was
taken to be the amplitude of the linear frequency component of the incident wave
as measured during the empty tank tests. Use of the empty tank tests to define the
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Figure 6. Free surface elevation vs. time for (a) the entire data record and (b) partial data record;
β = 0◦, 45◦ and the empty tank case, f = 0.7542 Hz, lower-steepness case; from locations near the
tank centre. The data section used is shown in the dashed box.
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undisturbed incident wave ensured the removal of any far-field disturbances that may
have been generated by the presence of the model.

As discussed previously, table 1 gives the incident wave amplitude, A, and the
non-dimensionalized values kA for each test frequency. It is apparent from the table
that, although the waves used in the experiments were not calibrated prior to testing,
the amplitudes observed are reasonably close to the target steepness.

3.7. Amplitude variation plots and linear theory comparison

For each test frequency, amplitude versus position were plotted for the properly
non-dimensionalized first-, second- and third-order components. The results for the
highest and lowest test frequencies are presented in figures 7 and 8 for heading 0◦ and
figures 9 and 10 for heading 45◦. Part (a) of each figure presents first-, second- and
third-order amplitudes (from top to bottom) as computed along the centreline of the
tank (y = 0), while part (b) presents the offset amplitude computations (y = −2a or
−2.83a). The ‘×’ and ‘+’ symbols are used for the higher- and lower-amplitude cases,
respectively, and straight lines are drawn to denote the cylinder positions.

Linear diffraction theory was used to compute a theoretical prediction correspond-
ing to the experimental results. This comparison is presented as the solid line in the
upper two plots of figures 7 to 10.

Direct observations which can be made from figures 7–10 are grouped herein
according to heading and order, beginning with the 0◦ heading, first-order plots and
proceeding to the 45◦ heading, third-order plots. A more general discussion of the
overall effects observed, and possible reasons for some counter-intuitive features in
the results, are given in § 4. Where possible, observed trends in the higher-order
plots are described with reference to the corresponding first order plot. Regions or
point locations of amplification are referred to as peaks, while regions of diminished
amplitude are referred to as troughs. It should be kept in mind that use of these
words bears no resemblance to the crests and troughs of waves as measured in the
time or spatial domains.

3.7.1. Heading 0◦: first-order observations

With some notable exceptions, the experimental and theoretical results at first order
are in close agreement. There is also little difference between results at lower and
higher amplitudes.

For the centreline plots, the overall trends in both theory and experiment indicate
two large peaks, one approximately two cylinder diameters (4a) upwave of the model
centre and the other near the model centre. At longer wavelengths (lower frequencies),
both of these peaks shift slightly further forward and the upwave peak loses strength
in relation to the central peak.

Whereas the match between experiment and theory is close, there are discernible
differences in the location of the minimum amplitude, the magnitude of the upwave
peak, and the profile of the offset plots. In all cases, the measured minimum is
approximately 5 cm downwave of the theoretical prediction. In addition, at higher
amplitude the height of the upwave peak is significantly greater than the theory
and the lower-amplitude results for four of the six test frequencies, for example
at f = 0.7277 Hz in figure 8. In contrast, the lower-amplitude upwave peak is the
greatest only for f = 0.8000 Hz, the highest test frequency, as shown in figure 7. In
one extreme example (at f = 0.7838 Hz), the high-amplitude result is approximately
25% greater than the low-amplitude result and 50% greater than the prediction by
first-order theory.
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Figure 7. Amplitude versus position; β = 0◦, f = 0.8000 Hz.
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Figure 8. Amplitude versus position; β = 0◦, f = 0.7277 Hz.
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Figure 9. Amplitude versus position; β = 45◦, f = 0.8000 Hz.
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Figure 10. Amplitude versus position; β = 45◦, f = 0.7277 Hz.
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Finally, the offset plots yield significant differences between the two experimental
profiles as well as between theory and experiment. Differences between the values at
higher and lower amplitudes are varying and hard to characterize. Both experimental
profiles upwave of the model seem to correspond roughly to the theoretical prediction.
However, between the cylinders, the theoretical profile is characterized by a positive
slope from the rear face of the upwave cylinder to the front face of the downwave
cylinder, while the experimental results exhibit more complex behaviour. For all
frequencies and both amplitudes, the experimental results show a peak at the rear
face, followed by a trough near the transverse centreline (x ≈ 0), a further peak nearer
to the downwave cylinder, and, finally, a trough at the front face of the downwave
cylinder. Although the resolution of this profile is inadequate due to the wave probe
spacing, it is apparent that the peak near the downwave cylinder shifts upstream as
the wavelength increases (decreasing frequency).

3.7.2. Heading 0◦: second- and third-order observations

At second and third order, the lower-amplitude plots show significantly higher
non-dimensional peaks. However, it is important to note that both the higher- and
lower-amplitude plots follow similar trends in the location of peaks and troughs.
Also, the maximum height of the second-order peaks is significantly greater in the
small-wavelength (high-frequency) cases, while the third-order peaks are of similar
maximum height at all frequencies.

In general, the second-order profiles contain peaks corresponding to peaks and
troughs in the first-order profiles; and second-order troughs occur at maximum
slopes in the first-order profiles. In contrast, third-order peaks occur at locations of
peaks and maximum slopes in the first-order profiles, while third-order troughs occur
at the first-order troughs and any gradual slopes or crest transition points (i.e. where
a peak is transitioning to a slope, or vice versa). However, the largest third-order
peaks occur at the first-order maximum slopes, with less significant third-order peaks
at the first-order peaks. This behaviour can be clearly observed in figure 8, where
the largest third-order peak occurs at x ≈ −0.25 m, near the midpoint of the first-
order profile’s transition from a trough to a peak. As the locations of second- and
third-order peaks are dependent upon the first-order profile, the peaks shift steadily
upwave with increasing wavelength, as described above.

While the second- and third-order offset plots are more difficult to characterize in
terms of any correspondence with the first-order profiles, their behaviour is similar
at most test frequencies, with a notable exception being the second-order runup. At
the upwave cylinder’s front face, the second-order profile shows a gradual decrease
approaching the cylinder for three frequencies (f = 0.8000, 0.7838 and 0.7542 Hz),
but an increase is observed for the others (f = 0.7686, 0.7406 and 0.7277 Hz). This
seems to indicate some transition of response for the second-order runup near these
frequencies (f = 0.7686 and 0.7542 Hz). In contrast, the lower-amplitude third-order
profiles consistently show a gradual increase approaching the upwave cylinder’s front
face at all test frequencies, while the higher-amplitude third-order profiles exhibit very
low non-dimensional values.

In the offset plots between the cylinders, the second-order amplitude profile peaks
at the rear face of the upwave cylinder, dips to a trough near the transverse centreline
(x ≈ 0), then increases to peak again at the front face of the downwave cylinder. At
third order, the profile exhibits a trough at the rear face of the upwave cylinder, rises
to a peak near the transverse centreline, falls again into a trough, and finally peaks at
the front face of the downwave cylinder. It is apparent that the third order transverse

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

49
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001004931


20 C. O. G. Ohl, R. Eatock Taylor, P. H. Taylor and A. G. L. Borthwick

centreline peak either shifts upwave or broadens as the wavelength increases and
frequency decreases. However, it is impossible to distinguish which of these two is
occurring because of the wave probe spacing and, in particular, the lack of a probe
at x ≈ 0, where the third-order transverse centreline peak might be expected at the
lowest test frequencies (such as f = 0.7277 Hz in figure 8). Finally, it is important to
note that the higher-amplitude plots show extremely low values in the offset cases,
even in comparison with the corresponding centreline plots.

3.7.3. Heading 45◦: first-order observations

Again, with some exceptions, similar experimental and theoretical results are ob-
tained at first order, though there is more difference between the lower- and higher-
amplitude results in figure 9. It is important to note that the magnitude of the
diffracted first-order amplitude never drops below that of the incident wave ampli-
tude (that is, none of the plotted first-order values are lower than unity), unlike the
0◦ heading cases.

For the centreline plots, the overall trends in both theoretical and experimental
data indicate a general area of upwelling at the model centre between the upwave
and downwave cylinders, with a slight peak in the vicinity of the downwave cylinder.
As the wavelength increases (decreasing frequency), the amplitude profile becomes
more uniform, with the peak shifting slightly upwave and virtually disappearing at
the longest wavelengths. This upwave shift of the global feature is similar, though
less extreme, to that observed in the 0◦ heading case.

The trends of the higher- and lower-steepness cases are virtually identical; but the
lower steepness yields a slightly higher upwelling at all the frequencies apart from
the lowest (f = 0.7277 Hz in figure 10), at which the higher-steepness result exceeds
the lower very slightly at the peak. The theoretical results also appear to be a better
match for the lower-steepness data at all the frequencies. While the overall magnitude
of the centre upwelling is well matched by the theory, more subtle features are not
exactly duplicated. This is particularly noticeable at the three highest frequencies,
for example at f = 0.8000 Hz in figure 9. The experimental values rise slightly from
the rear face of the upwave cylinder to a small peak, followed by a slight dip at
x ≈ −0.2 m. Subsequently, there is a steady rise in amplitude to a more extreme peak
upwave of the downwave cylinder (x ≈ 0.2 m), followed by a more dramatic decline
and final increase in amplitude very near the front face of the downwave cylinder.

Finally, the offset plots yield only small differences between the theoretical and
experimental results. The general trend is a slight increase in upwelling approaching
the front face of the offset cylinder, followed by a slight decrease downwave of the rear
face. The experimental results indicate a somewhat steeper increase approaching the
front face, and a slight peak appears to exist just downwave of the offset cylinder (at
x ≈ 0.45 m) in certain cases. While there are some slight differences in the diffracted
amplitudes at the two steepness values, these variations are not consistent nor are
they frequency dependent.

3.7.4. Heading 45◦: second- and third-order observations

As in the 0◦ heading cases above, the lower-amplitude plots show significantly
higher peaks. But, unlike the 0◦ heading cases, the trends in the location of peaks
and troughs are not entirely consistent at second order and are significantly different
at third order. In terms of magnitude, the height of the second-order centre peak is
reasonably consistent at all frequencies, while the runup at the downwave cylinder’s
front face is significantly greater at longer wavelength and lower frequency. Similarly,
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the heights of the third-order peaks are greatly increased at longer wavelength. In
addition, the experimental results vary greatly between the two steepness values, and
the lower-steepness cases will be treated first and more thoroughly as their behaviour
is more consistent with that previously observed in the 0◦ heading cases.

Again, for the centreline plots at the lower steepness, the third-order profiles exhibit
more rapid variation than those at second order. Ignoring the aforementioned first-
order profile complexities and idealizing the profiles as peaking in the model centre
and sloping down to the upwave and downwave cylinders, then the behaviour at
second- and third-order may be explained more succinctly in terms of this idealized
first-order profile. Related to the first-order profile, these second- and third-order
profiles shift upwave slightly with increasing wavelength (decreasing frequency).

At lower steepness along the centreline, the second-order profile has three peaks:
at the edges of both cylinders and in the model centre. When compared with the
corresponding first-order plots, the second-order profiles exhibit amplification at both
first-order peaks and troughs, with second-order troughs at any maximum slopes of
the first-order profile. It is important to note that the magnitude of the central peak
seems reasonably constant at a value of 5 for most of the test frequencies. However,
the second-order runup at the downwave cylinder’s front face exhibits an increase
with increasing wavelength to a maximum of 10 at f = 0.7277 Hz in figure 10.

From observations of the lower-steepness case, the overall behaviour appears to be
consistent with that observed previously in the 0◦ heading tests, with third-order peaks
corresponding to locations of peaks and maximum slopes of the first-order profile
and third-order troughs at first order troughs and crest transition points (see above).
Again, the magnitude of the third-order peaks is greater at the first-order maximum
slopes than at the first-order peaks. At most of the frequencies, the predominance of
third-order peaks at the first-order maximum slopes results in a third-order profile
largely dominated by two peaks, one just upwave and the other just downwave of
the central first order peak.

In the offset plots at lower-steepness, the second- and third-order profiles are, once
again, more difficult to characterize in terms of those at first order. However, consistent
patterns do exist and the global features adhere to the aforementioned trend of
shifting upwave with increasing wavelength. At the highest frequency (f = 0.8000 Hz
in figure 9), the second-order plot greatly resembles the first-order one, with peaks
at the front and rear faces of the offset cylinder and gentle slopes away from the
cylinder. As the frequency decreases, a trough appears downwave of the offset cylinder
and, subsequently, a peak begins to develop further downwave as the trough shifts
upwave at the lowest frequencies (for example at f = 0.7277 Hz in figure 10). The
general behaviour at third order is characterized by a rise to a peak at the offset
cylinder’s front face. Downwave of the cylinder, the profile rises to a peak, drops to
a trough (x ≈ 0.4 m at f = 0.8000 Hz in figure 9), and then rises again to a peak.
Again, these global features shift significantly forward with increasing wavelength; the
aforementioned third-order trough, for example, shifts to x ≈ 0.3 m at f = 0.7277 Hz
in figure 10.

At the higher steepness, the second- and third-order profiles are quite different for
several cases and are often difficult to characterize in terms of the first-order plots. At
second order the higher steepness plots conform loosely to the above description at
lower steepness with lower non-dimensionalized values at the peaks. However, as the
wavelength increases in the centreline plots, and most notably at the lowest frequencies
(for example at f = 0.7277 Hz in figure 10), the second-order profile changes into a
trough at the upwave cylinder’s rear face, followed by a steady rise to a central peak,
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Figure 11. Second- and third-order amplitude versus non-dimensionalized wavelength;
empty tank.

another trough, and a final rise to peak at the downwave cylinder’s front face. The
higher-steepness third-order profiles exhibit very low non-dimensionalized values and
few significant features when compared to the corresponding lower-steepness cases.
In the centreline plots, the primary feature of the third-order plots is a shallow peak
just downwave of the model centre at x ≈ 0.2 m. However, in the offset plots the
profiles are nearly uniformly low in amplitude and not easily described in terms of
peaks, troughs and slopes.

3.7.5. Far-field radiation

Using the data manipulation process described above, second- and third-order
amplitudes were calculated for data taken at the reference gauge, located to the
side of the model at (x, y) = (−0.114 m, 3.500 m). Any disturbance in the incident
wave amplitude at this site can be taken as representative of the far-field radiation
produced by the model. Calculated second- and third-order amplitudes are presented
in figures 12 and 13 for the 0◦ and 45◦ heading cases, respectively. For comparison
with these, figure 11 presents second- and third-order amplitudes of the undisturbed
incident wave, computed as an average of amplitudes at each probe location during
the empty tank tests. Non-dimensionalized second-order amplitude is shown in the
top figure, with non-dimensionalized third-order amplitude in the bottom, and both
are plotted against the incident wavelength to cylinder radius ratio.

These figures clearly show that the far-field higher-order components are signifi-
cantly altered from what would be expected in the incident wave. The Stokes perturba-
tion expansion in the undisturbed incident wave would produce non-dimensionalized
values of 1

2
and 3

8
at second- and third-order, respectively. This corresponds well

with the incident wave analysis of figure 11, although the third-order components
are somewhat larger than the 3

8
expected value. While significant differences do exist

between the two heading cases, both far-field amplitude plots with the model present
show amplification with respect to the empty tank results, and the lower-amplitude
results tend to exceed those of the higher amplitude. Some exceptions to this do exist,
such as the second-order amplitude at λ/a = 14 for the 45◦ heading, in which the
higher-steepness result exceeds the lower.

Perhaps the most obvious observation from figures 12 and 13 is the contrast
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Figure 12. Second- and third-order amplitude versus non-dimensionalized wavelength; β = 0◦.
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Figure 13. Second- and third-order amplitude versus non-dimensionalized wavelength; β = 45◦.

between the predominance of second-order radiation in the 0◦ heading case and
third-order radiation in the 45◦ heading case. In addition, significant variation of
radiated amplitude occurs with change in incident wavelength. This is particularly of
interest at λ/a = 13.5, or f = 0.7542 Hz, which corresponds to a near-trapping event
(discussed further below). At this wavelength for the smaller steepness, the 0◦ heading
case exhibits a very clear maximum in far-field radiation at both second and third
order, while the 45◦ case exhibits a clear minimum in third-order radiation and a low
value at second order. This is supported by video observations, as discussed above,
in which more radiation was clearly visible for the 0◦ heading case at this frequency
in comparison to the 45◦ heading case.

3.8. Set-down and set-up

The set-down or set-up observed beneath the model (computed as previously dis-
cussed) is presented here in figures 14 and 15 for heading 0◦ and figures 16 and 17
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for heading 45◦. In each figure part (a) presents set-down or set-up as computed
along the centre-line of the tank, whereas (b) presents the offset set-down or set-up.
Again, the ‘×’ and ‘+’ symbols are used for the higher- and lower-amplitude cases,
respectively, and vertical lines are drawn to denote the cylinder positions. The solid
and dotted lines are drawn in (a) only to aid the eye in distinguishing between the
trends of the higher- and lower-amplitude cases.

3.8.1. Heading 0◦: set-down and set-up observations

In the centreline plots for the 0◦ heading cases, there are two significant mean
sea level peaks, one upwave of the model and a second near the model centre.
This is indicative of significant set-up at these locations, between which are set-down
troughs. These three global features occur at locations corresponding to the first-order
upwelling sites discussed above in figures 7 and 8 and exhibit the same upwave shift
behaviour with increasing wavelength and decreasing frequency. In the offset plots
the mean sea level indicates set-up both at the front face of the upwave cylinder and
between the upwave and downwave cylinders. In addition, large set-up is present at
the runup sites on the downwave cylinder’s front face for all frequencies and on the
upwave cylinder’s front face for f = 0.8000 Hz in figure 14.

Some systematic differences appear to exist between the higher- and lower-steepness
cases. At the four lowest frequencies (for example at f = 0.7277 Hz in figure 15), the
lower-steepness downwave set-up in the centreline plot is significantly higher (in non-
dimensional terms) than that at the higher steepness. In contrast, at all frequencies
apart from the highest at f = 0.8000 Hz in figure 14, the upwave centreline set-up is
significantly higher for the higher-steepness case (again, figure 15 illustrates this).

3.8.2. Heading 45◦: set-down and set-up observations

For the 45◦ heading, all of the mean sea level profiles indicate virtually no set-
down. In contrast to the 0◦ heading case analysed above, the global set-up features
in the centreline plots correspond to those of the second-order free surface amplitude
profiles as presented previously in figures 9 and 10. Like these amplitude profiles and
most clearly visible in the lower steepness cases, these set-up plots show peaks at
the inboard cylinder edges and at the model centre with two troughs upwave and
downwave of the centre. With increasing wavelength, like results described above,
the primary global feature of central set-up shifts upwave in the centreline plots.
Similarly, with peaks at the offset cylinder’s front and rear faces, the offset mean sea
level profiles follow the general trends of the second-order amplitude profiles.

Again, some systematic differences are apparent between the lower- and higher-
steepness cases. At the lower steepness, the central peak is more clearly defined
at all frequencies, whereas at some frequencies, notably f = 0.8000 Hz in figure 16,
the higher-steepness set-up profile yields almost no peak between the cylinders. In
addition, the value at the downwave cylinder’s front face is consistently greater for
the lower-steepness cases.

The maximum set-up indicated occurs on the front face of the downwave cylinder
at the lowest test frequency (f = 0.7277 Hz in figure 17) for the lower-steepness case.
This corresponds to the maximum second-order runup observed previously at this
frequency and steepness in figure 10.
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Figure 14. Set-down versus position; β = 0◦, f = 0.8000 Hz.
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Figure 15. Set-down versus position; β = 0◦, f = 0.7277 Hz.
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Figure 16. Set-down versus position; β = 45◦, f = 0.8000 Hz.
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Figure 17. Set-down versus position; β = 45◦, f = 0.7277 Hz.
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4. Discussion
4.1. Global features

As predicted by first-order theory, the global features produced by the wave scattering
shift steadily upwave with respect to the body as the incident wavelength is increased.
This prediction has been verified in observations made from the video as well as plots
of free surface amplitude and mean sea level profiles, as presented above. In addition,
excellent agreement has been shown between first-order diffraction theory and the
experimentally computed first-order amplitudes, particularly for incident waves of
low steepness.

4.2. Diffraction-induced breaking

For the vast majority of the test cases, the first-order theoretical predictions were found
to match more closely the lower-steepness incident wave cases. As linear diffraction
theory is based on the potential flow assumption of small-amplitude incident waves,
the result is not particularly surprising. However, significantly higher peaks in the
non-dimensionalized amplitude profile are observed in some of the experiments. This
could indicate some input of energy at the incident frequency from sources other
than the first-order scattered wave, such as higher-order diffracted wave components.
In addition, at higher steepness, the second- and third-order amplitude components
were frequently far lower than those of the lower-amplitude cases. Given the assumed
higher nonlinearity of steeper waves, this result is somewhat counter-intuitive.

One possible explanation for these observations is nonlinear breaking induced by
diffraction. In this process, steep incident waves, already close to breaking for the
steepest cases studied herein, interact with scattered waves from the structure. The
resulting height of these superimposed waves is then too great to be supported given
the incident wavelength. The incident and scattered waves then break and, in the
generation of turbulence and foam, transfer energy to lower frequencies.

This process is observable to a certain extent in the videos produced during the
testing. This diffraction-induced breaking could explain the aforementioned breaking
stream observed at the upwelling site upwave of the model in the 0◦ heading case.
Moreover, it would directly explain the vast amounts of spray and foam generated at
the model centre during the higher-steepness test cases.

4.3. Effects at near-trapping frequency

The geometry used in the 45◦ heading case is identical to a case studied by Evans &
Porter (1997) and Malenica et al. (1999). The second-order investigation by Malenica
et al. includes the near-trapping observed in the free surface amplitude profile for ka =
0.468. Malenica et al. observed that this non-dimensionalized frequency corresponds
to near-trapping of the second order wave component (first-order near-trapping
occurring at ka = 1.66 as shown by Evans & Porter). This ka value is associated
with a frequency which differs by only 0.64% from the frequency studied here,
f = 0.7542 Hz, which corresponds to ka = 0.465.

Figure 18 displays a comparison of the experimental and theoretical results for
first-order amplitude, second-order amplitude, and second-order set-down. As before,
the solid line indicates the theoretical results, while the ‘×’ and ‘+’ symbols represent
the higher- and lower-steepness cases, respectively.

In the second-order plot, the global features of the free surface amplitude profile at
near-trapping have been very well captured. In particular, the value of the central peak
is very closely predicted, although the location of this predicted peak is approximately
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Figure 18. Theoretical and experimental results (for β = 45◦, f = 0.7542 Hz) at near-trapping;
theoretical results reproduced with permission from Malenica et al. (1999).

0.2a (40 mm) too far upwave. However, the runup values at the cylinder edges are
significantly over predicted. Possible explanations for this are as follows:

diffraction-induced breaking disperses energy from this frequency component, as
discussed above;
the data record, truncated to contain only 12 steady-state waves, was of insufficient
length to fully saturate the second-order near-trapping event;
the near-trapping phenomenon is sensitive to small changes in ka as observed by
Malenica et al. (1999).
Figure 6(a) demonstrates the effect of the data record truncation at this frequency.

In the upper plot, the pronounced second-order disturbance clearly grows with time
well after the end of the analysed data section. However, it is not clear that this
increasing disturbance is related to increased saturation of the second-order near-
trapping mode as opposed to the build-up of reflected energy within the wave basin.

The theoretical profile of the second-order set-down and set-up poorly represents
the global features of the mean sea level. Whereas the general magnitude and profile
downwave of the upwave cylinder are well reproduced by the theory, the exper-
imentally indicated peak at the model centre is not predicted. In addition, in the
lower-steepness case, the large peak at the front face of the downwave cylinder is
not well matched. However, it must be borne in mind that these theoretical results
are limited to the second order and do not include potential contributions from
higher-order components.

As previously mentioned in the discussion of far-field radiation, significant variation
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in second- and third-order radiated wave amplitude is observed at this second-
order near-trapping frequency for both headings. This frequency of f = 0.7452 Hz
corresponds to the wavelength to cylinder radius ratio of λ/a = 13.5 displayed in
figures 12 and 13. For the 0◦ heading case (figure 12), excitation at this wavelength
generates a clear maximum in both second- and third-order far-field radiation. This
is in stark contrast to the clear minimum in third-order radiation and low amount
of second-order radiation observed in the 45◦ case (figure 13). In addition, the mean
sea level profile at this frequency shows a significant drop near the model centre for
the 0◦ heading as can be observed in figures 14 and 15. This is particularly clear for
the lower steepness case relative to the set-down at other frequencies. However, the
45◦ heading mean sea level profile shows a set-up at the centre that is reasonably
consistent with that at other frequencies, such as those presented in figures 16 and 17.

These results are indicative of two widely differing responses at the second-order
near-trapping frequency for the two test geometries:

for the 0◦ heading case, far-field radiation is maximized and is accompanied by a
relative decrease in local mean sea level at the model centre;
for the 45◦ heading case, far-field radiation is minimized while a set-up is maintained
at the model centre.
This suggests general tendencies for energy dissipation and radial flow from the

centre for the 0◦ heading cases at the near-trapping frequency, with a contrasting
tendency to trap energy and fluid at the centre for the 45◦ heading. This echoes
observations made from the video data, in which local radiation and fluid propagating
from the model centre appeared far more significant in the 0◦ heading cases in relation
to the 45◦ heading cases. It is an indication that the second-order near-trapping mode
at this frequency has symmetry about the diagonals of the square array, rather than
about the bisectors of the sides (Evans & Porter have discussed the symmetries of
the first-order near-trapping modes). Finally, given the sheltered geometry of the 45◦
heading case, this result is somewhat intuitive.

5. Conclusions
The main conclusions can be summarized as follows:
(a) Contour plots of the diffracted free surface amplitude for regular waves inter-

acting with four-cylinder configurations have been produced through linear diffraction
theory. These have been shown to provide excellent predictions of visually observable
regions of enhanced wave activity, such as upwelling between and runup adjacent to
the cylinders.

(b) Linear diffraction theory has been shown to be an excellent model of the
first-order free surface elevation response, particularly for incident waves of low
steepness.

(c) As predicted by linear theory, it has been shown experimentally that global
features present in first-order amplitude profiles shift consistently upwave with in-
creases in incident wavelength. This has also been observed for experimentally com-
puted profiles of local mean sea level, a second-order quantity.

(d) Through both video observations and data analysis, highly nonlinear wave
breaking has been identified as induced by diffraction for high-steepness incident
waves.

(e) With local wave elevation enhancement, increased mean sea level (set-up) at
the model centre, and diminished far-field radiation, near-trapping has been observed
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experimentally for ka within 0.64% of a second-order near-trapping event (Malenica
et al. 1999) for the 45◦ heading tests.

( f ) However, the experimentally measured second-order contributions to free sur-
face elevation were significantly lower than predicted by the semi-analytical diffrac-
tion theory of Malenica et al. (1999). This discrepancy may be attributed to either the
aforementioned diffraction-induced breaking of steep incident waves, or the insuffi-
cient length of the data record, or the sensitivity of the near-trapping phenomenon
to small changes in ka.

(g) For this near-trapping frequency, corresponding tests at heading 0◦ have yielded
high far-field radiation and decreased mean sea level (set-down) near the model centre.
As observed visually for this less sheltered geometry, this is indicative of increased
wave scattering in the far field associated with radial flow from the model centre.

The authors acknowledge the support of HR Wallingford and Dr Roger Wilkinson,
the former Offshore Group Manager at HR, for the time in their facility and
the construction of the model. The first author was supported through a British
Marshall Scholarship from the Marshall Commemoration Commission. The authors
are grateful for the constructive comments of the referees.

Appendix. Linear diffraction theory for regular waves
Linear diffraction theory for regular waves is presented here with some slight

modifications to the original derivation of Linton & Evans (1990), which may be
referred to for explanation of undefined terms or solution stages. For the first-order
interaction of regular waves with arrays of N bottom-mounted vertical circular
cylinders, the velocity potential may be assumed to be of the form

Φ(x, y, z, t) = Re{φ(x, y)f0(z)e
−iωt}, (A 1)

where the depth attenuation function f0(z) is defined by

f0(z) = − igA

ω

cosh k(z + d)

cosh kd
. (A 2)

In the case of multiple cylinders, the wave scattered by cylinder j may be expressed
in polar coordinates centred on cylinder j (which has radius aj). Thus:

φ
j
S =

∞∑
n=−∞

AjnZ
j
nHn(krj)e

inθj , (A 3)

for some set of complex coefficients Ajn and with Zj
n = J ′n(kaj). This definition of

Z differs from that presented by Linton & Evans (1990) and produces a better
conditioned matrix for the solution of the coefficients. Note that Hn and J ′n are
Hankel functions and the first derivative of the Bessel function of the first kind of
order n.

Following from the above, the total potential is then expressed using Graf’s addition
theorem as

φ = φI +

N∑
j=1

φ
j
S

= Ij

∞∑
n=−∞

Jn(krj)e
in(π/2−θj+β) +

N∑
j=1

∞∑
n=−∞

AjnZ
j
nHn(krj)e

inθj , (A 4)
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where β is the wave heading measured with respect to the x-axis.
The coefficients Akm are obtained from

AkmH
′
m(kak) +

N∑
j=1,j 6=k

∞∑
n=−∞

AjnZ
j
nHn−m(kRjk)e

i(n−m)αjk = −Ikeim(π/2−β)

for k = 1, . . . , N, and −∞ < m < ∞. (A 5)

This infinite system of equations may be truncated from −M < m < M to produce
an N(2M + 1) system of equations in N(2M + 1) unknowns.

The free surface elevation may be found as

η(x, y, t) = Re{Aφ(x, y)e−iωt}. (A 6)

From this, the local modification to the incident wave amplitude due to diffraction is

|η(x, y, t)|
A

= |φ(x, y)|. (A 7)

As the non-dimensionalized component of the velocity potential with depth and time
dependence removed, this variable φ(x, y) may be referred as the diffraction coefficient
to further emphasize its modification of the incident wave amplitude.
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