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In the Prandtl model for anabatic slope flows, a uniform positive buoyancy flux at
the surface drives an upslope flow against a stable background stratification. In the
present study, we conduct linear stability analysis of the anabatic slope flow under
this model and contrast it against the katabatic case as presented in Xiao & Senocak
(J. Fluid Mech., vol. 865, 2019, R2). We show that the buoyancy component normal
to the sloped surface is responsible for the emergence of stationary longitudinal rolls,
whereas a generalised Kelvin–Helmholtz (KH) type of mechanism consisting of shear
instability modulated by buoyancy results in a streamwise-travelling mode. In the
anabatic case, for slope angles larger than 9◦ to the horizontal, the travelling KH
mode is dominant whereas, at lower inclination angles, the formation of the stationary
vortex instability is favoured. The same dynamics holds qualitatively for the katabatic
case, but the mode transition appears at slope angles of approximately 62◦. For a
fixed slope angle and Prandtl number, we demonstrate through asymptotic analysis of
linear growth rates that it is possible to devise a classification scheme that demarcates
the stability of Prandtl slope flows into distinct regimes based on the dimensionless
stratification perturbation number. We verify the existence of the instability modes
with the help of direct numerical simulations, and observe close agreements between
simulation results and predictions of linear analysis. For slope angle values in the
vicinity of the junction point in the instability map, both longitudinal rolls and
travelling waves coexist simultaneously and form complex flow structures.

Key words: atmospheric flows, stratified flows

1. Introduction
Stably stratified flows are commonly observed in the atmospheric boundary layer

(ABL) and typically occur during night-time due to radiative heat loss from the
surface to clear skies or under cold climate conditions such as in the Arctic and
Antarctic. Stratified flows play a vital role in reliable weather prediction pertaining to
air quality, agriculture and aviation (Fernando & Weil 2010). A plethora of numerical
and experimental studies have been conducted for stably stratified atmospheric
boundary layer flows over flat terrain (e.g. Coleman, Ferziger & Spalart 1990;
Mason & Derbyshire 1990; Kosović & Curry 2000; Beare et al. 2006; Shah &
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Bou-Zeid 2014). However, stably stratified flows over non-flat terrain are relatively
less explored.

One of the simplest configurations of that kind are slope flows, also known as
drainage winds, that are caused by a horizontal air temperature gradient due to
a misalignment of the stratification and main shear direction over non-flat terrain.
During night-time, the ABL becomes stably stratified after several hours of prior
near-surface radiative cooling, which triggers a downslope flow over sloped terrain,
also called a katabatic wind (see e.g. Whiteman 1990). After sunrise, while the stable
background stratification still persists, the surface starts to become heated, giving rise
to stably stratified upslope flows, also known as anabatic flows. This configuration,
however, does not last very long, since the stable atmospheric boundary layer (SABL)
transitions to a well-mixed convective boundary layer due to ongoing surface heating
(cf. Banta 1984). Anabatic flows under these thermally unstable daytime atmospheric
conditions have been discussed in Whiteman (1990, 2000), Monti et al. (2002) and
Fernando et al. (2015), but they are not the subject of the current study, in which
the term ‘anabatic flows’ presupposes the presence of a stably stratified atmosphere.
A more in-depth treatment of the observational and phenomenological approach to
diurnal mountain wind systems in which anabatic flows occur can also be found in
the works by Zardi & Whiteman (2013) and Serafin et al. (2018).

The canonical flow model to capture the main dynamics of such anabatic as well
as katabatic flows is the one proposed by Prandtl (1942, 1952), which treats the
problem as a viscous stably stratified fluid layer flowing over an inclined doubly
infinite planar surface cooled or heated from the bottom with a constant temperature.
The exact buoyancy and velocity solutions arising from the Prandtl model are
both sinusoidal profiles damped exponentially with growing height (Fedorovich &
Shapiro 2009). The solution gives rise to a strong near-surface jet along the slope
direction, which is capped by a weak reverse flow as depicted in figure 1 for both
the anabatic and katabatic conditions. Despite its simplicity, the Prandtl model has
been found to capture qualitatively the structure of katabatic slope winds normal to
the slope observed in nature (Defant 1949a,b). However, further adjustments through
introduction of constant eddy viscosity and diffusivity into the Prandtl model did
not result in improved predictions with respect to field observations (Grisogono &
Oerlemans 2001a,b).

Stable stratification of the background environment is essential for the formation of
anabatic and katabatic winds over non-flat terrain. However, despite the significance
of the stably stratified conditions, its representation in numerical weather models
has been a technical challenge for a long while. Ad hoc remedies to improve the
representation of SABLs are known to erode the representation of other processes
(Mahrt 1998; Sandu et al. 2013; Steeneveld 2014). The SABL is typically divided
into weakly stable (WSABL) or very stable (VSABL) regimes. This qualitative
classification was introduced by Mahrt (1998) to highlight the technical challenges
in modelling the very stable regime, also referred to as ‘strongly stratified’. It is
generally accepted that we have a reasonable representation of WSABL over flat
homogeneous terrain through the Monin–Obukhov similarity theory (MOST) (Monin
& Obukhov 1954) and the local scaling hypothesis of Nieuwstadt (1984). However,
a comprehensive understanding of VSABLs over non-flat terrain still remains elusive,
which has been attributed to the intermittency of turbulence and mixing processes
under very stable conditions (Fernando & Weil 2010; Mahrt 2014).

Numerous numerical studies on katabatic and anabatic flows under Prandtl’s model
have been published in the literature. The first large-eddy simulation for anabatic flows
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FIGURE 1. Base-flow profiles for slope flows under Prandtl’s model. (a) Sketch of
slope-flow geometry and the rotated coordinate system: z′ represents the vertical axis of
the coordinate system before rotation, i.e. parallel to the gravity vector. The katabatic
and anabatic configurations differ only in the sign of their surface buoyancy flux and
the resulting flow profiles. The figure is not drawn to scale. (b) Normalised velocity and
buoyancy profiles as well as their slope-normal gradients.

was conducted by Schumann (1990), who was able to observe en masse oscillations
of instantaneous flow quantities in the numerical results with characteristic frequency
of N sin α, in agreement with data from field experiments (Turner 1979). These
oscillations were shown to persist in numerical simulations of turbulent Prandtl-type
slope flow starting from rest (Fedorovich & Shapiro 2017).

Fedorovich & Shapiro (2009) were the first to conduct direct numerical simulations
(DNS) of a turbulent analogue of the Prandtl model for anabatic and katabatic
conditions. They proposed a dimensionless parameter called the ‘integral slope-flow
Reynolds number’ that is derived from an integral dynamic similarity constraint
applicable to flows over a constant slope driven by a uniform surface buoyancy
flux. The integral Reynolds number lumps together the effect of slope angle, surface
buoyancy flux, viscosity and background stratification in a single dimensionless
number. Fedorovich & Shapiro also introduced a dimensionless flow forcing parameter
that is a measure of the ratio between energy production at the surface and the work
against buoyancy and viscous forces. For a given slope angle, flow is expected to be
more turbulent at higher values of the flow forcing parameter. Several DNS of slope
flows were performed for integral Reynolds number in the range of 3000–10 000.
Mean profiles of turbulent katabatic flows were found to be structurally more similar
to the laminar Prandtl model than the mean profiles of anabatic flows were. Unlike
flat terrain, where a constancy of the turbulent fluxes led to the development of
similarity theory, Fedorovich & Shapiro (2009) found no evidence of constancy
of fluxes in slope flows, which casts doubt on the applicability of MOST-based
surface parametrisations for non-flat terrain. However, the issue of to what extent
MOST is inapplicable to slope flows remains unresolved. Giometto et al. (2017)
complemented the work of Fedorovich & Shapiro by conducting DNS of slope flows
for prescribed surface buoyancy as opposed to the prescribed buoyancy flux used in
Fedorovich & Shapiro (2009). Giometto et al. performed a detailed budget analysis
for turbulent kinetic energy and fluxes, and they too did not observe a constant flux
layer. Giometto et al. (2017) also showed that, at slope angles lower than 30◦, the
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anabatic and katabatic flows differ in turbulence statistics and in the way the flow
returns to isotropy.

Several numerical and experimental results on instabilities in different stably
stratified flow configurations have appeared in the recent literature. Deloncle, Chomaz
& Billant (2007) carried out a numerical analysis of the inviscid stability for a stably
stratified flow over a horizontal surface, whereas Facchini et al. (2018) studied the
stability of Couette flows with stable stratification via linear analysis, experiments and
DNS. Chen, Bai & Le Dizès (2016) investigated stably stratified horizontal boundary
layer flows on a vertical wall; in all those cases, the direction of stratification was
either parallel or orthogonal to the shear and base-flow directions. Candelier, Le Dizès
& Millet (2011, 2012) analysed the inviscid stability for a case where the direction
of stratification was orthogonal to the base-flow direction but makes an oblique
angle with the plane of shear, identifying both Kelvin–Helmholtz (KH) and radiative
instabilities generated by a Bickley jet ejected onto a sloping surface. The Prandtl
model for slope flows is distinct from all these aforementioned flow configurations
because the direction of stratification is oblique to both the base-flow direction
and the direction of shear due to the inclination of the surface. In addition, heat
conduction is a principal component of the Prandtl model, which is not considered
in the aforementioned studies.

In a recent study, we have investigated the linear stability of the Prandtl model for
katabatic slope flows and introduced a new dimensionless parameter, Πs, the so-called
stratification perturbation parameter, which is used alongside the slope angle and
Prandtl number to characterise the stability behaviour of such flows (Xiao & Senocak
2019). The parameter Πs is related to the flow forcing parameter FpB introduced
in Fedorovich & Shapiro (2009) through the Prandtl number Pr as Πs = FpB Pr.
We have attributed the complexity of the katabatic slope flow’s linear response to
infinitesimal perturbations to the disturbance to the background stratification due to
the thermal forcing at the surface. The complexity of the resulting flow is somewhat
unexpected because the combined effect of surface cooling and stable background
stratification are a priori presumed to be both stabilising contributions. On the other
hand, the potential existence of instabilities in anabatic flows would be a more
expected outcome due to the presence of heating instead of cooling at the surface.
Indeed, numerous numerical and experimental studies for the stability of natural
convection flows in the absence of stable stratification on a heated inclined surface
have appeared in the literature.

Sparrow & Husar (1969) reported the observation of longitudinal vortices on a
heated plate when inclined at a low angle, and Lloyd & Sparrow (1970) observed the
transition of these vortices into travelling waves at larger inclination angles, which
is analogous to the stability behaviour of katabatic flows established by Xiao &
Senocak (2019). Subsequently, linear stability analysis (LSA) and further experiments
for boundary layer flows over a heated inclined surface have been carried out
by Haaland & Sparrow (1973), Pera & Gebhart (1973) and Iyer & Kelly (1974),
establishing neutral stability boundaries for both instability types depending on
inclination angle, with good agreement between the experimental data and numerical
results. Clever & Busse (1977) went beyond the primary stability analysis for the base
flow on a heated inclined layer and also studied the stability of the convection rolls
that are the primary instabilities of the base flow. The effect of flow instability on
surface momentum and heat transfer rates has been studied by Chen & Tzuoo (1982),
whereas Lin (2001) investigated the evolution of the vortex instability with variation
to different dimensionless flow parameters. Beyond the study of linear flow stability,
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Lloyd & Sparrow (1970) have also carried out experiments for the transition and
turbulent regimes of natural convection over inclined plates, obtaining measurement
data for mass transfer rates at the surface. However, the previous studies focused on
natural convection with an eye toward engineering applications and did not consider
the effect of stable background stratification, a common feature of geophysical flows.

In the present work, we continue our investigation of the stability of the Prandtl
model for stratified slope flows with the anabatic case and complement our earlier
study (Xiao & Senocak 2019) that was focused on the katabatic case. The current
investigation is imperative to better comprehend the stability characteristics of the
Prandtl model because, as observed by Fedorovich & Shapiro (2009), despite only
differing in the sign of their surface buoyancy flux and thus laminar flow profiles, the
mean profiles of katabatic and anabatic flows differ significantly from each other in
the turbulent regime, with the katabatic version showing a closer resemblance to the
Prandtl solution. Similar to the approach that we pursued in Xiao & Senocak (2019),
we first apply LSA to identify the instability boundaries, and subsequently carry out
DNS to support the findings of the LSA and visualise the nature of flow instabilities.
We further conduct asymptotic analyses to identify the primary instability mechanisms
in slope flows.

2. Governing equations
The idealised slope-flow configuration is shown in figure 1(a), where α is the

slope angle, gravity acts in the vertical direction and BS is the constant buoyancy
flux imposed on the surface. For ease of analysis, the problem is studied in a
rotated Cartesian coordinate system whose x axis is aligned with the planar inclined
surface. We let u be the along-slope (longitudinal), v the cross-slope (transverse)
and w the slope-normal velocity components, such that ui = [u, v, w] is the
velocity vector. The gravity vector in the rotated coordinate system is then given
by gi = (g1, g2, g3) = [sin α, 0, cos α]. The potential temperature, buoyancy and
its frequency are denoted by θ , b and N, respectively; N is also known as the
Brunt–Väisälä frequency, defined as N =

√
(g/Θr) ∂Θe/∂z′, and N2 is used as a

measure of the stratification. The buoyancy is related to the potential temperature
as b = g(Θ − Θe)/Θr, where Θr is a reference potential temperature and Θe is the
environmental potential temperature. The kinematic viscosity and thermal diffusivity
of the fluid are denoted by ν and β, respectively, and are assumed to be constant.
Following the presentation in Fedorovich & Shapiro (2009), the momentum and the
buoyancy balance equations with a Boussinesq approximation are written as follows:

∂ui

∂t
+
∂uiuj

∂xj
=−

1
ρ

∂p
∂xi
+ gib+

∂

∂xj

(
ν
∂ui

∂xj

)
, (2.1)

∂b
∂t
+
∂ujb
∂xj
=

∂

∂xj

(
β
∂b
∂xj

)
−N2gjuj. (2.2)

The conservation-of-mass principle is imposed by a divergence-free velocity field,

∂ui

∂xi
= 0. (2.3)

In the following, the position and velocity vector components (xi)
T and (ui)

T

are denoted as (x, y, z)T and (u, v, w)T, respectively. At the surface, a positive
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buoyancy flux Bs is imposed to create anabatic flow conditions. In the Prandtl model,
equation (2.1) reduces to a balance between buoyancy and diffusion of along-slope
momentum; and (2.2) reduces to a balance between along-slope momentum and
diffusion of buoyancy. For the case with a constant buoyancy flux at the surface,
Shapiro & Fedorovich (2004) provide the following solution of the laminar flow:

un = u/u0 =
√

2 sin(zn/
√

2) exp(−zn/
√

2), (2.4)

bn = b/b0 =
√

2 cos(zn/
√

2) exp(−zn/
√

2), (2.5)

where zn = z/l0, un and bn are non-dimensional height, velocity and buoyancy,
respectively. According to (2.4) and (2.5), Prandtl’s flow profile is an exponentially
damped sinusoid with infinitely many inflection points. It satisfies both Rayleigh’s
and Fjørtoft’s necessary criterion for instability, which opens the possibility for
inviscid inflection instabilities (Schmid & Henningson 2001; Drazin & Reid 2004).
The profiles of un and bn and their slope-normal derivatives are shown in figure 1(b).

The corresponding scales governing the laminar flow are given as (Fedorovich &
Shapiro 2009)

l0 = Pr−1/4ν1/2N−1/2 sin−1/2 α, (2.6)
u0 = Pr1/4ν−1/2N−3/2Bs sin−1/2 α, (2.7)
b0 = Pr3/4ν−1/2N−1/2Bs sin−1/2 α, (2.8)

where Pr= ν/β. A time scale t0= l0/|u0| =
√
νβN|Bs|

−1 can also be defined from the
above scales. We can see from (2.6)–(2.8) that the length scale is independent of the
surface flux Bs, whereas the magnitudes of both the reference velocity and buoyancy
scale vary linearly with Bs. As expected, the characteristic length scale increases with
diminishing background stratification N, leading to an infinitely thick boundary layer
of infinite strength in the neutral limit. It is interesting to note, however, that the
time and frequency scales for the laminar Prandtl flow, as given by l0/u0 or u0/l0,
are independent of the slope angle α.

3. Linear stability analysis
Linearising (2.2) around Prandtl’s laminar solution given by (2.4) and (2.5), and

assuming that disturbances to the base flow given by Prandtl’s solution are waves of
the form q(x, y, z, t)= q̂(z)eωt+i(kxx+kyy), the resulting equations have the form

ikxû+ ikyv̂ +
∂ŵ
∂z
= 0, (3.1)

ωû+ iunkxû+ u′nŵ=−ikxp̂+
σPr
Πs

sin α
(
−(k2

x + k2
y)û+

∂2û
∂z2
+ b̂
)
, (3.2)

ωv̂ + iunkxv̂ =−ikyp̂+
σPr
Πs

sin α
(
−(k2

x + k2
y)v̂ +

∂2v̂

∂z2

)
, (3.3)

ωŵ+ iunkxŵ=−
∂ p̂
∂z
+
σPr
Πs

sin α
(
−(k2

x + k2
y)ŵ+

∂2ŵ
∂z2
+ b̂ cot α

)
, (3.4)

ωb̂+ iunkxb̂+ b′nŵ=
σ sin α
Πs

(
−(k2

x + k2
y)b̂+

∂2b̂
∂z2
− (û+ ŵ cot α)

)
, (3.5)
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where û, v̂, ŵ, p̂ and b̂ are flow disturbances varying along the slope-normal
direction normalised by the flow scales given in (2.6)–(2.8), and σ := sgn(Bs) is the
sign of the surface buoyancy flux, which equals 1 for anabatic flows. The Prandtl
base-flow solution and its derivative normal to the surface are denoted by un, u′n
and b′n.

From (3.1)–(3.5), it is clear that there are three non-dimensional parameters
characterising the idealised anabatic slope flow, which can also be confirmed
independently by applying the Buckingham π theorem. These non-dimensional
parameters are the Prandtl number Pr, the slope angle α and the stratification
perturbation parameter Πs that was introduced in Xiao & Senocak (2019): Πs is
the ratio between the imposed surface buoyancy gradient Bs/β and the background
stratification N2. This unique parameter is determined from the given flow parameters
as follows:

Πs ≡
|Bs|

βN2
. (3.6)

As mentioned earlier, Πs can also be related to the internal Froude number as
Πs = Fr

√
Pr, and to the Richardson number as Πs =

√
Pr/Ri using the flow

scales defined in (2.6)–(2.8). However, it would be injudicious to use Fr and Ri
for the Prandtl model because there are no externally imposed velocity or length
scales in the flow problem. Parameter Πs is related to the flow forcing parameter
FpB ≡ Bsν

−1N−2 introduced in Fedorovich & Shapiro (2009) through the following
relation: Πs = FpB Pr. Although these two parameters appear similar, they differ in
the physical processes they represent: FpB is a measure of energy input at the surface
relative to the work done against buoyancy and viscous forces, whereas Πs is a
measure of the thermal perturbation to the background stratification at the surface.

The linearised equations can be written as a generalised eigenvalue problem as
follows:

A(kx, ky)q̂(z)=ωBq̂(z). (3.7)

The complex disturbance amplitude vector q̂(z) = [û(z), v̂(z), ŵ(z), p̂(z), b̂(z)]T only
varies in the slope-normal direction, where (û, v̂, ŵ) are the along-slope, cross-slope
(transverse) and slope-normal disturbance velocity components. The appropriate
boundary conditions for this problem are no slip for disturbance velocities at z=0 and
z→∞; and for buoyancy disturbance, ∂ b̂/∂z|0 = 0 and b̂|z→∞ = 0 are imposed. The
slope-normal derivative of pressure disturbance p̂ is also set to zero at both z= 0 and
z→∞. The generalised eigenvalue problem (3.7) is solved via a collocated spectral
method using Chebyshev polynomials and an algebraic map to cover the semi-infinite
domain [0,∞) (e.g. Schmid & Henningson 2001). Two-hundred collocation points are
used for discretisation, and the resulting generalised eigenvalue problem is solved with
the help of MATLAB functions. Linear stability of the problem is associated with
the real part of the eigenvalues ω, where Re{ω}> 0 represents a positive exponential
growth for the corresponding eigenmode, thus an unstable mode. The imaginary part
of ω is the temporal oscillation frequency for the corresponding eigenmode, and
Im{ω} = 0 represents a stationary mode.

3.1. Growth rates and eigenfunctions
To explore the linear instability mechanism dependent on the longitudinal and
transverse wavenumbers, the maximal real value of the spectrum for a range of
(kx, ky) is calculated at various fixed values of α and Πs. Unless otherwise stated,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.981


885 A13-8 C.-N. Xiao and I. Senocak

0.5
0.5

1.0

1.5

1.0 0

0

0.05

0.10

0.15

0.20

0.5 1.01.5 2.0

0.5 1.0

ky

ky

(a) (b)

(c) (d)

kxkx

1.5 0.3 0.4 0.5 0.6 0.7

0 0

0.005

0.010

G
ro

w
th

 ra
te

G
ro

w
th

 ra
te

0.015

0.02

0.04

0.06

0

1

2

3

0.5

0
0

5

10

15

1.0

1.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

1

2

3

4

5
(÷10-3)(÷10-3)

FIGURE 2. Growth-rate contours depending on wavenumber vectors kx and ky at different
slope angles for Pr = 0.71: (a) α = 2◦, Πs = 1.7; (b) α = 5◦, Πs = 2.15; (c) α = 9.5◦,
Πs = 3.2; and (d) α = 30◦, Πs = 6.1. The zero-growth-rate contours are shown in dashed
lines.

we consider a constant Pr of 0.71 corresponding to air at a temperature of around
2 ◦C. For a slope angle of α = 2◦ and Πs = 1.7, the maximal possible growth rates
for wavenumber vectors (kx, ky) within the interval [0, 2.0] × [0, 3.2] are shown in
figure 2(a). Only the positive growth rates, i.e. unstable modes, are highlighted. We
can see that the growth rates tends to grow with decreasing kx component such that
the maximal instabilities occur at kx = 0, i.e. the most unstable modes are purely
along the direction transverse to the main velocity component. We will designate this
instability as the ‘transverse mode’ due to the fact that its only non-zero wavenumber
ky is transverse to the base-flow direction. It should be noted that similar modes
such as observed in Rayleigh–Bénard convection or Görtler flows are also commonly
referred to as longitudinal vortices or rolls in other literature. This mode is almost
the same as the shallow-slope instability for katabatic flows described in Xiao &
Senocak (2019), but with a smaller transverse wavenumber. Thus, it also deviates
from Squire’s theorem, which asserts that, in the absence of buoyancy effects, the
most unstable mode of parallel base flows (e.g. the Prandtl model flow profile) must
be two-dimensional and vary along the streamwise direction (Schmid & Henningson
2001). This apparent disagreement is due to the presence of the buoyancy and stable
stratification, which act as additional body forces both orthogonal and parallel to
the main slope flow, similar to the emergence of centrifugal instabilities in Görtler
vortices or Taylor–Couette flows (Taylor 1923; Görtler 1959; Schmid & Henningson
2001). The imaginary part of the eigenvalues of the pure transverse instability are all
zero, which indicates that the vortex modes in this case are all spatially stationary.
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At a moderately steep slope angle of α = 30◦ and stability with Πs = 6.1, the
maximal possible growth rates for wavenumber vectors (kx, ky) within the interval
[0, 0.8] × [0, 0.25] are displayed in figure 2(d). In contrast to the situation at α = 2◦,
figure 2(d) shows that the growth rate tends to increase with decreasing ky component
such that the maximal instabilities occur at ky = 0, thus the most unstable modes are
purely along the slope direction, parallel to the main flow. Following the earlier
convention, we will designate this instability as the ‘longitudinal mode’ due to the
fact that its only non-zero wavenumber kx is along the base-flow direction. This
behaviour is in line with Squire’s theorem and agrees with the well-known behaviour
in other types of parallel flow such as plane mixing layers with KH instability.
Another difference from the gentle slope case is that, for α = 30◦, Πs = 6.1, the
imaginary part of the most unstable eigenvalue ω (i.e. the angular frequency of the
most unstable mode) is non-zero with value approximately Im(ω) ≈ 0.27. Thus, in
contrast to the transverse mode consisting of stationary vortices, the longitudinal mode
is a transverse wave propagating along the slope. This shows that, at the given slope
angle α = 30◦, the misalignment of shear and stratification can lead to spontaneous
emission of streamwise-travelling waves from the equilibrium state given by Prandtl’s
profile. It is also important to note that the most unstable eigenvalue is single, i.e. not
as part of a conjugate pair, which means that the instability has a preferred direction
of propagation due to the existence of the slope. The switch from the stationary
transverse mode to longitudinal wave modes in slope flows with growing slope angle
could be attributed to the stronger along-slope gravity component, which dominates
the stable stratification orthogonal to the surface at steep inclination angles.

In order to determine which type of stratified flow instability the longitudinal wave
mode could be identified with, the base-flow profiles displayed in figure 1(b) and given
by equations (2.4)–(2.5) can be used to ascertain which kind of waves are supported
by the Prandtl base flow. Firstly, from the given buoyancy profile under Prandtl’s
slope-flow model, it can be verified that the buoyancy gradient attains its maximum
at the surface and decays exponentially with growing height, hence Prandtl’s base
flow lacks two distinct buoyancy interfaces to create resonating internal gravity
waves which would be required for Taylor–Caulfield type of instability, as described
in Eaves & Balmforth (2019). For the identification of a Holmboe-type instability,
which arises from resonance between a vorticity wave and an internal gravity wave
as described in Carpenter, Balmforth & Lawrence (2010) and Eaves & Balmforth
(2019), we can apply the characterisation given in Salehipour, Caulfield & Peltier
(2016), which asserts that the base-flow profile supportive of Holmboe modes should
consist of a sharp density or buoyancy interface immersed within a broader shear
region. This characterisation is also backed up by plots of typical base profiles prone
to the Holmboe instability shown in Carpenter et al. (2011) and Eaves & Balmforth
(2019). From figure 1(b) and equations (2.4)–(2.5), however, it can be deduced for
the Prandtl base-flow profiles that both the velocity shear and buoyancy gradient
attain their maximum at the surface zn = 0 and exhibit the same exponential decay.
Thus, the buoyancy interface is not embedded within the shear layer of the Prandtl
base profile, and accordingly this means that the Prandtl base profile is not conducive
to Holmboe-type instability. Hence, the longitudinal travelling mode observed in this
work could be more reasonably attributed to a shear instability.

The growth-rate contours at two intermediate angles between 2◦ and 30◦ are
displayed in figure 2(b,c), and a gradual transition from the transverse mode to the
longitudinal mode can be clearly observed. For all the slope-flow configurations with
angles shown above, however, the most unstable instability mode propagates either

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.981


885 A13-10 C.-N. Xiao and I. Senocak

-1 0 1 -1 0 1 -1 0 1 -1 0 1
0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

-1 0

un

un un un un

un

zn

√n wn pn bn

1

FIGURE 3. Eigenfunctions of the neutral state at Πs = 2.1 for the stationary transverse
mode at α= 5◦. Dash-dotted lines represent the real part, asterisks represent the imaginary
part, and the dashed line is the magnitude. The disturbance magnitudes have been
normalised with the maximal occurring buoyancy disturbance magnitude in each case. The
solid line represents the normalised base Prandtl velocity profile un.

parallel (ky = 0) or orthogonal (kx = 0) to the along-slope direction, but never in
an oblique direction, which is a different behaviour from the oblique instabilities
observed in the spanwise-stratified Couette flow studied by Facchini et al. (2018).

The computed eigenfunctions for the neutral state of both instability types are
displayed in figures 3 and 4. From the shape of the eigenmodes in figure 3, it is clear
that the transverse mode at 5◦ has strong disturbances in all three velocity components,
which decay rapidly with growing height. Another key observation from figure 3 is
that the node of the velocity disturbance, i.e. centre of the instability rolls, is located
approximately near the maximum of the base velocity profile. On the other hand, the
longitudinal mode at slope angle 30◦ as shown in figure 4 is two-dimensional with
zero cross-flow velocity component; its main flow and slope-normal flow disturbances
are a lot weaker compared to its buoyancy disturbance, which, however, persist at
further distances away from the surface.

In contrast to the stationary transverse mode, the longitudinal mode is propagating
with wave speed cx= Im(ω)/kx, which is approximately 0.4 at angle α=30◦, as can be
seen from figure 6(b). The first critical layer, i.e. the position zc within the shear layer
where cx equals the Prandtl base-flow velocity, can be found just below the location
of the near-surface jet with maximal velocity. Since Prandtl’s profile is not monotonic,
there exists also one other critical point slightly above the near-surface jet where cx
is attained. Upon closer inspection of figure 4, it can also be seen that the maximum
of the longitudinal velocity disturbance û is located closely above the surface where
the shear of the base profile is maximal. On the other hand, the slope-normal velocity
disturbance ŵ attains its maximum near the first inflection point of the base velocity
profile (located at zn≈2.22), which is also a local maximum of the base profile’s shear.
These observations suggest that the longitudinal mode is principally a shear instability
driven by resonating waves formed at vorticity interfaces.

These differences between the transverse and longitudinal instabilities strongly imply
that the two modes are driven by different flow-physical mechanisms. Following our
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mode at α=30◦. Dash-dotted lines represent the real part, asterisks represent the imaginary
part, and the dashed line is the magnitude. The disturbance magnitudes have been
normalised with the maximal occurring buoyancy disturbance magnitude in each case. The
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previous arguments, the transverse mode exhibits hallmarks of a centrifugal instability
such as Görtler or Taylor–Couette vortices (e.g. Taylor 1923; Görtler 1959), whereas
the oscillatory behaviour of the longitudinal mode could be attributed to an inviscid
shear instability modulated by buoyancy, which can be regarded as a generalised KH
instability (Drazin & Reid 2004).

3.2. Neutral curves and critical stability
The results from the previous subsection clearly show that the most unstable modes
at each slope angle α and Πs are propagating along either the main flow direction or
the transverse direction, i.e. only one component of the wavenumber vector (kx, ky) is
non-zero in order to attain maximal growth rates. This observation is consistent with
our previous discovery as outlined in Xiao & Senocak (2019). The critical Πs for the
onset of instability at a specific slope angle α and Pr number can be found by plotting
the growth-rate contours over a range of Πs separately for kx and ky, assuming that
the other wavenumber is zero. For α= 5◦, the results are shown in figure 5(a,b). We
can see that the minimal Πs for the transverse mode is approximately 2.05, whereas
the longitudinal mode requires a minimal Πs = 2.25 to become dynamically unstable.
Thus, the most dominant instability in this case is the transverse mode, in agreement
with the growth-rate contour shown in the previous subsection. In figure 5(c,d), the
results for a steep angle of α = 30◦ are displayed. This time, we can see that the
critical Πs for the longitudinal mode is approximately 5.9, whereas the transverse
mode requires a minimal Πs ≈ 13.5 to become unstable. This means that, in contrast
to the case of shallower slope angle, the instability to be triggered first at α = 30◦
is the longitudinal mode in the along-slope direction, which is also supported by the
growth-rate contour shown the previous subsection.

As these results have shown, the separation between the minimal Πs values required
for the onset of each instability mode is a lot larger at the steeper slope angle α= 30◦
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FIGURE 5. Growth-rate contours at α = 5◦ for (a) transverse and (b) longitudinal modes
and at α= 30◦ for (c) transverse and (d) longitudinal modes. The neutral curves are given
by Re(ω)= 0.

than at α= 5◦. The implication of this is that, while the longitudinal mode is clearly
the preferred instability to be triggered first at large slope angles, for shallow slopes,
the transverse mode is initiated only slightly before the onset of the longitudinal
mode. As a result, we should expect that, under most configurations in which the
anabatic slope flow is unstable at low angles, both types of instability modes can
coexist simultaneously. Moreover, since it is known from Xiao & Senocak (2019)
that the gradient Richardson number of the base profile is related to its Πs value
via the relation Ri = Pr/Π 2

s , an interesting observation pertaining to the stability
behaviour at shallow slopes less than 3◦ is that, at those angles, the implied gradient
Richardson number corresponding to the stability threshold value of Πs is larger than
the critical value of Ric = 0.25. Thus, the anabatic base-flow profiles at low slope
angles under Prandtl’s model can serve as another set of counter-examples to the
celebrated stability theorem presented in Miles (1961).

For both the shallow-slope and steep-slope cases, we can determine from figure 5
that the unstable growth rates increase with growing Πs within the range of shown
Πs values. A more detailed analysis of the Πs dependence of the growth rate will be
given in § 3.3.

The aforementioned switch from a stationary transverse mode at slope angle of 5◦
to a travelling longitudinal mode at around 30◦ can be attributed to the increasing
longitudinal gravity component driving the flow. To further explore the influence
of slope angle α on the instability, the stability thresholds for both longitudinal
and transverse instabilities (i.e. the critical Πs value at which the growth rate is
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FIGURE 6. Critical curves of both instability types dependent on slope angle at
Pr = 0.71 for anabatic slope flow: (a) critical perturbation parameter Πs for slopes
α6 30◦; (b) critical wavenumber kx, ky and frequency Im(ω) for slopes α6 30◦; (c) critical
perturbation parameter Πs for slopes 306α6 60◦; and (d) critical wavenumbers kx and ky
and frequency Im(ω) for slopes 306α660◦. Since the unstable transverse mode is always
stationary, its critical frequency (i.e. Im(ω)) is zero for all angles and not shown here.

zero) as functions of slope angle over the range of [2◦, 60◦] are determined and
displayed in figure 6(a,c). We observe that the critical Πs threshold for the transverse
mode of instability is higher than its longitudinal counterpart at shallow angles less
than 9◦. However, it increases for growing angles, whereas the critical value for the
longitudinal mode stays almost constant over the same range of slope angles. This
implies that the transverse mode becomes increasingly stable with growing α, and the
maximal angle at which its stability threshold is less than or equal to its longitudinal
counterpart is approximately 9◦, as shown by figure 6(a). The slope-angle dependence
of the wavenumber of each instability mode at its critical stability threshold Πs is
displayed in figure 6(b), which shows that the critical transverse mode characterised
by ky has a shorter wavelength than its longitudinal counterpart kx for all angles
within [2◦, 60◦]. The frequency of the oscillatory critical longitudinal mode grows
monotonically for all slope angles larger than 9◦, i.e. when the longitudinal mode is
the dominant instability with lower stability threshold.

3.3. Instability growth at different stratification perturbation regimes
We have learned from our preceding analysis that, for each slope angle and at
sufficiently high Πs, two instability modes emerge. Thus, using the value of Πs for
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a given slope angle, it is possible to delineate a stratification regime with small Πs

where all linear instabilities are suppressed from more dynamically unstable regimes
at higher Πs.

Mahrt (1998) is credited for proposing the weakly stable and very stable regimes
as a qualitative classification scheme to identify distinct flow conditions in stratified
atmospheric boundary layer flows. A weakly stable regime refers to conditions
where fully turbulent flows prevail, and a very stable regime is associated with flow
intermittency and patchy turbulence. Based on our analysis, we deem it necessary to
further refine Mahrt’s classification and introduce a super-stable regime to distinguish
flow conditions where there are no flow instabilities and the flow maintains a steady
state. The super-stable regime is equivalent to a linearly stable regime. The reason we
call it ‘super’-stable is because we prefer to complement Mahrt’s existing terminology
and emphasise a natural progression from weakly stable towards more stable regimes.

As we have shown in our previous work (Xiao & Senocak 2019), the extent
of the linearly stable flow conditions is defined based on the slope angle and the
stratification perturbation number for a given fluid. Therefore, a super-stable regime
can be proposed as a quantitative lower bound for the very stable regime. Next, we
investigate how the properties of these two instability modes evolve over a large
range of Πs covering the super-stable, very stable and weakly stable regimes. We
note that these regimes are strictly for the Prandtl model for slope flows, where there
is no externally imposed flow shear.

3.3.1. Super-stable regime: Πs→ 0
From the inspection of disturbance equations (3.1)–(3.5), we see that, for strong

relative background stratification, or a weak thermal forcing at the surface, such
that the perturbation parameter Πs approaches zero, the viscous and stable buoyancy
effects dominate over the advection and other terms. Note that Πs is a measure
of the relative importance of the surface thermal forcing as a perturbation to the
background stratification. Therefore, a small Πs can also be attained when a weak
surface buoyancy flux is imposed. Then, for Πs � 1, no asymptotically unstable
modes can exist at all to overcome the stabilisation effects, so the growth rate of the
most unstable mode must be less than or equal to zero. This assertion is supported
by the growth-rate contours shown in figure 5. The resulting situation is different
from the situation studied by Candelier et al. (2011), where unstable modes can
exist at strong stratification conditions with Froude numbers arbitrarily close to zero
because those authors have only considered inviscid dynamics in their work. Owing
to the relation Ri=Pr/Π 2

s between the gradient Richardson number and stratification
perturbation number, it is evident that no instabilities can persist in the limit of large
Richardson number. This observation could serve as a further indication that the
linear instabilities studied in the present work are not of the Holmboe type, which
results as the resonance between a vorticity wave and an internal gravity wave, as
shown by Baines & Mitsudera (1994) and Carpenter et al. (2010), and would persist
at arbitrarily large Richardson numbers.

3.3.2. Weakly stable regime: Πs→∞

Under weak background stratification relative to a very strong thermal forcing
at the surface, the perturbation parameter Πs approaches infinity. In this limit, all
terms involving Πs in (3.1)–(3.5) disappear and the disturbance equations simplify
to Rayleigh’s equation (see e.g. Drazin & Reid (2004) and Schmid & Henningson

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.981


Stability of the anabatic Prandtl slope flow 885 A13-15

(2001)). The buoyancy disturbance equation reduces to the following direct relation
between buoyancy and the slope-normal velocity:

b̂=
ib′n

unkx
ŵ. (3.8)

This means that neither the buoyancy b̂ nor the slope angle α appears in the
momentum equations, hence they have no influence on other flow variables. This
shows that, independent of the slope angle, the unstable modes at the weakly stable
limit are KH modes driven purely by shear in the base-flow profile, and not by
density or buoyancy gradient. The decoupling of buoyancy from the momentum
equations in the weakly stable limit further supports the assertion that, in this regime,
the two-dimensional longitudinal instabilities are not to be identified with Holmboe
modes.

Since the Prandtl model for slope flow has infinitely many inflection points, it
satisfies Rayleigh’s necessary (but not sufficient) instability condition (Kundu, Cohen
& Dowling 2016, p. 573). This analysis coincidentally shows that, in contrast to
the configuration described by Candelier et al. (2011), the longitudinal mode of
instability at the weakly stable regime is dependent on the shape of the base-flow
profile; and that, for a base flow other than given by the Prandtl model, which
does not satisfy the well-known necessary instability conditions by Rayleigh and
Fjørtoff, there can be no unstable modes at the limit Πs� 1. Because this is a pure
shear instability, we may conclude via Squire’s theorem that the most unstable mode
must be two-dimensional, which we have already showed in figure 4, and, therefore,
longitudinal (i.e. the transverse wavevector and velocity component are zero in that
case). The nature of the longitudinal mode arising here is also different from the
travelling waves discovered over heated inclined surfaces by Sparrow & Husar (1969)
and on a slope-normal wall within a stable background stratification studied by Chen
et al. (2016), in which the instabilities were identified as Tollmien–Schlichting waves
on a boundary layer, decaying at the inviscid limit.

In figure 7(a), the normalised growth rate of the most unstable longitudinal mode
with ky= 0 is plotted for three different angles from 10◦ to 30◦. It is clear that, in all
cases, the growth rates gradually decrease with growing Πs to the same limit value of
approximately 0.013 for Πs> 300. A similar behaviour can be seen for the normalised
wavevector (figure 7b) and angular frequency (figure 7c), which converge to an angle-
independent value at high Πs. Both the wavenumber and angular frequency of the
most unstable longitudinal mode decrease with growing Πs, i.e. the instability tends
to have a larger wavelength and lower frequency.

The behaviour of the most unstable transverse mode with kx = 0 is displayed in
figure 8. All such modes are stationary (i.e. Im(ω)= 0). It shows that, for Πs < 1000,
the growth rate of the transverse mode is at least of the order of 0.01, and hence
comparable to that of the longitudinal mode, which is 0.013. At larger values of
Πs, the transverse growth rate slowly decreases to zero, in agreement with Squire’s
theorem and the previous analysis for Πs→∞. In contrast to the behaviour of the
longitudinal modes, with growing perturbation parameter Πs, figure 8(b) indicates that
the wavenumber of the most unstable transverse mode increases, i.e. the wavelength
of the instability decreases, with the result that the longitudinal vortices get closer to
each other.
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FIGURE 7. Most unstable longitudinal mode for three different slope angles:
(a) normalised growth rate; (b) normalised longitudinal wavenumber; and (c) normalised
angular frequency depending on perturbation Πs. Insets show the behaviour near the
critical Πs of the neutral state.

3.3.3. Very stable regime
In § 3.3.1 we have argued that the most unstable growth rate for Πs� 1 cannot be

positive. We then infer that, at each slope angle, there has to be a specific finite value
of Πs where the growth rate of the unstable mode attains an extreme value. As we
observe from figures 7(a) and 8(a), this turns out to be the maximal growth rate over
all stratification perturbation numbers Πs and holds true for both the longitudinal as
well as the transverse mode.

The properties of the most unstable longitudinal and transverse mode are plotted
over the slope angle in figure 9(a) (Πs with maximal growth) and in figure 9(b)
(wavenumber). The inset of figure 9(a) shows that the maximal growth rates for both
instability modes are attained at Πmax that are less than four times the critical stability
threshold value Π0; thus the linear growth rates begin to decrease with growing Πs
from Πs =Π0 onwards. We see that, for angle values ranging from gentle slopes at
2◦ to moderately steep slopes at 30◦, the most unstable transverse mode has a larger
growth rate than its longitudinal counterpart. The wavenumber plot (i.e. figure 9b)
indicates that the most unstable longitudinal mode has a longer wavelength than
its transverse counterpart for the range of slope angles considered here, and this
divergence grows with increasing angle such that, at α = 30◦, the wavelength of
the most unstable longitudinal mode is approximately three times as large as that
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of its transverse counterpart. This finding is in agreement with the behaviour of the
wavelength for the neutral states as shown in figure 6(a).

3.3.4. Discussion
We have shown that it is plausible to characterise flow behaviour and the nature

of flow instabilities in Prandtl slope flows with three regimes. For a fixed slope
angle, the classification relies on the value of the stratification perturbation Πs. In
the super-stable regime, Πs is small enough such that the Prandtl base-flow profile
is linearly stable. In the very stable regime, Πs lies within a specific range such that
both longitudinal and transverse instability modes emerge and where the transverse
modes have similar or larger growth rates, which attain a maximum value at a certain
Πs, respectively.

The weakly stable regime, defined here purely by the linear instability growth
rates, encompasses large Πs values in which the growth rate of the three-dimensional
transverse mode is weaker than that of the two-dimensional longitudinal mode, thus
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reverting to the more familiar stability behaviour predicted by Squire’s theorem.
This regime, which approximately begins for Πs ≈ 5000, includes the fully turbulent
conditions for slope flows which have been studied by Fedorovich & Shapiro (2009),
Umphrey, DeLeon & Senocak (2017) and Giometto et al. (2017). Fedorovich &
Shapiro adopted a Prandtl number of unity, which gives Πs of 3000 and 5000 for
the turbulent cases considered in their study. Thus, our definition of weakly stable
stratification based purely on LSA may agree with the weakly stable flow regime
described by Mahrt (2014), who characterised it by its resemblance to well-mixed
turbulent boundary layers.

The boundaries between the super-stable, very stable and weakly stable regimes
can be defined quantitatively with the linear growth-rate curves of longitudinal
and transverse modes for a given slope angle and Prandtl number. The degree of
compatibility of the weakly stable regime obtained from LSA with the fluid-physical
definition of weakly stable flows given in (Mahrt 2014) can be further investigated
with the help of detailed flow statistics determined from DNS. In light of the two
instability types uncovered in the present work, namely the stationary vortices and
along-slope travelling waves, it appears that the characterisation of weakly turbulent
flows given in Mahrt (2014) could put more emphasis on the quantitative description
of wave-like motions and vortical modes in order to encompass the laminar-flow
unstable flow regime. For example, the dependence of dominant wave frequencies
and the strength of vorticity on the turbulent intensity could be studied in more detail.

3.4. Prandtl-number dependence
Since thermal and momentum diffusivities are related via β = ν/Pr, it is obvious
that, when fluid viscosity is kept constant, an increase in Prandtl number implies a
diminishing effect of thermal diffusion relative to momentum diffusion, and vice versa.
From the inspection of the disturbance equations (3.1)–(3.5), we observe that, for
anabatic flows with positive surface buoyancy flux, the buoyancy contribution to the
momentum equations is directly proportional to Pr when all other parameters are held
constant. We can then deduce that thermal diffusion tends to smear out or dampen the
buoyancy force term. This can be investigated by varying Pr. The effect of the Prandtl
number thus also directly measures the influence of buoyancy on the stability of the
anabatic slope flow. Therefore, we investigate whether an increased buoyancy force
contribution to the momentum equations tends to enhance or dampen the growth rate
of different instability types.

3.4.1. Asymptotic analysis for large Prandtl number
With increasing Prandtl number, the importance of heat conduction at the surface

diminishes relative to viscous diffusion, and it completely vanishes when Pr reaches
infinity. For large Prandtl-number values, pressure p scales approximately linearly with
Pr. Thus if we define p̄ = p̂/Pr to be the pressure disturbance normalised by the
Prandtl number, then the eigenvalue problem for the flow disturbances (3.1)–(3.5) at
very large Pr for wavenumbers kx, ky�Pr and perturbation parameter Πs, which is of
a similar order of magnitude as sin α, can be approximated by the following simpler
set of equations:

0= ikxû+ ikyv̂ +
∂ŵ
∂z
, (3.9)

0=−ikxp̄+
sin α
Πs

(
−(k2

x + k2
y)û+

∂2û
∂z2
+ b̂
)
, (3.10)
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FIGURE 10. Growth rate of the most unstable transverse mode for different Prandtl
numbers at (a) 30◦ and (b) 5◦. The insets show the behaviour near the neutral state.
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numbers at (a) 30◦ and (b) 5◦. The insets show the behaviour near the neutral state.

0=−ikyp̄+
sin α
Πs

(
−(k2

x + k2
y)v̂ +

∂2v̂

∂z2

)
, (3.11)

0=−
∂ p̄
∂z
+

sin α
Πs

(
−(k2

x + k2
y)ŵ+

∂2ŵ
∂z2
+ b̂ cot α

)
, (3.12)

ωb̂+ iukxb̂+ b′nŵ=
sin α
Πs

(
−(k2

x + k2
y)b̂+

∂2b̂
∂z2
− (û+ ŵ cot α)

)
. (3.13)

The above system of simplified equations can be solved in the same way as the
complete set of disturbance equations (3.1)–(3.5) to obtain the limit growth curves
for Pr approaching infinity.

The influence of the Prandtl number on the most unstable mode for the transverse
and longitudinal modes of instabilities at two different angles α = 5◦ and 30◦ are
shown in figures 10 and 11, respectively. The figures display the maximal growth rate
as a function of the perturbation parameter Πs. We observe from these figures that,
for both the transverse and the longitudinal modes, an increase in Pr leads to a larger
growth rate. In other words, despite a growing viscous contribution due to an increase
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in Pr, the buoyancy force in the momentum equations further strengthens both types
of instabilities.

We also observe from figures 10 (transverse mode) and 11 (longitudinal mode)
that, close to the neutral state with zero growth rate and low Πs values, the growth
curves for different Prandtl numbers approach the limit curve with Pr =∞ for both
types of instabilities. Therefore, at sufficiently high Pr numbers, the neutral stability
threshold value for Πs become independent of Pr. However, away from the neutral
state, Prandtl-number curves begin to diverge from each other with increasing Πs.
Since this analysis does not explicitly depend on the sign of the surface buoyancy
flux, a similar conclusion can be reached for the katabatic case, albeit with different
values for the critical stability threshold.

For the transverse mode, it can be seen in figure 10(b) that, at the lower angle
α= 5◦, the Prandtl number has very little effect on the stability threshold value of Πs,
which is the intercept of the growth-rate curve with the abscissa. However, figure 10(a)
shows that, at the steeper angle α = 30◦, a larger Pr corresponds to a lower stability
threshold. The situation is similar for the longitudinal mode where the value of Pr at
α= 5◦ has little effect on the stability threshold, as shown by figure 11(b). However,
at the larger angle α = 30◦, according to figure 11(a), an increase of Pr raises the
stability threshold.

3.4.2. Effect on neutral stability
The neutral stability curves for different values of Prandtl number ranging from

Pr = 0.71 for air at night-time temperature of 2◦ to Pr = 6.1 for water at room
temperature are displayed in figure 12, including the limit case of infinite Prandtl
number. The curves shown in figure 12(a) indicate that, for low angles α < 9◦, the
Prandtl-number effect on the critical curves is negligibly small. For larger angles,
however, both modes of instabilities are starting to be visibly affected by a variation
of the Prandtl number ranging from 0.71 to 6.1. At α = 30◦, the critical Πs of the
transverse mode for Pr = 6.1 is approximately 75 % of the corresponding value at
Pr = 0.71, whereas for the longitudinal mode the critical Πs at Pr = 6.1 is around
20 % higher than at Pr= 0.71. For angles α> 10◦, we can see that the critical stability
threshold as well as the critical wavenumber at the neutral state of the transverse
mode decreases with growing Pr, whereas the opposite behaviour is observed for the
same quantities of the longitudinal mode.

3.4.3. Effect on maximal unstable mode
The behaviours of the most unstable longitudinal and transverse modes for different

values of Prandtl number ranging from Pr = 0.71 to Pr = 6.1 as a function of slope
angle α are displayed in figure 13. Figure 13(a) clearly indicates that, with growing
Prandtl number, the maximal attainable growth rate at a given angle α also increases.
It is obvious from figure 13(c) that the wavenumber of the most unstable transverse
mode is almost independent of Pr. On the other hand, the wavenumber as well as
oscillation frequency of the most unstable longitudinal mode decrease with growing
Prandtl number, as displayed in figure 13(c,d).

4. Comparison between anabatic and katabatic slope flows
The anabatic and katabatic flow configurations only differ in their sign of the

surface buoyancy flux, which is positive for the anabatic case and negative in the
katabatic case. This single distinction, however, can have profound implications
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FIGURE 12. Critical curves of both instability types dependent on slope angle for anabatic
slope flow at different Prandtl numbers. (a) Critical perturbation parameter Πs. The inset
shows a detailed view at low slope angles from 2◦ to 5◦. (b) Critical wavenumber.
(c) Critical angular frequency for the longitudinal mode. Since the unstable transverse
mode is always stationary, its critical frequency is zero for all angles and is hence not
displayed in panel (c).

for the underlying flow physics and associated structures, since surface heating is
generally associated with convective instability, whereas surface cooling is regarded
as a stabilising mechanism. As we show in this section, while the flow instabilities in
both cases under the Prandtl model share a remarkable degree of similarity, they do
differ significantly from each other in their respective properties such as wavelength
and frequency, which result in different flow structures.

4.1. Linear stability regions
The anabatic version of the Prandtl model embodies the same distinct instability
modes as observed computationally in the katabatic version, namely stationary
longitudinal vortices (transverse mode) and two-dimensional transverse waves
(longitudinal mode) as identified in Xiao & Senocak (2019). At any given slope
angle, the mode with the smaller stability threshold, i.e. the critical Πs value at which
zero growth rate is reached, is also the more dominant mode that gets triggered. A
comparison between the slope-angle-dependent stability regions as determined in the
above way for both the anabatic and katabatic cases is displayed in figure 14. We
can observe that, while for both cases, an increase of slope angle gradually shifts
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FIGURE 13. Comparison of most unstable longitudinal and transverse modes depending on
slope angle for different Prandtl numbers: (a) Πs at which maximal growth rate is attained;
(b) maximal growth rate; (c) wavenumber at most unstable state; and (d) oscillation
frequency of the longitudinal mode at most unstable state.

the dominant instability from the transverse to the longitudinal mode, the transition
angle at which the stability thresholds of both modes are equal is much lower in the
anabatic case, i.e. around 9◦, compared to approximately 62◦ for the katabatic case.
Thus, while the longitudinal instability mode propagating along the slope could be
observed already at moderate angles in anabatic flows, a very steep slope is required
for that to happen in katabatic flows.

The critical wavenumbers for both modes and critical frequencies for the wave mode
obtained at the stability threshold are displayed in figure 15. The comparison between
anabatic and katabatic cases within the angle range of [2◦, 30◦] clearly shows that,
for both types of instabilities, the vortices and waves produced in katabatic flows
tend to have wavelengths that are three times as large as in anabatic flows, whereas
the angular frequency of the wave mode is multiple times higher in the anabatic
case. Despite the opposite base-flow directions for katabatic and anabatic flows, the
longitudinal modes for the two flow types both propagate downslope, as shown by
the opposite signs of their oscillation frequencies and their base-flow velocities. This
divergence between the critical wavelengths and frequencies grows with decreasing
slope angle and becomes most pronounced at the shallowest slopes. From a flow-
physical point of view, this phenomenon can be readily explained by the fact that the
anabatic flow configuration is more unstable due to the stronger destabilising influence
of the surface heating acting against the stable background stratification compared
to the opposite effect of surface cooling in the katabatic case. Unsurprisingly, the
discrepancy between the stability effects of equal-magnitude, opposite-sign buoyancy
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modes are stationary for both flow types.

fluxes in the Prandtl model increases for smaller slope inclinations due to the larger
buoyancy force component normal to the surface, as shown in figure 15.

4.2. Direct numerical simulations
We carry out DNS to independently validate the findings of LSA and to visualise
the flow structures induced by the flow instabilities. We solve the buoyancy-driven
incompressible flow equations (2.1)–(2.3) using a Cartesian mesh three-dimensional
Navier–Stokes solver (Jacobsen & Senocak 2013). The code adopts a second-order-
accurate Adams–Bashforth scheme for time advancement and a second-order central
difference scheme for spatial derivatives. The pressure Poisson equation is solved with
a geometric multigrid technique. Umphrey et al. (2017) validated the current code
using the Prandtl model and demonstrated globally second-order-accurate solutions.
This same code was also used to study the katabatic flow instabilities in Xiao &
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FIGURE 16. Transverse instability mode for (a) anabatic and (b) katabatic flows at
α= 5◦ and Πs= 2.15 after nonlinear saturation. Colour shows the normalised slope-normal
velocity component. The contours are drawn for half of the respective maximum and
minimum slope-normal velocity values.

Senocak (2019). The simulation domains are rectangular boxes of dimensional size
Lx × Ly × Lz. Periodic boundary conditions are imposed in both the longitudinal
and transverse directions, whereas no-slip conditions with a constant buoyancy
flux are applied on the lower surface at z = 0, and the top surface is subject to
adiabatic free-slip conditions. The top boundary was placed no less than 50 times
the characteristic slope length scale l0 given by (2.6) to capture quiescent conditions
aloft. The longitudinal and transverse size of the domain are chosen to be an integer
multiple of the targeted wavelength of an instability in the particular direction.
The initial conditions are Prandtl’s laminar solution (2.4) and (2.5) without any
disturbances.

4.2.1. Transverse mode of instability
At a slope angle α = 5◦, Πs = 2.15 and Pr = 0.71, DNS is carried out over a

domain with a dimensionless size of 36 × 13.5 × 100. The results display a purely
transverse instability, in agreement with the prediction of the LSA carried out in
the previous subsection. In figure 16(a), the steady along-slope velocity disturbance
after initial growth and nonlinear saturation along the cross-slope direction is shown.
We can see that three full periods of the instability mode have been established in
the simulation, which for a total length of 13.5 in the cross-slope dimension of the
simulation domain leads to a transverse wavelength of λ = 4.5 for the instability,
corresponding to ky = 2π/λ = 1.4. This wavenumber value falls within the range
predicted by LSA for the transverse mode at α = 5◦ at which the growth rate is
positive, as shown in figure 5. The DNS also shows that the instability does not
oscillate along the transverse direction, in agreement with LSA results predicting a
stationary mode. For comparison, DNS of a saturated transverse mode for katabatic
conditions at the same slope angle and Πs value is shown in figure 16(b).

To effect a more quantitative analysis of the simulation results, we have conducted
several DNS of the transverse mode at various slope angles α where this mode
is expected to be the dominant one, and imposed different Πs values via surface
buoyancy heat flux. The non-dimensional simulation domain size used is 3× 43× 70,
where the along-slope dimension is restricted to a small size in order to focus on the
cross-slope extent along which the transverse mode is established. The cross-slope
domain extent translates to a resolution of approximately 1ky≈ 0.15 in the transverse
wavenumber space. Thus, the total number of spatial transverse mode periods ny

within the simulation domain has a wavenumber ky =1ky ny, and ny is such that the
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FIGURE 17. Longitudinal instability mode after nonlinear saturation. Normalised slope-
normal velocity component is plotted. (a) Anabatic case with α = 30◦ and Πs = 6.1.
(b) Katabatic case with α = 66◦ and Πs = 18. The contours are plotted at half the
respective maximum and minimum slope-normal velocity values.

Slope (deg.) Πs Number of spatial periods Growth rate

7 2.57 8 (8) 0.005 (0.009)
5 2.24 9 (9) 0.022 (0.0027)
3 1.90 11 (11) 0.046 (0.048)
2 1.70 12 (12) 0.048 (0.0061)

TABLE 1. Quantitative DNS results for transverse modes (LSA values in brackets).

transverse mode with wavenumber 1ky ny obtains maximal growth rate compared to all
other integers. The Cartesian grid is chosen to ensure that at least two points resolve
one length scale l0 in each direction. The simulation results for the wavenumber
selection, normalised growth rate and angular frequency of the transverse mode
are displayed in table 1. It can be seen that the wavenumbers of the simulation
agree with the values predicted by LSA. The simulated transverse modes are all
stationary during the linear growth phase, agreeing with the zero imaginary part of
the eigenvalue predicted by linear stability theory.

4.2.2. Longitudinal mode of instability
For the case of steeper slope angle α = 30◦, at Πs = 6.1 and Pr = 0.71, a DNS

is conducted on a domain with dimensions 38 × 18 × 100. In agreement with the
prediction of the LSA, the simulation results show an instability purely along the
slope direction parallel to the main flow. Figure 17(a) displays the steady along-slope
velocity disturbance after initial growth and nonlinear saturation in the upslope
direction. We can see that three full spatial periods have been established in the
simulated instability along this direction, which for a total length Lx = 38 of the
simulation domain implies a longitudinal wavelength of approximately λ = 12.7,
corresponding to a wavenumber of ky = 2π/λ= 0.5. This value lies within the range
predicted by LSA for the longitudinal mode at α = 30◦ at which the growth rate
is positive, as shown in figure 5. For comparison, DNS of a saturated longitudinal
mode for katabatic conditions at a slope angle of α = 66◦ and Πs = 18 is shown in
figure 17(b).

In order to obtain a more systematic quantitative comparison between the simulation
results and the predictions of linear modal analysis, we have carried out multiple DNS
of the longitudinal mode at various slope angles α and with different Πs values. Our
non-dimensional simulation domain size is 126.5 × 3 × 130, where the cross-slope
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Slope (deg.) Πs Number of spatial periods Growth rate Ang. frequency

30 7.0 10 (10) 0.0094 (0.0097) 0.183 (0.187)
25 6.0 11 (11) 0.0110 (0.0112) 0.212 (0.209)
20 4.8 13 (13) 0.0082 (0.0089) 0.223 (0.237)
16 4.2 15 (15) 0.0100 (0.0106) 0.281 (0.269)
12 3.6 18 (18) 0.0122 (0.0126) 0.314 (0.319)

TABLE 2. Quantitative DNS results for longitudinal modes (LSA values in brackets).

dimension is limited in order to focus on the longitudinal mode. The length of the
domain corresponds to a resolution of approximately 1kx ≈ 0.05 in the longitudinal
wavenumber space, such that the number nx of spatial instability periods within
the domain has a wavenumber kx = 1kx nx, and nx is the unique integer where the
longitudinal mode with wavenumber 1kx nx has maximal growth rate. The chosen
Cartesian grids ensure that at least two points resolve one length scale l0 in each
direction. The results for the wavenumber selection, normalised growth rate and
angular frequency are displayed in table 2. It can be seen that the agreement between
DNS quantities and predicted values by LSA is quite close, typically within a few
percentage points.

4.2.3. Mixed-mode instability
At the shallow slope of α= 5◦, if the flow is subjected to more unstable conditions

as discussed previously, i.e. Πs is further increased, then according to linear stability
theory both the transverse and longitudinal modes become unstable. At the shallow
slope angle of 5◦, perturbation parameter Πs is chosen to be 19.0 and we can see from
figure 14 that, in both the anabatic and katabatic cases, the maximal growth rates for
transverse and longitudinal instability modes are positive. Simulation of both katabatic
and anabatic flows for this set of parameters is carried out on a comparatively larger
domain of non-dimensional size 100× 100× 50 for α= 5◦ to capture multiple vortex
rolls along all directions. Instantaneous snapshots of the flow fields are shown in
figure 18(a,b), where the isocontour of the Q-criterion at a positive value is used for
vortex identification. It is clearly visible that both longitudinal and transverse rolls are
simultaneously present in flow fields, and are entangled with each other. However,
the major disparity in flow structures between anabatic and katabatic flows, despite
having the same dimensionless parameters α, Pr and Πs, as evident from the presence
of much smaller eddies in the anabatic flow, hints that the near-surface convection
rates of momentum and heat will be massively different in the two cases, requiring
distinct surface flux parametrisation schemes for each case. At a steeper slope angle
of α= 64◦ and with Πs= 30, using a non-dimensional domain size of 200× 200× 50,
the simulated mixed modes for both anabatic and katabatic flows are displayed in
figure 18(c,d). In this case, the contrast between anabatic and katabatic flow is not as
stark as in the shallow-angle configuration; however, the anabatic flow still contains
smaller plume-like structures, which are arranged in a much more disorderly than in
the katabatic flow.

5. Conclusions
We have investigated the temporal linear stability of the anabatic Prandtl slope flow

to complement our previous study of katabatic Prandtl slope flows presented in Xiao
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FIGURE 18. Comparison of mixed instability mode for anabatic and katabatic flows at
two different slope angles: (a) anabatic flow at α = 5◦ and Πs = 19; (b) katabatic flow
at α = 5◦ and Πs = 19; (c) anabatic flow at α = 64◦ and Πs = 30; and (d) katabatic flow
at α= 64◦ and Πs = 30. The Q-criterion contour at 4 % of its maximal value is used for
visualisation. Contours are coloured by the normalised slope-normal velocity magnitude.

& Senocak (2019), thus obtaining a full picture of the instability behaviour of the
Prandtl slope flows. Our results show that, while the physical instability mechanisms
and the qualitative picture of the instability map are similar under both anabatic and
katabatic conditions, there are significant differences in the properties of the instability
modes at the same flow conditions except for the sign of the surface buoyancy flux.
We have demonstrated that anabatic slope flows, also known as upslope flows, are
susceptible to two distinct types of instabilities, which manifest themselves as either
stationary longitudinal vortex rolls or transverse waves propagating along the slope.
The onset of these instabilities depends on three non-dimensional parameters, which
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are the Prandtl number Pr, the slope angle α and the stratification perturbation
number Πs, a measure of the relative importance of surface buoyancy flux with
respect to the background stratification. At any fixed slope angle and Prandtl number,
if Πs is sufficiently large, then the initial laminar parallel flow is prone to developing
those aforementioned instabilities. This critical stability threshold value Πs thus
delineates the boundary between a super-stable regime, which is linearly stable under
infinitesimal perturbations, and a very stable regime, in which linear instabilities
begin to emerge. For air with Pr ≈ 0.7 over slopes with inclination less than 9◦,
the longitudinal vortex instability, also termed transverse mode due to its non-zero
cross-flow gradient, is triggered at a lower Πs than the wave instability and is
thus dynamically more unstable. For steeper slope angles, however, the travelling
wave instability, also called longitudinal mode since it has a non-vanishing gradient
along the main flow direction, is initiated at a lower threshold value for Πs than its
counterpart.

As we have discussed in Xiao & Senocak (2019), the stationary vortex mode is
caused by a centrifugal instability mechanism due to the buoyancy force component
normal to the surface. In contrast to the en masse oscillations with characteristic
frequency N sin α as observed in the numerical results given in Schumann (1990)
and Fedorovich & Shapiro (2009, 2017), the travelling wave mode can persist in the
laminar flow regime and does not decay with time. It demonstrates that misalignment
of shear with stratification is capable of spontaneously generating waves that could
be designated as ‘slope waves’ from the equilibrium Prandtl flow profile, which is
a unique addition to other mechanisms that have garnered some interest such as
emission of internal waves from stratified vortices (Le Dizès & Billant 2009) or
spontaneous wave generation via an atmospheric front as described in Shakespeare &
Taylor (2014) and Shakespeare (2019).

The transition of the dominant instability from a vortex mode to a travelling wave
mode with increasing slope angle can be explained via the growing along-slope as
well as the diminishing normal buoyancy force component that accompanies steeper
slopes. For slopes with inclination close to the transition angle value of 9◦, if Πs
is higher than the threshold value of both instability types, DNS results show that a
mixed instability pattern consisting of intricate longitudinal vortex rolls crisscrossing
with transverse waves eventually emerges as a nonlinearly saturated state. Realistic
atmospheric conditions as provided in Schumann (1990) would give a value of N ≈
0.01 s−1 and ∂b/∂z(z= 0)≈ 0.1 s−2, which leads to a perturbation parameter value of
the order of Πs = 1000. According to figure 8(a), even though this value is already
two orders of magnitude higher than Πs ≈ 10 at which the maximal amplification is
attained for the transverse mode, its growth rate at Πs≈1000 is still larger than that of
the longitudinal mode of instability, which means that signatures of the longitudinal
vortex rolls may still be present under field experiment conditions or in large-eddy
simulation of fully turbulent slope flows. Quantitatively, at such high Πs parameter
values, which are multiple orders of magnitude above the critical stability threshold,
nonlinear instability effects may, very likely, emerge and supersede the linear stability
results given here.

Mechanisms underlying these two instability modes have been further investigated
with linear analysis, with focus on the influence of the three dimensionless parameters
α, Πs and Pr. From the shape of the computed eigenfunctions, it is apparent that
the transverse mode at small slope angles has strong velocity disturbance components,
which are restricted to the vicinity of the surface; whereas the longitudinal mode at
steeper slopes consists of weaker disturbances, which decay a lot more slowly with
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growing height. The former can be seen as a signature of a centrifugal-like instability,
whereas the latter is due to shear instability modulated by buoyancy. Supporting this
analysis, we have established that the transverse mode of instability only exists for a
non-zero coupling of buoyancy force to the momentum equation, i.e. it vanishes in
the limit of infinite Πs→∞. On the other hand, the longitudinal mode of instability
approaches a purely shear-driven KH mode at large values of Πs or for low Pr close
to zero. Common to both instability types, at each angle, there exists a perturbation
parameter value not more than four times the value of the neutral stability threshold
Πc at which the maximal possible growth rate is attained. For Πs � Πc, which is
typical in atmospheric conditions, the maximal linear instability growth rate decreases
with increasing Πs; however, from this range onwards, the Prandtl number value is
positively correlated with the maximal growth rate, which can be attributed to an
increase in the buoyancy terms of the momentum equations with growing Pr.

Despite the apparent similarity of the Prandtl model for anabatic flow with its
katabatic counterpart, also known as downslope flows, the distinction in the surface
buoyancy flux direction resulting in opposite signs of the stable flow profiles is
sufficient to cause major differences in the instability behaviour of both flow types.
At the same slope angle and perturbation parameter value, the wavelengths of both
vortex and wave modes for the anabatic flow are multiple times shorter than for their
katabatic counterpart, whereas the longitudinal mode of instability also has higher
oscillation frequency in the anabatic case. These differences can be explained by the
destabilising nature of the positive buoyancy flux in anabatic flows compared to the
stabilising effect of the negative buoyancy flux in the katabatic case. The implication
is that dynamically unstable katabatic flows tend to consist of large partially turbulent
patches as opposed to anabatic flows where turbulence is likely to cover the entire
surface, which may suggest that the anabatic flow may become fully turbulent at a
lower stratification perturbation number Πs than its katabatic counterpart.

As part of future investigations, it is desirable to determine for both anabatic
and katabatic configurations, with the help of detailed DNS results, how large the
perturbation parameter Πs needs to be for both flow types to exhibit characteristics
of fully developed turbulence which permit a parametrisation via similarity theory
for turbulent boundary layers. This would enable a more rigorous demarcation of
the weakly stratified flow regime which has been introduced in § 3.3 with the help
of linear growth-rate curves and the stratification perturbation parameter. It is also
imperative to investigate the effect of an external ambient wind force on the stability
behaviour of slope flows.
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