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Abstract
In a variety of ecosystems, interactions between soil microbiota and weedy plants can strongly affect population and

community dynamics of these plants. However, weed–soil microbe interactions are not well characterized in field-crop

agroecosystems. In Minnesota (USA), we repeatedly applied a fungicide (benomyl) to field plots in a corn–soybean crop

rotation in each of 3 years, and sowed experimental weed communities containing host species for arbuscular-mycorrhizal

fungi (AMF) and non-host species. Benomyl typically suppresses formation of mycorrhizal symbiosis in AMF-host plant

species, and may also affect other soil fungi. We assessed weed density and biomass production, and monitored AMF

colonization rates in each of 3 years. We found that weed density, biomass, community composition and the relative

performance of AMF-host and non-host weed species were all significantly responsive to fungicide applications, although

for all attributes responsiveness was variable. Fungicide application increased total weed density and biomass production in

nearly all cases; most effects were modest but reached a maximum of 49%. Fungicide application also increased the relative

performance of non-host species in most cases, although most effects were again modest. Our findings are the first

assessment of responses by field-crop weeds to direct manipulation of soil microbial communities in a field setting, and

suggest that the population and community ecology of these weeds can be strongly affected by the fungal component of soil

microbiota.
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Introduction

Recently, it has become evident that interactions between

invasive plants and soil microbes can facilitate plant

invasions of nature reserves and range-land agroecosys-

tems, support the persistence of these invasions, and reduce

prospects for restoration of more desirable plant commu-

nities1–3. However, relatively little is known about interac-

tions between field-crop weeds and soil microbes4. Current

trends in management of field-crop agroecosystems are

promoting practices that tend to stabilize the soil environ-

ment, which will likely increase the importance of weed–

soil microbe interactions. These practices include cover

cropping and conservation tillage. Cover crops have been

shown to increase diversity and abundance of arbuscular-

mycorrhizal fungi (AMF)5, affect soil-borne pathogens6,7

and increase microbial antagonists to soil-borne pathogens8.

Conservation tillage methods reduce physical disturbance

of the within-soil hyphal network formed by AMF5,9,10

and thereby promote plant interactions with AMF. If

current trends in field-crop agroecosystems are intensifying

plant–soil microbe interactions in these systems, what might

be the effects on field-crop weeds?

Previous work on weed–soil microbe interactions in

field-crop agroecosystems has emphasized weed interac-

tions with microbial antagonists, chiefly deleterious root-

associated bacteria11–13, AMF14 and bacterial and fungal

predators of weed seeds15. These investigations have

suggested that ‘weed-suppressive’ soils might be devel-

oped; such a soil would harbor antagonistic microbiota

capable of reducing weed pressure to an agronomically-

significant extent16–18. Weed suppression might be exerted

by microbes typically viewed as pathogens13, but strong

antagonistic effects can be also be directly exerted by AMF

on non-host plant species, including certain important field-

crop weeds19–25. The mechanistic basis of such antagonistic

effects has not been established, but may involve induction

of necrosis in seedlings of non-host species19.

In addition to reducing weed abundance through

‘weed suppression’, interactions with soil microbiota

may affect diversity and distribution of biomass in weed

communities. It is now thought that the predominant
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effect of plant–soil microbe interactions is to increase plant

community diversity26–28. At least two mechanisms can

lead to this outcome: negative plant–soil feedback pro-

cesses can limit abundance of potentially dominant

species3, and increased microbial diversity and abundance

can support plant diversity by providing essential mutual-

ists to increasing numbers of plant species29–32. Microbial

effects on weed community diversity are of interest because

such diversity may significantly affect a variety of im-

portant properties of field-crop agroecosystems, including

capacities for soil nutrient cycling and biodiversity

conservation33–37.

However, very little is known about interactions of field-

crop weeds with soil microbiota under field conditions.

In the study reported below, we addressed this knowledge

gap by manipulation of certain soil microbiota in experi-

mental weed communities established in corn and soybean

crops, applying a soil fungicide to reduce diversity and

abundance of soil fungi. We used a fungicide, benomyl,

which has been used extensively for this purpose in other

ecosystems. Benomyl has been repeatedly shown to alter

soil fungal communities, to thereby affect plant population

and community processes, and to primarily affect AMF38.

Moreover, it has been shown to have only modest arti-

factual effects on nutrient cycling and non-fungal soil

biota39,40, and, overall, to have fewer drawbacks than other

methods for manipulating soil fungal communities in large-

scale field experiments38. From current understanding of

AMF–plant interactions, we hypothesized that suppression

of this group of soil fungi would change the composition

of experimental weed communities in corn and soybean

crops, reduce performance of AMF-host weeds relative to

non-host species, and reduce diversity and evenness in

these weed communities.

Materials and Methods

Field experiments

All field experiments were carried out at the University of

Minnesota Experiment Station (Rosemount, MN, 44� 410N,

93� 040W, well-drained Waukegan silt loam). The experi-

mental field was planted with a cover crop (winter rye

(Secale cereale L.), hairy vetch (Vicia villosa Roth), field

pea (Pisum sativum L.)) in autumn 1999; then, in spring

2000, cover-crop regrowth was suppressed with glyphosate

applications and rototilling. Permanent plots (2 mr3 m)

were marked and benomyl fungicide (Benlate SP; E.I. du

Pont de Nemours and Co., Wilmington, DE) applications

were begun on 25 May 2000. Fungicide was applied as a

soil drench at 2.5 g a.i.m - 2; control plots received equal

amounts of water. Fungicide applications were made at

biweekly intervals until 17 July 2000. Plots were planted

with a no-till drill on 7 May 2001; these same plots were

rototilled by hand tiller and planted with a no-till drill

17 May 2002. Biweekly benomyl applications to plots

receiving fungicide resumed immediately after tillage. In

2002, benomyl rate was increased to 3.75 g a.i.m - 2,

because the previous rate (2.5 g a.i.m - 2) had weak effects

on AMF infection rates in 2001 (see Table 3). Soybean

(Glycine max (L.) Merr. ‘Surge’) and corn (Zea mays L.

sethoxydim resistant) were planted on 7 June 2000, 29 May

2001 and 17 June 2002; soybean was sown in rows (20 cm

spacing) with a conservation tillage drill, while corn was

sown with a standard drill in 76 cm rows.

Due to logistical constraints on crop planting operations,

we conducted two separate experiments in adjacent sections

of the experimental field. One experiment had the crop

sequence soybean/corn/soybean in 2000, 2001 and 2002,

respectively, while the other experiment followed the

sequence corn/soybean/corn in the same years. In each

experiment, fungicide or control treatments were applied to

plots in a randomized block design with 10 replicates; plots

received those same treatments in 2000–2002. No nutrients

were applied to plots, as recommended by soil tests (based

on 20 5 cm by 15 cm soil core samples collected system-

atically across the experimental site). At the start of the

experiment, soils contained 4.3% organic matter, 33mg g - 1

available P (Bray 1 test), 67mg g - 1 potassium, 3.3mg g - 1

NO3-N, and had a pH of 7.2. In 2000 and 2001, certain

grass weeds (not part of experimental weed communities)

were highly abundant in experimental plots; in accordance

with standard agronomic practice, these weeds were

suppressed by a selective grass herbicide application

(Poast, BASF, Floram Park, NJ) on 22 July 2000 and 28

June 2001 to all plots at a standard rate (2.34 l ha - 1). In

2002, grass weeds were less abundant and no herbicide

was applied.

Weed seeds were sown in the entire area of each plot

immediately after crop planting. In 2000, laboratory

germination percentages were used to determine seeding

densities (Table 1) sufficient to achieve an expected seed-

ling density of 125 m - 2, evenly divided between AMF-host

and non-host species. In 2001 and 2002, sowing densities

were increased to an expected seedling density of 175

seedlings m - 2, again evenly divided into AMF-host and

non-host species (Table 1). Heavy rains occurred after weed

planting in 2001 and emergence of most species was very

limited; accordingly, all species were replanted at the same

seeding rate on 26 June 2001. After planting, a 0.5 m2

subplot was marked within each plot, and all seedlings of

sown experimental weed species within this subplot were

marked. In each plot, surviving weeds were counted and

aboveground biomass harvested when most weed species

were beginning to flower (15 August 2000, 21 August 2001,

28 August 2002). Biomass was oven-dried and weighed

from 3 to 7 days at 60�C.

In 2000 and 2002, aboveground biomass of each crop

was estimated at the time of weed biomass harvest by

clipping a sample of crop plants at soil level. In soybean

plots, soybean plants within a section (30 cm) of row were

harvested; in corn plots, three plants were harvested. Crop

biomass was oven-dried and weighed. In 2001, crop

biomass was harvested on 19 September 2001.
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AMFcolonization assays

In 2000 and 2001, root samples of the strong AMF host

Ambrosia artimisiifolia L. (AMBEL, see Table 3) were

collected by plot in late summer to assess fungicide effects

on AMF colonization levels. In 2002, in addition to

A. artimisiifolia, root samples of soybean and several

additional weed species (Abutilon theophrasti Medik.

(ABUTH), Sida spinosa L. (SIDSP), and Solanum nigrum

L. (SOLNI)) were collected at the time of weed biomass

harvest to assess mycorrhizal colonization. In all years,

plant roots were held on ice after collection, then cleaned

and frozen. Roots of each species were subsampled and

stained with aniline blue41. Roots were examined micro-

scopically (200r) to assess mycorrhizal root colonization

(hyphae, arbuscules, and vesicles) using the magnified

intersection method42.

Disease assays

Soil from the Rosemount Experiment Station was collected

and stored in a cooler for 3 months. At time of planting, soil

was evenly mixed 1 : 3 : 3 soil : sterile sand : vermiculite

(approx. 14% inoculum). This mix was placed in clean pots

(3.8r18 cm). Seeds of five weed species (Abutilon

theophrasti, Amaranthus retroflexus L., Ambrosia artemi-

siifolia, Chenopodium album L. and S. nigrum) were

surface-sterilized (5% sodium hypochlorite) for 5 min and

rinsed well, planted, and covered with additional vermi-

culite. Pots were arranged in a randomized complete

block with 5 speciesr2 treatmentsr10 replicates = 100

pots. Germinating seedlings were thinned to 1 seedling

pot - 1. At 10 and 24 days after planting, benomyl was

applied to half of the pots at a standard rate of 2.5 g a.i.m - 2;

water was applied to the remaining (control) pots. All pots

were watered daily for 5–6 weeks. After 6 weeks, plants

were harvested for biomass and roots were scored for

disease incidence/severity by an experienced observer.

Roots that were blemish-free and not discolored were

classified as non-diseased; roots classified as diseased

showed discoloration and lesions consistent with microbial

infections by common soil-borne pathogens (Fusarium,

Phytophthora, Pythium, etc.).

Statistical analyses

Separate analyses were carried out for each year of the

study (2000, 2001 and 2002), because of substantial

differences among weed communities establishing in each

year, despite nearly uniform seedling treatments (Table 1).

Multi-response permutation procedure (MRPP) was used to

test fungicide effects on weed community composition;

MRPP provides a robust non-parametric alternative to

MANOVA43. ANOVA was used to test fungicide effects on

weed community attributes (total density, biomass and

diversity). Mixed-model ANOVA was used to test dif-

ferential effects of fungicide treatment on AMF-host

and non-host weed species; species within each category

was considered as a random factor. All ANOVA analyses

were done with SAS44; MRPP was done with Pcord version

4 (http://home.centurytel.net/~mjm/pcordwin.htm; visited 4

August 2006). Crop biomass production was used as a

covariate in most ANOVA analyses, to focus analysis on

direct effects of AMF on weeds, rather than effects

mediated through crop growth.

Results

Weed community attributes

Fungicide applications had little effect in the first year of

application (2000, data not shown), but significantly

affected weed density and biomass during the second

(2001, Fig. 1) and third (2002, Fig. 2) experimental years.

In the second year, fungicide increased total weed density

by 34% in corn (P = 0.039, ANOVA), but only slightly in

soybean; total weed biomass was not significantly increased

in either crop. Total weed density in the third year was

moderately increased by fungicide in both crops but only

the soybean effect approached significance (P = 0.056,

ANOVA). Fungicide increased total weed biomass in corn

by 49%, but had little effect in soybean.

Fungicide also affected weed community composition in

the second (Fig. 3) and third years (Fig. 4). The distribution

of density among weed species was altered by fungicide in

corn in the second year (Fig. 3a; P = 0.013, MRPP), and a

similar but marginally non-significant effect occurred in

soybean in the third year (Fig. 4b; P = 0.10, MRPP). The

distribution of biomass among species was affected by

Table l. Seeding rates (seeds m - 2) and composition of experi-

mental weed communities.

Weed species 2000 2001 2002

AMF-host

Abutilon theophrasti 10 10 10

Ambrosia artimisiifolia 20 20 20

Cirsium arvense 10 10 10

Euphorbia maculata 30 30 30

Galium aparine 5 5 5

Hibiscus trionum 10 0 0

Malva parviflora 5 5 5

Plantago lanceolata 80 80 80

Sida spinosa 5 10 10

Solanum nigrum 40 40 40

Solanum ptycanthum 0 40 40

Non-host

Amaranthus retroflexus 20 20 20

Brassica nigra 5 10 10

Chenopodium album 80 80 80

Lepidium campestral 5 5 5

Mollugo verticillata 30 30 30

Polygonum lapathifolium 40 60 60

Portulaca oleracea 20 20 20

Rumex crispus 5 10 10

Thlaspi arvense 5 0 0
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fungicide in the corn crop in the third year (Fig. 4c;

P = 0.014, MRPP). In both years, fungicide effects on both

density and biomass production were manifest as modest

responses (Figs 3 and 4) in most of the 11 and 6 weed

species analyzed in second and third years, respectively.

Diversity (Shannon–Weiner)45 values were calculated for

weed communities developing in the second and third

years. Calculations were based on the same weed species in

all plots (11 and 6 in second and third years, respectively)

and therefore treatment effects on diversity indicate effects

on the evenness of the distribution of density or biomass

among weed species. Fungicide did not significantly affect

weed community diversity (Table 2), except in corn in

2001, where fungicide caused the distribution of weed

density to become more uneven (P = 0.02, ANOVA).

Relative performance ofAMF-host and non-host
species

In the second year, fungicide application did not signifi-

cantly affect relative performance of the two classes of

weeds (Fig. 5). In the third year, strong effects were evident

in soybean (Fig. 6), where fungicide significantly reduced

the performance of AMF-host species relative to non-host

species, affecting both density and biomass (P = 0.004 for

density and P = 0.01 for biomass, fungicide by species type

interactions, ANOVA). AMF-host species were less dense

than non-hosts in both treatments, and fungicide increased

the differential: AMF-host density was 80% of non-host

density without fungicide, but only 41% with fungicide

(Fig. 6a; note log scale). Fungicide also increased the

proportional performance of non-host species with respect

to biomass production (Fig. 6b). Fungicide reduced relative

performance of AMF-host species in the corn crop in

the third year as well, but only the effect on density

approached significance (Fig. 6a, P = 0.08, ANOVA). The

observed increases in the relative performance of non-hosts

resulted from responses of A. retroflexus and C. album; note

that fungicide caused substantial increases in density of

A. retroflexus and C. album in both second and third years

(Figs 3a, 4a and 4b). Most non-hosts were unresponsive

to fungicide; for example, the non-host group in the second

year included Brassica kaber (DC.) Wheeler, Polygonum

lapathifolium L. and Portulaca oleracea L., and neither

density nor biomass of these species was affected by

fungicide. Therefore, the promotion of the relative per-

formance of non-hosts by fungicide was species-specific,

and did not reflect a general response by the non-host

species group.

Fungicide effects onAMFcolonization

To indicate the effect of benomyl applications on mycor-

rhiza formation in AMF-host weed species, AMF coloniza-

tion rate (Table 3) was monitored in A. artemisiifolia in

each year of the study. Fungicide reduced colonization in

all cases, but reductions were moderate and largely non-

significant, approaching or reaching significance in 3 of 6

cases. In 2002, colonization was assessed in three addi-

tional weed species (Psida spinosa, Solanum nigra, A.

theophrasti) and soybean. Generally, colonization was only

modestly reduced in weed species, but was sharply reduced

in soybean (P < 0.01, ANOVA). Evidently, fungicide

applications did have strong effects on some plant species,

but in general only modest reductions in colonization were

observed.

Fungicide effects on disease symptoms

In four of the five species examined, the percentage of

sampled root length showing visible lesions and discolor-

ation was not affected by fungicide treatment; in velvetleaf,

the fungicide reduced infected root length by 40%

(P = 0.02, t-test; data not shown). These results must

be interpreted with some caution, because this study was

conducted in a glasshouse and did not assess cumulative

effects of multi-year fungicide applications. However, these

results suggest that fungicide application did not have

strong effects on pathogen infection for most weed species
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examined in this study, supporting the inference that

fungicide effects result principally from effects on AMF38.

Discussion

We found that weed density, biomass, community compo-

sition and the relative performance of AMF-host and

non-host weed species were repeatedly responsive to ex-

perimental manipulations of soil fungi, with agronomically

significant effects evident after the second and third seasons

of fungicide applications. In the second year, fungicide

applications were associated with increases in weed density

(34% in the corn crop) that significantly increase the risk of

substantial immediate yield loss and persistent increases in

future weed pressure. In the third year, agronomically

significant effects included substantial increases in total

weed density (49% in corn) and increases in the relative

performance of two non-host weeds (A. retroflexus and

C. album) that are often highly problematic in annual

field crop production. These results emerged despite

the relatively low power of our experimental design, and

suggest that the influence of soil fungi on population and

community ecology of field-crop weeds can be large, given

that our fungicide application rates apparently caused only

moderate reductions in AMF symbiosis with AMF-host

weed species (as indicated by colonization levels).

Our findings and results from previous experimental use

of benomyl in a variety of plant communities38,46–48,

suggest that suppression of interactions with mycorrhizal

fungi was the primary effect of our applications of benomyl

fungicide. We note, however, that our observation of weak

fungicide effects on disease symptoms does not exclude the

possibility that other pathogenic or saprophytic fungi were

functionally important to our observed results. With this

caveat, our results strengthen a growing base of evidence

that AMF can have important influences on the composition,

diversity and agroecological functioning of weed commu-

nities in field crop agroecosystems. In glasshouse experi-

ments, AMF symbiosis in field crop weeds has been shown

to increase growth, seed production and seed quality49–54,

and substantial variation among field-crop weed species in

AMF colonization and subsequent growth responses have
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been demonstrated4. Given the wide range of biomass

responses observed among field-crop weed species, it is

possible that AMF could have a substantial effect on the

dynamics of weed communities containing these species,

particularly in agroecosystems that minimize soil distur-

bance and mechanical weed control for soil and water

conservation purposes. In such agroecosystems, AMF are

likely to be more diverse and abundant, and other factors

known to affect weed community dynamics (e.g., selective

tillage) are likely to be less influential.

We note that fungicide effects often differed between

corn and soybean crops, although our design did not permit

evaluation of the statistical significance of observed dif-

ferences. At the close row spacing used in our experiments,

soybean crops produced denser and more closed canopies

than corn crops. Our observation that weed interactions

with soil fungi were apparently modulated by crop species

is consistent with previous studies. Mycorrhizal respon-

siveness among a set of 14 field-crop weeds was gen-

erally less positive under reduced light and temperature

levels4, a result consistent with the hypothesis that AMF

may typically provide lower net benefits to AMF hosts

when photosynthesis is restricted22. Thus, although our

observations of crop effects on weed–fungi relations must

be interpreted cautiously, these results add to evidence

suggesting the different sub-canopy environments created

by different crop species (or by different planting densities

for a single crop) may significantly modulate the effects of

soil fungi on weed population and community dynamics.

Indeed, AMF interactions with sub-canopy weed plants

may be a very important facet of weed–AMF interactions,
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Table 2. Shannon–Weiner diversity (SWD) means, with standard

error of mean in parentheses, for 2001 and 2002 weed

communities; all means based on 10 plots.

SWD of biomass SWD of counts

2001 2002 2001 2002

Corn

Fungicide 1.11 (0.13) 1.31 (0.05) 1.78 (0.08) 1.26 (0.08)

Control 1.01 (0.12) 1.31 (0.06) 1.98 (0.05) 1.35 (0.06)

Soybean

Fungicide 0.99 (0.13) 0.97 (0.1) 1.77 (0.04) 1.39 (0.04)

Control 1.04 (0.14) 0.76 (0.09) 1.82 (0.13) 1.41 (0.05)
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since small, sub-canopy weed plants can produce consider-

able seed55 and are probably highly important to population

persistence in many weed species

In the third year, we observed a significant increase in

relative performance of non-host species when soil fungi

were suppressed by fungicide, although this effect was

strongly significant only in the soybean crop. A number of

mechanisms may underlie such effects56, including direct

antagonistic effects of AMF or other fungi on non-host

weed species and indirect effects acting via increased

interference with non-host growth by AMF-host species, as

a result of interactions with AMF or other fungi. Our

findings are consistent with a direct effect. AMF or other

fungi may have improved crop growth and thus suppressed

weed growth, but we controlled statistically for such

effects. Soil fungi might have increased interference effects

of AMF-host weeds on non-host species, but in the third

year, AMF-host-biomass responses to fungicide were small

(except for Solanum, for which biomass production was

sharply increased by fungicide) and therefore presumably

interfered with non-host species less strongly in the absence

of fungicide. We note that our results must be interpreted

cautiously as the 2002 analysis addressed a relatively

limited number of weeds (six species), due to limited weed

establishment in that year. Therefore, our results may

reflect idiosyncratic responses of these species to soil fungi

rather than agroecological differences between AMF-host

and non-host weed species. With these caveats, our findings

provide results from a field-crop agroecosystem consistent

with a substantial number of independent previous studies

that have observed powerful direct antagonistic (i.e.,

pathogenic) effects of AMF on a number of non-host spe-

cies, some of which are important agronomic weeds19,22–25.

For example, relative growth rate and survivorship of

C. album was reduced by 42 and 33%, respectively, when

grown with AMF19. Many problematic agricultural weeds

belong to families that are typically non-hosts19,57. There-

fore, these observations of antagonistic effects of AMF on

non-host species raise the possibility that AMF could

provide a broad-spectrum biocontrol measure against non-

host weed species. It is also possible that general increase in

the abundance of AMF-host weeds would occur in AMF-

enhanced cropping systems.
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Figure 5. Fungicide effects on the performance of AMF-host and

non-host weed species with respect to density (a) and biomass

production (b) in corn and soybean crops in 2001, on natural-

logarithm scales, with standard errors.
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As we have noted in the present paper, a substantial

number of independent studies (cited herein) have observed

quite powerful antagonisms of this sort in a variety of plant

communities.

Experimental suppression of soil fungi also caused

certain changes in weed community composition that were

not evidently related to AMF antagonism to non-host

species and consequent changes in relative performance of

AMF-host and non-host weed species. In the third year, per

individual biomass production by the AMF-host species

Solanum was sharply increased by fungicide in the corn

crop, and more weakly so in the soybean crop. Since

fungicide caused AMF colonization to decline by ca. 25%

(albeit non-significant, Table 3), this response may reflect a

negative growth response to AMF symbiosis58,59, although

its magnitude is larger than most such responses observed

to date, or the pathogenic effect of non-AMF fungi. Simi-

larly, in the second year, fungicide significantly affected the

distribution of density among weed species in the corn crop

but without any indication of differential responses among

AMF-host and non-host species. Among 11 weed species,

responses were (at most) modest in all but two species;

these were both non-hosts (Brassica and Amaranthus) but

showed opposite responses to fungicide.

Our field experiment shows that soil fungi can decrease

weed density, biomass and the relative abundance and

growth of both AMF-host and non-host weed species. If

such effects occur widely in field-crop agroecosystems,

there are a number of implications for weed management.

First, antagonistic fungal effects (such as that suffered by

Solanum in the third year) might serve as one of the ‘small

hammers’ by which agroecological processes limit weed

abundance and interference with crop production60. Such

interactions may be of considerable significance in the

context of integrated weed management systems. Typically,

only a few weed species are well-enough adapted to the

management factors operant in any particular agroeco-

system to become highly problematic in that system.

Antagonistic fungal effects on these species could be very

useful in their management.

Moreover, in addition to potential value to integrated

weed management, interactions between weeds and soil

fungi may affect weed diversity. Theory and limited em-

pirical evidence suggest that if management factors serve to

intensify weed interactions with soil fungi, the diversity of

weed communities may be increased26,27,61, although

we found only limited evidence of this outcome. If negative

effects on crop yield or otherwise are acceptably small,

increasing weed diversity may provide a useful option

for restoring useful microbial biodiversity in field-crop

agroecosystems, given mounting evidence that diverse

weed communities provide certain agroecological ‘ser-

vices’36,37,62 that are relevant to both production and

conservation in agroecosystems. For example, AMF-host

weeds may benefit crop production by maintaining

diversity and abundance of agronomically beneficial AMF

taxa; removal of AMF-host weeds from agroecosystems

can cause changes in diversity, abundance and functioning

of AMF, and can reduce beneficial AMF effects on crop

growth63,64. Diverse weed communities may provide a

range of other services, including increased interference

among weed species that may reduce herbicide resistance

risk37, and maintenance of valued wildlife species and

predatory and pollinating arthropod species in certain

agroecosystems34,36.

Taken together, indications of the significance of weed–

soil fungi interactions for weed management and ecological

services from weeds, and our finding that these interactions

can be strong under field conditions, should encourage

further investigations of weed–fungi interactions in field-

crop agroecosystems. Such work is particularly warranted

in cropping systems where conservation tillage and cover

Table 3. Fungicide effects on AMF colonization levels in roots of selected weed species and soybean, given as percentage of AMF

presence observed in 100–140 views/root sample; n is number of examined root samples, with standard error of mean in parentheses.

Weed species: Abutilon theophrasti (ABUTH), Ambrosia artimisiifolia (AMBEL), Sida spinosa (SIDSP), and Solanum nigrum (SOLNI).

2000 2001 2002

AMBEL AMBEL AMBEL SOLNI SIDSP Soybean ABUTH

Corn

Fungicide 70 (3.2) 39 (4.8) 36 (7.0) 14 (2.0) 10 (2.0) 22 (5.0)

n 10 10 4 9 8 9

Control 72 (3.9) 49 (3.1) 40 (3.0) 19 (4.0) 11 (2.0) 27 (3.0)

n 10 10 4 7 10 8

t-test NS P>0.09 (NS) NS NS NS NS

Soybean

Fungicide 42 (4.3) 27 (2.7) 29 (4.9) 12 (5.3) 3 (1.0) 9 (2.0) 21 (2.0)

n 10 10 8 4 3 10 10

Control 65 (5.0) 38 (5.9) 42 (8.9) 1 (1.4) 10 (2.0) 33 (7.0) 21 (3.0)

n 10 10 9 2 4 9 7

t-test P>0.0035 P>0.10 (NS) NS NS P>0.09 (NS) P>0.01 NS
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cropping techniques have been practiced for some time.

Weed–fungal microbe interactions are likely to be gen-

erally stronger in such situations; if these interactions have

real agronomic importance, it will likely be in such

agroecosystems.
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