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Complementary low-dimensional techniques are modified to estimate the most
energetic turbulent features of a Mach 0.85 axisymmetric jet in the flow’s near-
field regions via spectral linear stochastic estimation. This model estimate is three-
dimensional, comprises all three components of the velocity field and is time resolved.
The technique employs the pressure field as the unconditional input, measured within
the hydrodynamic periphery of the jet flow where signatures (pressure) are known
to comprise a reasonable footprint of the turbulent large-scale structure. Spectral
estimation coefficients are derived from the joint second-order statistics between
coefficients that are representative of the low-order pressure field (Fourier-azimuthal
decomposition) and of the low-order velocity field (proper orthogonal decomposition).
A bursting-like event is observed in the low-dimensional estimate and is similar to
what was found in the low-speed jet studies of others. A number of low-dimensional
estimates are created using different velocity–pressure mode combinations from which
predictions of the far-field acoustics are invoked using Lighthill’s analogy. The overall
sound pressure level (OASPL) directivity is determined from the far-field prediction,
which comprises qualitatively similar trends when compared to direct measurements
at r/D = 75. Retarded time topologies of the predicted field at 90◦ and 30◦ are also
shown to manifest, respectively, high- and low-frequency wave-like motions when
using a combination of only the low-order velocity modes (m = 0, 1, 2). This work thus
constitutes a first step in developing low-dimensional and dynamical system models
from hydrodynamic pressure signatures for estimating and predicting the behaviour
of the energy-containing events that govern many of the physical constituents of
turbulent flows.

1. Introduction
Capturing both the spatial and temporal features of the fully three-dimensional

turbulent structure is one of many challenges in studying the physical mechanisms in
turbulent flows. With the recent technology boom in the computing industry during the
turn of the twenty-first century, the ability to reproduce both the spatial and temporal
features of turbulent flows has become more promising, both experimentally and
numerically. In the experimental community, recent advancements have moved from
not only higher-resolution time-independent planar optical systems (PIV) (Adrian
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1991; Raffel, Willert & Kompenhans 1998), but to time-resolved planar optical
systems (TR-PIV) (Wernet 2006), and even holographic and tomographic PIV systems
(Pu, Song & Meng 2000; Pan & Meng 2002; Elsinga et al. 2006) which allow for
a full volume of fluid flow to be captured and quantified. Though there are still
many challenges facing the experimentalist (compromises between laser power, the
dimensions of the spatial window / resolution and sampling speed) the progression in
the development of these resources has provided a glimpse into the future capabilities
of these technologies as we continue to address outstanding questions in fluid and
thermal related sciences.

Complementary to these technological advancements, extensive work has been
done in the past two decades using low-order dynamical systems models (LODS).
One approach which has shown remarkable accomplishments and innovation uses
both experimental and numerical databases (Aubry et al. 1988; Glauser, Zheng &
Doering 1991; Rempfer 2000; Ukeiley et al. 2001; Gordeyev & Thomas 2002; Noack
et al. 2003; Rowley, Colonius & Murray 2004; Bergmann, Cordier & Brancher 2005;
Perret, Collin & Delville 2006). It begins with the premise that the first few most
energetic modes (obtained via proper orthogonal decomposition), in a turbulent
field that encompasses an infinite number of modes, constitute a moderate to large
percentage of the turbulent kinetic energy and are responsible for many of the physical
mechanisms governing, e.g. heat, mass and momentum transfer, spreading and mixing.
Thus, at the forefront of the LODS model, we rely on a mathematical tool, the proper
orthogonal decomposition (POD), to systematically quantify the energy of the various
mode constituents that are a manifestation of the turbulence. In doing so the most
energetic features of the flow (modes associated with the more energetic large-scale
events) are separated from the underlying turbulence (less energetic events) in order
to study the evolution of the former in space and time.

A common approach for constructing LODS models is through a Galerkin
projection of the Navier–Stokes equations onto the POD basis from which time-
resolved POD expansion coefficients are obtained (Aubry et al. 1988; Ukeiley et al.
2001). Subtle differences do, however, exist between the numerical and experimental
community’s interests in these models. To some degree, the numerical undertaking
of this approach is simply to reduce the complexity of the flow model into a set
of mathematical or empirical modes that can provide an efficient representation of
the flow dynamics, whereas the experimental undertaking relies on the model system
to insert a time dependence into the expansion coefficients, both of which aim to
understand the key physical processes that govern the overall system. The success of
these Galerkin models requires an appropriate system of governing flow equations
(e.g. full or linearized Navier–Stokes, compressible, incompressible) that are accurate
representations of the flow dynamics, considering the boundary conditions of the
model and the stability of the truncated system of equations. In turn, the LODS model
becomes a complete representation of the low-order spatial flow dynamics through
a balance of the governing flow equations. (It is worth pointing out that LODS
models are often only valid over fixed values of the flow parameters, e.g. Reynolds
number or Mach number.) Alternatively, time-resolved expansion coefficients (e.g.
from stationary and statistically independent data sets such as PIV), can be obtained
by other means which we will discuss here as it pertains to the choice of low-
dimensional tools that are implemented in this analysis.

An increasingly popular alternative method for obtaining time-resolved POD
expansion coefficients for constructing low-dimensional models is through the
stochastic estimation techniques of Adrian (1977, 1991). The outline for this process
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was originally presented by Ukeiley, Cole & Glauser (1993) and further refined
by Bonnet et al. (1994). The latter employed an unconditional estimate of the
raw velocity field in a two-dimensional subsonic mixing layer via linear stochastic
estimation (LSE), followed by a low-dimensional description of the model estimate
via POD. Since then, the joint implementation of these analysis tools (POD and
LSE) have taken many different forms in the experimental community using a variety
of different flows (backward facing ramps (Taylor & Glauser 2004), axisymmetric
sudden expansions (Tinney et al. 2002), axisymmetric backward facing steps (Hudy,
Naguib & Humphreys 2007) plane mixing layers (Druault, Delville & Bonnet 2005),
cavity flows (Murray & Ukeiley 2006), axisymmetric jet flows (Ewing & Citriniti 1999;
Picard & Delville 2000; Taylor, Ukeiley & Glauser 2001; Tinney et al. 2005, 2006;
Iqbal & Thomas 2007), pressure fields in the periphery of axisymmetric jets (Coiffet
et al. 2004), wall jets (Hall & Ewing 2006) and incipiently separated airfoils (Glauser
et al. 2004; Pinier et al. 2007)).

Many of the deviations to these complementary techniques have been driven
principally by the design architecture of the experiment, the type of flow behaviour
studied and the instrument’s diagnostics. Thus, where the time dependence of the
POD expansion coefficients are concerned, the alternatives to the original methods
proposed by Bonnet et al. (1994) have been developed not only to insert (by means of
stochastic estimation) the necessary temporal resolution for producing time-varying
expansion coefficients, but to improve the correlation that links the unconditional
events to the event being estimated. The latter is known to improve the accuracy of
the model estimate. To this end, a subset of these approaches have used the pressure
field (Picard & Delville 2000; Taylor & Glauser 2004; Coiffet et al. 2004; Glauser
et al. 2004; Tinney et al. 2005; Hall & Ewing 2006; Hudy et al. 2007; Ukeiley et al.
2007) for reasons that are discussed as it pertains to unbounded turbulent jet flows.

Foremost, where aeroacoustic sources of noise are concerned, the pressure field,
within the periphery of the jet flow, comprises a superposition of both hydrodynamic
(non-propagating) and acoustic (propagative) fluctuations (Arndt, Long & Glauser
1997; Coiffet et al. 2006), therefore offering a unique opportunity to study the two
forms in situ. Secondly, the hydrodynamic pressure fluctuations are known to carry a
convective footprint of the large-scale coherent structure (Lau, Fisher & Fuchs 1972;
Petersen 1978; Chang 1985; Arndt, Long & Glauser 1997; (Picard & Delville 2000;
Ukeiley & Ponton 2004; Hall, Glauser & Tinney 2005; Coiffet et al. 2006; Tinney
et al. 2007). These hydrodynamic signatures, characterized by a kr−20/3 decay law
(Arndt, Long & Glauser 1997), offer a nonintrusive means by which to sense the flow
dynamics of the large-scale structure, which for practical feedback control strategies,
are the only events that can arguably be controlled. Furthermore, for applications,
commercially available pressure transducers are relatively robust instruments that
require comparatively little effort in their installation and calibration, and are typically
capable of resolving all of the necessary time scales that are of interest. There are,
however, certain qualities concerning the implementation of pressure fluctuations as
an input for obtaining the time-varying expansion coefficients for a low-dimensional
estimate, as we will now consider.

Batchelor (1951) proposed one of the first simplified models for relating the
mean square velocity fluctuations in high-Reynolds-number isotropic incompressible
turbulence to the mean square pressure fluctuations (over a range of spatial positions)
using an empirically derived constant and a characteristic velocity correlation function.
George, Beuther & Arndt (1984) separated the unsteady Poisson equation into its
linear (shear-noise) and quadratic (self-noise) terms to show that the shear-noise terms
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(turbulence-mean-shear) dominated the energy-containing range of the turbulence
spectrum with a spectral decay law of k−11/3 in the inertial subrange. Consequently,
the self-noise terms (turbulence–turbulence) dominated the high-wavenumber range
of the spectrum with a spectral decay of k−7/3. Overall, the spectral decay rates for the
pressure field were shown to be uniquely different from the velocity field (k−5/3), thus
demonstrating how the pressure field acts as a natural wave-like filter. To this end,
artefacts of the pressure field’s filtering characteristics had already been observed in a
number of other studies. Michalke & Fuchs (1975) showed that the axial component
of velocity in a round jet (at r/D = 0.5, x/D = 3) comprised higher Fourier-azimuthal
mode number behaviours with peak energies in mode 5, complementary to several
more recent undertakings (Glauser 1987; Glauser & George 1987; Ukeiley, Seiner
& Ponton 1999; Citriniti & George 2000; Jung, Gamard & George 2004; Tinney
et al. 2008). Contrary to the velocity fluctuations, surveys of pressure fluctuations
by Michalke & Fuchs (1975) at the same axial and radial position exhibited much
lower azimuthal-mode-number behaviours with prominent energies manifest in modes
0, 1, 2 and 3. Michalke & Fuchs (1975) concluded from this that the axisymmetric
ring vortex structure was the most efficient source of far-field sound. Since then, the
rapid roll-off of the pressure spectra (George et al. 1984) and the stark differences
between the Fourier-azimuthal behaviours of the pressure and velocity fluctuations
(Michalke & Fuchs 1975; Arndt, Long & Glauser 1997; Tinney et al. 2007) within
the hydrodynamic periphery of the jet has provided an a priori understanding that
the pressure field is driven principally by the large turbulent scales of the flow. This,
of course, possesses certain strengths and weaknesses concerning the pressure field
as an input for obtaining time-varying POD expansion coefficients for generating a
low-dimensional estimate of the flow dynamic. To some degree, we can anticipate
only a handful of turbulent modes to be included in the low-dimensional estimate,
subsequent to the natural filtering effects from the pressure field, rather than a
selection based on the turbulent kinetic energy of the flow (which we would choose
to extract via POD).

We will thus focus on two primary objectives in this paper. We first endeavour
to improve on existing methodologies for constructing a low-dimensional estimate of
a turbulent flow (high-subsonic high-Reynolds-number axisymmetric jet) through
a spectral (multi-time) stochastic estimate of the time-varying POD expansion
coefficients. We seek to do so by coupling the pressure field: situated in the periphery
of the jet, with the velocity field: surveyed in the growth and early saturation regions
of the flow. The analysis is unique in that both the pressure and velocity fields
are reduced to their low-order coefficients (Fourier-azimuthal and POD, respectively),
from which spectral estimation coefficients are obtained via a calculation of their joint
second-order statistics. (Aside from subtle differences in our theoretical design, the
extended-POD technique proposed by Borée (2003) has close proximity to the current
analytical recipe for producing time-varying coefficients from the joint second-order
statistics between the low-order coefficients of interrelated quantities that exist within
the same sub-domain.) In doing so, a second objective is established: to reveal the
mechanisms in the fluctuating velocity that are responsible for driving the pressure
field located within the hydrodynamic periphery of the jet.

Although there are different ways in which the analysis techniques for this low-
dimensional estimate may be derived, they are here presented in a form that is tailored
to the design of this experiment, the arrangement and characteristics of the instruments
employed and to the objectives that we seek to accomplish. When appropriate, we will
identify improvements to these techniques to be used at a later stage in this greater
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effort towards developing a low-dimensional estimate for subsequent identification
and feedback control of the sound sources from high-speed turbulent jets and for
many other practical engineering problems in turbulence.

The outline of the paper is as follows. A brief description of the experiment and
instrumentation are provided in § 2, including a statistical characterization of the
pressure array (this was not described in Part 1, Tinney, Glauser & Ukeiley 2008).
In § 3, we will provide the mathematical recipe for creating the low-dimensional
estimate of the flow using a modified form of the complementary techniques described
by Ukeiley, Cole & Glauser (1993) and Bonnet et al. (1994). Concerns regarding the
linear truncation of this approach will also be addressed. A discussion involving the
low-order coupling of the velocity modes with the pressure modes will be provided
in § 4, followed by an interpretation of the low-dimensional estimate in § 5. In § 6,
the acoustic source field is calculated from the model and an attempt is made to
predict the far-field pressure at various observer positions using Lighthill’s (1952)
analogy. Concluding remarks are provided in § 7 along with provisions for improving
the current research approach.

2. Facility, instrumentation and flow conditions
2.1. The near-field velocity

The experiments were conducted at Syracuse University’s 206 m3 fully anechoic
chamber, the highlights of which are discussed in Tinney et al. (2004). The principal
measurements presented here will comprise an unheated jet exiting from a converging
axisymmetric nozzle with a centreline exit velocity Uj corresponding to a nominal
Mach number of 0.85 (ReD =1 × 106). The nozzle diameter is D =50.8 mm and
the flow exits into a quiescent environment with temperatures around (283 ◦ K).
Measurements of the near-field velocity were performed in the (r, θ)-plane of the jet
at discrete streamwise locations between x/D = 3.0 and 8.0 (�x/D = 0.25) using a
Dantec Dynamics stereo (three-component) particle image velocimetry (PIV) system.
Single-point mean velocity and turbulence statistics were obtained from an ensemble
average of 1250 statistically independent PIV measurements at each axial station in the
flow and were shown in Part 1 to compare well with the PIV measurements of Arakeri
et al. (2003) and Alkislar, Krothapalli & Butler (2007), and more qualitatively with
the low-speed jet measurements of Bradshaw, Ferriss & Johnson (1964), Lau, Morris
& Fisher (1979), Hussain & Clark (1981) and Jung et al. 2004. For a description of
the PIV arrangement, as well as the processing of the PIV data (grid transformation
of the PIV vector maps, the jet’s turbulent statistics, preservation of the momentum
integral, spatial filtering effects), see Part 1, § 2.

2.2. The near-field pressure

The principle near-field pressure measurements comprised an azimuthal array of 15
Kulite XCE-093 model, 35 kPa gauge pressure transducers, equidistantly separated
by �θ = 24◦. The transducers are rear vented with a 2.36mm diameter body, a
nominal sensitivity of 2.9 μV Pa−1 and a dynamic response range up to 50 kHz. These
transducers are compensated for exposure to temperatures up to 550 ◦ K with little
shift in their response functions. Excitation and amplification for these instruments
were provided by several model-136 Endevco signal conditioners comprising a 200 kHz
bandwidth, programmable gains and built-in four-pole Butterworth low-pass filters.
A National Instruments PXI system digitized the signals from the Endevco units and
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(a) (b)
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transducer

Jet axis, x(u)
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ring

Inner edge of shear layer

Outer edge of shear layer

Figure 1. (a) In situ and (b) schematic layout of the probe holder used to support an
azimuthal array of 15 Kulite pressure transducers at x/D = r/D = 0.875.

were equipped with two NI-4472 boards. Each board contains 8 single and differential
ended channels with 24-bit resolution, anti-aliasing filters, and a maximum sampling
rate (per channel) of 102.4 kHz. The sampling frequency (fs) of the transducers was
set at 30 kHz.

Several preliminary experiments were performed in a Mach 0.60 jet using a 1/4 in.
B&K type-4135 microphone in the (r, x)-plane of the jet’s near-field pressure region
to assess the sensitivity of the measurement field outside the turbulent shear layer
between x/D = 0.25 and 0.75 and r/D = 0.7 and 1.1. This concerted effort was used
as a guide for positioning the azimuthal array of Kulite transducers so as to capture
a reasonable signature of the hydrodynamic pressure field for the Mach 0.85 jet
experiments. A discussion pertaining to a subset of these results at Mach 0.60 using
the 1/4 in. B&K microphone is provided in Tinney et al. (2007). Based on these
measurements, the azimuthal array of Kulite transducers was placed in the periphery
of the jet shear layer at x/D = r/D = 0.875 and supported by a probe holder (figure 1)
that was located behind the nozzle exit plane in order to reduce the intrusiveness of
these instruments on the jet shear layer.

Following the analysis of Arndt et al. (1997), the pressure wavenumber spectra was
determined using the Mach 0.85 pressure data from which the hydrodynamic (kr−6.67

s )
and acoustic signatures (kr−2

s ) are shown in figure 2(a). Here, rs , ρ and k denote the
radial distance outward from the centre of the shear layer at r/D ∼ 0.5, the density
of the quiescent fluid, and the wavenumber, respectively. The behaviour of the
wavenumber spectra found in this study is similar to the findings from other
axisymmetric jet flows reported by Arndt et al. (1997) and Coiffet et al. (2006).
It should be pointed out that the first attempt at acquiring a signature of the
hydrodynamic footprint of the jet structure comprised an azimuthal arrangement of
transducers at the jet lip (x/D = 0, r/D = 0.5). The results of this produced a flat
spectrum, contrary to the one shown in figure 2(a), and no correlation with the
velocity field (both PIV and LDA surveys). An explanation of this is provided in the
discussion of Ko & Davies (1971) as it pertains to the roll-up structure of the jet
which occurs around one jet diameter downstream from the nozzle exit. Thus, after
the first half-diameter (x/D > 0.5), the hydrodynamic signatures are reminiscent of
the first roll-up structure, before which (x/D � 0.25) the signatures are either very
weak or non-existent. Ko & Davies (1971) found that this was consistently the case
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Figure 2. (a) Pressure wavenumber spectra. (b) Averaged Fourier-azimuthal eigenspectra.
(c) Sample time series of three successive transducers. (d) Normalized Eulerian temporal
correlation function.

for the Mach-number range investigated (between 0.015 and 0.4) and appears to
extend up to the Mach 0.85 case we are studying here.

As the pressure transducers were fixed along an azimuthal array, a Fourier-
azimuthal decomposition (ensemble averaged) was performed, the results of which
are shown in figure 2(b) normalized by the energy of the half-spectrum. The results
are obtained after azimuthal averaging using different transducers to define where
θ =0. The variation between different starting points was within 10 % of the mean
value and demonstrated a small misalignment of the azimuthal array with respect
to the jet axis. Alignment is not a concern with the analytical techniques that are
employed in the subsequent discussion. The simplicity of the Fourier-azimuthal modes
are similar to the constituents of Michalke & Fuchs (1975) and are complementary
to the azimuthal spatial correlations of Ukeiley & Ponton (2004). Although the
measurements in the current investigation are confined to a fixed region in space
near the nozzle exit plane, Coiffet et al. (2004) has shown that the Fourier-azimuthal
characteristics of the pressure signatures in the near-field surrounding the turbulent
jet are fairly independent of axial position. (This conclusion is drawn from near-field
pressure measurements performed within the first six diameters of a Mach 0.30 jet,
though it is plausible that the azimuthal eigenspectra will remain unchanged into
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the transition and far-field regions of the jet.) The peak Strouhal number of the
near-field pressure is, however, influenced by the axial station where measurements
are performed and will be important to the selection of an appropriate conditional
estimation technique to be discussed in § 3.2.

A sample time series is shown in figure 2(c) using three successive transducers.
Considering the Fourier-azimuthal eigenspectra, the raw pressure–time series manifest
signatures from well-organized azimuthally coherent events, similarly demonstrated
by Petersen (1978). A calculation of the Eulerian temporal correlation function is
shown in figure 2(d ) with a peak Strouhal number of StD = f D/Uj ∼ 0.45 determined
from this location in the flow. Although the current investigation comprises
pressure measurements that share many similarities with the analysis presented
by Arndt et al. (1997) and Coiffet et al. (2006), the focus of this study is towards
building a low-dimensional estimate of this high-subsonic high-Reynolds-number jet
flow using these pressure signatures, obtained near the nozzle exit, as the time-
dependent input for the estimate. Thus, the aforementioned studies have been
considered only briefly to demonstrate the quality of the pressure measurements
acquired for this analysis, and the similarity of these measurements to others that
have been reported in the literature.

2.3. Synchronization of measurements

To relate the fluctuating pressure signatures, sampled on a fixed array in the periphery
of the jet flow, to the turbulent velocity field, traversed along various axial stations,
a trigger pulse from the PIV system’s first laser was sampled synchronously with the
PXI system (1250 paired laser pulses at each axial station). Thus, for a given axial
positioning of the PIV laser sheet, 1250 total trigger pulses were recorded along with
15 channels of continuous pressure. We will revisit this in a later part of the discussion
as it implicates the procedure for estimating the velocity field.

3. Low-dimensional analysis tools
3.1. Proper orthogonal decomposition

A proper orthogonal decomposition (Lumley 1967, 1981; Glauser, Leib & George
1985; Berkooz, Holmes & Lumley 1993) was performed on the fluctuating velocity
(ensemble-averaged mean velocity removed) at each discrete axial station that the
PIV system was traversed to. The application of the POD to the current study is
described in greater detail in Part 1, where both scalar and vector forms of the
technique were applied to the PIV data set. Since the source field in Lighthill’s (1952)
acoustic analogy uses terms such as ∂ui/∂xj , where i, j = 1, 2, 3, or in the vortex–
noise analogies of Möhring (1978) and Powell (1964) which comprises gradients
of the vorticity field, the low-dimensional features of all three velocity components
are essential in this analysis. The full (time suppressed) vector form of the integral
eigenvalue problem of the POD is,

∫
R

Bij (r, r
′, x; m)Φ (n)

j (r ′, x; m)r ′dr ′ = Λ(n)(x; m)Φ (n)
i (r, x; m), (3.1)

and is necessary for establishing a nomenclature for the subsequent analysis to be
referred to. Φ and Λ are the empirically derived eigenfunctions and eigenvalues,
respectively, while the kernel Bij (r, r

′, x; m) used in the maximization comprises a
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(a) (b) (c)
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Figure 3. Turbulence velocity ratios obtained from the raw measurements (symbols) of the
(a) axial and (b) radial and (c) azimuthal velocity components compared with the low-ordered
reconstructions (symbols with dashed lines) using Fourier-azimuthal modes m= 0 to 11 and
POD modes n= 1 + 2. The abscissa axis labelling is defined as η(x) = (r − r0.5)/x.

Fourier-azimuthal transformed (ϑ → m), two-point velocity cross-correlation tensor,

Bij (r, r
′, x; m) =

1

2π

∫ π

−π

Rij (r, r
′, ϑ, x)e−imϑdϑ, (3.2)

as is typically done with flows that are azimuthal invariant in their averaged statistical
properties. The cross-correlation tensor was created using all nine normal- and shear-
stress components and was generated by ensemble averaging over 1250 statistically
independent PIV snap-shots of the flow acquired at each of the 21 axial stations
studied,

Rij (r, r
′, ϑ, x) = 〈ui(r, θ, x, ts)uj (r

′, θ + ϑ, x, ts)〉. (3.3)

As the POD eigenfunctions represent an ordered sequence of optimized spatial
functions (comprising more energy per mode than any other linear expansion), they
can be used to reconstruct the Fourier transformed kernel in (3.2) as follows:

B(k)
ij (r, r ′, x; m) =

k∑
n=1

Λ(n)(x; m)Φ (n)
i (r, x; m)Φ (n)∗

j (r ′, x; m), (3.4)

where B(k)
ij (r, r ′, x; m) =Bij (r, r

′, x; m) for k = cN , and (∗) denotes the complex
conjugate. c represents the number of components used in the vector application
(c = 3) and N is the number of points that were measured in r (N = 38). In figure 3,
the original turbulence profiles obtained from σi =

√
Rii(r, r, ϑ = 0, x), are shown

alongside a low-dimensional reconstruction of the kernel using the most energetic
Fourier-azimuthal modes m =0 to 11 and POD modes n= 1 + 2 of the flow. The
low-dimensional kernel has been inverse Fourier transformed (m → ϑ) and is shown
here as the square root of the diagonal part of the matrix where i = j and r = r ′.
These profiles are plotted using the similarity variable: η(x) = (r − r0.5)/x, where r0.5

is the radial location where the mean velocity is 50 % of the jet exit velocity. It is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

36
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003601


62 C. E. Tinney, L. S. Ukeiley and M. N. Glauser

clear that the general shapes of the original profiles (25 % of the original energy)
have been preserved using only a small fraction of the total number of modes (less
than 1%).

For this analysis, we will concern ourselves with the eigenfunctions obtained from
both the scalar and vector forms of the POD technique. The reasoning for this is
two-fold. We first seek to understand the mechanisms responsible for driving the
pressure field in the periphery of the jet, and to do so by analysing each component
of the velocity field independently (in terms of its low-order coefficients) as obtained
from the scalar form of the analysis tools. This is motivated by the investigation
of Lau et al. (1972) who developed and experimentally verified a working model that
described the relationship between the fluctuating near-field pressure in unbounded
turbulence and its dependence on the axial and radial components of the fluctuating
velocity. Secondly, where a temporal estimate of the low-order velocity coefficients
are concerned, the vector form of the POD technique will be implemented as it
ensures orthogonality between the empirical eigenfunctions comprising the various
components of the velocity field. In the discussion to follow, it is therefore necessary
to distinguish the solutions and functions comprising the scalar and vector forms
of the techniques. Thus, where appropriate, we will resort to upper and lower case
lettering, e.g. (Φ, Λ) versus (φ, λ), for those terms that relate to the vector and scalar
application of (3.1), respectively.

Because of the PIV instrument’s characteristics, time is a statistically independent
realization (ts) rather than a continuous function (t). Thus, it is not possible
to reconstruct a time-dependent low-dimensional picture of this jet flow without
additional work. This, of course, is one of the limitations of the selected instrument
(PIV), whereby temporal resolution was compromised for spatial resolution.
Therefore, we will insert time-dependent information into the flow from a linear
stochastic estimate of the time-varying POD expansion coefficients using the time-
dependent pressure fluctuations as the conditioning function. As we have discussed
in § 1, this mathematical recipe falls within the genre of the methods developed by
Ukeiley et al. (1993) and Bonnet et al. (1994). However, this recipe is modified to
improve not only the strength of the joint second-order statistics between the pressure
and velocity fields, but the accuracy of the characteristic time scales of the final event
estimate by incorporating a combination of multi-time estimation techniques (Ewing
& Citriniti 1999) and the extended POD (Borée 2003).

3.2. Complementary techniques

The basis for creating low-dimensional estimates originally comprises the linear
stochastic estimation technique (LSE) of Adrian (1977, 1996) whereby the conditional
average ù(x ′, t) = 〈u(x ′, t)|u(x, t)〉, is known to provide the best mean square estimate
of the fluctuation at position x ′ based on the fluctuation at position x at the same
instant (the backwards slash ù is here used to represent the estimated event). In this
particular analysis of the Mach 0.85 jet, a spectral form of the stochastic methods
will be used. This multi-time estimate was originally introduced by Ewing & Citriniti
(1999) to study the topology of the axisymmetric jet’s low-order structure and has been
recently dubbed spectral linear stochastic estimation (SLSE) by Tinney et al. (2006).
The SLSE was shown to improve on the accuracy of the conventional LSE methods
when differences existed between the spectral characteristics of the conditioning event
and the event being estimated. This is typically the case when large spatial separations
(in the direction of a convecting frame of reference) exist between the grids comprising
the conditioning field (input) and the estimated field (output). This SLSE procedure
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yields the following estimate for a(x ′; f ) (see equation (8) of Ewing & Citriniti 1999),
given the frequency dependent pressure pj (f ),

à(x ′; f ) = bj (x ′; f )pj (f ), (3.5)

where the summation is performed over j conditioning events. Values for the
estimation coefficients bj (x ′; f ) are chosen such that the mean square error between
the original and estimated field is minimized (Adrian 1977). This reduces to a linear
system of equations from which the spectral estimation coefficients are obtained,

〈pj (f )p∗
k (f )〉bj (x ′; f ) = 〈a(x ′; f )p∗

k (f )〉. (3.6)

In the present investigation, the pressure signatures, surveyed within the
hydrodynamic near-field regions of the Mach 0.85 jet flow, are used as the conditioning
events since they are known to carry a reasonable footprint of the most energetic
features of the flow. Since the transducers were located in the periphery of the jet’s
shear layer, they are non-intrusive to the flow field, thus permitting a survey of
the far-field acoustics to be synchronized with the near-field pressure/velocity field
measurements. The recipe for creating the low-dimensional model estimate is given
below.

The velocity field

The two-point Reynolds stress matrix Rij (r, r
′, ϑ, x), comprising all nine normal

and shear stress terms, is constructed from (3.3) using the statistically independent
PIV surveys of the jet at 21 discrete axial stations in the flow.

A Fourier-azimuthal decomposition of the Reynolds stress matrix (ϑ → m) is
performed using (3.2) at each radial and axial position, and the integral eigenvalue
problem of (3.1) is solved from which the empirical eigenvalues Λ(n)(x; m) and
eigenfunctions Φ

(n)
i (r, x; m) are obtained.

Since the kernel reflects the mean statistical features of the turbulent jet, the POD
eigenfunctions are used to reconstruct an instantaneous picture of the most energetic
low-order modes (see § 5 of Part 1), using random and uncorrelated expansion
coefficients,

a(n)(x, ts; m) =

∫
R

ui(r, x, ts; m)Φ (n)∗
i (r, x; m)rdr. (3.7)

The pressure field

Similar to the velocity field, the pressure field is reduced to its low-order coefficients
using Fourier expansions in azimuth and time (since POD reduces to a harmonic
decomposition for periodic, homogenous, or stationary systems, the formulation
using Fourier is effectively the same as that which uses POD). This is performed
in a variety of steps starting with a single (azimuthal mode number and time) and
double (azimuthal mode number and frequency) transformation of the instantaneous
pressure,

p(t; m) =
1

2π

∫ π

−π

p(t, ϑ)e−imϑdϑ, (3.8)

p(f, m) =
1

2π

∫ ∞

−∞

∫ π

−π

p(t, ϑ)e−i(2πf t+mϑ)dtdϑ, (3.9)
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followed by an ensemble-averaged Fourier-azimuthal mode number cross-spectra,

Spp(f, m) =
1

2π

∫ ∞

−∞

∫ π

−π

〈p(t, θ)p(t + τ, θ + ϑ)〉e−i(2πf τ+mϑ)dτdϑ. (3.10)

Equations (3.8) to (3.10) are here defined separately as they are each part of the
necessary ingredients for creating the low-dimensional estimate.

Linear stochastic estimation

A linear stochastic estimation is then performed which directly links the mode
coefficients that are representative of the pressure field (azimuthally decomposed
Fourier pressure modes) to the mode coefficients that are representative of the
velocity field (POD velocity modes), that is p(t; m) � a(n)(x, ts; m) using spectral
estimation coefficients. Recalling that the expansion coefficients are orthogonal and
uncorrelated, and that their mean square values are the eigenvalues themselves, the
following relationships can be written for the low-order coefficients of the velocity
and pressure fields, respectively, as,

〈a(n)(x, ts; m)a(α)∗(x, ts; β)〉δ(n,α)δ(m,β) = Λ(n)(x; m), (3.11)

〈p(t; m)p∗(t; β)〉δ(m,β) = Bpp(m), (3.12)

where δ is the Kronecker delta, n and α represent POD mode numbers, m and β

represent Fourier-azimuthal mode numbers, and the conjugation indicates Fourier
phase shifts in azimuth. Thus, in view of (3.11) and (3.12), a simplification to the
system of equations is obtained by truncating orthogonal and non-correlating modes,
that is, the pressure modes that are orthogonal to the velocity modes. In doing so,
only non-orthogonal modes are retained in the analysis,

R(n)
pa (x, −τ ; m) = 〈p∗(ts − τ ; m)a(n)(x, ts; β)〉δ(m,β). (3.13)

In (3.13), and for the remainder of the discussion, the notation for the pressure modes
reflects the instant in time when the velocity field was ‘frozen’ and quantified by the
PIV system. It was therefore some time period before (ts − τ ) when these same events,
as captured by the PIV system, were sensed by the pressure array near the nozzle
exit.

A cross-spectral correlation matrix is then generated comprising the POD expansion
coefficients from the velocity measurements (3.7), the Fourier-azimuthal / time-
dependent pressure coefficients (3.8) and the simplification of (3.13) as follows,

S(n)
pa (x; −f, m) =

1

2π

∫ ∞

−∞
〈p∗(ts − τ ; m)a(n)(x, ts; β)〉δ(m,β)e

i2πf τdτ

=
1

2π

∫ ∞

−∞
R(n)

pa (x, −τ ; m)ei2πf τdτ. (3.14)

Since we know R(n)
ap (x, τ ; m) = R(n)

pa (x, −τ ; m), and thus S(n)
ap (x; f, m) = S(n)

pa (x; −f, m)
is true for both symmetric and non-symmetric cross-correlation and cross-spectral
functions, the space–time correlations are transformed into the correct frame of
reference for input into the low-dimensional estimate, that is by substituting
S(n)

ap (x; f, m) in place of S(n)
pa (x; −f, m). Because of the simplification in (3.13), the

linear system of equations (3.6) reduces to an independent series of equations. This
removes the burden of having to invert a matrix which can be highly ill-conditioned
under certain circumstances.
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Complex spectral estimation coefficients are obtained,

b(n)(x; f, m) =
S(n)

ap (x; f, m)

Spp(f, m)
, (3.15)

thus completing the link between the velocity and pressure fields in mode-
number/frequency space. We here point out that (3.15) comprises the exact form
of (6) in Borée (2003), aside from our choice of Fourier-azimuthal decomposition and
frequency.

An estimate of the POD expansion coefficient’s temporal frequency is performed
following (3.5),

à(n)(x; f, m) = b(n)(x; f, m)p(f, m), (3.16)

from which its temporal characteristics are then resolved: à(n)(x; f, m) → à(n)(x, t; m)
via inverse Fourier transformation.

To complete the process, an expansion of the time-varying coefficients onto the
POD bases is performed,

ù
(k)
i (r, x, t; m) =

k∑
n=1

à(n)(x, t; m)Φ (n)
i (r, x; m), (3.17)

followed by a transformation from m to space θ ,

ùi(r, θ, x, t) =

∫ ∞

−∞
ùi(r, x, t; m)eimϑdm. (3.18)

As we see on the left-hand side of (3.18), the low-dimensional estimate is fully three-
dimensional, comprises all three components of the velocity field and is time resolved.
A cartoon illustration of this procedure is shown in figure 4 where the pressure and
velocity fields are represented using Fourier-azimuthal modes (m = 5) and (m = 8).
The selection of these mode numbers is only for the clarity of this illustration since,
as will be shown, only the first few Fourier-modes (m = 0, 1 and 2) will be included
in the model estimate. The radial extents of the velocity Fourier-modes are optimized
using POD, of which the shapes of the first bases (for both Fourier-modes at x/D = 4)
are illustrated. The objective thus being to determine a transfer function (spectral
estimation coefficient) that links the two fields (for each non-orthogonal combination
of modes) through their low-order coefficients. We must, however, exert some caution
concerning the linear estimate of velocity fluctuations from pressure fluctuations with
respect to Poisson’s equation.

3.3. Linear truncation of the conditional estimate

Poisson’s equation, derived from the momentum and mass-conservation equations,
is expressed for the instantaneous static pressure of an incompressible fluid with
constant density as,

1

ρ
∇2p̃ = − ∂ũi

∂xj

∂ũj

∂xi

, (3.19)

where ∇2 is the Laplacian operator, and the tilde represents an instantaneous quantity.
Following the procedure of George et al. (1984) and Townsend (1976), the right- and
left-hand sides of (3.19) are decomposed into mean and fluctuating quantities from
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Figure 4. Cartoon illustration of the ‘Modified Complementary Technique’ applied to the
Mach 0.85 jet using pressure signatures near the nozzle exit.

which we obtain,

1

ρ
p( y, t) = − 1

4π

∫ [
∂Ui

∂xj

∂uj

∂xi

+
∂Uj

∂xi

∂ui

∂xj

]
d3x

|x − y|

− 1

4π

∫
∂2

∂xi∂xj

[
uiuj − 〈uiuj 〉

]
d3x

|x − y| . (3.20)

Here (3.20), the pressure field is shown to comprise two energy contributions:
(i) interactions of the turbulence with the mean shear (linear, shear-noise), (ii)
interactions of the turbulence with the turbulence (quadratic, self-noise). Since the
conditional estimate comprises only linear coefficients, the significance of the higher-
order terms, those which have been truncated, are discussed here.

Michalke & Fuchs (1975) suggested that in the axisymmetric jet, the shear-noise
terms were the dominant sources in certain regions of the flow, and with respect to
certain directions of noise radiation. Laufer & Yen (1983) showed that the far-field
pressure correlated best with the square of the velocity fluctuations whereas the
near-field pressure varied linearly and was attributed to an interaction between the
fundamental (frequency) and the first subharmonic, or from the self-interaction of
the second harmonic. These same findings have also been reported in a number of
other flow scenarios including the subsonic (Mach 0.2 to 0.73) cavity flow studies
of Murray & Ukeiley (2006) whereby the quadratic term (u1u1) never exceeded 0.20
when correlated with the surface pressure, whereas the linear term (u1, u2) achieved
correlation levels as high as 0.70 in some instances (while these results were shown
for zero time-lag, it is conceivable that at non-zero time lags, the quadratic terms
could become dominant). Thus, as it has been shown how the pressure field in the
periphery of the hydrodynamic region is driven principally by a linear dependence
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with the turbulent large-scale flow instabilities, we do recognize that the inclusion of
higher-order coefficients would eventually improve the accuracy of the model estimate.
Furthermore, Tinney et al. (2007) showed that while a conditional estimate may have
comprised only linear estimation coefficients, the estimated velocity field had not been
linearized and contained third- and fourth-order terms with spatial dependencies. The
fourth order-terms are associated with the self-components of the quadrupole sources
of noise (Ribner 1969).

4. Pressure–velocity coupling
Aside from producing a low-dimensional estimate of a subsonic jet flow, the

coupling of the pressure field with the velocity field (in a reduced-order domain
and a space–time coordinate) presents a unique opportunity to analyse the average
relationship between the source field (turbulence) and the reactive components of
the pressure field as they are driven by the most compact structures in the flow.
These space–time correlations were formed using both scalar and vector forms of the
POD, albeit the coefficients from the scalar decomposition are used specifically in
this discussion since the pressure field has been shown by Lau et al. (1972) to react
differently to the axial and radial components of velocity. Such an analysis is more
involved with the coefficients from the vector POD owing to a toggling effect between
POD modes and components of velocity. The space–time correlations are complex
since an azimuthal offset (12.5◦) exists between the azimuthal pressure grid and the
azimuthal velocity grid, a correction to which is not necessary since the problem is
performed using complex functions.

Since the POD bases are incapable of determining phase, the signs of the
eigenfunctions are manipulated in order to improve the consistency (in x) of the
space–time correlations. This is inconsequential to the low-order reconstruction (it
will also improve a subgrid interpolation scheme to be performed later), as is seen
in the following sequence of equations using a simplified POD basis from the
scalar application of the technique (similarly applied to the vector form), where
φ̆

(n)
i (r) = − φ

(n)
i (r),

a(n)(t) =

∫
R

ui(r, t)φ
(n)
i (r)rdr, (4.1a)

ă(n)(t) =

∫
R

ui(r, t)φ̆
(n)
i (r)rdr, (4.1b)

ui(r, t) =

cN∑
n

a(n)(t)φ(n)
i (r)

=

cN∑
n

ă(n)(t)φ̆(n)
i (r). (4.2)

The process of selectively changing the sign of the POD bases was performed by first
establishing a reference shape (γ (n)

i (r; m)), obtained from the POD basis at the first
axial position in the flow (x/D = 3),

γ
(n)
i (r; m) = φ

(n)
i (r, 3; m). (4.3)

The reference shape was then projected onto the POD basis at each axial station
and then integrated over the spatial domain (R). The sign that resulted from the
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Figure 5. Spatial distribution of the POD bases φ
(n)
i (r, x; m) from the scalar decomposition

of the axial velocity (i = 1) for (a) n= 1,m= 0, (b) n= 1,m= 1, (c) n= 2,m= 0, and
(d) n= 2,m= 1.

integration (positive: in-phase; negative: out-of-phase) determined whether the POD
basis was to be flipped. The process was repeated independently for all Fourier
(m =0 : M/2 + 1) and POD (1 : Nc) modes and for the real and imaginary parts
separately. The latter of which was necessary to preserve azimuthal asymmetries
in the velocity field. (Azimuthal symmetry was not assumed, though was found
to exist within the same order of magnitude as the measurement uncertainty. See
figure 12 (a, b) of Tinney et al. (2008).) The POD basis thus comprised a complex
function.

A sample set of the corrected (flipped) eigenfunctions is shown in figure 5 using
the first two POD and Fourier mode combinations (n= 1, 2, m =0, 1) from the scalar
decomposition of the axial velocity. The similarity variable η(x) has been used and
the spatial evolutions of these eigenfunctions are presented. The shape of the original
functions has been identified using dashed lines and occurred (for this particular mode
combination) for the second POD mode (figure 5 c, d ). In general, the eigenfunctions
corresponding to the first few turbulent velocity modes (POD and Fourier) were
incapable of collapsing as well as the turbulent statistics. Evidence of this has already
been shown in figure 21 (a, b) of Part 1 using a low-order reconstruction of the kernel.
This is expected since the eigenfunctions represent the mean square evolution of the
turbulent modes, and thus the evolution of the various components that manifest
the full turbulent statistics. To effectively collapse the POD bases, we would have to
determine the spatial growth rate of each eigenfunction (appearing still to be linear),
which are unique since the near-field region of the turbulent jet comprises a spectrum
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of modes that exchange/transfer energy as it undergoes streamwise growth, saturation
and decay, unlike the far-field region (Gamard, Jung & George 2004).

The simplicity of selectively changing the sign of the eigenfunctions was based on
the spatial similarity of these functions for the axisymmetric jet flow, following the
coordinate system that was chosen. After the process was completed for the vector
application, the new POD bases (Φ̆ (n)

i ) were inserted in place of (Φ (n)
i ) in (3.7) and

(3.17).

4.1. Space–time correlations

The space–time correlations from which the pressure–velocity cross-spectra are
obtained are illustrated in figure 6 appropriately normalized using the expression,

ξ
(n)
i (x, τ ; m) =

〈
a

(n)
i (x, ts; m)p∗(t − τ ; β)

〉
δ(m,β)

λ
(n)(1/2)
i (x; m)B (1/2)

pp (β)δ(m,β)

, (4.4)

for all three velocity components from the scalar POD decomposition. Subscripts
have been included in (4.4) to differentiate between the different velocity components
used in the scalar POD while the range of the contour levels is determined by the
maximum and minimum values. The correlations have also been limited to only the
first POD mode, though the amplitude of the correlation was found to decay rapidly
with increasing POD mode number, making it difficult to determine whether any such
pattern did exist beyond mode 3. Moving from left to right in this figure corresponds
to different Fourier-azimuthal mode numbers which we have also truncated to only
the first four azimuthal modes (m = 0, 1, 2, 3) since a similar filtering effect is observed
with increasing Fourier-mode number. As for the domain of the correlations, those
pertaining to the axial and radial components of velocity have been illustrated using
the real part of the correlation function, while the azimuthal velocity component
comprises the imaginary part. The selection of the complex domain was based upon
the amplitude of the correlations, those that were strongest being displayed here.

The decay of the correlation amplitudes with increasing mode numbers (POD and
Fourier) are not surprising, and were in fact anticipated, following the discussions
of Batchelor (1951), Michalke & Fuchs (1975) and George et al. (1984). Though,
as we are able to view the spatial and temporal relationship between the low-order
modes of the pressure and velocity fields, it is perhaps obvious that the Lagrangian
time scale decays faster with increasing mode number, since it is the low-speed regions
of the jet flow that manifest the higher-velocity modes (see figure 21a, b of Part 1)
and where the turbulent events become less compact and more dispersive in their life
cycle (Yule 1978; Hussain & Clark 1981). Therefore, although we are able to achieve
correlation levels of the order of 20 % for the m =3 correlations, their rapid decay in
a convective frame is evidence of the short life span of these events and our inability
to estimate accurately their behaviour beyond a few jet diameters. With respect to
the lowest-order modes, m =0 and 1, they are clearly shown here to manifest survival
distances much larger than the jet diameter.

Former attempts to quantify the link between the turbulent events in a jet flow to
the pressure field within the periphery of the hydrodynamic region found coherence
amplitudes between the raw velocity and raw pressure signals 〈u1(r, x, t)p(t − τ, θ)〉
of the order of ∼25 % (Hall et al. 2005). Slightly higher correlations were observed
(35–40 %) when the velocity was reduced to its low-order coefficients (scalar
decomposition) and linked to the raw pressure field; 〈a(n)(x, ts; m)p(ts − τ, θ)〉 (Tinney
et al. 2005). In the present study, we have reduced both the velocity field (all three
components) and the raw pressure signals into their low-order coefficients, from which
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Figure 6. Pressure mode and velocity mode (scalar POD) space–time correlations using the
first velocity POD mode and Fourier modes 0 to 3 (from left to right) from the (a) axial,
(b) radial and (c) azimuthal scalar decompositions of the velocity.

the joint second-order statistics have been created (〈a(n)(x, ts; m)p∗(ts + τ ; β)〉δ(m,β)),
and shown to manifest correlations of the order of ∼50 %. This is a dramatic
improvement over former attempts and the advantages obtained with such a low-
order system.

4.2. Convection speeds

An effort was made to ascertain the convective behaviour (Uc) of the turbulent source
field (now expressed in terms of POD and Fourier-azimuthal modes) as seen by
the stationary pressure array. This was performed by best-fitting a line arbitrarily
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Figure 7. Convection velocity of the first (�); second (�); and third (�) POD modes for the
axial, radial and azimuthal velocity components.

to the first maximum negative (solid) and positive (dashed) correlation peaks in
figure 6, of which the slopes from the negative peaks have been summarized in
figure 7 using solutions from both the scalar and vector POD. The trends that
are produced from this are anticipated following the results of Glauser & George
(1987) and Citriniti & George (2000) who showed the frequency dependence of the
POD expansion coefficients. Lower Fourier mode numbers show the high-speed high-
frequency events while higher mode numbers comprise the low-speed low-frequency
events. Typical convection speeds of the order of ∼0.60Uj have been reported on
numerous occasions in both subsonic and supersonic shear flows. A fraction of these
investigations (e.g. Ko & Davies 1971; Kerhervé et al. 2004) have demonstrated the
radial dependence of the jet convection velocity whereby the high-speed side of the
shear layer comprises speeds that were lower than the mean velocity, but faster than
the mean velocity in the low-speed side of the jet shear layer. To this end, the spatial
topology of the POD basis (unlike Fourier) allows us to identify the radial position in
the flow where the various flow modes reside. A subset of the POD bases have already
been illustrated in figure 5 to demonstrate their spatial topology. By incorporating a
full measure of the cross-spectral relationship between these two events (pressure and
velocity), the temporal phase lag is embedded in the spectral estimation coefficients
and the ability to estimate accurately the space–time characteristics of the various flow
modes is improved. Consistency of this space–time behaviour is observed between the
solutions using the vector and scalar forms of the POD.

4.3. Spatial phase dependencies

The spatial dependencies between the pressure and velocity fields within the
hydrodynamic periphery of a jet flow were first demonstrated by Lau et al. (1972) using
synchronous microphone and cross-wire measurements. They found the axial velocity
component to be in antiphase with the fluctuating pressure in the jet’s potential core,
but in phase in the entrainment region, whereas the radial component of velocity was
always in quadrature with the pressure. Thus, the streamwise fluctuations were always
90◦ out of phase with the radial fluctuations, the streamwise component having been
found to lead the radial component in the entrainment region while lagging in the
potential core. We should expect the same phenomena (as shown by Lau et al. 1972),
at least for the most energetic velocity and pressure modes, to be present in the
space–time correlations in figure 6.

To illustrate this, the pressure–velocity mode correlations (using (4.4)) have been
extracted using the first four Fourier-azimuthal modes (figure 8) and the first POD
mode from the vector and scalar decompositions of the velocity at x/D = 3.0. Since we
are unable to determine the correct sign for the correlations without demonstrating
the shape of the POD bases, we will concern ourselves with the temporal phase
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Figure 8. Pressure mode and velocity mode (scalar and vector POD) space–time correlations
at x/D = 3.0 using the first velocity POD mode and Fourier modes (a) 0, (b) 1, (c) 2 and (d) 3.

relationship between the correlation peaks. For the column mode structure (m = 0 in
figure 8a), the axial and radial components are shown to be out of phase by exactly
90◦, within the resolution of the discretization of the time step. The correlation with
the vector component is shown here to be similar in shape and opposite in sign
to the axial correlation, thus suggesting that the n= 1, m =0 mode from the vector
solution manifests most of its energy from the first axial POD and Fourier mode. For
the higher Fourier modes, i.e. m = 1, 2, 3 in figure 8 (b–d ), the interpretation becomes
more difficult, as we concern ourselves with azimuthal straining of the large-scale
vortex structure.

Similarly to figure 8, the pressure velocity mode correlations are shown in figure 9
by overlapping different Fourier modes for a given component of velocity (u, v and
w), respectively, and axial station in the flow (x/D = 3.0 and 5.5). As we can see, the
pressure field responds differently to the excitation from different Fourier modes of the
velocity field. Once more, the cross-correlations at x/D = 3.0 comprise wavelengths
that are shorter when compared to the correlations at x/D =5.5. Thus, there is a
sensitivity in the pressure field to the turbulent structure’s growth and changing time
scale with downstream position in the flow. By incorporating spectral estimation
coefficients, the time scales of these turbulent events, as they relate (linearly) to the
pressure field, are better preserved.

5. Low-dimensional time-resolved estimate
A low-dimensional time-dependent reconstruction of the velocity field from the

pressure field is presented to develop an intuition for the three-dimensional three-
component time-resolved low-order behaviour of the jet flow. This is performed
by computing the pressure–velocity-mode cross-spectra (3.14) directly from the
space–time correlations. A sample cross-spectra is shown in figure 10 for the real
and imaginary components, respectively. The envelope comprising the characteristic
frequency is shown to shift from events that manifest high frequencies upstream
(StD ≈ 0.45 at x/D = 3.0) to low frequencies downstream (StD ≈ 0.2 at x/D = 8.0),
consistent with the eigenvalue spectra trends illustrated by Ukeiley et al. (1999).
Thus, as we have seen in the space–time correlations, the changing time scales of the
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Figure 10. Pressure–velocity-mode cross-spectra from n= 1,m= 1 of the radial component
of velocity for the complex (a) real and (b) imaginary domains.

most energetic flow modes are preserved in the spectral estimate and are seen here in
the pressure–velocity-mode cross-spectra.

While the bulk of the space–time correlations have been presented using the POD
bases from the scalar decomposition, the low-dimensional estimate is constructed
using the POD bases from the vector decomposition. The vector POD has the
added benefit of ensuring a basis set which preserves orthogonality between both the
POD modes and the different components of the velocity field, as this is the most
optimal way of reconstructing the low-dimensional topology of the flow. Also, the
integration of the Reynolds shear-stress terms in the vector POD is important as
they are responsible for various flow-related phenomena including transport, vortex
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Figure 11. Space–time contour of the random POD expansion coefficients (vector
decomposition) from the spectral estimate. (a) n= 1, m= 0, (b) n= 2, m= 0, (c) n= 1, m= 1,
(d) n= 2, m= 1. Light and dark contours corresponding to positive and negative fluctuations,
respectively.

stretching and turbulence production. A subset of the pressure–velocity-mode space–
time correlations were demonstrated in figure 8, along with an estimate of their
convection speeds in figure 7, and were found to share many similar features with the
correlations generated using the POD bases from the scalar form.

Sample space–time topologies of the estimated POD expansion coefficients are
shown in figure 11 using the first two POD and Fourier modes from the vector
decomposition. Clear trends can be seen in all of the contours thus characterizing
the convective nature of the low-order turbulent modes relative to the stationary
pressure array. Similar topological characteristics where found in the higher POD
mode combinations, the trends, however, becoming more difficult to decipher beyond
POD mode 3 and the fourth Fourier mode (m = 3) following the discussion in § 4.1. In
figure 11 (a, b), the trend for the first two POD modes of the column mode structure
decay around x/D = 6.0, after which it becomes difficult to separate the convecting
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structures from uncertainties in the estimate. In contrast to the column mode, the first
two POD modes of the helical mode (figure 11 c, d ) remain fairly consistent until the
end of the measurement region (x/D = 8.0). Similar effects were found in the estimate
of Tinney et al. (2007) whereby the helical mode became the dominant turbulent
mode after the collapse of the potential core as observed by the pressure field. While
these results are not necessarily striking considering the results of Iqbal & Thomas
(2007) and Part 1, what is striking is the sensitivity of the pressure field to the events
which are up to 7 jet diameters away at x/D = 8.0 from the pressure array situated
at x/D =0.875.

5.1. Sub-grid interpolation

While the raw PIV measurement plane comprised spatial resolutions of the order
of �y/D = 5.0 × 10−2 and �z/D = 3.3 × 10−2 (see Part 1), the axial grid density was
larger at x/D = 0.25. In an effort to reduce this discrepancy, a subgrid interpolation
of the axial dimension was performed using a two-dimensional spline as described
by Tinney et al. (2007). This was performed to both the POD bases (Φ̆ (n)

i from § 4)
and the real and imaginary domains of the complex cross-spectra (3.14). A sample
of the interpolated cross-spectra is shown in figure 10 and was found to have little
effect on the quality of the estimate. The final grid density in the axial direction was
x/D =6.25 × 10−2 and was necessary so that the full velocity gradient tensor (∇u)
could be calculated in a subsequent part of this discussion.

5.2. A slice of the jet

The first experimental low-dimensional time-dependent reconstruction of the
axisymmetric jet was performed by Citriniti & George (2000) who showed evidence
of both ring vortices and streamwise rib vortices in the shear layer. An azimuthally
coherent ‘volcano-like’ eruption was found to occur and was thought to be the result
of a ‘leap-frogging’ of the azimuthally coherent ring vortex as had been proposed
by Grinstein, Glauser & George (1995). The ‘volcano’ eruption forced a highly
coherent mass of fluid through the centre of the jet while entraining higher modal
events into the potential core after its passing. Several life-cycle reconstructions were
performed by Citriniti & George (2000) to show how the entrainment of the highly
azimuthally coherent events (mode 6) had occurred between successive eruptions and
represented the topology of the jet slice during the bulk of the time steps. Therefore,
although the ‘volcano-like’ eruption was very rapid in its life-cycle, it occurred for
only a small fraction of the time, but with an activity that comprised most of the
turbulent energy. The eruption was also found to occur with a regularity that matched
well with the jet’s peak Strouhal number. Since this seminal work (Citriniti & George
2000), several attempts have been made to uncover the dynamics of this characteristic
event under a range of Reynolds numbers and Mach numbers (Taylor, Ukeiley &
Glauser 2001; Jung, Gamard & George 2004; Iqbal & Thomas 2007).

The relevance of the higher-Mach-number studies is based on a well-known
understanding that the dominant region for jet-noise radiation occurs just after
the collapse of the potential core. The identification of this event near the collapse
of the potential core in the low-Reynolds-number low-Mach-number studies suggests
that this ‘volcano-like’ eruption may be the prominent sound-source event in the
axisymmetric shear layer. A concerted undertaking by Ukeiley et al. (1999) and
Taylor et al. (2001) showed that the POD eigenspectra in the Mach 0.30 and 0.60
jet flow shared nearly identical features with the low-speed jet measurements of
Glauser & George (1987) and Citriniti & George (2000). The work of Ukeiley et al.
(1999) was extended to the Mach 0.85 flow; however, owing to high probe breakage,
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Figure 12. Time series reconstruction of the axial component of velocity at x/D = 3.0
during a period of ‘volcano-like’ eruption.

the modal analysis could not be performed. Mass-flux spectra at several points in
the flow from the Mach 0.85 jet measurements were compared with those from the
Mach 0.30 and 0.60 jet studies to show that the low-order dynamical behaviour of the
axisymmetric jet was relatively independent of Mach number and Reynolds number
studied (beyond a certain Reynolds number following the discussion of Glauser &
George 1987). Hileman et al. (2005) showed that immediately before the periods of
jet-noise emission, the cross-stream and streamwise planes of the jet (triggered images
of illuminated condensed water particles in a cold jet that were conditionally sampled
by an array of far-field microphones) demonstrated positive intensity fluctuations at
the jet centreline in a region immediately past the end of the potential core. One
convective time scale before noise emission, a series of robust flow features were
observed, the flow features being consistent with the entrainment of ambient fluid
due to large-scale motion, and what we here consider to be the early stages of
‘volcano-like’ bursting, as was described by Citriniti & George (2000). Thus it is fairly
certain that the ‘volcano-like’ eruption that has been found in the incompressible
lower-Reynolds-number flows would exist in the higher Mach numbers and that this
event is probably associated with the sources of jet noise in the vicinity of the end of
the potential core. An attempt to uncover this ‘volcano-like’ eruption is made in the
current discussion using the low-dimensional estimate of the Mach 0.85 jet and is, in
fact, one of the underlying motivations of this work.

The axial component of velocity is purposely selected from the low-dimensional
estimate in the current study in order to compare it with the time-dependent models of
others (Citriniti & George 2000; Taylor et al. 2001; Jung et al. 2004; Iqbal & Thomas
2007). Since the low-dimensional estimate is now time dependent (�t = 1/30 kHz
based on the sampling speed of the pressure array) with respect to the characteristic
frequency of the jet flow (estimated to be around StD =0.45 at x/D =3.0 based
on LDA measurements) we are capable of illustrating the life-cycle of this event
at Mach 0.85. In figures 12 and 13, a slice across the radial and azimuthal plane
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Figure 13. As figure 12, but for greater time steps.

at x/D = 3.0 is shown for a series of successive time steps, referenced to the same
initial time step. The time step shown at the bottom of each snap-shot is defined as
StDUjD

−1t−1, using the peak Strouhal number for this location. The two sequences
have been purposely selected as they both clearly illustrate the life-cycle of a bursting-
like event. Several points are drawn on the first reconstruction in figure 12 (0.08)
identifying the centre of the jet at y/D, z/D =0 (closed circle) and the nozzle lip
lines at y/D, z/D = ± 0.5 (dashed lines). Since a pressure filtering effect is inherent
in the estimate, the reconstructions include only the first few Fourier-azimuthal and
POD modes (m = 0 + 1 + 2 and n= 1 + 2). Although it may be advantageous for
us to include the higher-velocity modes in order to fully capture the life-cycle of
the ‘volcano-like’ event, their accuracy is uncertain considering the decay of the
correlation function with increasing mode number. Nevertheless, Citriniti & George
(2000) have shown how the column mode instability contains the bulk portion of the
energy and is captured well in this low-dimensional estimate of the Mach 0.85 jet.

An estimate of 200 time steps was found to produce 15 bursts similar to those
shown in figures 12 and 13, resulting in a burst frequency of StD ≈ 0.41. It is likely
that these bursts are related to the ‘volcano-like’ eruptions that were observed in
the low-Mach-number and Reynolds-number studies of Citriniti & George (2000).
However, as the potential core for this jet does not collapse until after 6 jet diameters,
these bursting events are most probably an infant form of the ‘volcano-like’ events. It
is impressive to see from these time-series illustrations the persistence of an event that
erupts with regularity, occurring similarly at both high and low Reynolds numbers
and Mach numbers.

A crude attempt to track the burst events is undertaken. The first burst-like
event illustrated in figure 12 is now shown in figure 14 with new axial positions at
x/D =5.0 and 7.0, respectively. A time-lag has been inserted using a convection speed,
determined from figure 7, of 0.70Uj . At x/D = 5.0, the event comprises similar energy
as it did at x/D = 3.0. Two jet diameters away (x/D = 7.0), the energy of the eruption
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Figure 14. Time series reconstruction of the axial velocity component at (a) x/D = 5.0 and
(b) x/D = 7.0.

has rapidly decayed. These events now cover a larger surface in the (r, θ)-plane;
the benefit of having estimated the time-varying POD coefficients which govern the
temporal phase of the spatially dependent and empirically derived POD basis set.
Also, the shape of the structure at both axial positions shown in figure 14 resembles
the helical mode (m =1) event which is complementary to the space–time topologies
shown in figure 11. A similar effect was shown by Jung et al. (2004) whereby the flow
topology immediately after the ‘volcano-like’ eruption was very weak (a manifestation
of lower Fourier modes) followed by disorganized motions that proceeded into the
intermediate and far-field regions of the jet. Iso-contours of the vorticity field were
shown by Iqbal & Thomas (2007) to have strong helical mode shapes which continued
on through the intermediate regions of the jet.

5.3. Vorticity and the hydrodynamic source field

A number of schemes have been proposed for identifying vortex cores based on the
identification of a local pressure minima. Of particular interest are the well known Q

and λ2 criteria of Hunt, Wray & Moin (1988) and Jeong & Hussain (1995), respectively.
Both schemes are Galilean-invariants of the velocity gradient tensor (∇u) and are
derived from the incompressible form (∇ · u =0) of the Navier–Stokes flow equation.
The advantages to either criteria for this application are not clear, considering the
uniqueness of the estimated approach developed. For example, as the λ2 criterion
accounts for the excess of rotation rate over the strain rate magnitude on a specified
plane (u–v, u–w or v–w ), the Q criterion measures the balance in all directions.
Thus, we are interested in identifying vortex cores that are a consequence of three-
dimensional effects, rather than the satisfaction of two-dimensional criteria (Jeong &
Hussain 1995; Chakraborty, Balachandar & Adrian 2005). It has also been argued
that the Q criterion, that is, Q > 0, does not necessarily imply that the pressure
minimum occurs within the region and that there is no explicit connection between a
region of positive Q and a region of pressure minimum. Such an effect is worrisome
since the low-dimensional estimate is created from the unsteady pressure field in the
hydrodynamic periphery of the jet flow. The λ2 criterion removes this inconsistency
of the Q invariant by discarding the effects due to unsteady straining (capable of
producing a pressure minimum without vortical motion) and viscous effects (capable
of eliminating the pressure minimum in a flow where vortical motion is present).
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Figure 15. Snap-shot of the normal component velocities (vectors) at x/D = 5.0 with
contours of (a) −λ2 and (b) positive Q.

We will thus derive the solutions to both the λ2 and Q invariants so as to perform
an ad hoc comparison between the two schemes for the purposes of visualizing the
estimated flow.

The second invariant, Q comprises the symmetric (S) and skew-symmetric (Ω)
components of the velocity gradient tensor, defined as,

Q = 1
2
(‖Ω‖2 − ‖S‖2) (5.1)

where ‖Ω‖ = tr[ΩΩ t ]1/2 and ‖S‖ = tr[SSt ]1/2. A further requirement for Q is that
the pressure in the vortex region is expected to be lower than that of the ambient.
However, as the low-dimensional estimate of the Mach 0.85 jet flow is based on the
hydrodynamic signatures of the pressure field, and its relationship with the turbulent
velocity field within the periphery of the hydrodynamic field, there can be no argument
as to the sources of the pressure disturbances. That is, disturbances in the ambient
field are negligible with respect to the disturbances in the jet. The relationship between
the Q and λ2 criterion can also be shown following the discussion of Jeong & Hussain
(1995),

Q = − 1
2
tr(S2 + Ω2) = − 1

2
tr(λ1 + λ2 + λ3) (5.2)

whereby λ1 � λ2 � λ3 are the eigenvalues of S2 + Ω2 and −λ2 implies the existence
of a pressure minimum and the location of a vortex core along a surface. Thus,
where the λ2 and Q criteria are concerned, the location of a vortex core is identified,
respectively, by two negative eigenvalues and by positive Q.

An ad hoc comparison between the λ2 and Q criterion is shown in figure 15 using a
low-dimensional reconstruction (n= 1 to 3, and m =0 to 6) of the normal component
velocities (on a surface) from the original PIV cross-plane measurements at x/D =5.0.
The snap-shot illustrates the existence of several counter-rotating vortices centred
along the nozzle’s lip-line at r/D = 0.5; only subtle differences are found between the
two schemes. To further challenge these schemes, the vortex methods were compared
(not shown) using the low-dimensional estimate comprising the full velocity gradient
tensor. To this end, the λ criterion was found to be more sensitive to errors associated
with the numerical derivatives and so the Q criterion is employed in the remainder

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

36
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003601


80 C. E. Tinney, L. S. Ukeiley and M. N. Glauser

1

1

0

(a) (d)

0

0
2

4
t+

6
8

r/D

–1

–1

1

1

0

0

0
2

4
6

8
–1

–1

1

1

0

(b) (e)

0

0
2

4
t+

6
8

r/D

–1

–1

1

1

0

0

0
2

4
6

8
–1

–1

1

1

0

(c) ( f )

0

0
2

4
t+

6
8

–1

–1

1

1

0

0

0
2

4
6

8
–1

–1

r
D

r
D

r
D

r
D

Figure 16. Q surfaces of the low-dimensional model at x/D = 3.0 using n= 1 and (a) m= 0,
(b) m= 0 + 1 and (c) m= 0 + 1 + 2. Q surfaces now using n= 1 + 2 and (d) m= 0, (e) m= 0 + 1
and (f) m= 0 + 1 +2 of the same instant in time.

of the discussion, though overall, neither technique appeared significantly superior to
the other.

In figure 16, the Q invariant of the full velocity gradient tensor is illustrated at
x/D = 3.0 using various POD and Fourier-azimuthal mode combinations. The iso-
surfaces are generated using 3 % of the maximum iso-surface, as was done by Iqbal
& Thomas (2007). The time axis is non-dimensionalized using t+ = tUjD

−1 and the
estimate covers a total of 50 time steps. Figures 16(a)–16(c) have been reconstructed
using the first POD mode (n= 1) and Fourier-azimuthal modes m =0, m = 0 + 1
and m =0 + 1 + 2, respectively. Likewise, the first two POD modes (n= 1 + 2) have
been used in figure 16(d )–16(f ) with identical Fourier-azimuthal mode combinations,
respectively. Thus, figure 16 (f ) is the most complete representation of the turbulent
events at x/D = 3.0 which are responsible (linearly) for driving the pressure signatures
in the periphery of the hydrodynamic field.

Similar work was undertaken by Iqbal & Thomas (2007) in the Mach 0.30 jet
flow using the λ2 criterion and low-order reconstructions of the radial and azimuthal
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Figure 17. Q surfaces of the low-dimensional model using n= 1 + 2 and m= 0 + 1 + 2 at
(a) x/D = 5.0 and (b) x/D = 7.0.

vorticity field at several independent axial stations in the flow (x/D = 3, 4 and 6).
Since Iqbal & Thomas (2007) were not restricted by pressure filtering effects, they
were capable of estimating the physical interaction between the m =0 and m =5
azimuthal modes. In particular, they found streamwise vortical braids that appeared
to connect the primary shear-layer vortices before the collapse of the potential core
with dominant helical mode structures after the collapse of the potential core that
continued further downstream into the intermediate region of the jet.

In figure 16 (a, d ), the jet column mode structure manifests regularity in its life-cycle,
as was demonstrated earlier. By including the helical mode in the low-dimensional
estimate (figure 16 b, e) the subtle spiralling nature of the jet is shown and the vortex
tubes are more compact. In figure 16 (c, f ), the vortex tubes are even more compact in
time, although azimuthally coherent events are still evident. In particular, three nearly
distinct vortex tubes are shown spiralling in a counterclockwise manner relative to
the positive t+-axis. The behaviour of these events is similar to the radial vorticity
reconstructions of Iqbal & Thomas (2007) using the m = 0 + 1 at x/D = 3.0.

Moving further downstream to x/D = 5.0 in figure 17 (a), the vorticity field manifests
increasingly disorganized events, albeit evidence of azimuthally coherent structures are
still present. In particular, azimuthal coherent rings are found at t+ ≈ 2 and 6, though
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many obscurities exist in between. By x/D = 7.0 in figure 17 (b), the vortex field has
become completely disorganized and is most probably due to the low correlation
levels at this position that are used in the spectral stochastic estimation. The poor
estimation is supported by the fact that the POD results show the dominance of
lower azimuthal mode numbers in this region of the flow, which is opposite to what
is shown here.

6. Predicting the far-field sound pressure
A prediction of the far-field sound pressure is performed using the low-dimensional

estimate of the velocity field comprising a combination of the first two POD modes
(n= 1, 2) and azimuthal modes m =0, 1, 2. The prediction is performed by solving
Lighthill’s (1952) equation and thus constitutes an estimate using only those modes
whose signatures are energetic enough to drive the events registered in the near-field
pressure. Lighthill’s theory comprises an explicit solution for the far-field signatures
received by an observer submersed in a uniform stagnant fluid with sources of noise
being produced by a confined region of intense rotational motion. The analytical
solution to Lighthill’s equation for an unbounded flow produces an expression which
is well known,

p′(x, t) =

∫
V

∂2Tij

∂xi∂xj

(
y, t − x − y

a∞

)
d y

4π|x − y| , (6.1)

where a∞ is the sound speed of the ambient fluid, x and y are the source and observer
locations, respectively, and Tij is Lighthill’s stress tensor,

Tij = ρùiùj + (p − ρa2
∞)δij − τij . (6.2)

Since jet noise is primarily an inviscid process (Crighton 1975), and for mildly
heated jets, (p − ρa2

∞) is negligible (Powell 1998), the only contributing term left
in (6.2) is the Reynolds stress term: Tij = ρùiùj . Thus, the source field of the low-
dimensional estimate is created using a tensor comprising all three components of
the velocity field and the density fluctuations associated with the hydrodynamic field
are neglected since they are unavailable from the experiment. The definition for the
source field is as follows,

S =
∂2ùi ùj

∂xi∂xj

, (6.3)

and is computed using a second-order-accurate compact finite-difference routine.
A higher-order finite-difference scheme (sixth order accurate) was found to have a
negligible impact on the quality of the source field and its far-field prediction, since the
estimate comprises only the low-order modes of the flow and is therefore not so easily
spoiled by small-scale fluctuations. In figure 18, a static illustration of the estimated
velocity field using the Q criterion at x/D =3.0 is shown alongside its corresponding
source field. Like the vorticity field, the source field is illustrated using isosurfaces
at 3 % of the maximum, while positive and negative fluctuations are denoted by
grey-scale and blue, respectively.

The locations for the far-field observers were based upon microphone measurements
acquired along an arc array at r/D = 75 (see Part 1, § 2.8 for a description of these
measurements). These measurements were synchronized with the near-field pressure
array. Figure 19 shows a prediction of the far-field sound pressures at 90◦, 60◦ and
30◦ to demonstrate the global topology of the source field as seen by an observer
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Figure 18. (a) Q surface of the vorticity field at x/D = 3.0 using n= 1 + 2 and m= 0 + 1 and
(b) its corresponding source field.
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Figure 19. Retarded time topologies of the far field pressure (r/D = 75) at (a) 90◦, (b) 60◦

and (c) 30◦ relative to the jet axis using n= 1 and m= 0 + 1 (left-hand column) and n= 1 + 2
and m= 0 + 1 + 2 (right-hand column).

in the far field. Ordinate axes have been labelled using the retarded time delay
which corresponds to the estimate’s initial time step (t+

o ) where t+ =0. The low-
dimensional estimate, from which the acoustic source field is computed, includes
a statistically accurate combination of POD and Fourier-azimuthal modes n= 1,
m = 0 +1 (left-hand column), alongside a quasi-statistically-accurate combination of
POD and Fourier-azimuthal modes n= 1 + 2, m =0 + 1 + 2 (right-hand column). We
have chosen to differentiate the two estimated flow fields in this manner since the
first combination of modes (n= 1, m = 0 +1) appears from figures 6, 11 to possess
a combination of low-order events whose effective lifespan occupies most of the
streamwise domain between x/D = 3.0 and 8.0. Contrarily, the latter possesses an
additional contribution from higher modes (n= 2, m =2), the life-span’s of which
are only accurately estimated over a smaller streamwise domain, after which, their
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contribution to the estimate is intermittent between quasi-accurate events and non-
physical obscurities, as was illustrated in figure 17.

At 90◦ (figure 19a), the retarded time topologies from both low-dimensional
estimates are shown to manifest much higher-frequency motions relative to the
signatures observed at 60◦ and 30◦ (figures 19b and 19c, respectively). The topologies
at 60◦ and 30◦, demonstrate a convecting pattern of several wave-packet-like source
events. Although there is no clear consensus as to the sources of noise in jets, it
is nonetheless understood that the high-frequency sound waves observed at sideline
and steep angles to the jet axis result from high-frequency motions near the nozzle
lip and within the near-field region leading up to the potential core’s end. The life-
span of these events extend over a shorter streamwise region when compared to the
low-frequency flow events in the downstream regions of the flow where the life-span
of the structures occupy a much lengthier stretch along the jet axis and therefore
produce low-frequency acoustic waves at shallow angles. Likewise, instability waves
at high Strouhal numbers amplify more rapidly than instability waves at low Strouhal
numbers; low wavenumbers peaking close to the end of the potential core (see
Mankbadi & Liu 1984; Viswanathan 2004). Only the low-order features of the
turbulence structure have been preserved in this estimate of a Mach 0.85 jet, those
which grow proportionately with respect to the expanding shear layer and with time
scales that range from high frequencies upstream to low frequencies downstream.
In the retarded time topologies of figure 19, the high- and low-frequency signatures
observed at 90◦ and 30◦, respectively, are clearly preserved with these low-dimensional
techniques. Furthermore, it is clear that different mode number combinations produce
distinctly different topologies, ultimately leading to different far-field signatures as a
result of net-amplification, net-cancellation, mode-pairing and mode-switching type
phenomena.

Power spectral densities and overall sound pressure level (OASPL) directivities from
the far-field predictions are compared to the direct measurements obtained from an
arc array of microphones (see Part 1). Three different Fourier mode combinations
are chosen: m = 0, m = 0 + 1 and m =0 + 1 +2, using the first two POD modes. A
total of 1200 time steps are computed for each of the three low-dimensional estimates
(three different azimuthal mode combinations) corresponding to approximately 50
statistically independent large-scale events (based on D, fs = 30 kHz and a peak
Strouhal number of ∼0.45). The transient time required for the first emitted wave
to propagate to the far-field observer has been removed from the time series from
which the spectra are computed. The comparison of the power spectral densities are
shown in figure 20 (a) for the 60◦ observer. An ensemble-averaged spectrum, using
a full set of the original far-field microphone data (375 blocks of 213 samples per
block acquired at 75 kHz; δf =9.16 Hz) is shown juxtaposed with an ensemble-
averaged spectrum produced using a reduced set of microphone data comprising
1200 time steps (17 overlapping blocks of 27 samples per block resampled to
30 kHz; δf = 234 Hz). The overlap between the full (213) and reduced (27) sets of
data illustrates the quality of the reduced set and is important since the low-
dimensional far-field prediction is confined to only 1200 time steps. The power
spectral densities have been smoothed using a 10 % bandwidth moving filter. For all
POD and Fourier-azimuthal mode combinations considered, an under-prediction in
energy is manifest; albeit it is anticipated considering the low-dimensional nature of
the estimated flow structures (see Freund & Colonius 2002). Power spectral densities
at steep (90◦) and shallow (30◦) angles to the jet axis were also calculated from
the low-dimensional far-field prediction, though this failed to produce any reliable

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

36
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003601


Low-dimensional characteristics of a transonic jet. Part 2 85

0.1 1.0
10

20

30

40

50

60

(a) (b)

StD(f )

S
P

L
 (

dB
/H

z,
 r

ef
: 2

0 
μ

P
a)

original, 213

original, 27

n = 1 + 2, m = 0

n = 1 + 2, m = 0 + 1

n = 1 + 2, m = 0 + 1 + 2

90 75 60 45 30 15
70

80

90

100

110

(deg.)

O
A

S
P

L
 (

dB
, r

ef
: 2

0 
μ

P
a)

Figure 20. (a) Comparison of far-field (r/D = 75) power spectral densities at 60◦ to the jet
axis. (b) Comparison of OASPL directivity.
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Figure 21. Instantaneous visualization of the Lighthill source term from the low-dimensional
estimate; positive and negative fluctuations denoted by solid and dashed lines, respectively,
while the box outlines the boundaries of the entire estimated region.

and physically sensible shapes; reasons for this are discussed in § 6.1. The OASPL
directivity is shown in figure 20 (b). Aside from the small dip at 60◦, the predicted
trends show qualitatively good agreement with the original measurements. The
numerical simulations of Freund & Colonius (2002) have investigated the effectiveness
of applying these low-dimensional tools to problems in jet aeroacoustics. The current
findings are qualitatively consistent with their solutions using a kinetic energy POD
based norm: a preservation of the general shape of the OASPL while the energy is
significantly attenuated.

6.1. Shortcomings in the low-dimensional estimate and far-field prediction

The prominent noise-producing region of subsonic and supersonic jet flows is
restricted to the first two potential core lengths of the jet where the envelope of
growth, saturation and decay is manifest (Ffowcs Williams & Kempton 1978). A
number of more recent studies have thoroughly documented this behaviour. Some
examples include the experimental measurements of Arakeri et al. (2003), Ukeiley
& Ponton (2004) and Alkislar et al. (2007), and the direct numerical simulations of
Freund (2001). In figure 21 an instantaneous visualization of the Lighthill source
term from this low-dimensional estimate is illustrated alongside an outline of the
mean streamwise velocity from the Mach 0.85 jet study of Ukeiley et al. (2007).
Complementary to the spatial modes shown in figure 5, the source terms are also
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Figure 22. The volume averaged acoustic sources in wavenumber–frequency space.

confined to the high-speed regions of the jet flow where the convective speeds are
greater than 0.6Uj . What is most important about this illustration, however, is that
the source field is confined axially to a region of space centred around the growth and
early saturation regions of the jet flow. Surely an accurate prediction of the far-field
pressure should include the sources of noise from regions extending beyond x/D =8,
irrespective of a low-dimensional representation of the flow. Ukeiley & Ponton (2004)
suggest that the prominent sources of noise for this jet flow emanate from a region
between x/D = 7 and 13.

Nevertheless, an important question to address here is whether this reduced-order
estimate of a jet flow sufficiently retains the sources of noise. An analysis of the
wavenumber–frequency make-up of the Lighthill source term is computed to address
this question, following the discussions of Freund (2001). The definition for the
volume-averaged source term in wavenumber–frequency space is as follows:

Sv(kx, f ) =
1

M

∑
m

∫
R

Skf (r; kx, f, m)rdr, (6.4)

where the transformation from space and time to wavenumber and frequency is
straightforward,

Skf (r; kx, f, m) =
1

2π

∫ ∫
S(r, x, t; m)e−i(kxx+2πf t)dxdt, (6.5)

and the Lighthill source term is obtained from (6.3). Since radiated sound is produced
from the change in the turbulent sources of noise as they convect through the flow, the
analysis provides a global means by which we can qualitatively assess the retention of
the sound-production mechanisms in this low-dimensional estimate. Of course, only a
small fraction of these sources are efficient radiators of sound and so such an analysis
is still limited in the way of pinpointing the process by which turbulent energy is
converted into radiated sound.

The resulting operation is shown in figure 22, using the low-dimensional estimate
comprising the first two POD modes and the first three Fourier-azimuthal modes.
An assumption that kx, f = − kx, −f has been inserted, and a 10 % bandwidth
moving filter used to smooth the data. Here we can see that the source strength
for this region of the flow (between x/D = 3 and 8) convects between 0.6Uj and
0.8Uj . A line identifying the ambient sound speed has been drawn to mark the
range of wavenumbers and frequencies that are efficient at radiating sound to the
far field as defined by |f/kx | >a∞. Consistent with the analysis of Freund (2001) and
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Tinney & Jordan (2008), the radiated sound constitutes only a small fraction of the
total source field’s energy; most energy resides around pressure waves that become
negligible within a few wavelengths from the jet: |f/kx | <a∞, and with convective
speeds consistent with the approximations displayed in figure 7. The strongest sources
from Freund (2001) were centred around a convective Mach number of Mc = 0.3; Mc

defined as the convection speed divided by the ambient sound speed. The strongest
sources here reside around Mc =0.56 (or 0.7Uj ). The discrepancies are a testament to
the importance of the downstream regions after the close of the potential core where
the convective speeds are much smaller and where the prominent sources of noise
reside.

7. Concluding remarks
An investigation into the low-order behaviour of the velocity field, and its capacity

to drive the signatures in the near-field pressure located within the periphery of the
hydrodynamic region of a Mach 0.85 axisymmetric jet flow, has been presented using
a purely empirical set of data. Where the sensing and estimation of the low-order
flow dynamics are concerned, the spectral linear stochastic estimation procedure has
demonstrated itself to be a robust and useful tool for preserving the evolution of the
time scales associated with the low-order modes of the velocity field. The reduction of
both the pressure field and the velocity field into coefficients that were representative
of their low-order behaviours was also shown to provide the most effective means
(thus far) by which the two fields could be related, when compared to former attempts
(Hall et al. 2005; Tinney et al. 2005). The pressure field was shown to manifest a
profound sensitivity to different components of the velocity field (expanding on the
findings of Lau et al. 1972) even when large spatial separations, of the order of 7 jet
diameters, existed between the two.

A low-dimensional estimate using only the most energetically related pressure–
velocity modes identified a bursting-like event. The event occurred with a regularity
coinciding with the characteristic Strouhal number of the jet and occurred throughout
the near-field regions of the jet. This burst-like event was similar to the ‘volcano-
like’ eruptions that were observed in the incompressible and lower-Reynolds-number
studies of Citriniti & George (2000) and is thought to be associated with the prominent
sources of noise that have been known to occur after the collapse of the potential
core. Reconstructions of the full vorticity field using the Q criterion and various
spatial-mode combinations provided a visual means by which the spatial-temporal
behaviour of the various flow modes in the jet could be presented. The reconstructions
comprised solutions to the vector POD with all three-velocity components.

Predictions of the far-field sound pressure were invoked using Lighthill’s analogy
from which the retarded time topologies were shown to manifest high-frequency
motions at steep angles to the jet axis (90◦), relative to lower-frequency motions
at shallow angles to the jet axis (60◦ and 30◦). The low-frequency motions of the
source field comprised wavy patterns that followed along lines with oblique angles to
the characteristic time-scale of the flow, appearing thus to be a consequence of the
‘volcano-like’ bursting event illustrated in the low-dimensional estimate. Estimates of
the OASPL directivity agreed reasonably well with far-field measurements performed
in situ. This work, thus constitutes a first step in developing low-dimensional models
from hydrodynamic pressure signatures for estimating and predicting the behaviour
of the deterministic energy-containing events that govern many of the physical
constituents in turbulent flows.
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There are of course many areas in which we can improve and expand on the
current work. Foremost, as pressure fluctuations are known to comprise both linear
and quadratic dependencies with velocity fluctuations, the linear truncation of the
conditional estimate constitutes a certain level of uncertainty regarding the overall
accuracy of the final estimate. While a linear estimate is clearly the simplest approach,
even from a controls point of view, the quadratic terms (which we have neglected
here) may provide the necessary ingredients by which we could perform a more
accurate forecast of the jet’s downstream regions of the flow where the dominant
region of sound production is known to occur (between x/D = 7 and 13 for these
conditions). The current estimate falls short of accurately reconstructing this region
and is a contributing source of error in the far-field predictions at steep and shallow
angles. We could overcome this by simply repositioning the near-field azimuthal array
further downstream. Furthermore, as the POD bases are empirically derived from
the turbulent kinetic energy (near-field property), the bases manifest contributions
from fluctuations that are conceivably irrelevant to the far-field sound pressure.
Freund & Colonius (2002) explored the sensitivity of the far-field sound pressure to
contributions from different POD bases using a host of different near-field norms
(fluctuating kinetic energy, pressure, streamwise velocity, sound pressure at 30D). The
objective was to identify a norm such that relatively few POD modes could represent
the important mechanisms by which the bulk generation of sound is manifest. Their
work constitutes an encouraging finding where POD based norms are concerned.
However, experimentally, we continue to be confined by our instruments and by
Reynolds numbers that are more representative of current state-of-the-art propulsion
systems. To this end, a further refinement to the linear estimate of velocity fluctuations
from pressure fluctuations (or vice versa) could be performed by deriving empirically,
a POD basis for the velocity field that is first pressure filtered.

Tinney et al. (2007) demonstrated this by performing a pressure-filtered estimate of a
Mach 0.60 jet flow, derived by means of raw-pressure and raw-velocity correlations, via
a spectral linear stochastic estimation. Subsequently, the POD bases were determined
from the estimated velocity (three-dimensional decomposition), and so the functions
were an effect of the pressure-filtered velocity, not the turbulent kinetic energy. The
difference being a set of functions (velocity) derived from a pressure-filtered kernel,
rather than a kernel comprising the full spectrum of turbulent kinetic energy. In
a similar way, Jordan et al. (2007) have developed a method for separating ‘noisy’
flow events from ‘quiet’ flow events. In hindsight, the results demonstrated here are
similar to those of Tinney et al. (2007), that is, there is a preservation of only the
low-order modes of the flow m =0, 1, 2, where hydrodynamic pressure-filtering effects
are implicit to the estimate. The experiments of Guitton et al. (2007) used near-field
line and azimuthal arrays of pressure sampled synchronously with a three-component
LDA system traversed to various positions within the potential core and shear-layer
regions of a co-planar co-axial nozzle; this will provide a database by which we can
expand on these low-dimensional techniques using experimental data.

Where a prediction of the far-field spectra is concerned, we can improve on
our attempts by considering inadequacies in the low-dimensional estimate, the
appropriateness of the analogy selected (see Freund et al. 2005), or the neglect
of unavailable flow properties (i.e. density fluctuations). Aside from inadequacies
in the low-dimensional estimate and missing flow properties, alternative analogies,
specifically, the vortex-noise analogies of Powell (1964) and Möhring (1978) may be
useful as they have been investigated by means of experimental work by Schram
& Hirschberg (2003). Apart from the appeal of these analogies constituting a more
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intuitive feel of the source mechanisms according to Jordan & Gervais (2007), they
are arguably more attractive using low-dimensional flow models as these models are
most efficiently described in terms of vortex dynamics. This will be among other
topics for future consideration.

This work was made possible through the generous support of Syracuse University
and the Air Force Office of Scientific Research. In addition, the authors would like to
acknowledge Joël Delville, Laurent Cordier, Peter Jordan and Pierre Comte for many
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