
A representation for comparing simulations and
computing the purpose of geometric features

THOMAS F. STAHOVICHand LEVENT BURAK KARA
Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

(Received January 26, 2000;Accepted May 3, 2000!

Abstract

We present a new representation that allows a rigid-body dynamic simulation to be described as a set of “causal-
processes.” A causal-process is an interval of time during which both the behavior and the causes of the behavior
remain qualitatively uniform. The representation consists of acyclic, directed graphs that are isomorphic to the flow of
causality through the kinematic chain. Forces are the carriers of causality in this domain; thus they are central to the
representation. We use this representation to compute the purposes of the geometric features on the parts of a device.
To compute the purpose of a particular feature, we simulate the behavior of the device with and without the feature
present. We then re-represent the two simulations as causal-processes and identify any causal-processes that exist in
one simulation but not the other. Such processes are indicative of the feature’s purpose. Because they are already causal
descriptions of behavior, they can be directly translated into natural language descriptions of the feature’s purpose. We
have implemented our approach in a computer program calledExplainIT II.

Keywords: Causal Reasoning; Causal Representation; Design Rationale Construction; Computing Purpose;
Simulation

1. INTRODUCTION

This paper describes a representation of mechanical behav-
ior that allows a computer program to construct explana-
tions for the purposes of the geometric features on the parts
of a device.

This work is motivated by the desire to decrease the cost
of documenting a design. Good documentation is essential
for performing a variety of common tasks during the prod-
uct life cycle; however, creating good documentation places
a significant burden on the designer. Furthermore, it is usu-
ally not the designer, but rather others downstream in the
product life cycle, who benefit from this effort.

Our goal is to create methodologies for automatically
computing particular types of documentation. There are a
variety of different kinds of information commonly in-
cluded in design documentation. For example, it can con-
tain a history of the decision-making process, a list of the

alternatives considered, and a description of the intended
purpose of each part of the design. Our work is concerned
with the latter type of information, which is necessary for
modifying a design without introducing unintended side
effects. This kind of information is essential for resolving
conflicts in distributed and collaborative design, for modi-
fying a design to make it more easily manufacturable, for
redesigning a product to add new~marketing! features, and
for adapting an existing design to a new application.

Towards our goal, we are building a computer program
calledExplainIT II that can compute the purposes of the
geometric features on the parts of a device. We have fo-
cused on features because our informal analysis has re-
vealed that that is what people typically do. It is common to
find documentation of the form “the notch on part X is
intended to . . .” As further justification, work by Knuffer
and Ullman~1990! indicates that questions about the con-
struction, purpose, and operation of features are among the
questions most frequently asked by professional engineers
during a redesign exercise. In the design speaking-aloud
protocol studies they conducted, over 25% of the questions
concerned features. The importance of features in under-
standing the operation of a device is not surprising when

Reprint requests to: Thomas Stahovich, Mechanical Engineering De-
partment, Carnegie Mellon University, Pittsburgh, PA 15213, USA. E-mail:
stahov@andrew.cmu.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2001!, 15, 189–201. Printed in the USA.
Copyright © 2001 Cambridge University Press 0890-0604001 $12.50

189

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

one considers that if the designer bothered to create a fea-
ture, it most likely has some intended purpose.

ExplainIT II builds upon our previous work with our
earlier ExplainIT system~Raghavan & Stahovich, 1998;
Stahovich & Raghavan, 1999!. The two systems rely on the
same basic principle. They compute the purpose of a fea-
ture by comparing a simulation of the nominal device~“nom-
inal simulation”! to a simulation of the device with the
feature removed~“modified simulation”!. The difference
between the two computer systems is how they implement
this principle:ExplainIT compares behavior directly while
ExplainIT II compares a causal description of the behavior.

ExplainIT uses heuristics for identifying specific pieces
of the nominal simulation that must be compared to specific
pieces of the modified simulation. These heuristics, how-
ever, were designed to handle only “state-change” devices—
devices whose purpose is for the parts to start in one position
and end up in another.1 ExplainIT II, on the other hand, is
intended to handle a much broader range of devices, includ-
ing those that operate cyclically. For these kinds of devices,
the program must compare the two simulations behavior by
behavior.The main difficulty is determining when two pieces
of behavior are the same. For example, a particular behavior
may occur multiple times during a simulation, and it is dif-
ficult to determine which instances from one simulation match
which instances from the other.

Our solution to this problem relies on the simple yet
powerful insight, that for two behaviors to be the same,
they must have the same cause. To implement this insight,
we had to develop a new representation for describing cau-
sality in mechanical systems. We call our representation
“causal-processes.” A causal-process is a description of be-
havior combined with a description of the causes of the
behavior. The purpose of the feature can be determined by
identifying all of the causal-processes that occur in the nom-
inal simulation but not the modified one, and vice versa.
These processes can then be directly translated into text,
providing human-readable explanations of purpose.

Consider, for example, the shutter mechanism of the
single-use camera in Figure 1. When the feature on the end
of the hook is removed~Figure 2! and a new simulation is
performed, we find that there are two causal processes that
are unique to the nominal simulation. One is the lever caus-
ing the hook to be depressed and released while the lever is
being cocked. The other is the hook causing the lever to
remain at rest prior to when the shutter release button is
pressed. Thus, the feature on the hook has two purposes:
One is to enable the lever to displace the hook during cock-
ing and the other is to restrain the lever after it is cocked.2

The bulk of this paper focuses on our new causal-process
representation, beginning in Section 3. This is proceeded,
however, by further background on the approach used by

the original ExplainIT system. Additionally, Section 5
places our current work in the context of related work.

We have implemented the portion ofExplainIT II that
uses our new representation to identify those differences
between the nominal and modified simulations that are in-
dicative of a feature’s purpose. Section 4 briefly describes
how this computation is performed. It also describes how
the differences can be translated into natural language de-
scriptions of purpose, although the code for doing this latter
task is only partially implemented.

2. BACKGROUND: THE PREVIOUS ExplainIT
SYSTEM

Simulations describe what happens but not why. Thus, a
simulation does not directly indicate which of a device’s
many behaviors are caused by a given feature on a given
part. To identify those behaviors,ExplainIT compares a
simulation of the nominal device to a simulation with the

1A mechanical pencil is a common example of a state-change device:
When the eraser end of the pencil is pressed and released, the lead moves
forward a small distance, that is, the lead changes state.

2The details of this example are provided in Section 4.

Fig. 1. The shutter mechanism of a single-use, 35 mm camera. To cock
the camera, the user turns a wheel and winds the film onto a spool~not
shown!. As the film moves, it turns a gear, thus applying torqueT to the
cam. The cam cocks the lever which is then held in place by the hook. To
snap a picture, the user presses the shutter release button~not shown!,
applying forceF to the hook, releasing the lever, and snapping the shutter
blade. In the position shown, one arm of the lever is just about to depress
the hook, while another arm is just about to slip past the shutter blade. The
shutter blade has two degrees of freedom. It can translate down during
cocking to allow the arm of the lever to pass by without exposing the film.
When the picture is snapped, the arm of the lever engages the blade so as
to rotate it and expose the film.

Fig. 2. ~A! The hook.~B! The hook with the feature removed. The hook is
modeled as a translating body connected to a spring.

190 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

feature removed. The differences between them are indica-
tive of the behaviors the feature ultimately causes.

One of the challenges in implementing this approach is
determining which of the differences are significant. Direct
numerical comparison of the state variables is not useful
because there are likely to be differences in force magni-
tudes, velocities, accelerations, and so forth at every instant
of time. Many of these differences are insignificant, such as
those resulting from the small change in mass that occurs
when the feature is removed.

To have a reliable definition for which differences are
important,ExplainIT is restricted to state-change devices
~devices whose purpose is for the parts to start in one po-
sition and end up in another!. For these types of devices,
differences between the final states of the simulations are
the significant ones. Thus, when comparing the nominal
and modified simulations,ExplainIT starts by identifying
the bodies whose final state is qualitatively different be-
tween the two simulations. The program characterizes the
final state of a body in terms of the sign of its net displace-
ment. If there is a positive net displacement in one simula-
tion and no net displacement in the other, for example, the
body’s final state is considered different.

For each such body, the program must find the first point
at which the behavior begins to differ between the simula-
tions. This is the point when the feature must perform its in-
tended purpose in order to make the body end up in the correct
final state. The program segments the motion of the body into
intervals of uniform motion: periods during which the veloc-
ity remains strictly positive, strictly negative, or zero. The
program then identifies the first pair of corresponding seg-
ments whose velocities have different signs. For example, if
the first four segments of the two simulations match, but the
fifth segments do not~e.g., the velocity in one is positive while
that in the other is negative!, then the start of the fifth seg-
ment is where the feature performs its purpose.

ExplainIT assumes that the difference in velocity is due
to new forces that appear, or old forces that disappear, when
the feature is removed. The next step in the analysis is to
compute a causal explanation for these forces. If a new
force appears in the modified simulation, the program uses
the laws of mechanics to determine how the surfaces cre-
ated by removing the feature cause the force to exist. Con-
versely, if a force appears only in the nominal simulation
~i.e., the force disappears in the modified simulation!, the
program uses the same laws to determine how the surfaces
of the feature cause the force to exist. To complete the
analysis,ExplainIT directly translates these causal expla-
nations into human understandable descriptions of the fea-
ture’s purposes. It does this by using pre-written text
templates to translate the components of the causal expla-
nation~the causal-links! into English text.

ExplainIT is intended to be used by the designer when a
design is nearly completed. The system would attempt to
document the purposes of all of the features on all of the
parts.~The features would be provided by a separate fea-
ture identification and removal tool.! If ExplainIT is un-

able to identify the purpose of a particular feature~there are
no differences between the simulations when the feature is
removed!, the program would have to prompt the designer
for one. There are three possible outcomes in this case. The
first is that there really is no purpose, in which case the
program has identified an opportunity to simplify the de-
sign by removing the feature. The second is that there is a
purpose, but it is a subtle one. For example, the feature may
have nothing to do with the operation of the device, but
might instead be an artifact of a specialized manufacturing
process. In this case, the program would be prompting the
designer for an explanation that perhaps only he or she
would know. This kind of explanation is particularly valu-
able and the program would have performed a useful ser-
vice by drawing the designer’s attention to it.ExplainIT’s
goal is to document all of the obvious purposes and to focus
the designer’s attention on the subtle parts of the design,
which makes for efficient use of the designer’s time. The
third case is that the purpose is related to physics in other
domains such as heat transfer or fluid mechanics. When
this occurs, the designer will have to manually document
the purpose.

3. REPRESENTATION

The primary challenge in implementing our remove and
simulate technique is accurately identifying the differences
between the nominal and modified simulations. Consider,
again, the purpose of the hook in the shutter mechanism of
the single-use camera in Figure 1. Recall that when the
feature on the end of the hook is removed~Fig. 2!, the
camera’s operation is quite different from its ordinary op-
eration: the hook is not deflected while the lever is being
cocked, and the lever is not restrained by the hook prior to
when the shutter release button is pressed.

ExplainIT’s heuristics would not be able to determine
the purpose of the feature in this case because the shutter
mechanism operates cyclically. Even when the feature on
the hook is removed, the camera still ends up in the correct
final state.~Of course, without the feature, the shutter blade
would snap early and a different picture would be taken.!

In this problem, the final states give no clues about the
purpose of the feature on the hook and thus we must some-
how compare the two simulations behavior by behavior.
Unfortunately, a direct comparison of behavior is fraught
with ambiguity. The difficulty is accurately determining when
two behaviors are the same. Notice that when the nominal
device is operated through a complete cycle, the hook moves
down two separate times~once while the lever is being
cocked and once when the shutter release button is pressed!.
But when the feature on the hook is removed and the device
is again operated, the hook moves down only once. The
challenge is determining if the down stroke in the modified
simulation is the same as either of those in the nominal
simulation. Chronology provides little help in this matter.
The strokes occur at very different times in the two simu-
lations. In the nominal simulation, both strokes occur be-

A representation for computing purpose 191

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

fore the shutter blade is snapped, but in the modified
simulation the stroke occurs after.

If we considered elapsed time, rather than the sequencing
of events, we would correctly identify which strokes match.
However, using elapsed time would produce a different,
and perhaps bigger, set of problems. For example, the shut-
ter blade snaps at a much earlier elapsed time in the modi-
fied simulation than it does in the nominal one. Thus, based
on elapsed time, we would incorrectly conclude that the
two behaviors are different. In some cases, chronological
order gives the right answer, and in others the elapsed time
does. However, there is no way to know a priori which to
use in any particular circumstance.

Because temporal analysis is inadequate to disambiguate
behaviors, we set out to identify some other means to ac-
complish this task. Our solution relies on the simple yet
powerful insight that for two behaviors to be the same, they
must have the same cause. For example, the second down
stroke of the hook in the nominal simulation is the same as
the down stroke in the modified simulation because both
strokes have the same cause, the externally applied forceF.

For our program to use this insight, we had to develop a
new “causal-process” representation to allow the program
to describe a mechanical simulation as a sequence of pro-
cesses with associated causes. The sections that follow pro-
vide a complete discussion of this representation, including
what a causal-process is, how causality is determined, and
how we implement these concepts in a computer program.

3.1. Causal-processes

A causal-process is an interval of time during which both
the behavior and the causes of the behavior remain qualita-
tively uniform. Because we are examining rigid-body dy-
namic simulations, our causal-process representation is
designed to describe rigid-body dynamic behavior. Further-
more, we distinguish between two kinds of causal-processes:
those that keep an object in equilibrium~static processes!
and those that keep an object in motion~dynamic processes!.
However, in both cases, we use the same principles to rea-
son about causality: According to Newton’s laws, force
causes~or prevents! motion.

We represent a dynamic process as an acyclic, directed
graph that is isomorphic to the flow of causality through the
kinematic chain. The nodes in the graph represent bodies,
springs, and external forces. The arcs describe the causal
relationships between the nodes. There are two types of
arcs: An arc can represent one object causing another to
move, or an arc can represent an object causing a spring to
store potential energy.3

The nature of causality in this domain places constraints
on the structure of the graphs describing dynamic pro-
cesses. External forces are always root causes of motion
because nothingwithin the system causes an external force.
Thus external force nodes have only outgoing arcs. For
reasons described below, we assume that springs always
have one end fixed~this simplifies the task of tracking the
origins of the spring’s potential energy!. Because of this
assumption, spring nodes will have either all outgoing arcs
or all incoming arcs, but not both. If the arcs are outgoing,
the spring is causing other objects to move. If the arcs are
incoming, other objects are causing the spring to store po-
tential energy. Nodes representing bodies can have both
outgoing and incoming arcs: The incoming arcs are from
the objects causing the body to move, while the outgoing
arcs point to the objects the body is causing to move~or
store potential energy!.

To implement our representation we had to develop rules
for tracking the flow of causality through a device. In our
pursuit of these rules, we were able to make use of some
results obtained by Sacks and Joskowicz~1993!: They ex-
amined a large catalog of mechanisms and found that a
significant fraction of them can be accurately modeled with
an assumption of negligible inertia. We take advantage of
this fact to greatly simplify the task of determining the causes
of a body’s motion. If inertia is negligible, a body’s motion
is caused by those forces having a component in the direc-
tion of motion.4

To illustrate this rule, consider the system shown in Fig-
ure 3 consisting of two blocks~A andB!, an external force
~F!, and a spring~S!. At the instant shown,A and B are
touching and moving to the right while the spring is being
compressed. We begin by examining bodyA. It experi-
ences three forces: ForceF pushesA to the right while the
contact force fromB and the friction force from the hori-
zontal surface pushA to the left. Only forceF is in the
direction of motion, thus it is the cause of motion. Simi-
larly, because the forceA applies toB is the only force in
the direction ofB’s motion, it is the cause ofB’s motion.
Finally, becauseB is doing work on the spring,B is the
cause of the increase in the spring’s potential energy. Com-
bining these results, we get the graph shown in Figure 4. It
is apparent from the graph that our rule for causality does
match our common sense notion of cause and effect: The

3Springs are the only sources of potential energy we have considered.
However, in principle, gravitational potential energy could be handled in
the same fashion as springs. In fact, it is easier to track the sources of
gravitational potential energy than it is to track those of elastic potential
energy. To do the later reliably, we have to restrict springs to having one
end fixed.

4If inertia is appreciable, it is still possible to determine causality;
however, doing so requires several special case rules. See Section 6.

Fig. 3. A simple mechanical system: External forceF acts to the right.
BlocksA andB slide horizontally on a surface with friction.

192 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

graph indicates thatF pushesA, which then pushesB, which
then causes the spring to store potential energy.

It is important to note that our causal graphs are not
free-body diagrams. For example, the forceB applies toA
is not shown in Figure 4, as it would be in a free-body
diagram, because it is not causingA to move. Similarly, if
the situation were such that the spring force was strong
enough to overcome forceF, the resulting causal graph
would not containF. Instead, it would have an arc fromS to
B and one fromB to A indicating that the spring was caus-
ing the blocks to move to the left.

Every time a collision occurs, one dynamic process ends
and a new process begins. The new process may be either
dynamic or static. Imagine, for example, that blocksA and
B in Figure 3 are initially separated. When forceF is ap-
plied, there will be a dynamic process withF pushingA.
WhenA collides withB, this initial process will cease and
the one in Figure 4 will occur. Because the first graph is a
subgraph of the second, and the two graphs have the same
root, it is straightforward to determine that this second pro-
cess is a continuation of the first.

The rules of causality for static processes are much sim-
pler than for dynamic processes. When a body is in static
equilibrium, all of the forces applied to it are the cause of it
being stationary. Thus, the graph describing a static process
is a star with all of the arcs pointing toward the center.
Consider again the two blocks in Figure 3. If they are at rest
and forceF exactly balances the spring, there will be two
static processes as shown in Figure 5. In the first process,
external forceF and the force fromB keepA in equilib-
rium. In the second process, the spring force and the force
from A keepB in equilibrium.

3.2. History

Sometimes causes and effects may be separated in time.
There are two situations in which this occurs in our domain.
The first is when a dynamic process~or processes! stores
potential energy in a spring, and sometime later the spring
releases the potential energy, thus initiating a new process.

Consider once again the system in Figure 3. Imagine that
after forceF has pushed the blocks some distance to the
right, the force is turned off and a latch~not shown! en-
gages and restrains the blocks. If the latch is later disen-
gaged, the spring will push the blocks back to the left. The
spring is able to do this precisely because the process in
Figure 4 stored potential energy in the spring.~Recall that
in the initial state the spring was relaxed, thus all of the
potential energy originated atF.! Thus, even though the
two processes—forceF pushing everything to the right and
the spring pushing everything to the left—are separated in
time, the first process is the cause of the second.

We represent this kind of causal link by recording the
history of the potential energy of each spring. The history is
described as the list of causal-processes that supplied po-
tential energy to the spring. As the spring relaxes and the
potential energy is released, processes are removed from
the history in a last-in-first-out fashion. For example, once
the spring pushes the blocks back to the left in Figure 3, the
spring will no longer have any potential energy from the
dynamic process in Figure 4. Thus, this process will be
removed from the history list.

The reason we can use this last-in-first-out approach to
tracking potential energy is our assumption that springs al-
ways have one end fixed. Without this assumption it would
be possible for a process at one end of the spring to be
supplying potential energy at the same time another process
at the other end removes it. In that case, a simple list of
processes would be inadequate to describe the history of
the potential energy.

Sometimes springs have potential energy when the de-
vice is in its initial state~i.e., at the beginning of the simu-
lation!. We represent this by use of a fictitious process we
call the initial condition~IC! process. For example, if the
spring in Figure 3 was compressed in the initial state, the
history list would initially contain theIC process. After
the force pushed everything to the right, the list would con-
tain two processes: Some of the potential energy would be
attributed to the initial conditions, and the rest would be
due to the process in Figure 4.

The other situation in which cause and effect are sepa-
rated in time is when a process~or processes! puts a body in
a particular location, thereby enabling a future process to
occur. This situation occurs in the single-use camera~Fig. 1!,
for example. As the cam cocks the lever, the lever pushes
the hook down. When the lever disengages the hook, the
hook returns to its relaxed position, that is, a position that
can block the lever’s path. Later, when the cam disengages
the lever, the lever begins to move back toward the shutter
blade, but because the hook is in the way, the lever gets

Fig. 4. The dynamic process describing the behavior in Figure 3. Arcs
labeled “push” indicate one object pushing another. Arcs labeled “PE”
indicate an object causing a spring to store potential energy.~This is a
simplified graphical depiction. The actual representation contains addi-
tional information including the fact that this is a dynamic rather than
static process. See Section 3.3.!

Fig. 5. The static process representation describing the behavior in Fig-
ure 3 when forceF and the spring exactly balance and the blocks are at
rest. ~This is a simplified graphical depiction. The actual representation
contains additional information including the fact that this is a static rather
than dynamic process. See Section 3.3.!

A representation for computing purpose 193

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

trapped. In this case, it is clear that one cause of the lever
being trapped is the process that previously placed the hook
in the lever’s path.

We represent this kind of time-delayed causal link by
recording the history of how each body arrived at its present
location. We do this by maintaining a list of the processes
that caused the body to be where it is. This list contains all
of the dynamic processes that the body has experienced. If
the last process the body experiences is a static process, that
process is also included in the list because it is one of the
reasons the body is where it currently is. Static processes
that occurred earlier are not included in the list because
they did not cause the body to be where it is. In fact, those
processes temporarily prevented the body from getting to
its present location.

3.3. Syntax

We have implemented our representation in a LISP pro-
gram and consequently our representation has the LISP-
like syntax shown in Table 1. This section describes our
implementation in the order in which its parts are listed in
the table.

We represent asimulation as a list ofstates in chronolog-
ical order. Astate is an interval of time during which the set
of active causal-processes is constant. Eachstate contains a
list of processes and a list of theevents that occurred when
thatstate began.

The two different types of causal-processes are repre-
sented differently. The representation of a staticprocess

contains a reference to thebody that is in static equilibrium
and a list of theforces that keep thatbody in equilibrium.
The why-there part of the representation is the history list
describing how thebody arrived at its position.~See Sec-
tion 3.2 for a discussion of history lists.!

The graphs representing dynamicprocesses are de-
scribed implicitly with a list ofroot nodes and a list oflinks.
The root nodes represent the root causes of motion, such as
force F in Figure 3. A graph can have multipleroot nodes
because there can be multiple spring forces and external
forces pushing a given body~either directly or through a
kinematic chain!. Root nodes contain a reference to aforce
~either a spring force or an external force! and a reference
to the body to which thatforce is applied. There are two
types of links: One type describes a body pushing other
bodies, the other type describes a body causing a spring to
store potential energy.

An event is an instantaneous occurrence that marks the
end of one or more processes and the beginning of new
processes. In our domain there are four kinds of events:
Two bodies can collide, two bodies can separate, an exter-
nal force can be applied, and an external force can be re-
moved. We also define a fictitious initial condition event
indicating that a process began in the initial conditions of
the simulation. Collision events include history lists~why-
there! describing how the two colliding bodies arrived in
positions that allowed them to collide.

In our domain, there are three types offorces: external
forces, spring forces, and contact forces.~Contact forces
appear only as part of a static process. For dynamic pro-
cesses, contacts between bodies are represented bylinks.!
Each externalforce has a unique name, which helps in de-
termining when processes from different simulations are
really the same. Springforces contain a history list describ-
ing the origins of the potential energy. Contactforces con-
tain a history list describing how thebody arrived in a position
such that it can apply a contact force.~Note that “external
forces” and “spring forces” can be either forces or torques.!

A why-there history list describes how a body arrived in
its current position. If a body is where it is because it has
not left its initial position, the history list contains just one
item: ~IC!. If the body has left the initial conditions and has
not returned, the history list will contain a list ofprocesses
described in the usual way.5 If the body returns to its initial
position, the list ofprocesses describing the history is pre-
ceded by a special token,RIC. This provides a convenient
way to reason about cyclic behavior.

The source-of-PE history list is similar to thewhy-there
history list, except that there is no need for the specialRIC
history list. Recall that as potential energy is lost, processes
are removed from the history list.

5When examining why a body is where it is, we need to consider only
those nodes in a dynamic-process graph that can reach the body through
the directed arcs. The “PUSHED-BY” list included in eachlink is used to
identify the relevant portions of the graph.

Table 1. The LISP-like syntax of our causal-process
representation

simulation (^sim-name& [state])

state (^state-name& [event] [process])
process (STATIC ^body& [force] [why there])

(DYNAMIC [root] [link])
root (^force& PUSHES ^body&)
link (^body-name& PUSHED-BY [body] PUSHES [body])

(^spring-name& GIVEN-PE-BY [body])
event (IC)

(COLLISION ^body 1& ^body 2& ^why-there 1&
^why-there 2&)
(DISENGAGEMENT ^body 1& ^body 2&)
(INPUT-APPLIED ^name&)
(INPUT-REMOVED ^name&)

body ^body-name&
force (EXTERNAL-FORCE ^name&)

(SPRING-FORCE ^name& ^source-of-PE&)
(CONTACT-FORCE ^name& ^why-there&)

why-there [process]
(IC)
(RIC [process])

source-of-PE [process]
(IC)

Notation:^type& is one object of type “type”.@type# 5 a list containing
one or more objects of type “type.” All names~e.g., ^body-name& and
^name&! are text strings. Items in all capital letters~e.g., STATIC and IC!
are special tokens.

194 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

4. USING THE REPRESENTATION

Once the two simulations have been re-represented as causal-
processes, comparing the nominal and modified simula-
tions is a straightforward process. The task is to identify all
of the causal-processes that are unique to one or the other of
the two simulations. These are the processes that are indic-
ative of the feature’s purpose. To perform this task, it is
necessary to check each process from one simulation to see
if it has a match in the other.

To compare two static processes for a possible match, we
simply check if the two pieces of the representation are
identical using, in essence, the LISP “equal” predicate.~A
set-equality predicate is inadequate because the order of the
terms in the history lists matters.! This ensures that the two
processes involve the same body held in equilibrium by the
same forces. Furthermore, equality of the history lists en-
sures that the means by which the body arrived in this equi-
librium configuration is the same in the two cases. Equality
of the history lists plays a particularly important role in the
comparison of two equilibrium processes. It is not unusual
for a body to be in equilibrium, under the influence of the
same set of forces, multiple times during a simulation. Equal-
ity of the history lists is what ensures that two equilibrium
processes represent the same episode of equilibrium.

A particular static process may persist during multiple
successive states of a device~see Section 3.3!. The repre-
sentations for each of these states will contain identical
copies of the static process. When comparing the nominal
and modified simulations, it is necessary to consider only
one copy of the process from each simulation.

As described in Section 3.3, the graph representing a
dynamic process may have multiple root nodes and multi-
ple leaf nodes. To facilitate comparison of dynamic pro-
cesses, we enumerate all directed subgraphs containing just
one root and just one leaf. We call these subgraphs
“branches.” The comparison task is to identify the branches
that are unique to one or the other of the two simulations.
Just as with static processes, a given dynamic process may
persist during multiple successive states of the device; how-
ever, all instances represent the same physical process. Thus,
after all of the branches have been enumerated, the dupli-
cates are pruned away.

Just as with static processes, to compare two branches
for a possible match, we simply check if the two pieces of
the representation are identical. The root node of a branch
plays perhaps the most important role in the comparison
process. The root node ensures that two otherwise similar
branches represent the same episode of a particular kind of
process. For example, in the nominal simulation of the cam-
era, there are two processes in which the hook spring pushes
the hook up, that is, pushes it from the depressed position
back to the equilibrium position. The first occurrence is
after the lever has passed by the hook during cocking; the
second is after the shutter release button has been depressed
and released. It is possible to differentiate between these
two processes because their root nodes are different. Al-

though both root nodes represent the same spring force, the
history lists describing the sources of the spring’s potential
energy are different in the two cases. In the first case the
potential energy originates with torqueT and in the other it
originates with forceF.

Performing the complete comparison process on the cam-
era example reveals a total of four unique processes. The
first is shown in Figure 6. Part~a! of the figure is a graph-
ical depiction of the relevant dynamic process from the
nominal simulation. This process has two branches as shown
in part~b! of the figure. In the first branch, the torque turns
the cam, which pushes the lever, and causes the lever-
spring to store potential energy. In the second branch, the
torque turns the cam, which pushes the lever, which pushes
the hook, and causes the hook-spring to store potential en-
ergy.6 The relevant process from the modified simulation
has a single branch, which is identical to the first branch
from the nominal simulation. There is no match for the
second branch. Thus, the second branch, when combined
with the three other unique processes, indicates something
about the purpose of the feature on the hook. Part~c! of the
figure shows this branch in the syntax of Section 3.3, and
part ~d! shows it formatted for ease of reading.

Figure 7 shows two other process that are unique to the
nominal simulation.7 The first is the hook moving toward
its relaxed position after the lever has released it. The sec-
ond is the hook remaining in static equilibrium after reach-
ing this relaxed position. The fourth difference between the
two simulations is shown in Figure 8. This static process
describes the lever stopped against the hook after the lever
has been cocked and released by the cam, and after the
hook has been depressed and released by the lever.

Once all of the processes unique to one or the other of the
two simulations have been identified, the final task is to
translate them into a natural language explanation of pur-
pose. We have implemented the code that identifies the
unique processes. In fact, Figures 6d, 7, and 8 are output
from our program~with some manual formatting!. How-
ever, we have not yet completely implemented our code for
generating the explanations from the unique processes. The
goal of the work presented here was to verify that our rep-
resentation is adequate for identifying those differences be-
tween the simulations that are indicative of the feature’s
purpose. Having accomplished this goal, we are currently
in the process of implementing code for generating the ex-
planations of purpose. The remainder of this section pro-
vides a brief overview of the approach we are implementing.

When generating explanations of the feature’s purpose,
we refer to those processes that are unique to the nominal

6The hook is modeled as a translating rigid-body connected to a spring.
7In our implementation, we use copies of objects rather than pointers to

objects. This causes some additional overhead in comparing processes.
For example, in Figure 7, items@2.1.1# and@2.1.2.1# are two copies of the
same process. If it were necessary for the program to check equality of
these processes, it would have to directly compare the chunks of
representation.

A representation for computing purpose 195

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

simulation as “absent processes” because they are absent
from the modified simulation. Similarly, we refer to those
processes unique to the modified simulation as “extra pro-
cesses.” Absent processes are associated with behaviors the
feature was intended to cause, while extra processes are
associated with behaviors the feature was intended to prevent.

Our current approach to generating an explanation is to
use pre-written text templates to translate the links and nodes
of the absent and extra processes into English text.~This is
the same kind of approach used by our earlierExplainIT
system.! However, we have found that we can generate
more concise explanations by first grouping together spe-
cific kinds of related processes such as those that describe
an oscillation and those that describe a mutual equilibrium
condition. The processes in Figures 6d and 7 are an exam-
ple of an oscillation. This is detected by noting that the
source of potential energy for the up-stroke of the hook in
Figure 7a is the down-stroke in Figure 6d. Similarly, the
“why-there” history list for the equilibrium of the hook
in Figure 7b shows that the down-stroke and up-stroke

collectively return the hook to its initial condition. Mutual
equilibrium is when multiple bodies keep each other in equi-
librium. The two static processes in Figure 5 are an example.

Using this approach on the camera example, the kind of
explanation we would generate would be: “One purpose of
the feature on the hook is to enable the lever to push the
hook and make it oscillate; the other purpose is to stop the
lever against the hook.” Once we have translated the absent
and extra processes into text in this fashion, we augment
the explanation by including descriptions of the processes
that occur immediately before and immediately after them.
We have found that this helps to situate the explanations
chronologically. For example, the first purpose of the fea-
ture on the hook~enabling the lever to make the hook os-
cillate! occurs after the cam begins pushing the lever and
before the lever-spring begins pushing it. Similarly it be-
gins while the hook is in its initial state and is completed
before the lever stops against the hook. With this kind of
chronological information included, the explanations are
usually a good approximation of a common-sense descrip-

Fig. 6. ~a! A dynamic process from the nominal simulation of the camera.~b! The two branches composing the process. Only the first
branch is common to both simulations.~c! The second branch described with the syntax from Section 3.3.~d! The second process
formatted for ease of reading.

196 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

Fig. 7. Two of the processes that occur only in the nominal simulation.~a! The hook relaxing.~b! The hook in static equilibrium after
relaxing.

Fig. 8. The static process describing the lever being restrained by the hook, after the lever has been cocked, prior to the lever hitting
the shutter blade.

A representation for computing purpose 197

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

tion of purpose. In this case, for example, the explanation
captures some notion of the fact that the feature enables the
lever to displace the hook during cocking~while the cam is
pushing the lever! and that the hook must complete the
oscillation before the lever returns and hits it.

5. RELATED WORK

Design rationales are descriptions of why a design is de-
signed the way it is. The descriptions of purpose thatEx-
plainIT II computes are one form of design rationale. There
is a large and growing body of work in design rationale
capture and construction. Gruber et al.~1991! and Chung
and Bañares-Alcántara~1997! offer good overviews of this
work. However, much of that work is focused on tools for
managing documentation that is human generated, whereas
our work aims to automatically compute documentation.

Our approach can be seen as similar in spirit to work of
Gautier and Gruber~1993! and Gruber and Gautier~1993!
who use models of a device to automatically generate de-
sign rationales. Their domain is component-connection de-
vices: devices consisting of components that are connected
together at ports associated with parameters like tempera-
ture and pressure. Constraints “inside” a component relate
the values of each of the component’s parameters. In this
domain, the interesting behavior occursinsidecomponents
which interact only through shared scalar parameters. In
our domain, however, behavior arises through interactions
betweenthe shapes of components and hence these ap-
proaches do not apply.

Our system also has similarities to Franke’s system, which
computes descriptions of purpose by comparing simula-
tions of behavior to design specifications~Franke, 1991!.
The specifications are a set of desirable behaviors that must
occur and a set of undesirable ones that must not occur. The
behaviors are described in terms of the qualitative values of
subsets of the variables in the device model. Each time a
component is added to an evolving design, a new qualita-
tive simulation is performed and compared to the specifi-
cations to determine the purpose of the component. For
example, if an undesirable behavior disappears from the
simulation once a particular component is added, the
purpose of that component is to prevent that behavior. The
program’s teleological language~TED! can describe a
rich set of purposes including guaranteeing a behavior, pre-
venting a behavior, conditionally causing a behavior, order-
ing behaviors, synchronizing behaviors, and introducing
behaviors.

Franke’s system can describe a wider range or purposes
thanExplainIT II can;ExplainIT II considers only caus-
ing and preventing behaviors. However, his system works
from qualitative rather than quantitative simulations as
ExplainIT II does. Also, his system requires the user to
specify the desirable and undesirable behaviors whileEx-
plainIT II works directly from simulations of the device.

Also, his system is restricted to devices that can be de-
scribed with QSIM-like models. Thus it cannot reason about
rigid-body dynamic behavior because such behavior cannot
be easily described with qualitative differential equations.

Garcia and de Souza’s Active Design Documentation
~ADD! system computes rationales for parametric design
problems~Garcia & de Souza, 1997!. This system works
from an initial design model that describes both the artifact
and the decision-making process for selecting parameter
values. The system generates rationales by comparing pa-
rameter values predicted by the decision-making model with
those actually selected by the designer. This system works
from a decision making model constructed by a knowledge
engineer, while our approach directly infers rationales from
simulations.

Stahovich’s LearnIT system is able to observe an itera-
tive solution to a parametric design problem and infer the
design strategy used~Stahovich, 1999!. It records the strat-
egy in the form of a design rule-base which it can then use
to automatically generate new designs when the design re-
quirements change. LearnIT’s task is to document the de-
sign process whileExplainIT II’s task is to document the
purposes of the parts of the designed artifact.

Our approach is the computational equivalent of reverse
engineering~Ingle, 1994; Lefever & Wood, 1996; Otto &
Wood, 1996! in that we work from a model of the device to
infer the purpose of its parts. Our approach is also similar
to Lefever and Wood’s “Subtract and Operate”~SOP! tech-
nique for reducing part count~Lefever & Wood, 1996!.
SOP is the technique of removing a part from a device and
then operating it to determine if the device still functions
properly or if that part was necessary for correct operation.
However, SOP is performed by a human analyst using a
physical device whereas our techniques are automatically
performed by a computer program.

Our representation is based on our notion of a “causal-
process.” Forbus’ “Qualitative Process Theory”~QP theory!
provides a different representation of “process”~Forbus,
1984!. A qualitative process description includes a list of
objects that must exist and conditions that must be satisfied
for the process to occur. The description also includes a set
of influences describing how quantities change while the
process is active. Simulations of QP models naturally pro-
duce causal explanations because the influences have ex-
plicit causal directions. These directions, which are based
on physical principles, are built into the process descrip-
tions by the programmer.

QP theory is designed to describe processes involving
bulk materials such as heat flow, fluid flow, boiling, and so
forth. A common feature of these processes is that they can
be described by lumped parameter models, that is, geom-
etry is unimportant. QP theory is not intended to handle
systems for which geometric reasoning is required. Thus,
this approach to causal reasoning is not applicable to the
rigid-body dynamics considered here. Also, although QP
theory does produce causal explanations of behavior, it is

198 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

not intended to compute explanations for the purposes of
individual parts of a device. Nevertheless, QP theory may
be a useful starting point for adapting our approach to prob-
lem domains beyond rigid-body dynamics.

There has been some previous work in trying to “under-
stand” the behavior of mechanisms. Forbus et al.~1991!
describe a system that produces descriptions of the motions
of the parts of a device. They decompose the device’s con-
figuration space into regions of uniform contact called
“places,” producing a “place vocabulary” for the device.
They generate a description of the device’s behavior by
enumerating the sequence of places that are visited when
the external inputs are applied to the device. Sacks and
Joskowicz~1993! describe a similar system that partitions
configuration space into a region diagram rather than a place
vocabulary. These systems produce descriptions of what
happens but do not derive causal relationships. Thus they
do not provide explanations for why things happen.

Shrobe~1993! describes a system that produces causal
explanations for the behavior of linkages by interpreting
kinematic simulations computed with Kramer’s TLA~Kram-
er, 1990!. By examining the order in which the simulator
solves the kinematic constraints, the system decomposes
the linkage into driving and driven parts. It then analyzes
the traces of special points on the driven members and the
angles of the driving members to look for interesting fea-
tures ~these are features of the traces, not geometric fea-
tures on the parts!. The system then uses geometric reasoning
to derive causal relationships between the features. In one
example, for instance, the system decides that the purpose
of a linkage is to cause dwell because the driving member
moves in an arc whose radius is the same length as the
driven member so that the other end of the driven member
need not move. This approach can detect some of the pur-
poses of the parts of a device, but is limited to kinematic
behaviors~it ignores forces!. Also, it is limited to linkages
and cannot handle the devices with time-varying contacts
considered here. Finally, it cannot handle behaviors that
depend on compliance, friction, collisions, and so forth.

Stahovich et al.~1997, 1999! describe a system for com-
puting qualitative rigid-body dynamic simulations. That sys-
tem uses a qualitative version of Newton’s laws that are
similar to the techniques used here for tracking the flow of
causality through a device.

We infer causality by analyzing the propagation of force
through a device. Previous work in other domains has indi-
cated that there are a variety of “flows” that mark causality.
For example, de Kleer~1979! describes a program that pro-
duces causal explanations of the small signal behavior of
electric circuits by using constraint propagation techniques
to propagate the electrical inputs through the circuit. Sta-
hovich et al.~1993! have demonstrated that the flow of
power through a device is another means of inferring cau-
sality. Additionally, Iwasaki and Simon~1986! have dem-
onstrated that the order in which the governing equations
must be solved indicates causality. All of these techniques

are likely to be useful for extending our approach to other
domains.

Forbus and Falkenhainer~1990! have developed a pro-
gram that compiles self-explanatory simulations for con-
tinuous physical systems. A self-explanatory simulation
integrates qualitative and numerical models to produce ac-
curate predictions and causal explanations of behavior. Using
qualitative process theory, their program first computes an
envisionment of all of the qualitatively distinct states of a
device.@In later work, they developed a means of avoiding
the envisionment step, resulting in a polynomial time al-
gorithm ~Forbus & Falkenhainer, 1995!.# A math-model
library is then used to construct a quantitative model
~“evolver”! for each state. State transition checkers are
constructed to monitor the quantitative simulation and de-
termine when there is a transition to a new state and thus a
new quantitative model.

Self-explanatory simulations produce causal explana-
tions by constructing the quantitative models from QP mod-
els. ~QP models provide causal explanations because the
influences they contain have explicit causal directions. See
above.! ExplainIT II, on the other hand, constructs causal
explanations directly from the quantitative simulation results.

Because self-explanatory simulations are based on QP
theory, they cannot handle the kind of rigid-body dynamic
behavior considered here. It might be possible to extend
this approach to rigid-body dynamics by using qualitative
rigid-body dynamic simulators such as those of Forbus et al.
~1991! and Stahovich et al.~1999! rather than using QP
theory. But even so, self-explanatory simulators are not in-
tended to compute the purposes of individual parts of a
device.

Rickel and Porter~1997! developed a program called
TRIPEL that uses a form of QP theory to answer predictive
questions about the behavior of physical systems. The sys-
tem is described with a set of QP influences. The questions
concern the behavior of one or more variables of interest in
the context of specified driving conditions. TRIPEL con-
structs a causal answer to a question by selecting from the
system model the simplest adequate subset of influences
that relate the variables in the query. According to Rickel
and Porter~1997!, this approach is best suited to “reason-
ing about pools of substance or energy and the processes
that regulate them.” Because this approach is grounded in
QP theory, it is not well suited to reasoning about systems
for which geometry is important. Thus, this approach is not
well suited to reasoning about the kinds of mechanical de-
vices that are the focus of our work.

Lester and Porter~1996, 1997! developed a program called
KNIGHT that can construct explanations from a general
purpose knowledge base. The knowledge base is repre-
sented with a semantic network. Explanation design pack-
ages~EDPs! are used to select a portion of the semantic
network to answer a question. The EDPs, which are frame-
based, are constructed by a discourse engineer. Different
EDPs are constructed for different kinds of queries. For

A representation for computing purpose 199

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

example, there is one EDP for explaining processes and
another for explaining objects. The KNIGHT system was
extensively tested with a large-scale biology knowledge base
and was able to reliably produce explanations that were
similar in quality to those constructed by domain experts.
This approach is not directly applicable to our problem be-
cause there are no available knowledge bases describing
the devices’ operation, nor are there techniques for gener-
ating such databases directly from the numerical simulation
data.

6. DISCUSSION AND FUTURE WORK

Using our causal process representation,ExplainIT II can
identify those differences between the nominal and modi-
fied simulations that indicate the purposes of the removed
feature. Our next step will be to complete the implementa-
tion of our techniques for transforming these differences
into English text as described in Section 4. While these
techniques will produce useful explanations of purpose, we
are also developing more advanced techniques capable of
producing richer explanations. These techniques will at-
tempt to identify causal relationships between the absent
and extra processes. For example, an extra process may
have occurred because an absent process failed to occur. In
this case, one purpose associated with the absent process
would be preventing the extra process. Imagine, for in-
stance, that when the hook fails to restrain the cocked lever
in the modified camera simulation, the lever collides with
some other body that was temporarily to the right of the
hook. In that case, one purpose of the feature on the hook
would be to prevent that collision from happening.

Additionally, we plan to incorporate a model of the in-
tended overall device behavior as a tool for computing more
specific purposes for the features. For example, in deter-
mining the purposes of the individual features in the shutter
mechanism, it would be useful to know that the intended
behavior is for the shutter blade to oscillate every time the
rewind wheel is turned and the shutter release button is
pressed. This kind of overall behavior model has been used
successfully by Stahovich et al.~1998! for interpreting the
meaning of sketches of mechanical devices.

Currently, our techniques for determining the causes of a
body’s motion assume that inertia is negligible. Work by
Sacks and Joskowicz~1993! indicates that this assumption
is valid for a wide range of mechanisms. However, we will
explore more examples to determine the limitations of this
assumption in our domain. If inertia turns out to be an im-
portant factor in determining the causes of behavior, we
will have to extend our causal reasoning techniques to con-
sider it. We may have to treat momentum as a possible root
cause of motion, and just as we track the sources of poten-
tial energy of a spring, we may have to track the sources of
a body’s momentum.

In a related project, we are developing techniques to au-
tomatically detect and remove features forExplainIT II to

analyze. In our domain, a feature is any embellishment to
what would otherwise be a simpler part.~Our premise is
that if the designer expended resources to add an embellish-
ment to a part, there is likely some purpose.! Traditional
feature recognition approaches~e.g., Sakurai & Gossard,
1990; Das et al., 1995! often work from libraries of proto-
typical features~templates!. However, because the features
we are interested in can be arbitrary chunks of geometry,
template-based approaches may not provide a complete so-
lution for our problem. Our new approach relies on the use
of cutting planes that are coincident with the faces of a part.
The cutting planes are used to slice off protrusions and fill
in pits ~e.g., holes, grooves, slots, etc.!. A metric based on
surface area and volume is used to determine if the pieces
thus removed or filled are “good” features. Multiple cutting
planes can be used to identify a feature and thus the ap-
proach is not restricted to features that are isolated within a
single face. For example, the approach can identify a fea-
ture protruding from all three faces that meet at the corner
of a cube.

In the long term, we plan to extend our representation,
and theExplainIT II approach, to domains other than rigid-
body mechanical systems, such as fluidic, thermal, and elec-
trical systems. For the mechanical systems we consider here,
causal-processes are marked by the flow of force and mo-
tion through the device. In other domains, we will have to
consider other kinds of “flows.” For example, reasoning
about thermal and electrical systems will almost certainly
require reasoning about the flow of heat and current through
the device.

Finally, we plan to explore the use of our causal-process
representation for other tasks. For example, our representa-
tion may be useful for generating narrative descriptions of a
device’s operation. The narratives would be a complement
to animations of the device. A narrative would be con-
structed by translating all of the causal-processes from the
nominal simulation of the device into text.~In this case it
would not be necessary to remove a feature and produce a
modified simulation.! We also plan to explore how our rep-
resentation might be used to index and retrieve designs from
a database of designs.

7. CONCLUSION

We have developed a new representation that allows a rigid-
body dynamic simulation to be described as a set of “causal-
processes.” A causal-process is an interval of time during
which both the behavior and the causes of the behavior
remain qualitatively uniform.

We have demonstrated that this representation can be
used to compute the purposes of the geometric features on
the parts of a device. To compute the purpose of a particu-
lar feature, we simulate the behavior of the device with and
without the feature. We then translate the two simulations
into our causal-process representation and identify causal-
processes that exist in one simulation but not the other. Any

200 T.F. Stahovich and L.B. Kara

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

such processes are indicative of the feature’s purpose. Our
representation of these processes can be directly translated
into English text to provide a human-readable description
of purpose.

We have implemented our approach in a computer pro-
gram calledExplainIT II. The program has successfully
identified the purposes of features in devices that operate
cyclically as well as devices that operate by changing from
one state to another~state-change devices!. Previous ap-
proaches could handle only the latter class of devices.

Good design documentation is essential for performing a
variety of engineering tasks throughout the product life cy-
cle. However, designs are not always adequately docu-
mented because the cost of doing so is often prohibitively
expensive. The techniques presented here help to reduce
this cost by providing a means of automatically computing
one important form of documentation.

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation
under Award Number 9813259.

REFERENCES

Chung, P., & Bañares-Alcántara, R.~Eds.! ~1997!. Special issue: Repre-
sentation and use of design rationale.Artificial Intelligence for Engi-
neering Design, Analysis, and Manufacturing 11(2).

Das, D., Gupta, S., & Nau, D.~1995!. Generating redesign suggestions to
reduce setup cost: A step towards automated redesign.Computer-
Aided Design 28(10), 763–782.

de Kleer, J.~1979!. Causal and Teleological Reasoning in Circuit Recog-
nition. Ph.D. thesis, Massachusetts Institute of Technology.

Forbus, K.D.~1984!. Qualitative process theory.Artificial Intelligence 24,
85–168.

Forbus, K.D., & Falkenhainer, B.~1990!. Self-explanatory simulations:
An integration of qualitative and quantitative knowledge.AAAI-90,
380–387.

Forbus, K.D., & Falkenhainer, B.~1995!. Scaling up self-explanatory sim-
ulations: Polynomial time compilation.IJCAI-95, 1798–1804.

Forbus, K.D., Nielsen, P., & Faltings, B.~1991!. Qualitative spatial rea-
soning: The clock project.Artificial Intelligence 51(9), 417–471.

Franke, D.W.~1991!. Deriving and using descriptions of purpose.IEEE
Expert, 41–47.

Garcia, A.C., & de Souza, C.S.~1997!. Add1: Including rhetorical struc-
tures in active documents.Artificial Intelligence for Engineering De-
sign, Analysis, and Manufacturing 11(2), 109–124.

Gautier, P.O., & Gruber, T.R.~1993!. Generating explanations of device
behavior using compositional modeling and causal ordering.Eleventh
National Conference on Artificial Intelligence, 264–270.

Gruber, T., Baudin, C., Boose, J., & Weber, J.~1991!. Design rationale
capture as knowledge acquisition trade-offs in the design of interactive
tools. Technical Report KSL 91-47, Stanford, CA: Stanford Univer-
sity, Knowledge Systems Laboratory.

Gruber, T.R., & Gautier, P.O.~1993!. Machine-generated explanations of
engineering models: A compositional modeling approach.1993 Inter-
national Joint Conference on Artificial Intelligence, 1502–1508.

Ingle, K. ~1994!. Reverse Engineering. New York: McGraw-Hill, Inc.
Iwasaki, Y., & Simon, H.A.~1986!. Causality in device behavior.Artificial

Intelligence 29, 3–32.
Knuffer, T., & Ullman, D.~1990!. The information requests of mechanical

design engineers.Design Studies 12(1), 41–50.
Kramer, G.A.~1990!. Solving geometric constraint systems.Proceedings

AAAI-90, 708–714.

Lefever, D., & Wood, K.~1996!. Design for assembly techniques in re-
verse engineering and redesign.ASME Design Theory and Methodol-
ogy Conference. DETC0DTM-1507.

Lester, J.C., & Porter, B.W.~1996!. Scaling up explanation generation:
Large-scale knowledge bases and empirical studies.National Confer-
ence on Artificial Intelligence, 416–423.

Lester, J.C., & Porter, B.W.~1997!. Developing and empirically evaluat-
ing robust explanation generators: The Knight experiments.Computa-
tional Linguistics 23(1), 65–101.

Otto, K., & Wood, K.~1996!. A reverse engineering and redesign method-
ology for product evolution.ASME Design Theory and Methodology
Conference. DETC0DTM-1523.

Raghavan, A., & Stahovich, T.F.~1998!. Computing design rationales by
interpreting simulations.1998 ASME Design Engineering Technical
Conferences, Atlanta, GA. DETC980DTM-5652.

Rickel, J., & Porter, B.~1997!. Automated modeling of complex systems
to answer prediction questions.Artificial Intelligence 93, 201–260.

Sacks, E., & Joskowicz, L.~1993!. Automated modeling and kinematic
simulation of mechanisms.Computer-Aided Design 25(2), 106–118.

Sakurai, H., & Gossard, D.~1990!. Recognizing shape features in solid
models.IEEE Computer Graphics and Applications 10(5), 22–32.

Shrobe, H.~1993!. Understanding linkages.Proc. AAAI-93, 620–625.
Stahovich, T.F.~1999!. Learnit: A system that can learn and reuse design

strategies.1999 ASME Design Engineering Technical Conferences.
DETC990DTM-8779.

Stahovich, T.F., Davis, R., & Shrobe, H.~1993!. An ontology of mechan-
ical devices.Working Notes, Reasoning about Function, 11th National
Conference on Artificial Intelligence, 137–140.

Stahovich, T.F., Davis, R., & Shrobe, H.~1997!. Qualitative rigid body
mechanics.Proc. Fourteenth National Conference on Artificial
Intelligence, 138–144.

Stahovich, T.F., Davis, R., & Shrobe, H.~1998!. Generating multiple new
designs from a sketch.Artificial Intelligence 104(1–2), 211–264.

Stahovich, T.F., Davis, R., & Shrobe, H.~2000!. Qualitative rigid body
mechanics.Artificial Intelligence 119, 19–60.

Stahovich, T.F., & Raghavan, A.~2000!. Computing design rationales by
interpreting simulations.ASME Journal of Mechanical Design 122,
77–82.

Thomas F. Stahovichis an Associate Professor in the Me-
chanical Engineering Department at Carnegie Mellon Uni-
versity, where he is the director of the Smart Tools Lab. He
received a B.S. in Mechanical Engineering from the Uni-
versity of California at Berkeley in 1988, and a S.M. and
Ph.D. in Mechanical Engineering from the Massachusetts
Institute of Technology in 1990 and 1995 respectively. His
research interests focus on creating intelligent software tools
for engineering design. Current projects include: sketch in-
terpretation techniques to enable sketch-based design and
analysis tools; techniques for capturing and reusing design
knowledge; techniques for automatically documenting de-
signs; and techniques for managing design modification in
large-scale engineered systems.

Levent B. Kara is a doctoral student in mechanical engi-
neering at Carnegie Mellon University. He earned his
B.S. in mechanical engineering from the Middle East Tech-
nical University - Ankara, Turkey, and his M.S. in mechan-
ical engineering from Carnegie Mellon University. His
research interests include qualitative physics; causal and
spatial reasoning about mechanical systems; and auto-
matic design rationale identification.

A representation for computing purpose 201

https://doi.org/10.1017/S0890060401152042 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152042

