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SUMMARY
This paper presents a new planar passive dynamic model
with contact between the feet and the ground. The Hertz
contact law and the approximate Coulomb friction law
were introduced into this human-like model. In contrast
to McGeer’s passive dynamic models, contact stiffness,
contact damping, and coefficients of friction were added
to characterize the walking model. Through numerical
simulation, stable period-one gait and period-two gait cycles
were found, and the contact forces were derived from
the results. After investigating the effects of the contact
parameters on walking gaits, we found that changes in contact
stiffness led to changes in the global characteristics of the
walking gait, but not in contact damping. The coefficients
of friction related to whether the model could walk or not.
For the simulation of the routes to chaos, we found that a
small contact stiffness value will lead to a delayed point of
bifurcation, meaning that a less rigid surface is easier for a
passive model to walk on. The effects of contact damping
and friction coefficients on routes to chaos were quite small.

KEYWORDS: Passive dynamic; Hertz contact law;
Approximate Coulomb friction law; Chaos; Gait.

1. Introduction
Fallis1 was the first to build a passive dynamic walking model.
McGeer2,3 first introduced the concept of planar passive dy-
namic walking models and built a class of prototypes. Later,
Garcia4 and Goswami5 studied simple compass-like planar
passive walking locomotion, and their research confirmed
that a steep ramp slope leads to bifurcation of the walking
gait. These results were supported by Kurz et al.6 using the
largest Lyapunov exponent and surrogate analysis methods.
Until now, the types of passive dynamic models varied
from 2D to 3D, from simple to complex, and the research
varied from simulations to experiments. An uncontrolled 3D
passive walking model was first made by Coleman et al.7

Kuo’s work8 on extending the planar passive walking model
to allow for the roll motion confirmed that this motion is
unstable. A model using a pelvic body as the passive dynamic
compensator was designed by Wisse et al.9 to stabilize the
yawing and rolling motions. Collins et al.10 successfully built
the first 3D two-legged passive-dynamic machine with knees.
Narukama et al.11 later replaced the arc-shaped feet with flat
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feet in their simple 3D model. Compared to other 3D models,
a complex planar model is easier to study. Wisse12 established
the simplest model with an upper body. His research showed
that the presence of the upper body results in better energy
efficiency and robustness. Safa et al.13 replaced the ramp
slope with stairs using Garcia’s model, and found that the
ramps have more ability for generating stable walking.
Ning14 conducted a systematic study of the gait of a straight
leg model through simulations and experiments. All of these
passive-biped models mentioned above can walk with less
dissipation of energy than traditional robots, such as the
Honda Asimo15 because of their human-like walking gaits.

Improving a human-like walking model requires paying
special attention to the upper body, the hip, the leg formation,
the control laws, and the feet. The shape of the feet and the
collision of the feet are important in passive walking. To our
knowledge, an elastic contact model has never been used to
analyze passive walking. The collisions in most of the models
simulated above are rigid plastic collisions (no-slip and no-
bounce). We estimate that elastic contact will significantly
affect passive walking gaits.

The main aim of our research is to incorporate a more
detailed contact into passive walking to work out the contact
influence on walking gaits. The elastic contact between the
ramp and the feet was examined using the Hertz contact law
and the approximate Coulomb friction law.

2. Model with Non-Plastic Contact
The model we considered was based on the planar model
with straight legs and round feet. The contact laws acted
on the round feet and the ground. The normal contact force
(the Hertz contact model) and tangential contact force (the
approximate Coulomb friction model) acted on the point
when contact occurred.

2.1. Hertz contact law
In a rigid multi-body Newtonian system, the impulse of the
contact force is used to define the recovery coefficient. The
contact duration is set to be zero, so the impaction takes
place and finishes instantly. It is not difficult to calculate the
kinematic parameters, but the contact force cannot be derived
from the process.

An elastic model is needed to calculate the contact force. In
1882, Hertz worked on the contact between two elastic semi-
infinite solids. His work is summarized by Johnson.16 The
Hertz contact model showed that the elastic contact force is
proportional to the three-halves power of the imbedded depth
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Fig. 1. As shown above, OAO ′ is the outline of Body No.1 with
no deformation, and OBO ′. is the outline of Body No. 2 with no
deformation. OCO ′ is the contact line when the two bodies contact
and paste with each other.

of the elastic body. We introduced this Hertz elastic contact
force and a damping contact force into the passive dynamic
walking model to simulate the inelastic collision with energy
cost. Suppose δ = δ1 + δ2 is the imbedded depth of the two
contact bodies, as shown in Fig. 1.

The expression of the normal contact force can be written
as follows:

{
N = 0 if δ ≤ 0
N = kδ3/2 − cδ3/2δ̇ if δ > 0

.

Usually we let k = 106kgm−1/2s−2 and c =
107kgm−3/2s−1, and the collision occurs as the perfect
inelastic collision. If we let c = 0, the collision becomes
the perfect elastic collision. Therefore, parameter c is the
elasticity of the foot and the ground and parameter k is the
rigidity of the foot and the ground.

2.2. Friction law
The Coulomb friction force is proportional to the normal
pressure: f = μN . The friction coefficient μ is a non-
smooth function of tangential relative velocity (Fig. 2). When
relative velocity is not zero, the coefficient of friction and the

relative velocity have opposite signs, and the kinetic friction
coefficient is ±μs ; when the relative velocity is zero, the
friction is static and the coefficient is a multivalued function,
which varies from −μd to +μd . Usually, such a non-smooth
multi-body system is difficult to integrate numerically, so we
replaced the non-smooth part of the Coulomb friction curve
with several cubic functions (Fig. 2) from MSC-ADAMS (a
multi-body system simulation software).17 In our simulation
below, these two relative velocities of friction coefficients are
chosen as vs = 10−4, vd = 10−3, and these are small enough
for our approximation to the Coulomb friction law.

When the tangential relative velocity of the contact point
is vt , the expressions of friction force are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = μdN if vt ≤ −vd,

f =
[
μd + (μs − μd )

(
vt +vd

vd−vs

)2 (
3 − 2(vt +vd )

vd−vs

)]
N if −vd ≤ vt ≤ −vs,

f =
[
μs − 2μs

(
vt +vs

2vs

)2 (
3 − vt +vs

vs

)]
N if −vs ≤ vt ≤ vs,

f =
[
−μs + (μs − μd )

(
vt −vs

vd−vs

)2 (
3 − 2(vt +vs )

vd−vs

)]
N if vs ≤ vt ≤ vd,

f = −μdN if vt ≥ vd .

2.3. Equation of motion
The model we analyzed is a planar passive dynamic walking
model with round feet and straight legs. The general view
of the model is shown in Fig. 3. O ′ is the position of hip;
C1 and C2 are the positions of two legs’ center of mass;
D1 and D2 are the lowest points of both feet, referred to as
the potential impact points. The parameters of the model are
listed as follows: l1 and l2 are the length of two legs; m1 and
m2 are the mass of two legs; J1 and J2 are the moments of
inertia to the mass center of two legs; r1 and r2 are the radii
of two round feet; c1 and c2 are the distance between hip and
the mass center of two legs; γ is the ramp slope; and g is the
acceleration of gravity.

During the walking process, the two feet are imbedded in
the ground, so the model has four degrees of freedom. We
set the OXY axis fixed on the ramp; the X direction moves
horizontally along the ramp and the Y direction moves away
vertically from the ramp. The four generalized coordinates
can be chosen as x0, y0, θ1, θ2. The equations of motion are

Fig. 2. Coefficient of friction in Coulomb model and approximate Coulomb model.

https://doi.org/10.1017/S0263574710000779 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000779


The elastic contact influences on passive walking gaits 789

X

Y

O2D

1D

2C

1C

O′(x0, y0)

G
→

2

G
→

2

G
→

1

f
→
2 N

→
1

f
→
1

N
→

2

θ2

γ

θ1

Fig. 3. Passive dynamic walking model with contact.

derived using Lagrange formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m1 + m2)ẍ0 + m1c1θ̈1 cos θ1 + m2c2θ̈2 cos θ2

−m1c1θ̇
2
1 sin θ1 − m2c2θ̇

2
2 sin θ2 = (m1 + m2)g sin γ

+f1 + f2

(m1 + m2)ÿ0 + m1c1θ̈1 sin θ1 + m2c2θ̈2 sin θ2

+m1c1θ̇
2
1 cos θ1 + m2c2θ̇

2
2 cos θ2 = −(m1 + m2)g cos γ

+N1 + N2

m1c
2
1 θ̈1 + m1c1ẍ0 cos θ1 + m1c1ÿ0 sin θ1 + J1θ̈1

= −m1gc1 sin(θ1 − γ ) + N1(l1 − r1) sin θ1

+f1 [(l1 − r1) cos θ1 + r1]
m2c

2
2 θ̈2 + m2c2ẍ0 cos θ2 + m2c2ÿ0 sin θ2 + J2θ̈2

= −m2gc2 sin(θ2 − γ ) + N2(l2 − r2) sin θ2

+f2 [(l2 − r2) cos θ2 + r2]

.

Ni and fi are the contact forces of both feet; these forces
apply on the lowest point of the feet, which are D1 and D2

in our model. As the lowest points on the feet change, the
points of application of the contact forces also change. The
expressions for imbedded depth δ and contact point tangential
relative velocity vt are written as follows:

{
δi = −yDi = −y0 + (li − ri) cos θi + ri

vti = ẋDi + ri θ̇i = ẋ0 + (li − ri)θ̇i cos θi + ri θ̇i
i = 1, 2.

The contact forces can be derived from the equations given
in Sections 2.1 and 2.2 by using δ and vt . The equations
of motion contain the normal contact and friction forces,
so these are not easy to write in dimensionless form. In
all forthcoming sections, we will describe equations and
parameters using the SI units.

2.4. The walking procedure in programming
The form of the motion equations listed above remains
the same when the model is walking. The transition rules
when the swing foot hits the ground are no longer needed
in this model. Ni and fi need to be changed during the
integration progress. We mark each leg as a swing leg or a
stance leg in a walking cycle. The contact forces can only

be applied to a stance leg. A swing leg swings forward with
no contact forces, so foot scuffing is neglected. In our model
δi = −yDi = −y0 + (li − ri) cos θi + ri , which defines the
distance between the lowest point of the feet and the ground.
We use this distance to change the legs’ roll in the program,

{
stance leg → swing leg when δ > 0 & δ̇ > 0
swing leg → stance leg when δ < 0 & δ̇ < 0

.

In the program for simulating the passive dynamic walking
model, a subfunction is used to estimate which legs are stance
legs.

3. Simulation and Discussion

3.1. Finding stable period-one gait cycles
The stable period-one gait cycles exist under different
model parameters, if the right initial condition is given. The
parameters of a period-one walking cycle are listed in Table I.
The units used are international units. Gravity acceleration
g is 9.8 ms−2. Initial condition q0 contains eight parameters
listed in the last line of the table. The first four parameters
of initial condition q0 represent No. 1 leg’s initial angle,
No. 2 leg’s initial angle, and the initial coordinates of the
hip (x0, y0). The next four parameters of q0 represent the
derivatives of the first four parameters.

The stable period-one gait cycles can be found under the
above conditions. The initial condition is guess based on
Liu’s results.14 The plots of leg angles over two cycles are
shown in Fig. 5. Both legs’ angles versus time are periodic.
The motion of both legs is same because the model is
symmetric, and the second leg’s angle is a half-cycle delayed
from the first leg’s angle.

Figure 6 shows the contact forces over time in one cycle.
The left figure shows the normal contact force and the right
figure shows the tangential contact force. For one cycle in
the left figure, the force magnitude becomes comparatively
large in the beginning of the contact. The force peaks only
for an instant, and remains at the value of gravity during
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Fig. 4. Outline of the program. When the model is walking, at least one leg is a stance leg. The function is stiff, so ode23s in MATLAB R©
is used to integrate these equations.

most of the remainder of the contact period. The wave in the
beginning of the contact is the force in an impact period; the
smooth force represents the rotating period of the stance leg.
For one cycle in the right figure, the magnitude of the force
becomes comparatively negative at the beginning and end of
the contact. In the rotating period, the friction changes from
negative to positive as the foot moves forward to backward.
Here the friction is the same as it is in human walking.

When the initial condition q0 is set to q0 + δq0, the
walking gait will converge to the same cycle if δq0 is
adequately small. The period-one gait cycle is stable in this
example.

3.2. Period doubling and passive dynamic staggering
Period doubling occurs in Garcia’s4 model when the ramp
slope is sufficiently steep. This is also true for our complex
model. The parameters of the period-two gait cycle are listed
in Table II.

The angles of both legs versus time and phase diagram are
shown on the left side in Fig. 7. The normal contact force
over time is shown on the right side in Fig. 7. The left figure
indicates that both legs’ angles versus time are periodic, but
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Fig. 5. Leg angles and leg phase diagram over several steps.

their gaits are different. Under these parameters the model is
symmetric, but the gait is not. This result is the same as that
from Garcia’s passive dynamic staggering.4 The right figure
shows the normal contact forces of the two feet versus time.
In the passive dynamic staggering, the peak values of both

Table I. The parameters and initial conditions of a stable period-one gait cycle.

Model parameters mi li ci ri Ji γ

1 0.4 0.1 0.08 0.0096 0.02

Contact parameters k c vs vd μs μd

106 107 10−4 10−3 0.5 0.4

Initial conditions θ1 θ2 x0 y0 ω1 ω2 vx0 vy0

0.1655 −0.2479 0 0.3950 −1.2565 0.0052 0.4971 0.0486
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Table II. The parameters of period-two gait cycles with higher γ to 0.11 radians.

Model parameters mi li ci ri Ji γ

1 0.4 0.1 0.08 0.0096 0.11

Contact parameters K c vs vd μs μd

106 107 10−4 10−3 0.5 0.4

Initial conditions θ1 θ2 x0 y0 ω1 ω2 vx0 vy0

0.3893 −0.4109 0 0.3737 −2.1141 0.6477 0.7951 0.3162

feet’s normal force are not the same. The peak force of the
leg with a larger swing angle is smaller.

3.3. Influence of contact parameters on walking gaits
In our model, the relationship between model parameters and
walking gait (Table III) is the same as in Ning’s14 results.
However, the results of the influence of contact parameters
on walking gaits have not been demonstrated in any previous
research.

3.3.1. Hertz contact stiffness. The Hertz contact stiffness
represents the rigidity of the ground and the feet. With a

Table III. The model parameters’ effects on walking speed.

Step length Period Speed

c↑ ↓ ↓ ↓
J↑ ↑ ↑ ↓
r↑ ↑ ↑ ↑

higher value of contact stiffness, the deformation of the
impact on the ground decreases (the rigidity of iron is much
higher than wood). Humans walk differently on different
surfaces, and so will the passive dynamic model. The effects
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Fig. 6. Contact force on foot 1 over one gait.

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

L
e
g
 a

n
g
le

s
 (

ra
d

)

 

 

0 1 2 3 4 5 6
0

100

200

300

400

500

600

Time (s)

N
o
rm

a
l 
c
o
n
ta

c
t 

fo
rc

e
s
 (

N
)

 

 
Leg 1

Leg 2

Leg 1

Leg 2

Fig. 7. Period doubling on a steeper ramp slope.
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Fig. 8. The gait length and average period increase as the contact stiffness increases. The increase of the period is much smaller than that
of the gait length, so the changes in periodic time can be ignored here.
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Fig. 9. The effects of contact stiffness on average velocity.

of contact stiffness on the walking gait length, period, and
average speed of hip are listed below. The average speed
is the average speed of hip in X direction in several stable
period-one walking trials.

The contact stiffness changes from 0.5 × 106 to 1.5 × 106.
The contact damping and coefficients of friction are the same
as those in the period-one example in Section 3.1. From
the simulations, the effect of contact stiffness on walking
gaits is obvious. The length of walking gaits (Fig. 8) and
average velocity (Fig. 9) rises with increasing stiffness. The
changes of contact stiffness from 0.5 × 106 to 1.5 × 106 can
increase the average velocity and the length of walking gaits
by about 5%. A passive biped walking model slows down
on a soft ground just like humans. The global characteristics
of walking change with different values of contact stiffness,
including the area of the phase diagram, the period of the
gait, and the peak of the normal contact force.

3.3.2. Contact damping. The Hertz contact damping
represents the elasticity of the ground and the feet. With
a value of the contact damping large enough, the feet have

no-bounce collisions with the slope surface. If the contact
damping decreases to a sufficiently low value, the collision of
the feet and the ground will lead to a large vertical vibration,
and the model will fall down.

In this example, the effects of contact damping on walking
gaits are simulated. The contact damping varies from 1.6 ×
106 to 2.6 × 106. The contact stiffness and coefficients of
friction are the same as in the period-one example from
Section 3.1. It is clear from the simulation that the effects of
contact damping on walking gaits are insignificant. A model’s
walking gaits do not change after the contact damping
increases to a large value, whereas with a very small value
the model will not be able to walk. The average velocity
decreases as the contact stiffness increases (Fig. 11). The
changes of contact damping from 1.6 × 106 to 2.6 × 106

can increase the average velocity and the length of walking
gaits (Fig. 10) by about 2.5%. Less contact damping leads
to contact with more bounces, and the forward inertia makes
the model walk fast. The global characteristics of walking do
not change with different contact stiffness values.

3.3.3. Friction parameters. The following two coefficients of
friction are used in the approximate Coulomb friction law:
the kinetic friction coefficient and the max static friction
coefficient. Usually, the max static friction coefficient is
larger than the kinetic friction coefficient. In simulations, we
consistently altered the two coefficients. As in the period-one
example given in Section 3.1, the walking gait changes can
be neglected when there is an increase in friction coefficients.
On the other hand, the fall in friction coefficients decreases
the model’s stability. When we decrease μs to 0.3 and μd

to 0.2, the swing leg slips on the slope and collision occurs
(Fig. 12). When μs= 0.2 and μd= 0.1, the ground is too
smooth for the model to walk.

3.4. Period doubling and routes to chaos
Both Garcia4 and Goswami5 observed period doubling in
stable walking motions when the slope angle is increased.
Ning’s14 model with round feet also experienced period
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Fig. 10. The gait length decreases as the contact damping increases. When the contact damping is large enough for no-bounce contact, the
gait length will not change. The contact damping has almost no effect on the period.
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Fig. 11. The effects of contact damping on average velocity.

doubling as this model’s parameters are changed. Similarly,
our complex model also experiences the same phenomenon
as the slope angle increases. The graph of period doubling
is shown in Fig. 13. Some new results are derived here by
changing the contact parameters.

3.4.1. Contact stiffness and routes to chaos. With constant
contact damping, friction coefficients, and model parameters,
the period doubling (Fig. 13) changes in a regular pattern
according to different values of contact stiffness. In Garcia’s
simplest walking model, bifurcation happens when γ is more
than 0.015 radians,4 which is quite less than the value of
γ in our model. In contrast, for different values of contact
stiffness, we found that bifurcation starts at a smaller ramp
slope as contact stiffness increases. The contact stiffness in
the plastic collision seems infinitely large, so the bifurcation
happens with a much smaller γ .
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Fig. 12. The stable walking gait with slipping. The inset shows
the enlarged view of the contact procedure. When the coefficients
of friction decrease to certain values, the foot slips on the ground
as the collision of the swing leg and the ground occurs. When
the friction coefficients are large enough for the model to walk,
the global characteristics of walking do not change with different
coefficients.

In Garcia’s results, no persistent gait was found on slopes
much steeper than 0.019 radians. But in our model, the gait
is stable at a much steeper slope because the values of the
contact stiffness are much smaller.

3.4.2. Contact damping and routes to chaos. In the same
way, period doubling for different values of contact damping
is shown in Fig. 14, with contact stiffness and friction
coefficients being constant. We found that the contact
damping has little to do with bifurcation points, but the
collision liberation cannot be neglected with a small contact
damping value. A small contact damping value implies the
presence of legs with nonlinear spring, and the stance leg
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were computed numerically, and the results for different contact
stiffness show that the period doubling point occurs much later.
Lower contact stiffness implies a softer surface or feet, so a softer
contact with the ground will delay period doubling.

will bounce like the flight and passive running in McGeer’s
model.18

3.4.3. Friction coefficients and routes to chaos. In the
approximate friction law, the kinetic friction coefficient is
smaller than the max static friction coefficient, so the two
friction coefficients must be changed together. The period
doubling for different values of friction coefficients is shown
in Fig. 15.

In Wu’s experimental study,19 the 3D walking device
could walk with a smaller minimum ramp angle and a

smaller friction coefficient. Similarly, in this model, the
walker can walk with a larger ramp angle and larger friction
coefficients. As for the walking speed and energy dissipation
are concerned, the contact parameters are related to natural
materials, so it is difficult to calculate the relationship
between energy dissipation and friction coefficients.

4. Conclusions
This paper presented a complex passive walking model with
straight legs and round feet. The Hertz contact law and the
approximate Coulomb friction law were considered in this
model. Examples with period-one and period-two gait cycles
were derived from this walking model. The contact forces
could also be calculated from the numerical simulation.

The effects of changing contact parameters on walking
gaits are summarized in Table IV. The results of variation of
model parameters on walking gaits are the same as in Ning’s
results.14

From the above discussion we conclude the following:

(a) A lower contact stiffness corresponds to soft feet or a soft
surface. The walker walks more slowly and more steadily
on a softer ramp.

(b) Lower contact damping corresponds to elasticity. This
parameter has little connection with the route to chaos. It
represents the vibration of collision. For a small contact
damping value, the movement looks like jumping.

(c) The friction coefficients’ influence is limited to the
slipping of the feet. If the friction is too small, the feet
slip on the ground. It is not connected with the route to
chaos, but shows when bifurcation stops in the diagram.

(d) The effects of contact parameters changes on walking gait
are related to the energy dissipation. For the higher energy
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Fig. 14. The influence of contact damping on the routes to chaos. Comparing the period doubling route to chaos under the three contact
damping parameters, we conclude that contact damping has little effect on the route to chaos and the stability of walking. However, the
contact damping will certainly affect walking characteristics like the initial condition or vibration during walking cycles.
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Fig. 15. Models with three pairs of friction coefficients are simulated here. The model cannot walk when the ramp is steeper than 0.102
radians because the friction coefficient is too small for the walker to stick to the surface. For the models with friction coefficients large
enough to be able to walk, friction has no effect on period doubling.

Table IV. Effects of contact parameters on gait. ↑ represents
increasing, ↓ represents decreasing, − represents an invisible
change. Note the last row. with friction coefficients below certain
level, the feet will slip on the ramp and the model will not be able

to walk.

Step length Period Speed Bifurcation point

When k ↑ ↑ ↑ ↓ Advanced
When c ↑ ↓ − ↓ −
When μ ↑ − − − −

cost, the walking length is larger. This means the contact
stiffness changes the energy cost in the walking period,
while the contact damping and the friction coefficients
have no effect.

(e) The bifurcation of walking gait has some connection with
the walking speed. Bifurcation occurs when the speed is
sufficiently high. This is similar when an adult is leading
a child to walk: the child’s walking becomes chaotic and
it is easy for the child to fall down if the leading speed is
fast.

In the future studies, the contact laws can be extended to
3D models, as the friction and collision in these models are
very important. We expect to conduct such experiments in
the upcoming phases of our research. The contact forces can
then be compared with the experimental results.
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