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Abstract

Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is
extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine patho-
gen of sericulture because of its long incubation period and horizontal and vertical transmis-
sion. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were
cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster
FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells
expressed NSlmb–scFv-7A and NSlmb–scFv-6H, which recognized native NbHK.
Subsequently, the NbHK was degraded by host ubiquitination system. When challenged
with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the con-
trols, demonstrating that NbHK is a prospective target for parasite controls and this approach
represents a potential solution for constructing N. bombycis-resistant Bombyx mori.

Introduction

Microsporidia is a unique obligate intracellular pathogen. Microsporidia hosts are various and
can infect invertebrates such as nematodes and insects, as well as vertebrates such as fish,
mammals and even humans (Han and Weiss, 2017; Pan et al., 2018). Nosema bombycis, the
pathogen of Bombyx mori, is the first identified microsporidia and causes pébrine disease in
silkworms. However, more than 100 years after N. bombycis was identified, sericulture produc-
tion has been plagued by pébrine. Currently, the prevention and control of pébrine still adopt
the conventional method of strict disinfection of parasite and there is an urgent need for novel
approaches (Smyk et al., 1952; Ishihara, 1969; Wang et al., 2007).

Hexokinase is an essential enzyme in the energy metabolism pathway of eukaryotes.
Hexokinase of microsporidia was first reported in Nematocida parisii (Cuomo et al., 2012),
and then researchers identified hexokinase in the secretory proteomics of N. Parisii, and
hypothesized that it might be a secretory protein. Subsequently, it was found that the hexoki-
nase of Paranosema locustae was secreted into the nucleus of host cells. In Trachipleistophora
hominis, it was reported that hexokinase was localized on the surface of T. hominis and pro-
moted the formation and aggregation of host ATP on its surface (Ferguson and Lucocq, 2019).
These results suggest that the glycolytic pathway may not only act as an adenosine triphos-
phate (ATP) production pathway in microsporidia, but also play a vital role in host modulation
processes. In our previous study, it was found that N. bombycis hexokinase (NbHK) was a
secretory protein located in the cytoplasm and nucleus of host cells. In the intracellular pro-
liferation stage, the down-regulation of NbHK expression inhibited the proliferation of
N. bombycis (Huang et al., 2018b), which means that NbHK participates in the energy metab-
olism of the host and becomes a potential target for the development of N. bombycis-resistant
silkworm materials.

The single-chain antibody fragment (scFv) targeting pathogenically important proteins can
inhibit pathogen infection to the host. The expression of anti-malarial parasite scFv in the sal-
ivary glands of Anopheles mosquitoes can effectively inhibit the growth of plasmodium in mos-
quitoes (Sumitani et al., 2013), and the expression of a scFv against the plasmodium in
Metarhizium anisopliae can both kill A. mosquitoes and block the transmission of malaria
(Fang et al., 2011). In addition, studies have shown that the scFv targeting N. bombycis spore-
wall protein can significantly inhibit the infection and proliferation of N. bombycis in silk-
worms (Huang et al., 2018a).

Ubiquitin pathway is a key component of selective protein degradation in eukaryotes and it
participates in modulating the cell cycle, growth, apoptosis, metastasis, differentiation, gene
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expression, transcriptional modulation, signal transduction,
injury repair, inflammation and immunity, and almost all life
activities (Nandi et al., 2006; Grumati and Dikic, 2018). The result
of protein ubiquitination is that the labeled protein is broken
down by proteases into smaller polypeptides, amino acids, and
ubiquitin that can be reused (Swatek and Komander, 2016). E3
ubiquitin ligase complex binds to the substrate during ubiquitina-
tion of eukaryotes, which is composed of polypeptides – Skp1,
Cullin1/3, and Roc1/Rbx1 – and a fourth variable adapter, the
F-box protein. The F-box protein determines the specificity of
the substrate (Dui et al., 2012). Some research findings illustrate
that, for many proteins, the first ubiquitin moiety is fused lin-
early to the α-NH2 group of the N-terminal residue
(Ciechanover and Ben-Saadon, 2004; Ciechanover, 2005).
Slmb is an F-box protein of Drosophila, which performs various
functions in development and cell physiology, and its F-box
domain is located at the N-terminal of the protein. The fusion
of N-terminal F-box domain of Slmb with single-chain anti-
body fragment can specifically degrade the target protein
(Caussinus et al., 2011).

In this study, we cloned two single-chain antibodies (scFv-7A
and scFv-6H of NbHK), which were subsequently used to fuse
with the N-terminal of Slmb (a Drosophila melanogaster FBP)
containing an F-box domain (hereafter called NSlmb–scFv) for
expression in insect cells. Further studies showed that the expres-
sion of NSlmb–scFv significantly inhibited the growth of N. bom-
bycis in insect cells.

Materials and methods

Preparation of N. bombycis and cell cultivation

We acquired N. bombycis CQ1 mature spores (CVCC no. 102059)
from the China Veterinary Culture Collection Center. The mature
spores were fed on the fourth-instar silkworm for expanded cul-
ture, and the spores were separated and purified by percoll density
gradient centrifugation (40 min, 21,000 g) at pupal stage for fur-
ther use (He et al., 2020). Sf9-III cells were cultured in Sf-900™
III SFM (Thermo Fisher Scientific, Santa Clara, CA, USA)
at 28°C.

Monoclonal antibody preparation

In our previous studies, the constructed plasmid (pET-28-NbHK)
expressing recombinant NbHK (rNbHK) proteins was trans-
formed into Escherichia coli Rosetta that were then 0.5 mM
isopropyl-β-D-thiogalactopyranoside in Lysogeny broth (LB)
medium was employed to trigger recombinant protein expression
(4 h) at 37°C. Nickel chelating affinity chromatography (Roche,
Basel, Switzerland) was employed to purify the rNbHK protein.
The Laboratory Animals Ethics Review Committee of Southwest
University (Chongqing, China) approved the mice experiments
(AERCSWU2017-7). Female BALB/c mice (6 to 8-weeks-old)
were subcutaneously administered with purified rNbHK (100 μg
per mouse) mixed with Freund’s complete/incomplete adjuvant
(1:1; Sigma, St. Louis, MO, USA) four times. The interval of injec-
tion was 7 days. The produced monoclonal antibodies (mAbs)
were harvested and assessed as documented previously (Huang
et al., 2018a). The mouse monoclonal antibody isotyping kit
(Roche, Switzerland) was employed to assay the subtypes of
mAb immunoglobulin G (IgG) as described by the manufacturer
(Zheng et al., 2021).

scFv sequence modifications

On the basis of the sequence assessment results, we designed pri-
mers for overlapping polymerase chain reaction (PCR). The 7A
cloning of heavy-chain variable region was done with primer
H7A-F: 5′-CTTCCGGAATTCSARGTNMAGCTGSAGSAGTCW
GG-3′ and primer scVH7A-R: 5′-GGAAGATCTAGGGGCCAGT
GGATAGACTGATGG-3′, whereas cloning of the light-chain vari-
able region was performed with primer scVL7A-F: 5′-GAYATTGT
GMTSACMCARWCTMCA-3′ and primer scVL7A-R: 5′-GGAT
ACAGTTGGTGCAGCATC-3′. Primer H7A-F: 5′-ATGGACATT
GTGCTCACCC-3′ and primer scVL7A-R1: 5′-GGAAGATCT
CTTGACCAG-3′ were employed to connect the two variable
regions via overlapping PCR, and with an insertion of a short poly-
peptide linker (G4S)3 between the two variable regions at this step.
Similarly, cloning of the 6H heavy-chain variable region was done
with primer H6H-F: 5-CTTCCGGAATTCSARGTNMAGCTGSA
GSAGTCWGG-3 and primer scVH6H-R: 5′-GGAAGATCTCTT
GACCAGGCATCCTAGAGTCA-3′, whereas cloning of the light-
chain variable region was performed with primer scVL6H-F: 5′-GA
YATTGTGMTSACMCARWCTMCA-3′ and primer scVL6H-R:
5′-GGATACAGTTGGTGCAGCATC-3′. Connection of these two
variable regions was accomplished via overlapping PCR with pri-
mer H6H-F: 5′-ATGGACATTGTGCTCACCC-3′ and primer
scVL6H-R1: 5′-GGAAGATCTAGGGGCCAG-3′. All primers in
this study were synthesized by Shanghai Sangon Co, Ltd.

The cloned single-chain antibody sequences named scFv-7A
and scFv-6H were individually inserted to the expression vector
phIA-[IE2-NSlmb-V5-6 × His-PA], which was constructed in
our laboratory based on pSL1180 plasmid for subsequent expres-
sion in Sf9 cells (fig. 1a).

Protein preparation

The plasmid constructs encoding NSlmb–scFv-7A and NSlmb–
scFv-6H single-chain antibodies were individually transfected
into Sf9 cells and at 48 h post transfection, glass-bead break meth-
ods were employed to prepare total proteins of the transfected
cells as documented previously (Li et al., 2012). Briefly, RIPA
lysis buffer (Beyotime, Shanghai, China) enriched with a protease
inhibitor (phenylmethylsulfonyl fluoride) was employed to lyse
the mixture of the harvested cells and 0.4 g glass beads (212–
300 μm), and then a Bioprep-24 homogenizer (ALLSHENG,
Hangzhou, China) was employed to crush the lysate for 5 min
at 4°C. The treated samples were spun at 12,000 g for 5 min
and the supernatant was aliquoted to a fresh tube. These samples
were used to detect the expression of NSlmb–scFv.

In order to detect the specificity of NSlmb–scFv, the total pro-
tein of the Sf9 cell transfected with the recombinant plasmid was
extracted using phosphate-buffered saline (PBS), so as to ensure
the activity of the expressed NSlmb–scFvs.

The transfected cells were infected by N. bombycis mature
spores (spore:cell = 10:1) at 48 h post transfection and cultured
for additional 96 h. The total proteins from infected cells as well
as untreated Sf9 control cells were prepared with the same method
as descripted for the transfected cells. In order to detect the deg-
radation of NbHK, the total protein of 96 h after mature spore
infection was extracted. The transfected NSlmb–scFv-7A and
NSlmb–scFv-6H recombinant plasmid Sf9 cells were used as the
experimental group, and the transfected blank plasmid Sf9 cells
were used as the control group.
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Western blot analysis

Total proteins prepared from the Sf9 cells were fractionated on an
SDS-PAGE gel. After that, the proteins were blotted onto poly
(vinylidene fluoride) membranes (Roche, Switzerland).
Subsequently, 5% dry milk in TBST (150 mM NaCl, 20 mM
Tris-HCl, 0.05% Tween-20) was employed to block the mem-
branes. Next, the membranes were inoculated with the anti-V5
mouse antibody (Sigma, Saint Louis, USA; 1:3000) and horserad-
ish peroxidase (HRP)-conjugated goat anti-mouse IgG (Bio-Rad,
Richmond, California, USA; 1:6000) sequentially with washing in
between. Afterward, ECL Plus Western Blotting Detection
Reagents (Bio-Rad, Richmond, California, USA) were employed
to detect the bound antibodies. Specificity of NSlmb–scFv was
assessed by the same western blot protocol except the NSlmb–
scFv-7A or NSlmb–scFv-6H antibody, which was isolated from
the transfected Sf9 cells, was used as the primary antibody.

To test the specificity of NSlmb–scFv, total cell proteins
extracted with PBS, including the active NSlmb–scFv-7A or
NSlmb–scFv-6H antibodies, were incubated with total spore pro-
teins as primary antibodies. Then the V5 antibody and
HRP-conjugated goat anti-mouse IgG were used to detect its
mutual recognition with native NbHK protein.

In order to evaluate whether the expression of NSlmb–scFv
antibody can effectively lead to the degradation of NbHK, we
used the polyclonal antibodies against NbHK to detect its expres-
sion, and the β-tubulin of Sf9 cells as internal reference (Huang
et al., 2018b).

Real-time quantitative PCR (RT-qPCR)

A DNA extraction kit (Omega, Norcross, GA, USA) was
employed to isolate gDNAs of the control Sf9 cells or the cells
transfected with single-chain antibodies or the cells transfected
and then infected by mature spores. Nbβ-tubulin gene copy num-
ber was employed as an internal reference for the count of the
N. bombycis. The gDNAs were analyzed by qPCR. The sequences
of the primers were: Nbβ-tubulin-qF 5′-AGAACCAGGAACAA
TGGACG-3′ and Nbβ-tubulin-qR 5′-AGCCCAATTATTACCA
GCACC-3′ and the real-time PCR reagent from Novoprotein

Scientific Inc., Shanghai, China. The standard template was docu-
mented in previous investigation (Huang et al., 2018a). The
standard curve covered six orders of magnitude (1.3 × 102–107).
The data were presented after normalization.

Results

Development of mAbs against NbHK

Purified rNbHK served as antigens to immunize BALB/c mice
and screen hybridomas. We harvested splenocytes from the
immunized BALB/c mice and polyethylene glycol 1500 was
employed to fuse them with SP2/0 cells. The 7A subtypes were
assessed using 7A hybridoma serum-free medium and the test
strip confirmed that the subtype of 7A was IgG2b-κ. In the
same method, 6H hybridoma serum-free medium was employed
to detect the subtype of 6H and its subtype was confirmed as
IgG2a-κ.

Construction of scFv and NSlmb–scFv-7A and NSlmb–scFv-6H
plasmids

Degenerate primers selected according to 7A subtypes were
employed to amplify the scFv-7A light-chain along with heavy-
chain variable regions using 7A hybridoma cDNA as the template
(fig. 2a, b). After that, we inserted these two amplicons into
pMD19-T vector and subsequently sequenced using M13-F/R pri-
mers. The sequencing analysis confirmed that the incorporated
variable region of 7A was cloned into the vector. Finally, on the
basis of the sequencing data, we designed the primers of the sub-
sequent overlap PCR, which was employed to connect the light-
chain to the heavy-chain with (G4S)3 linkers (fig. 3a). The
same steps were used to get scFv-6H (figs 2c, d and 3b).

Expression and specificity of NSlmb–scFv

The NSlmb–scFv recombinant plasmids were transfected into Sf9
cells. Western blot analysis showed that the fusion proteins
NSlmb–scFv-7A and NSlmb–scFv-6H were successfully expressed

Figure 1. Expression of fusion protein and ana-
lysis of NSlmb–scFv specificity. (a) Schematic dia-
gram of the expression plasmids (NSlmb–scFv-7A
or NSlmb–scFv-6H). (b) Detection of NSlmb–scFv
expression in Sf9 cells. Total proteins from
scFv-transfected Sf9-III cells were extracted and
analyzed by western blotting with the V5 mAb
being used as the primary antibody. (c)
Verification of NSlmb–scFv-7A specificity. (d)
Verification of NSlmb–scFv-6H specificity.
Proteins extracted from the infected Sf9-III cells,
mature spores, and healthy Sf9-III cells were sub-
jected to western blot using NSlmb–scFv against
NbHK. M: protein marker (Transgene, Shanghai,
China).
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based on the examination by western blot using V5 mAb as pri-
mary antibody (fig. 1b).

NbHK protein is secreted into host cells to hijack energy from
host and typically cannot be detected in mature spore cell lysates
(Huang et al., 2018b). In this part, western blotting data exhibited
a unique positive band of NSlmb–scFv-7A and NSlmb–scFv-6H
in the infected cell proteins. This band was approximately
50 kDa, which is equal to the molecular weight of the native form
of NbHK (fig. 1c, d). The results indicated that the NSlmb–
scFv-7A and NSlmb–scFv-6H could recognize native NbHK in
infected cells protein.

Expression of NSlmb–scFv inhibited N. bombycis’ proliferation

To access the functionality of expressed NSlmb–scFv proteins in
Sf9 cells, the transfected cells were infected by mature spores.
At 96 h post inoculation the cell lysates were prepared. First, we
evaluated whether the expression of NSlmb–scFv antibodies can
effectively result in NbHK degradation. For this purpose, the
cell lysates prepared from the infected cells as well as the control
cells were subjected to western blot using the polyclonal anti-
bodies of NbHK as primary antibody. The result demonstrated
that the protein expression level of NbHK was remarkably low-
ered in contrast to the control group, indicating that NbHK was
partially degraded in the host (fig. 4a).

To examine whether the expression of NSlmb–scFv antibodies
can repress the proliferation of N. bombycis in insect cells, we
quantified parasite loads based on the relative copy numbers of
Nbβ-tubulin genes by real-time PCR (Huang et al., 2018a). As
shown in fig. 4b, the parasite loads were significantly lowered
in the cells transfected with NSlmb–scFv-7A or NSlmb–
scFv-6H at 96 h post infection (fig. 4b), suggesting that NSlmb–
scFvs can effectively repress the proliferation of N. bombycis in
host cells.

Discussion

Energy metabolism is the most basic feature of the living body. By
absorbing nutrients from the outside world, the organism carries
out a series of complex decomposition and transformation in the
body, releasing the energy contained in the nutrients to maintain
life activities (Li et al., 2012; He et al., 2020). As the eukaryotes
with the smallest genome, microsporidia have lost several meta-
bolic pathways, like tricarboxylic acid cycle, oxidative phosphoryl-
ation, and fatty acid β-oxidation, so does N. bombycis (Katinka
et al., 2001; Pan et al., 2013). Metabolism in the intracellular
stages exhibit well adaption of microsporidia to parasitism.
According to genome research, microsporidia have lost many
genes compared with fungal relatives. So it has to adopt sophisti-
cated strategies to survive in the host with the least payment. They

Figure 2. Clone of scFv-7A and scFv-6H heavy-chain, light-chain variable regions. (a) scFv-7A light-chain variable region sequence. (b) scFv-7A heavy-chain variable
region sequence. (c) scFv-6H light-chain variable region sequence. (d) scFv-6H heavy-chain variable region sequence. Gray, cysteine; yellow, complementarity-
determining region (CDR)1; green, CDR2; pink, CDR3.
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can directly bind with host mitochondria, cluster ATP-delivering
mitochondrial porin voltage-dependent anion channel (VDAC)
and steal energy using plasma membrane-located nucleotide
transporters (Hacker et al., 2014; Heinz et al., 2014; Dean et al.,
2016; Han et al., 2019). Molecules were secreted to regulate
the host metabolism resulting in more rewards. Hexokinase of

N. bombycis can be secreted to the cytoplasm and nucleus of
host cell during intracellular stages (Huang et al., 2018b).
Microsporidia do not have typical mitochondria, but instead
only have a highly reduced mitochondrial structure, called mito-
some (Shiflett and Johnson, 2010), suggesting that microsporidia
may not have a complete oxidative phosphorylation pathway. The

Figure 3. Construction of scFv-7A and scFv-6H. (a) Analysis of constructed scFv-7A sequence. (b) Analysis of constructed scFv-6H sequence. Yellow, light-chain vari-
able region sequence; gray, (G4S)3 linker; green, heavy-chain variable region sequence.

Figure 4. Effects of NSlmb–scFv-7A and NSlmb–scFv-6H
expression on N. bombycis proliferation. (a) The detec-
tion of NbHK translation level. (b) Genomic DNAs were
extracted from the Sf9 cells infected for 96 h with spores
after transfection of the NSlmb–scFv-7A and NSlmb–
scFv-6H recombinant plasmids. The relative transcrip-
tion level of Nbβ-tubulin was quantified by real-time
quantitative PCR and used as an indicator of parasite
loads in Sf9 cells. Standard deviations in the bar graphs
were from three independent replicates and two groups
with significant differences were marked by asterisks
(***P < 0.001).
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microsporidia genome is so simplified that it lacks many of the
genes necessary for energy metabolism (Weidner et al., 1999;
Williams et al., 2002; Embley and Martin, 2006). However, it is
interesting that hexokinase is retained in all the species of micro-
sporidia investigated, indicating its importance in the evolution-
ary process (Nakjang et al., 2013).

Expression of single-chain antibodies is a promising approach
of breeding N. bombycis-resistant silkworms, because single-chain
antibodies can directly neutralize proteins of intracellular patho-
gens. In Anopheles, transposon-mediated transformation was
employed in generating m2A10, m1C3, and m4B7 single-chain
antibodies, and the transgenic mosquitoes expressing the scFv
gene had remarkably lower infection levels of Plasmodium falcip-
arum (Isaacs et al., 2011, 2012). Based on successful attempts in
Plasmodium, our lab also tried to use these methods to antagonize
N. bombycis. We generated mAb scFv-G4 targeting SWP12, the
first identified Bin/Amphiphysin/Rvs domain-containing protein
which may function in membrane structure formation (Chen
et al., 2013; Huang et al., 2018a). In vitro assay suggested that,
the transgenic Sf9-III cell line expressing scFv-G4 showed better
resistance relative to the controls when infected by N. bombycis
(Chen et al., 2013). As single-chain antibodies directly affect pro-
tein function of N. bombycis, this strategy will play important role
in breeding of resistant strains.

Ubiquitin degradation mechanism in eukaryotes can degrade
some waste proteins and foreign proteins in vivo (Ciechanover
and Ben-Saadon, 2004; Nandi et al., 2006), but this degradation
mechanism does not have high specificity. Recent studies have
found that the nanobody in fusion with the F-box domain of
E3 ligase in the ubiquitination degradation system can lead to
the degradation of the recognized target protein (Zhang et al.,
2003; Wang et al., 2017). Herein, two single-chain antibodies
targeting NbHK were developed and were later used to fuse with
NSlmb to direct specific degradation of NbHK proteins in insect
cells. When the insect cells expressing such antibodies were infected
by N. bombycis, the secreted NbHK proteins derived from the para-
sites were partially degraded by the expressed fusion antibody and
therefore hinder parasite to hijack energy from the host cells, result-
ing in proliferation inhibition of N. bombycis.

Conclusions

In the present study, we constructed an NbHK single-chain
antibody-guided ubiquitination system, which can specifically tar-
get NbHK protein produced by N. bombycis during infection and
degrade it. It was also confirmed that this method could signifi-
cantly inhibit the proliferation of N. bombycis in the host. Our
research represents a novel strategy of creating N. bombycis resist-
ant silkworm strains when combined with additional genetic
manipulation techniques.
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