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Sensitivity of internal wave energy distribution
over seabed corrugations to adjacent
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Here we show that the distribution of energy of internal gravity waves over a patch
of seabed corrugations strongly depends on the distance of the patch to adjacent
seafloor features located downstream of the patch. Specifically, we consider the
steady state energy distribution due to an incident internal wave arriving at a patch
of seabed ripples neighbouring (i) another patch of ripples (i.e. a second patch) and
(ii) a vertical wall. Seabed undulations with dominant wavenumber twice as large
as overpassing internal waves reflect back part of the energy of the incident internal
waves (Bragg reflection) and allow the rest of the energy to transmit downstream. In
the presence of a neighbouring topography on the downstream side, the transmitted
energy from the patch may reflect back; partially if the downstream topography is
another set of seabed ripples or fully if it is a vertical wall. The reflected wave from
the downstream topography is again reflected back by the patch of ripples through
the same mechanism. This consecutive reflection goes on indefinitely, leading to
a complex interaction pattern including constructive and destructive interference of
multiply reflected waves as well as an interplay between higher mode internal waves
resonated over the topography. We show here that when steady state is reached both
the qualitative and quantitative behaviour of the energy distribution over the patch is a
strong function of the distance between the patch and the downstream topography: it
can increase or decrease exponentially fast along the patch or stay (nearly) unchanged.
As a result, for instance, the local energy density in the water column can become
an order of magnitude larger in certain areas merely based on where the downstream
topography is. This may result in the formation of steep waves in specific areas of
the ocean, leading to breaking and enhanced mixing. At a particular distance, the
wall or the second patch may also result in a complete disappearance of the trace of
the seabed undulations on the upstream and the downstream wave field.

Key words: geophysical and geological flows, internal waves, topographic effects

1. Introduction
Internal waves play an essential role in the transport and also mixing in the stably

stratified ocean through their contribution to the turbulence caused by local instabilities

† Email address for correspondence: reza.alam@berkeley.edu
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Internal wave energy over seabed corrugations 75

and breaking of small-scale internal waves (Bühler & Holmes-Cerfon 2011). However,
the mechanism(s) leading to the loss of energy of the waves and determination of
the locations in the ocean where the energy of the low-mode internal waves is lost
to turbulence are still unanswered questions (Ansong et al. 2015) and hence have
been the subject of many studies. It is conjectured that the low-mode energy can be
dissipated locally and the remaining energy is transferred and decayed through the
interaction of low-mode tides with the undular bottom topography which leads to the
conversion of internal waves to higher-mode waves with shorter wavelengths (Bühler
& Holmes-Cerfon 2011; Li & Mei 2014). These shorter wavelength and higher-mode
waves are more susceptible to breaking and hence to losing their energy to turbulence.

The generation and scattering of internal waves from bumpy bottoms in two-
dimensional fluids was first studied by Baines (1971a,b) over a finite length
topography. He found that from the interaction of an incident wave with wavenumber
(k) with a bottom topography with wavenumber (kb), three waves could be scattered
with wavenumbers k, k + kb and k − kb (see also Bell 1975a,b; Mied & Dugan
1976). More recently, Müller & Liu (2000a,b) used the theory of characteristics
to investigate the scattering in a finite depth two-dimensional fluid and studied the
energy transmission as a function of the incident wave and bottom slope. Their
observation suggests that the bottom topography shape is an important factor in the
flux of the wave energy into higher-mode waves that can break more easily and cause
mixing, where for example convex profiles were more efficient than concave profiles.
However, these works focused on the understanding of internal waves on a limited,
short bottom topography and it was only recently that Bühler & Holmes-Cerfon
(2011) investigated the interaction of internal waves with a long undulating bottom
(in a linearly stratified two-dimensional fluid using linear theory). They investigated
the interaction of a low-mode internal wave over both regular and irregular long
patches of ripples and observed the decay of internal tides over a finite-amplitude
topography (with subcritical slope). They also reported that energy focusing occurs
on a long single patch of ripples when resonance conditions were satisfied. Li &
Mei (2014) employed the method of multiple-scale perturbation analysis and studied
internal waves over small-amplitude, long topographies. They compared their findings
with the results of Bühler & Holmes-Cerfon (2011) and observed good agreement,
which showed that the wave decay is exponential in space. It is worth mentioning
that Mei (1985) used for the first time the method of multiple-scale perturbation
analysis to study the evolution and resonance of surface waves interacting with
a finite-amplitude topography. He showed that multiple-scale perturbation analysis,
which is based on fast- and slow-varying variables, guarantees a well-defined bounded
solution for waves over a large range of topographies which has been a serious issue
with the classical perturbation analysis method. There have also been efforts to seek
solutions using the Green’s function method for studying the interaction of waves
with a bottom topography. For example, Balmforth & Peacock (2009) studied the
conversion of barotropic tides into internal waves by the bottom topography with
periodic obstacles using Green’s function in an infinite depth ocean. Considering
steep obstacles, it was found that the barotropic energy conversion rate depends
on both topographical as well as wave characteristics including the slope of the
topography, wave slope and the separation of the obstacles from each other. The
Green’s function method is also used for studying the scattering phenomenon by the
bottom topography. For example, Mathur, Carter & Peacock (2014) used the Green’s
function to study internal tide scattering in a two-dimensional ocean. They studied
the efficiency of isolated, large obstacles for scattering of tides and compared this
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to the impact of small-scale topography for scattering. The key finding was that a
large, critical ridge is the main source for scattering of a mode 1 internal tide while a
small-amplitude topography has a scattering efficiency of approximately 5 %–10 % for
a length of 1000–3000 km, which is substantially lower than a single ridge scattering
efficiency.

It is known that if an internal wave travels over a patch of corrugated seabed where
the wavenumber of the seabed is twice as large as the wavenumber of the incident
internal wave, then the energy of the incident internal wave is partially reflected,
partially transferred to other modes (higher and lower) and the rest keeps travelling,
i.e. is transmitted downstream (e.g. Bühler & Holmes-Cerfon 2011). Reflection of
waves as they travel in a periodic medium of double the wavenumber is commonly
known as Bragg reflection (or resonance). The phenomenon was first discovered in
the context of electromagnetic waves in the early 20th century (Bragg & Bragg 1913),
and since then has been observed, elucidated and reported extensively in many other
physical systems such as in solid state physics, optics and acoustics (e.g. Fermi &
Marshall 1947; Kryuchkyan & Hatsagortsyan 2011), as well as in water waves (e.g.
Mei 1985; Alam, Liu & Yue 2009a, 2010; Couston, Jalali & Alam 2017).

Of interest to this manuscript is the dynamics of internal waves over a patch
of seabed corrugations in the presence of a reflecting object downstream of the
patch. This interest is motivated by several observations of enhanced (by orders of
magnitude) and intense mixing over rough topographies of the oceans and the claimed
attribution of these observations to internal wave breaking (e.g. Ledwell et al. 2000;
Garabato et al. 2004), as well as reports of strong internal wave generation over an
undular seabed (e.g. Kranenburg, Pietrzak & Abraham 1991; Pietrzak et al. 1991;
Labeur & Pietrzak 2004; Pietrzak & Labeur 2004; Stastna 2011).

We present here analytically, through multiple-scale perturbation analysis supported
by direct simulation, that the spatial evolution of internal wave energy and the
interplay between modes over a patch of seabed undulations can be strongly dependent
upon the distance of the patch from the neighbouring seabed features. We show that
accumulation of internal wave energy may be an order of magnitude larger at
specific areas of a patch, solely based on where the neighbouring features are. The
physics behind this phenomenon lies in the constructive and destructive interference
of multiply reflected waves: if a patch of seabed undulations satisfies the Bragg
condition with internal waves, as mentioned above, it reflects part of the incident
wave energy but allows the rest to transmit. The transmitted wave then gets reflected
back by the downstream reflector. But this reflected wave again reflects back from
the patch of undulations via the Bragg mechanism. This sequence of reflections
continues indefinitely as multiply reflected waves add up and via constructive and/or
destructive interference result in a very much different spatial distribution of energy
over the patch than what is expected in the absence of the downstream topography.
This phenomenon is a close cousin of the Fabry–Pérot interference in optics through
which two partially reflecting mirrors trap light (Fabry & Pérot 1897). It has also been
determined in the context of surface gravity waves in a homogeneous (unstratified)
fluid where many features similar to the optics counterparts are found (Yu & Mei
2000; Couston et al. 2015). In the context of internal waves in a continuously
stratified fluid, nevertheless, the problem is significantly different as here Bragg
resonance leads to the generation of an infinite number of internal wave modes
simultaneously exchanging energy with each other through the seabed, creating a
complex pool of interacting waves. We would like to comment that for the case of
internal waves there is another possibility for realizing the Fabry–Pérot interference
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and that is through partial reflection of an internal wave beam from locations of
critical stratification (see Mathur & Peacock 2010). For this to occur, a specific form
of nonlinear density stratification is necessary.

Real seabed topography in the ocean is usually composed of many Fourier
components and, likewise, internal waves often arrive in a group forming a spectrum
of frequencies and wavenumbers. Therefore, several interaction conditions may be
satisfied simultaneously resulting in a substantial energy exchange that may lead to
significant change in the spectral density function of internal waves. The sensitivity
mechanism elucidated here sheds light on the importance of the details of topographic
features on the resulting spatial distribution of wave activity, and may help pinpoint
areas of the ocean where appreciable mixing is expected.

In this manuscript, we start by presentation of the problem formulation (§ 2),
followed by the multiple-scale perturbation analysis and the discussion of reflection
and transmission amplitudes (§ 3). In § 4 (results and discussion), we first present the
case of wave reflection by a single patch of ripples (§ 4.1), then study the case of a
patch next to a reflective wall (§ 4.2) and then elaborate on the effect of a downstream
patch of ripples on wave energy amplification (§ 4.3). We provide concluding remarks
on our findings in § 5 and briefly comment on the relevance of the presented physics
to the real ocean.

2. Governing equations
We consider an inviscid, incompressible, non-rotating, two-dimensional and stably

stratified fluid with small-amplitude waves such that nonlinear advection terms can
be neglected. We put the Cartesian coordinate system on the seabed, with z axis
pointing upward (figure 1). The density of this stably stratified fluid is ρ(x, z, t) =
ρ(z)+ ρ ′(x, z, t), where ρ is the background density (density at equilibrium) and ρ ′ is
the density perturbation. Similarly, pressure is p= p(z)+ p′(x, z, t) where p(z) satisfies
the hydrostatic balance with the quiescent density as ∂p(z)/∂z=−ρ(z)g, and p′ is the
pressure perturbation. The governing equations for the velocity u= (u,w), density and
pressure perturbations ρ ′, p′ are (e.g. Kundu, Cohen & Dowling 2012)

∂u
∂t
+

1
ρ0

∂p′

∂x
= 0, (2.1a)

∂w
∂t
+

1
ρ0

∂p′

∂z
=−

ρ ′g
ρ0
, (2.1b)

∂u
∂x
+
∂w
∂z
= 0, (2.1c)

∂ρ ′

∂t
−

N2ρ0

g
w= 0, (2.1d)

where N=
√
(−g/ρ0)∂ρ/∂z is the buoyancy frequency and ρ0=ρ(z=H) is the density

at the free surface. In (2.1), equations (2.1a) and (2.1b) are momentum equations,
equation (2.1c) is the continuity equation and (2.1d) is obtained from linearizing the
density equation which expresses the incompressibility of a fluid particle. Assuming a
rigid-lid condition at the surface z=H and that the deviation of the seabed from the
mean depth is given by h(x), boundary conditions for the governing equations (2.1)
are

w= 0, z=H; w= u
∂h(x)
∂x

, z= h(x), (2.2a−d)
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FIGURE 1. (Colour online) Schematic representations of configurations considered here.
(a) An incident internal wave of wavelength λi arrives from the far left to a patch of nr
seabed ripples of wavelength λb. There is a reflecting wall at a distance qλb+Lm, (Lm<λb)
measured from the end of the last ripple. (b) An incident internal wave of wavelength λi
arrives from the far left to two patches of nr1 and nr2 seabed ripples of wavelength λb
which are qλb + Lm (Lm < λb) apart. We will show that the energy distribution over the
patch and in the area between the patch and the wall (a) or between the two patches (b)
strongly depends on Lm.

where the bottom topography h(x) has finite amplitude and subcritical slope, i.e.
|dh/dx|< 1.

Since the flow field is two-dimensional and divergence free, the velocity can be
written in terms of a streamfunction Ψ (x, z, t) where u = ∂Ψ/∂z and w = −∂Ψ/∂x.
Recasting governing equations (2.1) in terms of Ψ , we obtain

∂2

∂t2

(
∂2

∂x2
Ψ +

∂2

∂z2
Ψ

)
+N2 ∂

2

∂x2
Ψ = 0, (2.3)

with the boundary conditions

Ψ (x,H, t)=Ψ (x, h(x), t)= 0. (2.4)

We now consider time-harmonic solutions to (2.3) in the form Ψ (x, z, t) =
Re[ψ(x, z)e−iωt

] where ω is the frequency of the motion. Considering a constant
N, we define scaled horizontal and vertical variables x∗ = µπx/H, z∗ = πz/H, and
h∗ = πh/H where µ =

√
ω2/(N2 −ω2). By this specific choice of scaling we will

have an integer number of waves in the domain 06 x∗6 2π. This, later on, will help
us to write the solution in terms of a Fourier series.

Using defined scaled variables, the governing equation (2.3) turns into (e.g. Bühler
& Holmes-Cerfon 2011)

∂2

∂x2
ψ −

∂2

∂z2
ψ = 0, (2.5)

where here (and in what follows) asterisks are dropped for notational simplicity. Note
that physical parameters (e.g. N, H) are hidden in the scaled variables. Similarly, the
dimensionless form of the boundary condition (2.4) is obtained as

ψ(x,π, t)=ψ(x, h(x), t)= 0. (2.6)

3. Perturbation analysis
We use multiple-scale perturbation analysis (cf. e.g. Li & Mei 2014) to solve for

the wave field over a patch of small-amplitude ripples (i.e. h(x)/H� 1) in the area
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06 x6L. (Alternatively, the method of characteristics can be used and will lead to the
same results (e.g. cf. Bühler & Holmes-Cerfon 2011).) We assume that at steady state
the wave field variables are functions of spatial variables x, z and a slow horizontal
scale X = εx in which ε� 1 is a measure of the waves steepness. We also assume
that the solution to (2.5), i.e. ψ(x, z, X), is periodic and that it can be expressed in
terms of the following convergent series

ψ(x, z, X)=ψ (0)(x, z, X)+ εψ (1)(x, z, X)+O(ε2). (3.1)

Substituting (3.1) in (2.5) and collecting terms of the same order, at orders O(1) and
O(ε) we obtain,

O(1) :
∂2

∂x2
ψ (0)
−
∂2

∂z2
ψ (0)
= 0, (3.2a)

O(ε) :
∂2

∂x2
ψ (1)
−
∂2

∂z2
ψ (1)
=−2ε

∂2

∂x∂X
ψ (0). (3.2b)

In a search for wave solutions to the original equation (2.5), we consider the
following general solution to (3.2a)

ψ (0)(x, z, X)=
∞∑

m=1

[T̂m(X)eimx
+ R̂m(X)e−imx

] sin mz, (3.3)

where T̂m, R̂m are the streamfunction amplitudes of transmitted and reflected waves
respectively. Therefore T̂m/T̂`(0) is the transmission coefficient of mode m, where T̂`
is the amplitude of incident internal wave of mode `. If we assume the amplitude
of the incident wave T̂`(0) is unity (which is a natural assumption), then T̂m, R̂m are
directly the transmission and reflection coefficients. Note that m is the mode number
and an outcome of the scaling both in the horizontal and the vertical directions. The
specific form of solution (3.3) assumes that these amplitudes can slowly vary over the
patch of seabed corrugations. Upon substitution of (3.3) in (3.2b) we obtain

∂2ψ (1)

∂x2
−
∂2ψ (1)

∂z2
=−2i

∞∑
m=1

m

[
∂T̂m(X)
∂X

eimx
−
∂R̂m(X)
∂X

e−imx

]
sin mz. (3.4)

Coefficient ∂T̂n/∂X (∂R̂n/∂X) is readily obtained by multiplying both sides of (3.4)
by e−inx sin nz (einx sin nz) and integrating over z∈ [0,π] and x∈ [0,L′], where L′ is the
smallest integer multiplier of 2π which is greater than L. In other words, L′ = 2aπ

where a is an integer such that (a− 1) < L/(2π)6 a. Coefficients ∂T̂n/∂X, (∂R̂n/∂X)
are obtained as:

∂T̂n

∂X
=
−i
πL′

∫ L′

x=0
ψ (1)(x, 0, X)e−inx dx,

∂R̂n

∂X
=

i
πL′

∫ L′

x=0
ψ (1)(x, 0, X)einx dx, (3.5a,b)

where integration by parts is used for the left-hand side of (3.4). Taylor expansion
of the boundary condition (2.4) at z = 0, assuming h(x)/H ∼ O(ε) � 1, yields
ψ (1)(x, 0, X)=−h(x)ψ (0)

z (x, 0, X), and therefore

∂

∂X

{
T̂n

R̂n

}
=
±i
πL′

∫ L′

x=0
h(x)

∞∑
m=1

m[T̂m(X)eimx
+ R̂m(X)e−imx

]e∓inx dx, (3.6)
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where the upper/lower signs are respectively for T̂n and R̂n. For a general topography,
we can further simplify (3.6), and write it as a system of ordinary differential
equations as

∂

∂X

{
T̂n

R̂n

}
=

∞∑
m=1

{
χ 11

nm

χ 21
nm

}
T̂m +

{
χ 12

nm

χ 22
nm

}
R̂m, (3.7)

where

χ ij
nm =

i(−1)i+1

πL′

∫ L′

x=0
h(x)meix[(−1)j+1m+(−1)in] dx. (3.8)

If the bottom topography h(x) in the region of 0 6 x 6 L can be written in the form
h(x)=

∑
∞

k=−∞ hkeikx, then (3.8) can further be simplified into

χ 11
nm =

im
π

hn−m, χ 12
nm =

im
π

hn+m, (3.9a,b)

χ 21
nm =
−im
π

h−n−m, χ 22
nm =
−im
π

h−n+m. (3.10a,b)

The vertical velocity transmission and reflection amplitudes (Tm, Rm) are obtained
from T̂m, R̂m through Tm=−imT̂m(X) and Rm= imR̂m(X). The spatially averaged kinetic
and potential energy for each mode are obtained from 〈Ek

n〉 = (1/2)ρ0(1/λn)
∫ λn

0 dx∫ H
0 (u

2
n +w2

n) dz and 〈Ep
n〉 = (1/λn)

∫ λn

0 dx
∫ H

0 (g
2ρ ′2n )/(2ρ0N2) dz, where the overbar

denotes the temporal average and 〈·〉 shows the spatial average over one wavelength
(cf. figure 5 where this averaging has not been implemented). These equations result
in

〈Ek
n〉 = 〈E

p
n〉 =

1
8
ρ0A2

n
N2

ω2
H =

1
8
ρ0(T2

n + R2
n)

(
1+

k2
z,n

k2
x,n

)
H, (3.11)

where kz, kx are vertical and horizontal wavenumbers respectively and λn = 2π/kx,n.
Hence, the total energy per unit area is

〈E〉 = 〈Ek
〉 + 〈Ep

〉 =

∞∑
n=1

1
4
ρ0(T2

n + R2
n)

(
1+

k2
z,n

k2
x,n

)
H. (3.12)

We define the normalized total energy by using the incident internal wave (mode `)
energy as the reference, i.e.

Ẽ=
〈E〉
〈Eincident〉

=

∞∑
n=1

T2
n + R2

n

T2
`,(x=0)

. (3.13)

It can also be shown that the normalized energy flux of transmitted (reflected) waves
is a function of the velocity transmission (reflection) amplitudes, i.e.

FT
n =

`T2
n

nT2
`,(x=0)

; FR
n =

`R2
n

nT2
`,(x=0)

, (3.14a,b)

and hence the total energy flux is

F=
∞∑

n=1

`
T2

n − R2
n

nT2
`,(x=0)

, (3.15)
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which for a steady state case has to be constant over the whole domain.
In (3.13) the total energy is normalized by the incident wave energy. We would

like to emphasize that the group speeds of different modes are clearly different, and
while the total energy flux over a finite patch (or patches) must remain constant
in a steady state, the total energy in the water column per unit area (Ẽ) may be
very much different at different locations of the patch. Therefore, Ẽ is an important
quantity as higher energy in the water column means taller (and hence steeper) waves
which are more prone to breaking. This is similar to the shoaling of surface waves
(e.g. Tsunamis): while the energy flux stays constant over a shoal, since the group
speed decreases due to water depth decrease, the energy per unit area in the water
column increases. This is manifested in the amplitude increase of the surface waves
that results in nonlinear effects and eventually leads to wave breaking.

In solving (3.7) in practice, the infinite series must be truncated at a finite number
of terms. The number of terms required is determined by the length of a patch,
as longer patches allow higher internal wave modes to rise from zero, evolve
and influence the overall dynamics. In numerical evaluation of the reflection and
transmission amplitudes in the next section, we increase the number of modes until
no further change over the patch is observed, i.e. we perform a numerical convergence
test with respect to the number of modes. In the results of § 4, the chosen number
of modes for a patch of approximately six wavelengths long is O(200) modes.

4. Results and discussion

With the formulation of § 3 in hand, we now proceed to study the spatial
evolution of the internal wave energy over a patch of seabed ripples. For the sake of
completeness, we review the energy distribution over a single patch of ripples, and
then focus our attention on: (i) a patch of seabed ripples located at distance qλb+ Lm

from a vertical wall and (ii) two patches of ripples at the distance qλb + Lm from
each other (q being a non-negative integer number). We show that in both cases, the
amplitudes of the different mode internal waves and the overall energy distribution
strongly depend on Lm but are independent of q.

4.1. Single patch
In a continuously stratified fluid of constant N, and if normalization of § 2 is
employed, then a frequency ω is associated with an infinite number of internal
wave modes with integer wavenumbers. If an internal wave mode m propagates
over a seabed undulation that has a component with the wavenumber nb = 2m, then
through Bragg resonance, new free-propagating internal waves of mode m ± nb are
excited (resonated). In general, for reflection to occur, the bottom wavenumber has to
be equal to or greater than twice the first mode wavenumber, i.e. nb > 2m. These two
new waves can interact with the same topography to generate a new set of resonant
waves m+ 2nb, and m− 2nb. Eventually, and if the patch is long enough, an infinite
number of waves with wavenumbers m± jnb and with integer j ∈ (0,∞) will appear
in the water.

For illustration purposes, let us consider a mode 1 (i.e. m = 1) internal wave
propagating over a monochromatic patch of ripples h(x)= ab sin nbx, with ab= 4π/100
(which implies the ripples amplitude is 4 % of the water depth) and nb = 2. We
consider a patch that extends over the area 0 6 x 6 L= 6λb where λb = 2π/nb is the
seabed ripples’ wavelength. At x= 0, T1= 1 and Tn= 0 for n> 1. At x=L, Rn= 0. To
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FIGURE 2. (Colour online) Interaction of a mode 1 incident internal wave (m= 1) with
a single patch of sinusoidal ripples h(x) = 0.04π sin(2x) (0 6 x 6 6λb, i.e. the patch is
composed of six ripples). Panels (a), (b) and (c) respectively show transmission amplitude
T , reflection amplitude R and the normalized energy per unit area Ẽ over the patch.
Panels (d) and (e) show energy flux of different modes in, respectively, the transmission
and reflection directions. The energy of the incident wave (mode 1) decreases as energy
goes to higher modes in transmission, as well as mode 1 and higher modes in reflection.
The overall energy per unit area Ẽ initially decreases a little, but eventually takes off
toward the downstream of the patch. Energy flux (dashed line in (c)) is constant over the
patch, as expected.

reach a converged solution 200 modes are considered. The variation of the amplitude
of the first four resonated waves along with the amplitude of the incident wave is
shown in figure 2. Higher modes exist but are too small to be shown. An incident
wave of mode m= 1 arrives from −∞, and upon interaction with the seabed nb = 2,
generates new waves with wavenumbers m + nb = 3 and m − nb = −1 (the negative
sign shows that this new wave, which is mode 1, moves in the opposite direction
and hence appears in the reflection plot, see figure 2b). These newly generated waves
pick up in amplitude at the cost of incident wave amplitude decaying over the patch,
as is seen in figure 2(a). Once the amplitude of the mode 3 wave (red line) is large
enough, through the same topography, mode 5 is resonated, and the interaction goes
on. A similar story holds for the waves in reflection. The mode 1 wave in reflection
resonates mode 3 and so on. While (3.7) gives us all modes that are generated here,
we only present the first five resonant modes. Figure 2(c) shows the energy per unit
area in the water column. Since the group velocity of higher modes is slower, energy
is accumulated toward the end of the patch where more energy is in the higher
modes that travel more slowly. As expected, in steady state the energy flux remains
unchanged (energy flux is normalized by the energy flux of the incident wave). Note
that energy density per unit area everywhere is greater than the incident wave energy
density per unit area, and toward the end of the patch becomes much higher. This is
clearly a result of the generation of internal waves with higher wavenumbers. We also
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show in figure 2(d,e) the energy flux of each mode over the patch according to (3.14).
Clearly, and as suggested by (3.14), energy flux decreases substantially for higher
modes as their group speed is much lower. We would like to note that the focus in
this study is on the case where the bottom wavenumber is twice as large as that of
the internal waves, for which, as we will discuss, the behaviour is a strong function
of the second (downstream) irregularity. The case of the wavenumber of the seabed
undulations being the same as that of internal waves leads to only transmission and
hence a downstream irregularity will not have any effect on the upstream patch (for
a detailed study of different scenarios in this case, including the effect of detuning
i.e. when the resonance condition is not perfectly satisfied, the reader is referred to
Couston, Liang & Alam 2016).

4.2. Patch–wall case
Now let us assume that there is a wall on the downstream of the patch, at the distance
qλb + Lm (where q ∈ N0, i.e. it is a non-negative integer) from the end of the last
ripple (cf. figure 1a). As waves propagate over the patch, a picture similar to figure 2
starts to form. Waves downstream, nevertheless, are reflected back by the wall and
start to interact again with the topography. These left-propagating waves are partially
transmitted, but also partially reflected back toward the wall. It turns out that the
resulting effect is very complicated and a strong function of Lm.

We present in figure 3(a–c) the final steady state transmission/reflection amplitudes
of different modes and energy per unit area over a patch of six ripples with a wall
at the distance Lm/λb = 0, 0.25 and 0.50 respectively. The boundary condition at the
wall is that the horizontal velocity must be zero. By plugging this condition into (3.3)
for a perfectly reflective wall we obtain Tn = Rn. Other parameters of the ripples are
the same as in § 4.1. For Lm/λb = 0, energy goes from mode 1 to higher modes as
the incident wave propagates over the patch. However, interestingly after reflection the
energy entirely goes back to mode 1 such that in the upstream there is no reflected
wave except mode 1. Energy per unit area Ẽ does not change much over the patch.
The spatial evolution of modes for the case of Lm/λb = 0.5 is similar to the case of
Lm/λb= 0, except that in the former the amplitude of mode 1 wave increases over the
patch, resulting in a significant energy increase over the patch toward the downstream
side. For the distance Lm/λb= 0.25, the transmission amplitudes figure is qualitatively
similar to the case of Lm/λb = 0, but the reflection amplitudes figure is very much
different: higher modes remain with non-zero amplitude (with finite energy) at the
beginning of the patch and propagate upstream. This means that higher modes can be
seen upstream of the patch moving toward the left (this is not the case for Lm/λb= 0,
0.5). In this case, Ẽ is highest at the beginning of the patch and decays fast toward
the wall side of the patch. Note that the spatial distribution of energy is periodic
with the wavelength λb and this can be shown to be also the case for each of wave
modes involved. Therefore addition of qλb (q being an integer number) to the distance
between the patch and the wall does not affect the results shown here.

To see the behaviour of energy density per unit area for various Lm, figure 4 shows
energy at the beginning of the patch (solid blue line) and at the end of the patch
(dashed red line) as a function of Lm. Note that Ẽ is a continuous quantity which
varies over the patch and its values at the beginning and end of the patch for different
distances between the wall and the patch are shown to highlight the sensitivity of the
internal waves energy distribution to the patch–wall distance. For Lm/λb = 0, 0.5 we,
in fact, obtain minimum energy at the beginning of the patch. As shown in figure 3,
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FIGURE 3. (Colour online) Variation of transmission amplitude (T), reflection amplitude
(R) and the normalized energy per unit area Ẽ over the patch of nr = 6 ripples, for a
downstream wall at the distance (a) Lm/λb = 0, (b) Lm/λb = 0.25 and (c) Lm/λb = 0.50,
from the end of the patch. Plotted are the mode 1 (——, blue), mode 3 (——, red),
mode 5 (– – –, red), mode 7 (— · —, magenta) and mode 9 (——, black) internal waves.
Higher modes exist, but are not shown here. Note that for Lm/λb= 0, 0.5 (a,c) through a
complicated set of chain interactions all the energy eventually goes back to mode 1 on the
upstream side of the patch. In this case an upstream observer does not see any trace of
the patch of ripples. To this observer, everything looks like a perfect reflection from the
wall in the absence of seabed irregularities. For any other value of Lm/λb, the upstream
observer sees many other internal wave modes besides mode 1.

in both cases only a mode 1 wave appears upstream: incident and reflected waves
together form a mode 1 standing wave upstream of the patch. Energy density near
the wall, however, is maximum for Lm/λb = 0.5 and minimum for Lm/λb = 0. The
other important extremum is Lm/λb = 0.25 for which Ẽ is maximum upstream as,
in addition to mode 1, several higher-mode waves also reflect back toward the −∞.
The behaviour of the energy upstream is symmetric about Lm/λb = 0.5. Also seen in
figure 4 is that for nr = 6, Ẽ(0) may be affected by a factor of ∼4 depending on Lm.
For nr = 12 (not shown here), it turns out this contrast is as big as 50 times.

To provide an independent cross-validation to the theoretical solution, we present
here a comparison with results from direct simulation of (2.3). To this end, we
used the open source solver FreeFem++ (Hecht 2012) based on the finite element
method (FEM) to solve linear inviscid internal waves problems in two-dimensional
configurations with a rigid lid at the top (see appendix A for details of the numerical
implementation). These ripples have an amplitude of ab= 0.04π m and a wavelength
λb = λ1/2 = 4.184 m in order to satisfy the Bragg condition where λ1 is the
wavelength of the incident wave which is mode 1. We consider the case of a
constant Brunt–Väisälä frequency of N = 0.3534 s−1. At the left boundary where the
wavemaker is located, a mode 1 internal wave is imposed through specifying the
streamfunction as ψ(z, t)=ψ0 sin(kzz) cos(ωt) where ω≈ 0.212 s−1, kz= 1 m−1 is the
first mode vertical wavenumber and ψ0 = 0.013 m2 s−1. Other boundary conditions
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FIGURE 4. (Colour online) Spatial variation of energy per unit area Ẽ over the patch
of bottom ripples (nr = 6) for different distances of the patch from a reflecting wall
downstream. The energy Ẽ is maximum at the beginning (upstream side) of the patch
for Lm/λb = 0.25 and 0.75, and is maximum at the wall side (downstream side) of the
patch for Lm/λb = 0.5.
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FIGURE 5. (Colour online) Comparison of energy per unit area (E∗) from analytical
solution (——), FEM simulations (– – –), for respectively Lm/λb = 0, 0.25 and 0.5 in (a),
(b) and (c).

are chosen as free slip at the bottom, a solid wall with no-normal velocity at the
right end boundary and the rigid lid at the top surface. The height and length
of the computational domain are respectively H = π m and the domain length is
Ld = 15λ1 + Lm ≈ 125.513+ Lm m where Lm ≈ 0, 2.092 and 4.184 m. The length of
the domain is chosen such that steady state can be reached. The domain is discretized
with triangular elements with a total number of 33 290 triangles. Also, a second-order
implicit scheme is employed for the time discretization of the wave equation.

The comparison of spatial distribution of energy from theoretical predictions and
those obtained by direct simulation from our FEM code is shown in figure 5 for
Lm/λb= 0, 0.25 and 0.50. In this figure, E∗ is the total energy normalized by the total
energy of the incident wave (E`) and is calculated as E∗ = (Ek

+ Ep)/E`, where the
kinetic energy (Ek) and the potential energy (Ep) are Ek

=
∑
∞

n=1 1/2ρ0
∫ H

0 (u
2
n +w2

n) dz
and Ep

=
∑
∞

n=1

∫ H
0 (g

2ρ ′2n )/(2ρ0N2) dz (note that Ẽ is the spatial average of E∗). E∗ is
chosen here for validation because the horizontal spatial average (Ẽ) of the energy
over the patch is not possible from numerical simulation results and would cause
errors. Three ripples (instead of six as before) are chosen for validation because this
requires a smaller domain and a smaller simulation time to reach steady state. As
can be seen, theoretical predictions and direct simulation results show good agreement
with each other.
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FIGURE 6. (Colour online) Effect of the wall reflectivity on the transmission (T) and
reflection (R) amplitudes and on the normalized energy per unit area Ẽ. Panels (a)–(c)
respectively correspond to wall reflectivity of 100 % (i.e. perfect reflector and the same
as figure 3c), 50 % and 0 % (i.e. perfect absorber) and in all three cases Lm/λb = 0.5
which corresponds to the maximum Ẽ at the end of the patch L= nλb. Plotted in figures
for T, R are mode 1 internal wave (——, blue), mode 3 (——, red), mode 5 (– – –, red),
mode 7 (— · —, magenta) and mode 9 (——, black).

Clearly the amplification of the energy occurs due to the reflection from the
wall and hence the observed energy directly depends on the reflectivity of the wall.
The considered wall in this study is a simplified model for a finite-height ridge
or a continental slope in real oceans, which have a finite height and hence cannot
fully reflect the incident waves. This warrants the need to assess the effect of the
reflectivity index on the energy amplification. To better understand this effect, we
consider 3 different cases for which the reflectivity index= 100 % (perfect reflection),
50 % and 0 % (perfect absorption). This is shown in figure 6(a–c), where the
transmission/reflection amplitudes of different modes and energy per unit area Ẽ
are plotted for Lm/λb = 0.5 which has the maximum energy amplification at the end
of the patch Ẽ(Lm). The first case of perfect reflection is the same as figure 3(c).
As discussed previously, the transmission and reflection amplitudes are identical and
Ẽ(Lm)≈ 7. If the wall reflectivity index is 50 % (figure 6b) then Ẽ(Lm)≈ 3 and both
T and R decrease while the decrease of the reflection amplitudes is more significant.
Ultimately, zero reflectivity (i.e. the wall is a perfect absorber, figure 6c), means
that the wall has no role and it is identical to a single patch case (see figure 2).
Here, Ẽ(Lm)≈ 1.8 and the transmission amplitude, especially the first mode attenuates
compared to the other two cases. Also, as expected, all reflection amplitudes are
fully zero at the wall and slightly increase towards the beginning of the patch. In
order to further assess the impact of the reflectivity index on the energy distribution,
the energy at the beginning Ẽ(0) and end Ẽ(L) of a six ripple patch is plotted in
figure 7 as a function of reflectivity index, where LM/λb = 0.5. The results show
that with the increase of the reflectivity index the energy amplifies especially at the
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FIGURE 7. (Colour online) Variation of energy per unit area Ẽ at the beginning and end
of a six ripple bottom patch (nr = 6) as a function of the wall reflectivity index. The
energy Ẽ is calculated for patch–wall distance of Lm/λb = 0.5.

end of the patch. Results from figures 6 and 7 generally suggest that the strength of
amplification has an algebraic dependence on the wall reflectivity index.

We would like to briefly comment about the effect of viscosity here. Viscous
dissipation within linear internal waves can be estimated by a linear approximation
(Baines 1998, § 4.7) and can be shown to be very small. For instance for a mode 1
internal wave under the parameters of the case presented in figure 5 and for a
water depth of H = 100 m, it can be shown that the rate of decay of vertical
displacement is less than one per cent over the distance of 1000 km. Clearly if
waves are steep, then nonlinear effects dominate the viscous dissipation and results
potentially orders-of-magnitude different from the linear approximation may be
obtained. In an extreme nonlinear case of the wave breaking, almost the entire energy
of a wave is dissipated over a distance comparable to the wave’s wavelength (Gargett
& Holloway 1984; Lamb 2014).

Turbulent (eddy) viscosity (νt) is much higher than molecular viscosity (ν) in the
ocean, especially in the mixed layer. However, it should be noted that the turbulent
viscosity only bridges between the turbulent fluxes (i.e. turbulent momentum fluxes)
and the mean shear rate (S). For example, in a one-dimensional flow u′w′ = −νtS,
where u′w′ is the turbulent momentum flux (Reynolds stress) and in our study S =
∂U/∂z where U is the mean horizontal velocity and z is the vertical distance from
the reference at the bottom. Regardless of the value of the turbulent viscosity (νt), the
fluxes are a function of S, which is low in our study so this consequently minimizes
the production of the turbulent kinetic energy and turbulence effects and hence the
dissipation of energy in the flow.

To assess the effect of viscosity on the mechanism elucidated in this article,
we investigated the results of simulations, both inviscid and in the presence of
viscosity with kinematic viscosity ν = 10−6, 10−3 m2 s−1, performed with the open
source code SUNTANS (the Stanford unstructured non-hydrostatic terrain-following
adaptive Navier–Stokes simulator). SUNTANS is a finite volume solver developed for
simulation of three-dimensional non-hydrostatic internal waves in the ocean (Fringer,
Gerritsen & Street 2006) and since its introduction in 2006, it has undergone
cross-checks extensively (e.g. Fringer & Zhang 2008; Wang et al. 2009; Kang
& Fringer 2012). SUNTANS only uses a free surface boundary condition, and
therefore does not completely agree with our theory (which is based on the rigid-lid
assumption). However, it enables us to numerically study the effect of viscosity. The
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domain dimensions for our simulations are H= 100 m and L= 14λ1= 3728.5 m and
chosen such that there is enough time for the steady state to be reached. The grid
resolution is 1000 × 100 in respectively the x and z directions. Given the different
domain dimensions between the FEM set-up and SUNTANS, the essential variables
(such as bottom height to depth ratio, µ, etc.) are chosen such that they match with
the FEM set-up. Thus the three ripples have an amplitude of 4 m. The buoyancy
frequency is chosen as N = 0.0443 s−1 for an incident mode 1 wave with frequency
ω = 0.0266 s−1 and vertical wavenumber m1 = 0.0315 m−1 which result in the same
µ as used in the FEM simulation. Also, the cross-shore velocity amplitude is U0 =

0.013 m s−1. All the boundary conditions imposed in SUNTANS are similar to FEM
simulation except the free surface on the top. As mentioned earlier, the free surface is
used as the boundary condition in the numerical simulations because SUNTANS does
not offer rigid-lid boundary condition. Our simulations show a maximum difference
of less than 7 % between inviscid and viscous simulations with ν= 10−6, 10−3 m2 s−1,
confirming that the effect of viscosity is negligible for the current study.

4.3. Two patch case
Now let us consider a second patch of ripples downstream of the patch under
investigation (figure 1b). For presentation purposes, we assume that the ripples in both
patches have the same normalized wavenumber nb = 2 and amplitude ab = 4π/100.
The distribution of energy on each patch, and in the area between the two patches,
similar to the case of § 4.2 is strongly dependent on Lm (the distance between the
two patches). Distribution of energy density Ẽ for Lm/λb= 0, 0.125, 0.250, 0.375 and
0.500 is shown in figure 8(a) for two identical patches of nr = 4 seabed ripples. Note
that the actual distance between the patch in each case is qλb+Lm (q positive integer)
where in the case of figure 8(a), q= 4. But as before q does not play any role and
it is Lm that determines the energy distribution. Figure 8(a) shows that for Lm/λb= 0,
0.125 and 0.250 energy continuously increases over two patches and is constant in
the area between the two patches. For Lm/λb = 0.375 and 0.50, Ẽ increases over
the first patch, but decreases over the second patch in such a way that it gains a
maximum in the area between the two patches: that is, energy is trapped in this
area. To see the behaviour of the amplitude of each mode, we show in figure 8(b,c)
the spatial evolution of the amplitudes of transmitted and reflected resonant modes
(first five modes, i.e. modes 1, 3, 5, 7 and 9) over the two patches of ripples with
Lm/λb = 0.50. Similar to the energy density, amplitudes of all modes consistently
increase over the first patch, and in a similar way decrease over the second patch.
Interestingly, at the end of the second patch, all the energy is back to the original
incident wave energy: an upstream/downstream observer sees absolutely no trace of
the two seabed patches on the upstream/downstream wave field.

The behaviour of energy is also a function of the number of ripples in the patch as
well as the number of ripples in the neighbouring patch. For a total number of ripples
in both patches equal to nr= 8, we show in figure 8(d–f ) how energy density changes
at the beginning of the first patch Ẽ(0), between the two patches Ẽ(nr1λb) and at the
end of the second patch Ẽ[(nr1+ nr2+ q)λb+Lm]. In all cases, energy at the beginning
of the first and at the end of the second patch obtains a global minimum for Lm/λb=

0.5. For the area between the two patches, energy is maximum for Lm/λb = 0.5. The
energy density upstream and downstream of the two patch system is only a function
of the total number of ripples and not a function of how they are distributed in the
two patches.
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FIGURE 8. (Colour online) (a) The spatial evolution of energy density Ẽ in a two patch
system with nr1 = nr2 = 4 (cf. figure 1) for different distances between the two patches
Lm/λb= 0, 0.125, 0.25, 0.375 and 0.5. The normalized amplitude of seabed corrugations is
0.04. The maximum energy between the two patches is obtained when Lm/λb=0.5 and the
maximum energy at the end of the second patch is obtained for Lm/λb = 0. (b,c) Spatial
evolution of amplitude of the first five resonant modes (modes 1, 3, 5, 7 and 9) over
the two patches of ripples with Lm/λb = 0.5. (d–f ) Evolution of energy as a function of
distance between two patches (d) at the beginning of the first patch, (e) between two
patches and ( f ) at the end of the second patch.

We also consider the effect of the change in the wavenumber of the second patch as
shown in figure 9 for two cases where the second patch wavenumber is (i) kb2= 2.03
(left column) and (ii) kb2 = 2.1 (right column). Compared to figure 8, it can be seen
that there is still an increase of energy between two patches, while the case where all
the waves except the incident mode disappear is not observed.

5. Concluding remarks
We presented here, analytically supported by direct simulation, that the energy

distribution of internal waves over a patch of seabed undulations can be strongly
dependent upon the distance of the patch to the neighbouring seabed features.
Specifically, we considered two neighbouring features: a second patch of seabed
undulations and a vertical wall (a perfect reflector). We showed that accumulation
of internal waves energy may be an order of magnitude larger or smaller at specific
areas of a patch, solely based on where the neighbouring feature is. The wall or the
second patch, with specific properties and placement, can also completely cancel the
effect of the first patch in such a way that upstream and downstream observers see
no trace of the patch in their local wave field. The phenomenon elucidated here may
influence, potentially significantly, the distribution of internal waves energy near steep
oceanic ridges and continental slopes. In our case studies and simulations, without
loss of generality, we considered an incident mode 1 internal wave. Similar results
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FIGURE 9. (Colour online) (a) The spatial evolution of energy density Ẽ in a two patch
system with nr1 = nr2 = 4 and kb1 = 2 and kb2 = 2.03 (cf. figure 1) for different distances
between the two patches Lm/λb= 0, 0.125, 0.25, 0.375 and 0.5. The normalized amplitude
of seabed corrugations is 0.04. (b,c) Spatial evolution of amplitude of the first five
resonant modes (modes 1, 3, 5, 7 and 9) over the two patches of ripples with Lm/λb= 0.5.
(d) The spatial evolution of energy density Ẽ in a two patch system with nr1 = nr2 = 4
and kb1= 2 and kb2= 2.1 for different distances between the two patches Lm/λb= 0, 0.125,
0.25, 0.375 and 0.5. (e, f ) Spatial evolution of amplitude of the first five resonant modes
(modes 1, 3, 5, 7 and 9) over the two patches of ripples with Lm/λb = 0.5.

are obtained for an incident internal wave of any mode if proper conditions between
the seabed and the incident internal wave hold.

It is worth noting that density stratification in real oceans is seldom linear and
therefore N is not constant and is in fact a function of the depth z (e.g. Simpson
1971; Sigman, Jaccard & Haug 2004). The assumption of a linear density profile,
nevertheless, is used extensively either as an approximation to the density profile in
the ocean, or to extract the fundamental physics of internal waves (e.g. Thorpe 1966;
Klymak, Legg & Pinkel 2010; Lim, Ivey & Jones 2010; Bühler & Holmes-Cerfon
2011; Li & Mei 2014; Guo & Holmes-Cerfon 2016). Although a nonlinear density
profile affects the mode shapes of internal waves, the first-order Bragg reflection
and hence the resonance condition are unaffected, i.e. for resonance to occur the
topography wavenumber will still be twice as large as the wavenumber of the
overpassing internal waves. Also, if the number of seabed undulations is large
enough, the entire energy will be reflected. In a recent study, Liang, Zareei & Alam
(2017) studied the deviation from a linear density profile and it was shown that for
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parabolic and exponential profiles of density, the detuning of higher Bragg reflections
from perfect resonance is negligible.

While practical aspects of the fundamental study presented here are beyond
the scope of the current manuscript, we would like to briefly comment on some
potential applications in real oceans. The oceanic internal wave spectrum ‘occupies a
continuum in scales’, including a large number of waves with different frequencies
and wavelengths which are clearly results of several mechanisms at play including
what was discussed here (cf. Garrett & Munk 1972, 1975). Likewise, the seabed
topography is typically irregular but can be decomposed into its Fourier components
that in many cases have a few dominant peaks (Cox & Sandstrom 1962). Each Fourier
component of the seabed, therefore, can resonate some of the waves in the internal
waves spectrum through exact and near resonance mechanisms. Therefore, it may be
expected that in real oceans with a broadband wave spectrum and a general irregular
topography, multiple resonances occur at the same time leading to a complicated
cascade of energy exchanged between modes and even chaos (e.g. Alam, Liu & Yue
2009b, § 4.4).

Seabed features with periodic or near-periodic structures, as well, are found in
many parts of the ocean (see e.g. Nicolas 2013; Simarro et al. 2015). For example,
the outer shelf of the east China sea (depth of O(100) m) has sand ridges of tens
of metres in amplitude spread over hundreds of kilometres. They are believed to
have formed during the sea level rise some 10 000 years ago (Chang-shu & Jia-song
1988; Wu et al. 2005). Another example is the Sable Island bank off the coast of
Nova Scotia that has a system of ridges of ∼O(10) m tall, with a wavelength of
∼O(2000) m located in a water depth that reaches up to 80 m (Boczar-Karakiewicz,
Amos & Drapeau 1990). At a larger scale, abyssal hills are ubiquitous, for instance
covering some 80 % of the Pacific (abyssal hills are sometimes referred to as the
most widespread topological features on the Earth Menard 1964; Buck & Poliakov
1998).

Internal gravity waves have also been observed in a wide range of wavelengths.
For instance, in the Baltic and North sea, there have been a number of observations
of short-period internal waves with wavelengths of ∼5000 m with ∼10 m maximum
vertical displacement, and off the coast of Japan, short internal waves have been
reported with ∼2000 m wavelengths and 82 m maximum vertical displacement (see
Roberts 1975, and references therein). In both areas, diurnal and semi-diurnal waves
have also been observed and reported, but with much larger wavelengths.

Internal waves are well known to be significantly affected by seabed irregularities
(e.g. Baines 1998). The influence may be through linear and/or nonlinear mechanisms
(e.g. resonance, instabilities, etc.). Internal waves, on the other hand, may be in charge
in shaping sand ridges in the shallower waters of continental shelves in areas covered
with sand and soft mud (e.g. Boczar-Karakiewicz et al. 1990). Internal waves are also
known to (usually partially) reflect back from straight and steep slopes, unless in the
case of critical reflection in which the reflected beam is along the slope and therefore
does not carry energy away from the boundary (Cacchione & Wunsch 1974; Eriksen
1982; Maas et al. 1997).

The present study highlights the importance of coupling between these two effects:
(i) internal waves scattering by the topography and (ii) the reflection from steep
slopes. The trapping and amplification mechanism studied here may lead to spikes
in the oceanic internal waves spectrum near continental slopes and steep oceanic
ridges (e.g. 3 km tall Kaena Ridge in Hawaii (Klymak, Pinkel & Rainville 2008))
that are next to small mean-seabed irregularities. As discussed above, in real ocean
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both internal waves and the seabed contain typically a broad band of wavenumbers.
Since the phenomenon studied here is linear, therefore the effect of each Fourier
mode of the seabed on corresponding mode(s) of the internal wave spectrum must
be superimposed to obtain the overall picture.
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Appendix A. Details of direct simulation implementation
A.1. Spatial and temporal discretization

We use FEM to solve for the streamfunction field in the whole domain. To that end,
we first introduce an auxiliary variable φ and rewrite the governing equation as:

∂2φ

∂t2
+N2 ∂

2ψ

∂x2
= 0, (A 1)

φ −1ψ = 0. (A 2)

In order to solve for the unknown (φ, ψ) using FEM, we rewrite the system in its
weak form using test function (φ∗, ψ∗). The variational formulation (after integration
by parts) thus reads∫∫

Ω

[
∂2φ

∂t2
φ∗ −N2 ∂ψ

∂x
∂φ∗

∂x
+ φψ∗ +∇ψ : ∇ψ∗

]
dΩ

+

∫
∂Ω

[N2(ψnx)φ
∗
− (∇ψ · n)ψ∗] d(∂Ω)= 0, (A 3)

where n is the outward normal vector to ∂Ω and Ω and ∂Ω are respectively
the bulk and boundaries of the numerical domain. As the next step, this equation
is discretized in time using a second-order implicit scheme. With the notation
(φ(tn), ψ(tn)) = (φn, ψn) and the time step δt, the variational formulation thus
becomes∫∫

Ω

[
(φn+1φ

∗
− 2φnφ

∗
+ φn−1φ

∗)/2δt2
−

N2

2

(
∂ψn+1

∂x
+
∂ψn−1

∂x

)
∂φ∗

∂x

]
dΩ

+

∫∫
Ω

[
1
2
(φn+1 + φn−1)ψ

∗
+

1
2
∇ψn+1 : ∇ψ

∗
+

1
2
∇ψn−1 : ∇ψ

∗

]
dΩ

+

∫
∂Ω

[
N2

2
(ψn+1nx +ψn−1nx)φ

∗
−

1
2
(∇ψn+1 +∇ψn−1) · nψ∗

]
d(∂Ω)= 0. (A 4)

To close the system, we apply the following boundary conditions:

(i) The upper and lower boundaries are the streamlines ψn+1 = 0 at all times.
(ii) The inlet is a wavemaker generating a right-travelling incident mode 1 interval

wave: ψ0(z, tn)= ψ̂0 sin(kzz) cos(kxxin −ωtn).
(iii) The outlet is a perfectly reflecting wall, i.e. u= 0. Therefore, ψ is constant along

the wall. Given that the wall intersects the upper and lower boundaries, we have
ψ = 0 for the reflecting wall.
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This equation is then projected on a set of shape functions (which are the same as
the test functions) chosen as quadratic P2 elements over the triangle which constitute
the mesh. We apply a mesh refinement in the region close to the ripples and the
wall, where the interactions between the internal waves and the domain features are
important. The spatial discretization and the time resolution of the resulting discrete
equations is done via the open source finite element solver FreeFem++ (Hecht 2012).

Note that the numerical domain is chosen long enough for the establishment of the
steady state. A study of the inlet distance to the first ripples reveal that L = 15λ1
is sufficient; λ1 being the wavelength of the incident mode 1 wave. Last, in order
to observe Bragg reflection, the seabed corrugation has a wavelength λb = λ1/2. We
choose δt = 0.1 s (note that the scheme is unconditionally stable, but the precision
depends on δt) for which convergence is shown to occur and we solve for a time
domain t ∈ [0, T] where T ∼ 2L/Cg, with Cg the group velocity of mode 1 incident
wave. In other words, we stop the simulation approximately when the incoming energy
from the wavemaker has been reflected by the wall and returned to the inlet.

A.2. Computation of the energy distribution
In order to compute the kinetic and potential energy distribution over the patch
and compare with analytical predictions, we first need to obtain the velocity
and density fields through the following (discretized) equations: un+1 = ∂ψn+1/∂z,
wn+1 = −∂ψn+1/∂x, ρ ′n+1 = ρ

′

n−1 − (N
2ρo/g)((∂ψn+1/∂x) + (∂ψn−1/∂x))δt where ρo is

the density at the free surface. At the steady state, Ek(x) and Ep(x) are the kinetic
and potential energies of an internal wave integrated in the vertical z-direction. They
are computed by averaging the instantaneous energies Ek

n+1 and Ep
n+1 over the last

p-periods Tp = p(2π/ω) (typically p = 5). The integrals are approximated by a
trapezoidal rule in time and a three-point Gauss quadrature in z over each triangle
edge adjacent to the vertical boundary, i.e.:

Ek(x)=
1
Tp

t=Tp∑
t=0

{
Nt∑

s=1

3∑
g=1

ρo

2H

[
wn+1(zg)

2
+wn(zg)

2

2
+

un+1(zg)
2
+ un(zg)

2

2

]
βg

}
δt (A 5)

Ep(x)=
1
Tp

t=Tp∑
t=0

{
Nt∑

s=1

3∑
g=1

g2

2HρoN2

[
ρ ′n+1(zg)

2
+ ρ ′n(zg)

2

2

]
βg

}
δt, (A 6)

where zg and βg are respectively the Gauss quadrature points and their associated
weights. Here Nt = 38 is the number of triangle edges used to discretize the inlet
lateral boundary.
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