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Abstract

Consider a finite or infinite collection of urns, each with capacity r, and balls randomly
distributed among them. An overflow is the number of balls that are assigned to urns that
already contain r balls. When r = 1, this is the number of balls landing in non-empty
urns, which has been studied in the past. Our aim here is to use martingale methods
to study the asymptotics of the overflow in the general situation, i.e. for arbitrary r. In
particular, we provide sufficient conditions for both Poissonian and normal asymptotics.
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1. Introduction

Urn models are one of the fundamental objects in classical probability theory and have been
studied for a long time in various degrees of generality. We refer the reader to classical sources
[12, 16, 17, 18] for a complete account of the theory and discussions of different models, and,
e.g., to [4, 7, 9] for some of the more recent developments. Perhaps the most heavily studied
characteristic is the number of occupied urns after n balls have been thrown in. One reason for
this is that it is often interpreted as a measure of diversity of a given population. Actually,
more refined characteristics, e.g. the number of urns containing the prescribed number of
balls (and its asymptotics), have subsequently been studied for various urn models; see, e.g.,
[13, 16, 20], or [2] and references therein for more recent developments. In diversity analysis,
the number Kr of urns with exactly r balls is called the abundance count of order r. In particu-
lar, the popular estimator of species richness called the Chao estimator is based on K1 and K2
(with a more sophisticated version also using K3 and K4); see, e.g., [5]. In [9] the authors used
analytical methods based on Poissonization and de-Poissonization to prove that the number of
empty urns is asymptotically normal as long as its variance grows to infinity (this is clearly
the minimal requirement). As a by-product of their method they established the Poissonian
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asymptotics of the number of balls that fall into non-empty urns when the variance is finite
and under additional assumptions on the distribution among boxes. We mention in passing that
the number of balls falling into non-empty urns is sometimes called the number of collisions.
Under the uniformity assumption for the distribution of balls, it has been used, for example,
for testing random number generators (see [14, Section 3.3.2 I] for more details). We also
refer to [1] and references therein for another illustration of how this concept is used, e.g. in
cryptology.

Our main aim here is to consider the number of balls falling into urns already contain-
ing r balls (thus, the number of collisions corresponds to r = 1). Relying on martingale-type
methods, we provide sufficient conditions for both Poissonian and normal asymptotics for the
number of balls falling into such urns.

One way to formulate the problem is as follows. There is a collection (possibly infinite)
of distinct containers in which balls are to be inserted. All containers have the same finite
capacity r. Each arriving ball is to be placed in one of the containers, randomly and indepen-
dently of other balls. However, if the container selected for a given ball is already full, the
ball lands in the overflow basket. We are interested in the number of balls in that basket when
more and more balls appear. The notion of overflow is not entirely new and has appeared, for
example, in the context of collision resolution for hashing algorithms; see the discussion under
‘External searching’ in [15, Section 6.4]. We also refer to subsequent work [21, 23] for the
computation of the probability that there is no overflow (under the uniformity assumption),
and to [6], which, in part, concerns the estimation of the probability of unusually large over-
flow. As far as we are aware, however, the asymptotic behavior of the overflow has not been
systematically investigated.

More precisely, we consider the following model. For any n ≥ 1, let Xn,1, . . . , Xn,n

be independent and identically distributed (i.i.d.) random variables with values in
Mn ⊂N := {1, 2, . . .}, and let pn,m = P(Xn,1 = m), m ∈ Mn, be the common distribution among
the boxes for each of the n balls in the nth experiment. Here, Xn,j is interpreted as a random
label of the urn selected for the jth ball in the nth experiment. Also let

Nn,k(m) =
k−1∑
j=1

1{Xn,j=m} (1)

for any n ∈N, k ∈ {1, . . . , n, n + 1}, and m ∈ Mn, where 1{·} denotes the indicator of the event
within brackets. That is, Nn,k(m) is the number of balls among the first k − 1 balls for which
the mth box was selected.

Let r be a given positive integer that denotes the (same) capacity of every container. Then

Yn,k =
∑

m∈Mn

1{Xn,k=m}1{Nn,k(m)≥r} (2)

is 1 if the kth ball lands in the overflow, and is 0 otherwise. Naturally, Yn,k = 0 for k = 1, . . . , r.
Consequently, the size of the overflow, denoted Vn,r, can be written as

Vn,r =
n∑

k=1

Yn,k. (3)

We are interested in the asymptotic distribution of Vn,r as n → ∞. We show that there are
regimes related to pn,m under which the limiting distribution of Vn,r (possibly standardized)
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is either Poisson or normal. These regimes are defined through the limiting behavior of the
sequences np∗

n and nr+1 ∑
m∈Mn

pr+1
n,m , where p∗

n = supm∈Mn
pn,m.

We find it convenient to introduce auxiliary sequences of random variables Xn, Yn, n ≥ 1,
such that, for any n ∈N, the random variables Xn, Yn, Xn,1, . . . , Xn,n are i.i.d. This allows us to
simplify expressions in general because sums over m ∈ Mn can be represented as expectations,
and the computations are compactly carried out by means of conditional expectations. For
example,

∑
m∈Mn

pr+1
n,m =Epr

Xn
, where pXn

stands for the random variable pn,Xn . Convergence

in probability and in distribution (as n → ∞) are denoted by
P→ and

d→, respectively.
We present our main results in Section 2; these give conditions for Poissonian and Gaussian

asymptotics of the overflow. We also describe the limiting behavior for the number of full
containers. Intermediate technical results are found in Section 3, and the proofs of the main the-
orems are presented in Section 4. Section 5 includes some remarks concerning the asymptotic
behavior of the mean of Vn,r.

2. Main results

2.1. Poissonian asymptotics

Theorem 1. Let Pois(μ) denote the Poisson distribution with parameter μ ∈ (0, ∞). If

nr+1
E pr

Xn
→ (r + 1)!μ, (4)

n p∗
n → 0, (5)

then Vn,r
d→ Pois(μ).

Proof. See Section 4.1. �

Example 1. Consider the uniform case, that is, pn,j = 1/mn, for j ∈ Mn = {1, . . . , mn}. Then

np∗
n = n

mn
, nr+1

E pr
Xn

= nr+1

mr
n

. (6)

Take mn =
⌊

an
r+1

r
⌋

, a > 0. Then, by (6), np∗
n → 0 and nr+1

E pr
Xn

→ 1/ar. Consequently,

Theorem 1 yields Vn,r
d→ Pois(μ), with μ = 1/(ar(r + 1)!). Illustrative simulations are shown

in Fig. 1.

Example 2. Consider the geometric case, with pn,j = pn(1 − pn) j, j ∈ Mn = {0, 1, 2, . . .}. Then

np∗
n = npn, nr+1

E pr
Xn

= (npn)r+1

1 − (1 − pn)r+1
. (7)

Take pn = a/n(r+1)/r, a > 0. Then, by (7), np∗
n = a/n1/r → 0 and

nr+1
E pr

Xn
= arpn

(r + 1)pn + o(pn)
→ ar

r + 1
.

Consequently, Theorem 1 yields Vn,r
d→ Pois(μ), with μ = ar/[(r + 1)!(r + 1)]. Illustrative

simulations are shown in Fig. 2.
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FIGURE 1. Simulations of the overflow in the uniform case with r = 2, n = 105, mn =
⌊

an
r+1

r
⌋

, and

a = 1/3 (i.e. m105 = 10 540 925 and μ = 1.5) are shown as vertical lines (104 repetitions), while Poisson
probabilities for k = 0, . . . , 12, dpois(0 : 12, μ), are depicted by circles.
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FIGURE 2. Simulations of the overflow in the geometric case with r = 3, n = 105, pn = an−(r+1)/r with
a = 6 (i.e. p105 ≈ 1.29 × 10−6 and μ = 2.25) are shown as vertical lines (103 repetitions), while Poisson

probabilities for k = 0, . . . , 12, dpois(0 : 12, μ), are depicted by circles.
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Hwang and Janson [9] used the method of Poissonization and de-Poissonization to estab-
lish the asymptotic normality for the number of occupied boxes under the weakest possible
assumption that its variance tends to infinity. As a by-product of their approach they derived
Theorem 1 for r = 1 (see [9, Theorem 8.2]). The proof we present in Section 4.1 is entirely
different and relies on a martingale-type convergence result from [3].

2.2. Normal asymptotics

Theorem 2. Assume that np∗
n is bounded, and that nr+1

E pr
Xn

→ ∞. Then

Vn,r −E Vn,r√
Var Vn,r

d→ N(0, 1).

Proof. See Section 4.2. �

The boundedness of np∗
n may be interpreted as the asymptotic negligibility condition,

which is a natural requirement for central limit theorem (CLT) type results. The assumption
nr+1

E pr
Xn

→ ∞ is to ensure that the variance Var Vn,r grows to infinity with n, a necessary

condition for the CLT. In Proposition 1 we show that E Vn,r and Var Vn,r are of order nr+1
E pr

Xn
.

Proposition 1. Assume that np∗
n is bounded and let λ = lim sup np∗

n ≥ 0. Then

�λ(r + 1)

r! ≤ lim inf
E Vn,r

nr+1E pr
Xn

≤ lim sup
E Vn,r

nr+1E pr
Xn

≤ 1

(r + 1)! , (8)

where, for p > 0 and x ≥ 0 we have set �x(p) := ∫ 1
0 tp−1e−xt dt. If, in addition,

nr+1
E pr

Xn
→ ∞, then

e−2λ

(r + 1)! ≤ lim inf
Var Vn,r

nr+1E pr
Xn

≤ lim sup
Var Vn,r

nr+1E pr
Xn

≤ 1

r! . (9)

Proof. See Section 4.2.2. �

Remark 1. Since �0(p) = 1/p, it follows immediately that if λ = 0 then the limit of
E Vn,r/

[
nr+1

E pr
Xn

]
in (8) exists and equals 1/(r + 1)!, regardless of the values of (pn,k). As

we will see in Section 5, the situation is more complex when λ > 0.

Example 3. Consider the uniform case, with pn,j = 1/mn, j ∈ Mn = {1, . . . , mn}. Then
nr+1

E pr
Xn

= nr+1/mr
n → ∞ and np∗

n = n/mn → λ ≥ 0. Thus, by Theorem 2,

Vn,r −E Vn,r√
Var Vn,r

d→ N(0, 1).

In particular, mn = 
κna� with a ∈ [1, 1 + r−1) and κ > 0 yields normal asymptotics.
Illustrative simulations are shown in Fig. 3.

Example 4. Consider the geometric case, with pn,j = pn(1 − pn) j, j ∈ Mn = {0, 1, 2, . . .}, and
pn = 1/na, a ∈ [1, 1 + r−1). Then (7) yields

nr+1
E pr

Xn
= nr+1−ra

r + 1 + o(1)
→ ∞.
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FIGURE 3. Simulations of the overflow in the uniform case with r = 2, n = 104, mn = 
na� with
a = 1.1 (i.e. mn = 25 118) are shown as vertical lines (104 repetitions) vs. the graph of the normal
density dnorm(x, w, s), where w = 217.2 and s = 14.9 are the empirical mean and standard deviation,

respectively.

Moreover,

np∗
n = npn = n1−a →

{
1, a = 1,

0, 1 < a < 1 + r−1.

Thus, the asymptotic normality of Vn,r follows from the above theorem. Illustrative simulations
are shown in Fig. 4.

2.3. Phase transition

In this short subsection we combine the results on the Poisson and normal asymptotics given
in Theorems 1 and 2 in order to identify a critical capacity r that separates two asymptotic
phases, normal and degenerate, the phase transition being through the Poissonian asymptotic
regime.

Proposition 2. Let np∗
n → 0. Assume there exists an r ∈ {1, 2, . . .} such that (4) holds. Then

(i) (Vn,s −E Vn,s)/
√

Var Vn,s
d→ N(0, 1) for s ∈ {1, . . . , r − 1},

(ii) Vn,r
d→ Pois(μ),

(iii) Vn,s
P→ 0 for s ∈ {r + 1, r + 2, . . .}.

Proof. See Section 4.3. �
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FIGURE 4. Simulations of the overflow in the geometric case with r = 4, n = 104, a = 1 are shown as
vertical lines (104 repetitions) vs. the graph of the normal density dnorm(x, w, s), where w = 9.74 and

s = 3.57 are the empirical mean and standard deviation, respectively.

2.4. Asymptotics for the number of full containers

Let Ln,r denote the number of full containers and Kn,r the number of full containers without
overflow. The main idea is to represent Ln,r and Kn,r in terms of the size of the overflow Vn,r.

Note from (1) that Nn,n+1(m) is the total number of balls in the sample for which the mth box
was selected. Thus, Kn,r =∑

j∈Mn
1{Nn,n+1(j)=r} = Ln,r − Ln,r+1 and Ln,r =∑

j∈Mn
1{Nn,n+1(j)≥r}.

We note that

Ln,r =
∑
j∈Mn

n∑
k=1

1{Xn,k=j}1{Nn,k(j)=r−1}

=
∑
j∈Mn

n∑
k=1

1{Xn,k=j}1{Nn,k(j)≥r−1} −
∑
j∈Mn

n∑
k=1

1{Xn,k=j}1{Nn,k(j)≥r}.

That is,

Ln,r = Vn,r−1 − Vn,r, Kn,r = Vn,r−1 − 2Vn,r + Vn,r+1. (10)

Note that in the case r = 1 we have Vn,0 = n and thus Ln,1, which is the number of non-empty
boxes, is

Ln,1 = n − Vn,1, (11)

and Kn,1, which is the number of singleton boxes, is

Kn,1 = n − 2Vn,1 + Vn,2. (12)
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These representations of Kn,r and Ln,r in terms of Vn,r−1, Vn,r, and Vn,r+1 allow us to read
the Poissonian asymptotics of these two sequences from Theorem 1. For Kn,r the forthcoming
statement was proved in [16, Theorem III.3.1].

Theorem 3. Assume that np∗
n → 0.

(i) If r > 1 and nr
E pr−1

Xn
→ r!μ then Ln,r

d→ Pois(μ) and Kn,r
d→ Pois(μ).

(ii) If r = 1 and n2
E pXn

→ 2μ then n − Ln,1
d→ Pois(μ) and 1

2 (n − Kn,1)
d→ Pois(μ).

Proof. See Section 4.4 �

Note that, under the assumptions of Theorem 3, we have Ln,r − Kn,r
P→ 0 in case (i) and

Ln,1 − Kn,1
d→ Pois(μ) in case (ii). To see these two facts, note that Ln,r − Kn,r = Vn,r − Vn,r+1

for all r = 1, 2, . . . and, under the assumptions of Theorem 3, both Vn,r, Vn,r+1
P→ 0 in case (i),

while Vn,2
P→ 0 and Vn,1

d→ Pois(μ) in case (ii).
The representations in (10) are also useful for getting Gaussian asymptotics of Ln,r and Kn,r

from Theorem 2 in the case λ = 0.

Theorem 4. Assume that np∗
n → 0 and r ≥ 1.

(i) If nr+1
E pr

Xn
→ ∞ then

Ln,r −E Ln,r√
Var Ln,r

d→ N(0, 1).

(ii) If nr+2
E pr+1

Xn
→ ∞ then

Kn,r −E Kn,r√
Var Kn,r

d→ N(0, 1).

Proof. See Section 4.4. �

3. Intermediate technical results

In this section we provide the notation, definitions, and technical results that are needed in
the proofs of the theorems.

3.1. Multinomial distribution and negative association

Note that, for distinct m1, . . . , ms ∈ Mn and any k = 1, . . . , n, (Nn,k(m1), . . ., Nn,k(ms)) has
a multinomial distribution, denoted Mns(k − 1; pn,m1 , . . . , pn,ms ), i.e.

P(Nn,k(m1) = i1, . . . , Nn,k(ms) = is) =
(

k − 1
i1, . . . , is

)(
1 −

s∑
v=1

pn,v

)k−1−∑s
v=1 iv s∏

v=1

piv
n,mv

for iv ≥ 0, v = 1, . . . , s, and
∑s

v=1 iv ≤ k − 1. In particular, Nn,k(m) has the binomial distribu-

tion Bin(k − 1, pn,m), i.e. P(Nn,k(m) = i) =
(

k − 1
i

)
pi

n,mqk−1−i
n,m , i = 0, . . . , k − 1, where qn,m =

1 − pn,m. Also, let N�
n,k(m) = Nn,�(m) − Nn,k(m) =∑�−1

j=k 1{Xn,j=m} for k < �, and N�
n,k(m) = 0

for k ≥ �. Then, for distinct j1, . . . , jt ∈ Mn and k < �, (N�
n,k(j1), . . . , N�

n,k(jt)) has distribu-
tion Mnt(� − k; pn,j1 , . . . , pn,jt ). Moreover, the random vectors (Nn,k(m1), . . . , Nn,k(ms)) and
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(N�
n,k(j1), . . . , N�

n,k(jt)) are independent since the former is a function of Xn,1, . . . , Xn,k−1 and
the latter of Xn,k, . . . , Xn,�−1.

Further, it is well known that multinomial random variables are negatively upper-orthant
dependent (NUOD; see, e.g., [19], where this observation seems to have appeared for the first
time, or [11]). That is, for m1 �= m2,

P(Nn,k(m1) ≥ x1, Nn,k(m2) ≥ x2) ≤ P(Nn,k(m1) ≥ x1) P(Nn,k(m2) ≥ x2). (13)

As such, they are also negatively associated (NA); see [10] for the definition and basic
properties P1–P7. We recall three of these properties that we will use:

P4: A subset of two or more NA random variables is NA.

P6: Increasing functions defined on disjoint subsets of a set of NA random variables are NA.

P7: The union of independent sets of NA random variables is NA.

Since {Nn,k(m1), . . . , Nn,k(mt)} and {N�
n,k(j1), . . . , N�

n,k(jt)} are independent sets of NA ran-

dom variables, by property P7, {Nn,k(m1), . . ., Nn,k(mt), N�
n,k(j1), . . ., N�

n,k(jt)} is also NA. In
particular, by P4, for distinct m1, m2, n1, and n2, the subset {Nn,k(m1), Nn,k(n1), Nn,k(m2),
Nn,k(n2), N�

n,k(m2), N�
n,k(n2)} is NA as well. Finally, noting that Nn,�(m) = Nn,k(m) + N�

n,k(m),
we conclude by P6 that Nn,k(m1), Nn,k(n1), Nn,�(m2), and Nn,�(n2) are NA.

Consequently, the following extended versions of the NUOD property (13) hold:

P(Nn,k(m1) ≥ x1, Nn,k(n1) ≥ y1, Nn,�(m2) ≥ x2, Nn,�(n2) ≥ y2)

≤ P(Nn,k(m1) ≥ x1)P(Nn,k(n1) ≥ y1)P(Nn,�(m2) ≥ x2)P(Nn,�(n2) ≥ y2), (14)

and, taking y1 = y2 = 0 in (14),

P(Nn,k(m1) ≥ x1, Nn,�(m2) ≥ x2) ≤ P(Nn,k(m1) ≥ x1) P(Nn,�(m2) ≥ x2). (15)

3.2. Conditional expectations

Let Fn,k = σ (Xn,1, . . . , Xn,k) be the σ -algebra generated by Xn,1, . . . , Xn,k for k = 1, . . . , n,
and note that Nn,j(m) is Fn,k-measurable, for any m ∈ Mn, k ≥ j − 1. Note also that, for any n,
k, Xn is independent of Fn,k. Then Yn,j can be written as

Yn,j =E

(
1{Xn,j=Xn}

pXn

1{Nn,j(Xn)≥r}
∣∣∣Fn,n

)
.

So, for j ≥ k,

E(Yn,j |Fn,k−1) =E

(
1{Xn,j=Xn}

pXn

1{Nn,j(Xn)≥r}
∣∣∣Fn,k−1

)

=E

(
E

(
1{Xn,j=Xn}

pXn

1{Nn,j(Xn)≥r}
∣∣∣ Xn,Fn,j−1

) ∣∣∣Fn,k−1

)

=E

(
E

(
1{Xn,j=Xn}

pXn

∣∣∣ Xn,Fn,j−1

)
1{Nn,j(Xn)≥r}

∣∣∣Fn,k−1

)

=E
(
1{Nn,j(Xn)≥r} |Fn,k−1

)
. (16)

Hence, E(Yn,j |Fn,k) =E(1{Nn,j(Xn)≥r} |Fn,k) for j > k, and E(Yn,k |Fn,k) = Yn,k.
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Note that the representation in (16) implies

E(Yn,k |Fn,k−1) = P(Nn,k(Xn) ≥ r |Fn,k−1) = P(Nn,k(Xn) ≥ r |Fn,n). (17)

Taking expectations of both extremes of (16), we get

E Yn,j = P(Nn,j(Xn) ≥ r) =E P(Nn,j(Xn) ≥ r | Xn) =E

j−1∑
i=r

(
j − 1

i

)
pi

Xn
qj−1−i

Xn
, (18)

where qXn
= 1 − pXn

. Furthermore, for k, � = 1 . . . , n, (17) yields

E(E(Yn,k |Fn,k−1)E(Yn,� |Fn,�−1)) =E(P(Nn,k(Xn) ≥ r |Fn,n)P(Nn,�(Yn) ≥ r |Fn,n)),

and, because Nn,k(Xn) and Nn,�(Yn) are conditionally independent given Fn,n, it fol-
lows that E(E (Yn,k |Fn,k−1)E(Yn,� |Fn,�−1)) = P(Nn,k(Xn) ≥ r, Nn,�(Yn) ≥ r). Consequently,
for any k, �,

Cov
(
E(Yn,k |Fn,k−1),E(Yn,� |Fn,�−1)

)= Cov(1{Nn,k(Xn)≥r}, 1{Nn,�(Yn)≥r}). (19)

3.3. Two useful lemmas

In the proof of Theorem 1 we use the following results, obtained from (4) and (5).

Lemma 1. (i) Let s be a positive integer. If (4) and (5) hold, then

ns
E ps

Xn
→ 0, (20)

ns+1
E ps

Xn
→ 0, s > r. (21)

(ii) If np∗
n, n ≥ 1, is bounded and nr+1

E pr
Xn

→ ∞ then

ns+1
E ps

Xn
→ ∞, 0 < s < r. (22)

Proof. (i) Since ns
E ps

Xn
≤ (np∗

n)s, (20) follows from (5). Also, (21) follows from (4) and (5)

since ns+1
E ps

Xn
≤ (np∗

n)s−rnr+1
E pr

Xn
.

(ii) For s < r, by (4) and (5) we get ns+1
E ps

Xn
≥ nr+1

E pr
Xn

(1/(np∗
n)r−s) → ∞. �

We also need the following simple estimate of the tail of a binomial sum.

Lemma 2. Let m,n be positive integers such that m ≤ n, and let p ∈ (0, 1). Then

n∑
i=m

(
n
i

)
pi(1 − p)n−i ≤ (np)m

m! . (23)

Proof. The left-hand side of (23) is P(Bn ≥ m), where Bn has distribution Bin(n, p). We
argue by induction on n ≥ m. Note that for n = m the left-hand side of (23) is pm and the right-
hand side is (mm/m!)pm. Since mm ≥ m! the result follows. For any n ≥ 1, by induction we have

P(Bn+1 ≥ m) = P(Bn ≥ m − 1)p + P(Bn ≥ m)(1 − p)

≤ (np)m−1

(m − 1)!p + (np)m

m! (1 − p) ≤ ((n + 1)p)m

m! ,

where the last inequality follows from mnm−1 + nm(1 − p) ≤ (n + 1)m. �
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4. Proof of Theorems

4.1. Poisson convergence

The proof of Theorem 1 is based on the following theorem due to [3]; see Corollary 5
therein.

Theorem 5. Let {Yn,k, k = 1, . . . , n; n ≥ 1} be a double sequence of non-negative ran-
dom variables adapted to a row-wise increasing double sequence of σ -fields {Fn,k,

k = 1, . . . , n; n ≥ 1}, and let η > 0. If

max
1≤k≤n

E(Yn,k |Fn,k−1)
P→ 0, (24)

n∑
k=1

E(Yn,k |Fn,k−1)
P→ η, (25)

n∑
k=1

E(Yn,k1{|Yn,k−1|>ε} |Fn,k−1)
P→ 0 for any ε > 0, (26)

then
∑n

k=1 Yn,k
d→ Pois(η).

Proof of Theorem 1. We show that conditions (24), (25) (with η = μ), and (26) of Theorem 5
are satisfied for Yn,k, defined in (2). First, we note that (26) is trivial because, for ε < 1, Yn,k = 0
if and only if 1{|Yn,k−1|>ε} = 1.

The rest of the proof is divided into three steps. In Step I we check (24). Then we prove that
(25) holds in quadratic mean, i.e. E

(∑n
k=1 E(Yn,k |Fn,k−1) − μ

)2 → 0. To that end we show
that

∑n
k=1 E Yn,k → μ and Var

∑n
k=1 E(Yn,k |Fn,k−1) → 0 in Steps II and III, respectively.

Step I: We prove (24) using (17). Clearly, 1{Nn,k(m)≥r} ≤ 1{Nn,l(m)≥r} for k ≤ l, so
max1≤k≤n E(Yn,k |Fn,k−1) =E(Yn,n |Fn,n−1). Note also that, due to (18), (23), and (20),

E Yn,n =E
∑n−1

i=r

(
n − 1

i

)
pi

Xn
qn−1−i

Xn
≤ nr

E pr
Xn

→ 0. Consequently, Markov’s inequality implies

that E(Yn,n |Fn,n−1)
P→ 0, and (24) follows.

Step II: To prove that lim
∑n

k=1 E Yn,k = μ we show that lim sup and lim inf are respectively
bounded above and below by μ. From (18), (23), and (4),

n∑
k=1

E Yn,k =E

n∑
k=1

k−1∑
i=r

(
k − 1

i

)
pi

Xn
qk−1−i

Xn
≤E

n∑
k=1

(k − 1)rpr
Xn

r!

≤ nr+1

(r + 1)!E pr
Xn

→ μ, (27)

so lim sup
∑n

k=1 E Yn,k ≤ μ.
Additionally, since by (18) we have E Yn,k = P(Nn,k(Xn) ≥ r) ≥ P(Nn,k(Xn) = r) and (1 −

p)k ≥ 1 − kp, p ∈ (0, 1), then

n∑
k=1

E Yn,k ≥
n∑

k=1

(
k − 1

r

)
E pr

Xn
qk−1−r

Xn

≥E pr
Xn

n∑
k=1

(
k − 1

r

)
−E pr+1

Xn

n∑
k=1

(
k − 1

r

)
(k − 1 − r). (28)
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Further, observe that

(r + 1)!
nr+1

n∑
k=1

(
k − 1

r

)
→ 1,

r!(r + 2)

nr+2

n∑
k=1

(
k − 1

r

)
(k − 1 − r) → 1.

Thus, by (4) and (21), the right-hand side of (28) converges to μ, and so we have

lim inf
n∑

k=1
E Yn,k ≥ μ.

Step III: We prove that Wn := Var
∑n

k=1 E(Yn,k |Fn,k−1) → 0 by relying on the NUOD
property of Nn,k(m1) and Nn,�(m2), for distinct m1, m2 ∈ Mn. In what follows we compute and
bound some expectations that add up to Wn. First, note from (19) that

Wn =
n∑

k,�=1

Cov(E(Yn,k |Fn,k−1),E(Yn,� |Fn,l−1))

=
n∑

k,�=1

Cov(1{Nn,k(Xn)≥r}, 1{Nn,�(Yn)≥r}).

For U, V square-integrable random variables and G a σ -algebra, let the conditional covariance
be defined as Cov(U, V | G) =E(UV | G) −E(U | G)E(V | G). Also, let 1k(m) = 1{Nn,k(m)≥r}
(for simplicity) and k ∧ � = min{k, l}. Then, by the i.i.d. assumption on Xn,1, . . . , Xn,n, Xn, Yn,
we have

Cov(1k(Xn), 1�(Yn) | Xn, Yn) =E(1k(Xn)1�(Yn) | Xn, Yn)

−E(1k(Xn) | Xn)E(1�(Yn) | Yn). (29)

Furthermore,

E(1k(Xn)1�(Yn) | Xn, Yn)1{Xn=Yn} =E(1{Xn=Yn}1k(Xn)1�(Yn) | Xn, Yn)

=E(1{Xn=Yn}1k(Xn)1�(Xn)|Xn, Yn)

=E(1k∧�(Xn) | Xn)1{Xn=Yn}, (30)

where the last equality follows from 1k(m) ≤ 1�(m) for k ≤ �, because Nn,k(m) ≥ r implies
Nn,�(m) ≥ r. So, from (29) and (30), we get

Cov(1k(Xn), 1�(Yn) | Xn, Yn)1{Xn=Yn} ≤E(1k∧�(Xn) | Xn)1{Xn=Yn}. (31)

Furthermore, by the NUOD property (15),

E(1k(Xn)1�(Yn) | Xn, Yn)1{Xn �=Yn} =E(1{Xn �=Yn}1k(Xn)1�(Yn) | Xn, Yn)

≤E(1{Xn �=Yn}1k(Xn) | Xn, Yn)E(1{Xn �=Yn}1�(Yn) | Xn, Yn)

=E(1k(Xn) | Xn)E(1�(Yn) | Yn)1{Xn �=Yn}. (32)

Hence, from (29) and (32), we have

Cov(1k(Xn), 1�(Yn) | Xn, Yn)1{Xn �=Yn} ≤ 0. (33)

And, finally, from (31) and (33),

Cov(1k(Xn), 1�(Yn) | Xn, Yn) ≤E(1k∧�(Xn) | Xn)1{Xn=Yn}. (34)
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Let us write

Cov(1k(Xn), 1�(Yn)) =E Cov(1k(Xn), 1�(Yn) | Xn, Yn)

+ Cov(E(1k(Xn) | Xn, Yn),E(1�(Yn) | Xn, Yn)).

By the independence of Xn and Yn we can write E(1k(Xn) | Xn, Yn) =E(1k(Xn) | Xn) and
E(1�(Yn) | Xn, Yn) =E(1�(Yn) | Yn). Thus, again referring to the independence of Xn and Yn,
we conclude that the second term above vanishes. Applying (34), we thus get

Cov(1k(Xn), 1�(Yn)) ≤EE(1k∧�(Xn) | Xn)1{Xn=Yn}
=E 1k∧�(Xn)1{Xn=Yn} =E 1k∧�(Xn)pXn

. (35)

Note that in the first equality above we used the identity E(1k∧�(Xn) | Xn) =E(1k∧�(Xn) |
Xn, Yn), i.e. we referred again to the independence of Xn and Yn.

Also, by (23),

E(1k∧�(Xn)pXn
| Xn) =

(k∧�)−1∑
i=r

(
(k ∧ �) − 1

i

)
pi

Xn
q(k∧�)−1−i

Xn
pXn

≤ (k − 1)rpr+1
Xn

.

Finally, taking expectation above and adding over k and �, from (35) we obtain

Wn ≤
n∑

k,�=1

(k − 1)r
E pr+1

Xn
≤ nr+2

E pr+1
Xn

→ 0,

where convergence to 0 follows from (21). Since Wn ≥ 0, it holds that Wn → 0. �

4.2. Gaussian convergence

The proof of Theorem 2 is split into several steps, which are presented in four subsec-
tions below. In Section 4.2.1 we decompose Vn,r −E Vn,r as the sum of martingale differences∑n

k=1 dn,k, with suitably defined (uniformly bounded) dn,k. In Section 4.2.2 we prove
Proposition 1. In Section 4.2.3 we show that Var

∑n
k=1 Var(dn,k |Fn,k−1) is o((nr+1

E pr
Xn

)2).
In the final part of the proof in Section 4.2.4 we use this bound and the growth rate for Var Vn,r

to conclude the proof by the martingale central limit theorem.

4.2.1. Martingale differences decomposition.
Lemma 3. The centered size of the overflow can be represented as Vn,r −E Vn,r =∑n

k=1 dn,k,
where the dn,k are martingale differences defined by

dn,k =
n∑

j=k

(
E(Yn,j |Fn,k) −E(Yn,j |Fn,k−1)

)
. (36)

Proof. Clearly, E(dn,k |Fn,k−1) = 0. Further, noting that Fn,0 is the trivial σ -algebra,

n∑
k=1

dn,k =
n∑

j=1

j∑
k=1

(E(Yn,j |Fn,k) −E(Yn,j |Fn,k−1))

=
n∑

j=1

(E(Yn,j |Fn,j) −E Yn,j) = Vn,r −E Vn,r.
�
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Lemma 4. The martingale differences dn,k of (36) are uniformly bounded and can be
represented as

dn,k =E

(1{Xn,k=Xn} − pXn

pXn

1{Nn,k(Xn)+Nn+1
n,k+1(Xn)≥r}

∣∣∣Fn,k

)
.

Proof. Let n, r ∈N, j > k and note that Nn,j(Xn) = Nn,k(Xn) + 1{Xn,k=Xn} + Nj
n,k+1(Xn) =

Uj + J, where, for simplicity, we let V = Nn,k(Xn), Uj = V + Nj
n,k+1(Xn) ≥ V , and

J = 1{Xn,k=Xn}. Then {Uj + J ≥ r} = {Uj ≥ r} ∪ {Uj = r − 1, J = 1}. Clearly, {V ≥ r} ⊆
{Uj ≥ r}, and thus we have {Uj + J ≥ r} = {V ≥ r} ∪ {Uj ≥ r, V < r} ∪ {Uj = r − 1, J = 1}.
Consequently, by (16) we can write

E(Yn,j |Fn,k) =E(1{V≥r} |Fn,k) +E(1{Uj≥r,V<r} |Fn,k) +E(1{Uj=r−1,J=1} |Fn,k)

=E(1{V≥r} |Fn,k−1) +E(1{Uj≥r,V<r} |Fn,k−1) +E(J1{Uj=r−1} |Fn,k),

where Fn,k is changed to Fn,k−1 in the first two conditional expectations due to
the independence of Xn,k and (Xn,j, j ∈ {1, . . . , n} \ {k}) (note that V and Uj depend
only on the latter set of variables and do not depend on Xn,k). Similarly, E(Yn,j |
Fn,k−1) =E(1{V≥r} |Fn,k−1) +E(1{Uj≥r,V<r} |Fn,k−1) +E(J1{Uj=r−1} |Fn,k−1). Also, note

that E
(
J1{Uj=r−1} |Fn,k−1

)=E

(
1{Uj=r−1}pXn

|Fn,k

)
. Therefore, for j > k, E(Yn,j |Fn,k) −

E(Yn,j |Fn,k−1) =E

(
1{Uj=r−1}(J − pXn

) |Fn,k

)
. Thus,

en,k :=
n∑

j=k+1

(E(Yn,j |Fn,k) −E(Yn,j |Fn,k−1)) =E

(
(J − pXn

)
n∑

j=k+1

1{Uj=r−1}
∣∣∣Fn,k

)
.

Observe that, for j > k,

E

(
1{Xn,j=Xn}

pXn

∣∣∣ Xn,Fn,j−1

)
= 1.

Then

en,k =E

(
(J − pXn

)
n∑

j=k+1

1{Uj=r−1}E
(

1{Xn,j=Xn}
pXn

∣∣∣ Xn,Fn,j−1

) ∣∣∣Fn,k

)

=E

(
E

(
J − pXn

pXn

n∑
j=k+1

1{Uj=r−1}1{Xn,j=Xn}
∣∣∣ Xn,Fn,j−1

) ∣∣∣Fn,k

)

=E

(
J − pXn

pXn

1{V<r}
n∑

j=k+1

1{Uj=r−1}1{Xn,j=Xn}
∣∣∣Fn,k

)
,

where in the last expression we used the fact that {V < r} ⊃ {Uj = r − 1} for j > k. Observe also
that

∑n
j=k+1 1{Uj=r−1}1{Xn,j=Xn} = 1{Uj=r−1,Uj+1=r, for some j∈{k+1,...,n}} is equal to 1{Un+1≥r} on

the event {V < r} (note that Uk+1 = V). That is, using the original notation,

n∑
j=k+1

1{Nn,k(Xn)+Nj
n,k+1(Xn)=r−1}1{Xn,j=Xn} = 1{Nn,k(Xn)+Nn+1

n,k+1(Xn)≥r}
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on the event {Nn,k(Xn) < r}, and so

en,k =E

(1{Xn,k=Xn} − pXn

pXn

1{Nn,k(Xn)<r}1{Nn,k(Xn)+Nn+1
n,k+1(Xn)≥r}

∣∣∣Fn,k

)
.

Finally, since

Yn,k −E(Yn,k |Fn,k−1) =E

(1{Xn,k=Xn} − pXn

pXn

1{Nn,k(Xn)≥r}
∣∣∣Fn,k

)
,

we conclude that

dn,k = Yn,k −E(Yn,k |Fn,k−1) + en,k

=E

(1{Xn,k=Xn} − pXn

pXn

(
1{Nn,k(Xn)≥r} + 1{Nn,k(Xn)<r}1{Nn,k(Xn)+Nn+1

n,k+1(Xn)≥r}
) ∣∣∣Fn,k

)

=E

(1{Xn,k=Xn} − pXn

pXn

1{Nn,k(Xn)+Nn+1
n,k+1(Xn)≥r}

∣∣∣Fn,k

)
. (37)

For the boundedness of dn,k, note that

|dn,k| ≤E

(∣∣∣∣1{Xn,k=Xn} − pXn

pXn

∣∣∣∣ ∣∣∣Fn,k

)
≤
∑

m∈Mn

∣∣1{Xn,k=m} − pn,m
∣∣≤ 2. �

4.2.2. Growth rate of the expected value and variance.

Proof of Proposition 1. We first prove (8). For the upper bound in (8) note that, by the
representation in (3) and the estimates in (27), it follows that

E Vn,r

nr+1E pr
Xn

≤ 1

(r + 1)! .

Similarly, for the lower bound, by the first part of (28) we have

E Vn,r ≥E

n∑
k=1

(
k − 1

r

)
pr

Xn
(1 − pXn )k−r−1 ≥E pr

Xn

n∑
k=1

(
k − 1

r

)
(1 − p∗

n)k−r−1.

Since, for any m and any odd j, we have (1 − x)m ≥∑j
i=0

(m
i

)
(−x)i, we get, for any odd j,

E Vn,r

nr+1E pr
Xn

≥ 1

nr+1

n∑
k=1

(
k − 1

r

) j∑
i=0

(
k − r − 1

i

)
(−p∗

n)i

=
j∑

i=0

(−1)i(np∗
n)i

∑n
k=1

(k−1
r

)(k−r−1
i

)
nr+i+1

.

Note that

1

nr+i+1

n∑
k=1

(
k − 1

r

)(
k − r − 1

i

)
= 1

nr+i+1r!i!
n∑

k=1

(k − 1)!
(k − i − r − 1)!

=
(r+i

r

)( n
r+i+1

)
nr+i+1

→ 1

r!i!(r + i + 1)
.
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Consequently,

lim inf
E Vn,r

nr+1E pr
Xn

≥ 1

r!
∞∑

i=0

(−λ)i

i!(i + r + 1)

= 1

r!
∞∑

i=0

(−λ)i

i!
∫ 1

0
xr+i dx = 1

r!
∫ 1

0
xre−λx dx = �λ(r + 1)

r! ,

which proves the lower bound in (8).
To prove (9), let px = pn,x, qx = 1 − px, and

Tn,k(x) =
n−k∑

i=r−Nn,k(x)

(
n − k

i

)
pi

xqn−k−i
x . (38)

Then

E

(1{Xn,k=Xn} − pXn

pXn

1{Nn,k(Xn)+Nn+1
n,k+1(Xn)≥r}

∣∣∣ Xn,Fn,k

)

=E

(1{Xn,k=Xn} − pXn

pXn

Tn,k(Xn)
∣∣∣ Xn,Fn,k

)
,

and so

dn,k =E

(1{Xn,k=Xn} − pXn

pXn

Tn,k(Xn)
∣∣∣Fn,k

)
.

Also, recalling that Xn, Yn, Xn,1, . . . , Xn,n are i.i.d.,

d2
n,k =E

(1{Xn,k=Xn} − pXn

pXn

Tn,k(Xn)
∣∣∣Fn,k

)
E

(1{Xn,k=Yn} − pYn

pYn

Tn,k(Yn)
∣∣∣Fn,k

)

=E

(1{Xn,k=Xn} − pXn

pXn

Tn,k(Xn)
1{Xn,k=Yn} − pYn

pYn

Tn,k(Yn)
∣∣∣Fn,k

)
,

where the second equality follows from the conditional independence, given Fn,k, of

1{Xn,k=Xn} − pXn

pXn

Tn,k(Xn) and
1{Xn,k=Yn} − pYn

pYn

Tn,k(Yn).

In what follows we compute E
(
d2

n,k |Fn,k−1
)

by considering the cases Xn = Yn and Xn �= Yn.
We get

E(d2
n,k |Fn,k−1) =E

(
1{Xn=Yn}

(
1{Xn,k=Xn}−pXn

pXn

)2

T2
n,k(Xn)

∣∣∣Fn,k−1

)

+E

(
1{Xn �=Yn}

(1{Xn,k=Xn} − pXn
)(1{Xn,k=Yn} − pYn

)

pXn
pYn

Tn,k(Xn)Tn,k(Yn)
∣∣∣Fn,k−1

)

=E

(
1{Xn=Yn}

1 − pXn

pXn

T2
n,k(Xn)

∣∣∣Fn,k−1

)

−E
(
1{Xn �=Yn}Tn,k(Xn)Tn,k(Yn) |Fn,k−1

)
,
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where the second equality above is obtained from conditioning inside both expectations with
respect to Xn, Yn,Fn,k−1. Finally, integrating out Yn in the first expectation we get

E(d2
n,k |Fn,k−1) =E(qXn

T2
n,k(Xn) |Fn,k−1)

−E(1{Xn �=Yn}Tn,k(Xn)Tn,k(Yn) |Fn,k−1), (39)

and consequently

Var dn,k =E d2
n,k =E qXn

T2
n,k(Xn) −E 1{Xn �=Yn}Tn,k(Xn)Tn,k(Yn). (40)

For the upper bound of the variance, note that 0 < Tn,k(Xn) ≤ 1 and thus (40) implies
Var dn,k ≤E d2

n,k ≤E Tn,k(Xn). Also, E(Tn,k(Xn) | Xn,Fn,k) = P(Nn,k(Xn) + Nn+1
n,k+1(Xn) ≥ r |

Xn,Fn,k), and so

E(Tn,k(Xn) | Xn) = P(Nn,k(Xn) + Nn+1
n,k+1(Xn) ≥ r | Xn)

≤ P(Nn,n+1(Xn) ≥ r | Xn). (41)

Now, recalling that Nn,n+1(m) has distribution Bin(n, pn,m) for m ∈ Mn, and using (23), the
right-hand side of (41) is bounded by nrpr

Xn
/r!. Last, taking expectations, we obtain Var dn,k ≤

nr
E pr

Xn
/r!, and consequently

Var Vn,r =
n∑

k=1

Var dn,k ≤ nr+1
E pr

Xn

r! . (42)

In order to bound Var dn,k from below we first find an upper bound for the last term (with the
minus sign) in (40). To that end, note that Tn,k(x), defined in (38), can be written as Tn,k(x) =
P(Bn−k(x) + Nn,k(x) ≥ r |Fn,k), where Bn−k(x) is Bin(n − k, px), independent of Xn, Yn,Fn,n,
so Tn,k(Xn) = P(Bn−k(Xn) + Nn,k(Xn) ≥ r | Xn,Fn,k) and

E(Tn,k(x) | Xn) = P(Bn−k(x) + Nn,k(x) ≥ r | Xn). (43)

Furthermore, for y �= x let Bn−k(y) be a Bin(n − k, py) random variable, independent
of Xn, Yn,Fn,n and independent of Bn−k(x). Then Jn,k := E(1{Xn �=Yn}Tn,k(Xn)Tn,k(Yn) |
Xn, Yn,Fn,k) can be written as Jn,k = P(Xn �= Yn, Bn,k(Xn) + Nn,k(Xn) ≥ r, Bn,k(Yn) +
Nn,k(Yn) ≥ r | Xn, Yn,Fn,k), and so E(Jn,k | Xn, Yn) = P(Xn �= Yn, Bn,k(Xn) + Nn,k(Xn) ≥ r,
Bn,k(Yn) + Nn,k(Yn) ≥ r | Xn, Yn). Then, since conditionally on Xn, Yn, (Nn,k(Xn), Nn,k(Yn)) is
Mn2(k − 1, pXn , pYn ), and because of the NUOD property, we have

E(Jn,k | Xn, Yn) ≤ 1{Xn �=Yn}P(Bn,k(Xn) + Nn,k(Xn) ≥ r | Xn, Yn)

× P(Bn,k(Yn) + Nn,k(Yn) ≥ r | Xn, Yn)

= 1{Xn �=Yn}P(Bn,k(Xn) + Nn,k(Xn) ≥ r | Xn)

× P(Bn,k(Yn) + Nn,k(Yn) ≥ r | Yn)

= 1{Xn �=Yn}E(Tn,k(Xn) | Xn)E(Tn,k(Yn) | Yn)

=E(Tn,k(Xn) | Xn)E(Tn,k(Yn) | Yn) − 1{Xn=Yn}(E(Tn,k(Xn) | Xn))2,

where the second equality follows from the NUOD property and the third from (43). Finally,
taking expectations and using the independence of Xn and Yn, we get E Jn,k ≤ (E Tn,k(Xn))2 −
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E pXn
(E(Tn,k(Xn) | Xn))2. Replacing the rightmost expectation in (40) by this bound,

we have

Var dn,k ≥E T2
n,k(Xn) −E pXn

T2
n,k(Xn) − (E Tn,k(Xn))2 +E pXn

(E Tn,k(Xn) | Xn)2

= Var Tn,k(Xn) −E pXn
Var(Tn,k(Xn) | Xn)

≥E Var(Tn,k(Xn) | Xn) −E pXn
Var(Tn,k(Xn) | Xn).

Note also that

E pXn
Var(Tn,k(Xn) | Xn) ≤E pXn

E(T2
n,k(Xn) | Xn)

≤E pXn
Tn,k(Xn) ≤ nr

E pr+1
Xn

r! ≤ np∗
n

nr! nr
E pr

Xn
.

Thus, since np∗
n is bounded,

n∑
k=1

Var dn,k ≥
n∑

k=1

E Var(Tn,k(Xn) | Xn) + o(nr+1
E pr

Xn
).

Finally, observe that Tn,k(x) can be written in the form Tn,k(x) =∑∞
j=0 Pj(x)1j(x), where

Pj(x) = (n−k
j

)
pj

x qn−k−j
x and 1j(x) = 1{Nn,k(x)≥r−j}. Therefore,

Var Tn,k(x) =
∞∑

j=0

P2
j (x)Var 1j(x) + 2

∑
j1<j2

Pj1 (x)Pj2 (x)Cov
(
1j1 (x), 1j2 (x)

)
.

Since 1j1 (x) ≤ 1j2 (x), it follows that the double sum above is non-negative and so

Var Tn,k(x) ≥
∞∑

j=0

P2
j (x)Var 1j(x) ≥ P2

0(x)Var 10(x)

= (1 − px)2(n−k)
P(Nn,k(x) ≥ r)P(Nn,k(x) < r)

≥ (1 − px)2(n−k)
P(Nn,k(x) = r)P(Nn,k(x) = 0)

=
(

k − 1

r

)
pr

x(1 − px)2n−r−2 ≥
(

k − 1

r

)
pr

x(1 − p∗
n)2n.

Consequently, Var(Tn,k(Xn) | Xn) ≥ (k−1
r

)
pr

Xn
(1 − p∗

n)2n, and so
∑n

k=1 Var dn,k ≥
(1 − p∗

n)2n
E pr

Xn

∑n
k=1

(k−1
r

)+ o(nr+1
E pr

Xn
). Finally, since lim sup np∗

n = λ,

lim inf

∑n
k=1 Var dn,k

nr+1E pr
Xn

≥ lim inf
(1 − p∗

n)2n

(r + 1)! = e−2λ

(r + 1)! .
�

4.2.3. Variance of the sum of conditional variances.
Lemma 5. Under the hypotheses of Theorem 2,

Wn := Var
n∑

k=1

E(d2
n,k |Fn,k−1) = o((nr+1

E pr
Xn

)2). (44)
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Proof. We first rewrite (39) as E(d2
n,k |Fn,k−1) =E(An,k(Xn) − Bn,k(Xn, Yn) |Fn,k−1) =

αn,k − βn,k, where An,k(x) = qxT2
n,k(x), Bn,k(x, y) = 1{x �=y}Tn,k(x)Tn,k(y), αn,k =E(An,k(Xn) |

Fn,k−1), and βn,k =E(Bn,k(Xn, Yn) |Fn,k−1). So, letting Wα
n = Var

∑n
k=1 αn,k and Wβ

n =
Var

∑n
k=1 βn,k, and noting that Var(X + Y) ≤ 2(Var X + Var Y), we have

Wn ≤ 2Wα
n + 2Wβ

n . (45)

Then,

Wα
n =

n∑
k=1

Var αn,k + 2
∑

1≤k<�≤n

Cov(αn,k, αn,�), (46)

and the analogous formula holds for Wβ
n . In what follows we express the variances and

covariances of αn,k and βn,k in terms of An,k(Xn) and Bn,k(Xn, Yn). For simplicity, let Zn =
(Xn, Yn), Z′

n = (X′
n, Y ′

n); then Var αn,k = Cov(An,k(Xn), An,k(X′
n)), Cov(αn,k, αn,�) = Cov(An,k

(Xn), An,�(X′
n)), Var βn,k = Cov(Bn,k(Zn), Bn,k(Z′

n)), and Cov(βn,k, βn,�) = Cov(Bn,k(Zn),
Bn,�(Z′

n)), where X′
n and Y ′

n are such that Xn, X′
n, Yn, Y ′

n, Xn,1, . . ., Xn,n are i.i.d. for any n ≥ 1.
We only check the first formula; the others are obtained similarly:

E α2
n,k =E(E(An,k(Xn) |Fn,k−1)E(An,k(X′

n) |Fn,k−1))

=E(E(An,k(Xn)An,k(X′
n) |Fn,k−1))

=E(An,k(Xn)An,k(X′
n)),

(E αn,k)2 = (E An,k(Xn))2 = (E An,k(Xn))(E An,k(X′
n)),

and the formula for Var αn,k follows.
We now compute bounds for the covariances defined above. Since An,k(x) and Bn,k(x, y) are

bounded above by Tn,k(x) ≤ 1, reasoning as in the paragraph preceding (42) we have

Cov(An,k(Xn), An,k(X′
n)) ≤E An,k(Xn)An,k(X′

n) ≤E Tn,k(Xn) ≤ nr
E pr

Xn
(47)

Cov(Bn,k(Zn), Bn,k(Z′
n)) ≤E Bn,k(Zn)Bn,k(Z′

n) ≤E Tn,k(Xn) ≤ nr
E pr

Xn
. (48)

Next, we handle Cov(An,k(Xn), An,�(X′
n)), which requires somewhat more effort than the pre-

vious covariances because the crude bounds do not yield the right order in n. Since An,k(x) =
(1 − px)T2

n,k(x),

Cov(An,k(Xn), An,�(X′
n)) = Cov(T2

n,k(Xn), T2
n,�(X′

n)) + O(nr
E pr+1

Xn
) (49)

because each of the remaining three covariances is bounded by an expression of the form
E pXn Tn,k(Xn) ≤ cnr

E pr+1
Xn

. To bound the covariance between T2
n,k(Xn) and T2

n,�(X′
n) we write

E T2
n,k(Xn)T2

n,�(X′
n) =E 1{Xn=X′

n}T
2
n,k(Xn)T2

n,�(Xn)

+E 1{Xn �=X′
n}T

2
n,k(Xn)T2

n,�(X′
n) (50)

and note that the first expectation in (50) is bounded by

E 1{Xn=X′
n}Tn,k(Xn) =E pXn Tn,k(Xn) ≤ cnr

E pr+1
Xn

, (51)
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where c is a positive constant. For the second expectation in (50) we have the following
expression, written in terms of (conditionally independent) binomial random variables B1, B2,
B′

1, B′
2:

E 1{Xn �=X′
n}P(B1 ≥ r − Nn,k(Xn), B2 ≥ r − Nn,k(Xn),

B′
1 ≥ r − Nn,�(X′

n), B′
2 ≥ r − Nn,�(X′

n) | Xn, X′
n). (52)

Conditionally on (Xn, X′
n), B1, B2, B′

1, and B′
2 are independent, with B1, B2 distributed as

Bin(n − k, pXn ) and B′
1, B′

2 as Bin(n − k, pX′
n
). Further, B1, B2, B′

1, and B′
2 are independent

of Fn,k,Fn,�, conditionally on (Xn, X′
n).

Observe that (52) can be rewritten as

E 1{Xn �=X′
n}P(Nn,k(Xn) ≥ r − B12, Nn,�(X′

n) ≥ r − B′
12} | Xn, X′

n), (53)

where B12 = min{B1, B2} and B′
12 = min{B′

1, B′
2}. Note also that, for x �= y, Nn,k(x) and Nn,l(y)

are NUOD; see (15). Thus, conditioning on the values of the binomials, using the NUOD
property, then integrating over the Bs and using the independence of Xn and X′

n, we have the
following upper bound for (53): E 1{Xn �=X′

n}P(Nn,k(Xn) ≥ r − B12 | Xn)P(Nn,�(X′
n) ≥ r − B′

12} |
X′

n), which, after ignoring the indicator and noting that the conditional probabilities (on Xn and
X′

n) are independent random variables, can be finally bounded by

E P(Nn,k(Xn) ≥ r − B12 | Xn)E P(Nn,�(X′
n) ≥ r − B′

12} | X′
n) =E T2

n,k(Xn)E T2
n,�(X′

n). (54)

Therefore, from (49), (50), (51), and (54), we have

Cov(T2
n,k(Xn), T2

n,�(X′
n)) ≤ cnr

E pr+1
Xn

. (55)

It remains to bound the covariances Cov(Bn,k(Zn), Bn,�(Z′
n)). To that end we first consider the

expected value of the product:

E Bn,k(Zn)Bn,�(Z′
n) ≤E 1DTn,k(Xn)Tn,k(Yn)Tn,�(X′

n)Tn,�(Y ′
n)

+E 1Dc Tn,k(Xn)Tn,k(Yn)Tn,�(X′
n)Tn,�(Y ′

n), (56)

where D is the event that Xn, Yn, X′
n, and Y ′

n are all distinct. Then,

E 1Dc Tn,k(Xn)Tn,k(Yn)Tn,�(X′
n)Tn,�(Y ′

n) ≤
(

4
2

)
E pXn Tn,k(Xn) ≤ cnr

E pr+1
Xn

. (57)

Note that, as in (52), the first term on the right-hand side of (56) can be written as

E 1DP(B1 ≥ r − Nn,k(Xn), B2 ≥ r − Nn,k(Yn),

B′
1 ≥ r − Nn,�(X′

n), B′
2 ≥ r − Nn,�(Y ′

n) | Zn, Z′
n). (58)

Conditionally on (Zn, Z′
n), B1, B2, B′

1, and B′
2 are independent, where B1 is Bin(n − k, pXn ), B2

is Bin(n − k, pYn ), B′
1 is Bin(n − k, pX′

n
), and B′

2 is Bin(n − k, pY ′
n
). Also, B1, B2, B′

1, and B′
2
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are independent of Fn,k,Fn,� conditionally on (Zn, Z′
n). Now, using the NUOD property (14)

and the independence of Xn, Yn, X′
n, and Y ′

n, the expression in (58) is bounded above by

E P(B1 ≥ r − Nn,k(Xn), B2 ≥ r − Nn,k(Yn) | Zn)

× P(B′
1 ≥ r − Nn,�(X′

n), B′
2 ≥ r − Nn,�(Y ′

n) | Z′
n)

=E P(B1 ≥ r − Nn,k(Xn), B2 ≥ r − Nn,k(Yn) | Zn)

×E P(B′
1 ≥ r − Nn,�(X′

n), B′
2 ≥ r − Nn,�(Y ′

n) | Z′
n)

=E Tn,k(Xn)Tn,k(Yn)E Tn,�(X′
n)Tn,l(Y

′
n)

=E Bn,k(Zn)E Bn,�(Z′
n) + O(nr

E pr+1
Xn

). (59)

Therefore, from (56), (57), and (59),

Cov(Bn,k(Zn), Bn,�(Z′
n)) ≤ cnr

E pr+1
Xn

. (60)

We complete the proof of (44) by collecting the partial results above to obtain bounds
for Wα

n and Wβ
n , using formula (46). From (47) and (48),

∑n
k=1 Var αn,k ≤ nr+1

E pr
Xn

and∑n
k=1 Var βn,k ≤ nr+1

E pr
Xn

. From (49) and (55),

∑
1≤k<�≤n

Cov(αn,k, αn,�) ≤ c

(
n
2

)
nr
E pr+1

Xn
≤ cnp∗

n

(
nr+1

E pr
Xn

)= o((nr+1
E pr

Xn
)2).

Finally, from (60),

∑
1≤k<�≤n

Cov(βn,k, βn,�) ≤ c

(
n
2

)
nr
E pr+1

Xn
≤ cnp∗

n

(
nr+1

E pr
Xn

)= o((nr+1
E pr

Xn
)2).

The conclusion follows from (45), (46), and the bounds for the sums of variances and
covariances above. �

4.2.4. The final step: the martingale CLT.

Proof of Theorem 2. We establish asymptotic normality by applying the martingale central
limit theorem (see, e.g., [8, Theorem 2.5]) to the martingale differences (dn,k). Since the dn,k

are uniformly bounded, the conditional Lindeberg condition ([8, Condition (2.5)]) follows from
the fact that the variance of the sum grows to infinity. The remaining condition to be checked,
[8, Condition (2.7)], is ∑n

k=1 E(d2
n,k |Fn,k−1)∑n

k=1 E d2
n,k

P−→ 1,

or, equivalently, ∑n
k=1 (E(d2

n,k |Fn,k−1) −E d2
n,k)∑n

k=1 E d2
n,k

P−→ 0.

But this follows immediately from the second part of Proposition 1, Lemma 5, and
Chebyshev’s inequality. �
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4.3. Phase transition

Proof of Proposition 2. Note that the Poissonian asymptotics at the critical capacity r follows
immediately from Theorem 1.

When r ≥ 2 and s ∈ {1, . . . , r − 1}, it follows from (22) of Lemma 1 that the assumptions
of Theorem 2 are satisfied and thus we have the normal asymptotics.

When r ≥ 1 and s ∈ {r + 1, r + 2, . . .}, following (27), we can write, for any ε > 0,

P(Vn,s > ε) ≤ E Vn,s

ε
≤ ns+1

E ps
Xn

ε (s + 1)! .

Thus, (21) of Lemma 1 yields Vn,s
P→ 0. �

4.4. Asymptotics for full containers

Proof of Theorem 3. For the case r > 1, due to the representations in (10), to prove both
results it suffices to show that E Vn,s → 0 for any fixed s ≥ r. Since (27) yields

E Vn,s ≤ ns+1

(s + 1)!E ps
Xn

,

the result follows from (22) of Lemma 1.
For the case r = 1, the first part follows from Theorem 1 since (11) implies n − Ln,1 = Vn,1.

The second also follows from Theorem 1 since (12) gives 1
2 (n − Kn,1) = Vn,1 − 1

2 Vn,2 and,
similarly to the case r > 1, we have E Vn,2 → 0. �

Proof of Theorem 4. By the representation in (10) we can write

Var Ln,r

Var Vn,r−1
= 1 + Var Vn,r

Var Vn,r−1
− 2

Cov(Vn,r−1, Vn,r)

Var Vn,r−1
.

Since nr+1
E pr

Xn
≤ np∗

nnr
E pr−1

Xn
, it follows that nr

E pr−1
Xn

→ ∞. Therefore, by Proposition 1,
we have

Var Vn,r

Var Vn,r−1
≤ c

nr+1
E pr

Xn

nrE pr−1
Xn

≤ cnp∗
n → 0.

Thus, ∣∣∣∣Cov(Vn,r−1, Vn,r)

Var Vn,r−1

∣∣∣∣≤
√

Var Vn,r

Var Vn,r−1
→ 0,

and so
Vn,r −E Vn,r√

Var Ln,r

L2−→ 0.

Hence, the first result is a consequence of Theorem 2 since, in view of the representation in
(10),

Ln,r −E Ln,r√
Var Ln,r

= Vn,r−1 −E Vn,r−1√
Var Vn,r−1

√
Var Vn,r−1

Var Ln,r
− Vn,r −E Vn,r√

Var Ln,r
.
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For the second case, by the representation in (10) we can write

Var Kn,r

Var Vn,r−1
= 1 + 4

Var Vn,r

Var Vn,r−1
+ Var Vn,r+1

Var Vn,r−1

− 4
Cov(Vn,r−1, Vn,r)

Var Vn,r−1
− 4

Cov(Vn,r, Vn,r+1)

Var Vn,r−1
+ 2

Cov(Vn,r−1, Vn,r+1)

Var Vn,r−1
.

Similarly to the previous case, we conclude that ns
E ps−1

Xn
→ ∞ for s = r, r + 1. Therefore, by

the same argument as above, it follows that each of the summands on the right-hand side of the
expression above, excluding the first one, converges to 0. Consequently, for s = r, r + 1,

Vn,s −E Vn,s√
Var Kn,r

L2−→ 0.

Thus, the second result is a consequence of Theorem 2 since, in view of (10),

Kn,r −E Kn,r√
Var Kn,r

= Vn,r−1 −E Vn,r−1√
Var Vn,r−1

√
Var Vn,r−1

Var Kn,r

− 2
Vn,r −E Vn,r√

Var Kn,r
+ Vn,r+1 −E Vn,r+1√

Var Kn,r
.

�

5. More on the asymptotics of the mean

As mentioned in Remark 1, when λ = lim sup np∗
n = 0 the limit of E Vn,r/nr+1

E pr
Xn

exists,
but when λ > 0 we were only able to obtain lower and upper bounds for that ratio. Here,
under additional assumptions, we consider the existence of the limit when λ > 0. We begin by
re-writing an expression for E Vn,r in a more convenient form.

Lemma 6.

E Vn,r =
n−1∑
s=r

(
n

s + 1

)(
s − 1

s − r

)
(−1)s−r

E ps
Xn

. (61)

Proof. Recall, for example from (18), that

E Vn,r =
n∑

k=r+1

E Yn,k =E

n∑
k=r+1

k−1∑
i=r

(
k − 1

i

)
pi

Xn
(1 − pXn )k−1−i.

Expanding (1 − pXn )k−1−i by the binomial formula, we see that the double sum on the right-
hand side is

n∑
k=r+1

k−1∑
i=r

(
k − 1

i

) k−1−i∑
j=0

(
k − 1 − i

j

)
(−1) jpi+j

Xn

=
n−1∑
i=r

n−1−i∑
j=0

(
i + j

i

)
(−1) jpi+j

Xn

n∑
k=i+j+1

(
k − 1

i + j

)
.
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Since
∑n

k=i+j+1

(k−1
i+j

)= ( n
i+j+1

)
, we get

n∑
k=r+1

k−1∑
i=r

(
k − 1

i

)
pi

Xn
(1 − pXn )k−1−i =

n−1∑
i=r

n−1−i∑
j=0

(
i + j

i

)(
n

i + j + 1

)
(−1) jpi+j

Xn

=
n−1∑
i=r

n−1∑
s=i

(
s

i

)(
n

s + 1

)
(−1)s−ips

Xn

=
n−1∑
s=r

(
n

s + 1

)
ps

Xn

s∑
i=r

(
s

i

)
(−1)s−i.

The final result follows from the identity
∑s

i=r

(s
i

)
(−1)s−i = (s−1

s−r

)
(−1)s−r. �

To state our condition we need to introduce one more definition. Let Xn denote the set
of distinct values among pn,k/p∗

n, k ∈ Mn. For x ∈Xn, denote K(x) = {k ∈ Mn : x = pn,k/p∗
n}.

Define random variables Pn, n ≥ 1, as follows:

P(Pn = x) = 1

E pr
Xn

∑
k∈K(x)

pr+1
n,k , x ∈Xn.

Definition 1. We say that the sequence (Xn)n≥1 is in the class T (r) if the sequence (Pn)n≥1
converges in distribution.

Denote by U the limit of (Pn)n≥1 when it exists, and let νr denote the distribution of U. Note
that since U is a [0, 1]-valued random variable, (Xn)n≥1 ∈ T (r) if and only if E Pj

n →E Uj,
j ≥ 1.

We will show that, for (Xn)n≥1 ∈ T (r), if limn→∞ np∗
n exists and is positive then

H(r, λ) := lim
n→∞

E Vn,r

nr+1E pr
Xn

also exists.
Recall that the generalized hypergeometric function pFq is defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k! , (62)

where (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k ≥ 1. We derive the following represen-
tation for H(r, λ).

Proposition 3. Let (Xn)n≥1 be in T (r) and np∗
n → λ > 0. Then

H(r, λ) = E e−λBU

(r + 1)! = 1

(r + 1)!
∫

1F1(r; r + 2; − λu) νr(du), (63)

where B is a beta BI(r, 2) random variable with density f (b) = r(r + 1)br−1(1 − b)1(0,1)(b).
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Proof. Using (61) we get

E Vn,r

nr+1E pr
Xn

= 1

nr+1

n−1∑
s=r

n(n − 1) . . . (n − s)

s(s + 1)

(−1)s−r

(s − r)!(r − 1)!
E ps

Xn

E pr
Xn

= 1

(r − 1)!
n−1∑
s=r

n(n − 1) . . . (n − s)

ns+1s(s + 1)

(−1)s−r

(s − r)! (np∗
n)s−r

E Ps−r
n

→ 1

(r − 1)!
∑
�≥0

(−λ)�

�!
E U�

(r + �)(r + 1 + �)
= H(r, λ),

where the last line holds by the Lebesgue dominated convergence theorem.
Since

1

(r + j + 1)(r + j)
= 1

r + j
− 1

r + j + 1
=
∫ 1

0

(
xr+j−1 − xr+j)dx,

we get

H(r, λ) = 1

(r − 1)!
∑
�≥0

(−λ)�

�!
∫

[0,1]
u�νr(du)

∫ 1

0
xr+�−1(1 − x)dx

= 1

(r − 1)!
∫

[0,1]

∫ 1

0
xr−1(1 − x)

∑
�≥0

(−λxu)�

�! dx νr(du)

= 1

(r + 1)!
∫ 1

0

∫
[0,1]

e−λxur(r + 1)xr−1(1 − x)νr(du)dx = E e−λBU

(r + 1)! ,

where B is as specified earlier. This proves the first equality in (63). The second follows
by recalling that the Laplace transform of the beta BI(α, β) random variable B is E esB =
1F1(α; α + β; s). Applying this formula conditionally on U in E e−λBU and then integrating
with respect to U yields the second equality in (63). �

The above representation allows us to give a short proof of the bounds (8) in Proposition 1
for the limit H(r, λ) in T (r) models. While the upper bound remains the same, the lower is
tighter and, as we will see in Example 5, is exact.

Proposition 4. Let (Xn)n≥1 belong to the class T (r) and np∗
n → λ > 0. Then

�λ(r + 1)

r! <
1F1(r; r + 2; − λ)

(r + 1)! ≤ H(r, λ) <
1

(r + 1)! . (64)

Proof. The upper bound is clear since E e−λBU < 1. The inequality is strict since P(U >

0) > 0.
On the other hand, P(B ≤ 1) = 1. Thus, by the first part of (63), we get

H(r, λ) ≥ 1

(r + 1)!E e−λU = 1F1(r; r + 2; − λ)

(r + 1)! ,

which proves the second inequality in (64). Finally, to prove the first one, note that

1F1(r; r + 2; − λ)

(r + 1)! =
∫ 1

0 e−λxxr−1(1 − x)dx

(r − 1)! .
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Integrating the numerator by parts yields

1

r

∫ 1

0
(1 − x)e−λx dxr = 1

r

∫ 1

0
xr(e−λx + λ(1 − x)e−λx) dx

>
1

r

∫ 1

0
xre−λx dx = �λ(r + 1)

r
. �

We close by considering several special cases, the first of which shows that the middle
inequality in (64) is sharp.

Example 5. (Uniform distribution.) Let pn,j = 1/mn, j ∈ Mn = {1, . . . , mn}, n ≥ 1. Assume
that n/mn → λ > 0. Note that in this case Pn = 1 P-a.s., n ≥ 1, and thus νr = δ1. Hence,
by (63),

H(r, λ) = 1F1(r; r + 2; − λ)

(r + 1)! .

Example 6. (Geometric distribution.) Let pn,j = pn(1 − pn) j, j ∈ Mn = {0, 1, . . .}, n ≥ 1.
Assume that npn → λ > 0 (note that in this case p∗

n = pn). Then, νr(du) = (r + 1)ur1[0,1](u)du
and

H(r, λ) = 2F2(r, r + 1; r + 2, r + 2; − λ)

(r + 1)! . (65)

Indeed, with qn := 1 − pn we have P(Pn = qk
n) = q(r+1)k

n (1 − qr+1
n ), k = 0, 1, . . . Therefore, for

any � = 1, 2, . . .,

E P�
n =

∑
k≥0

q(�+r+1)k
n (1 − qr+1

n ) = 1 − qr+1
n

1 − q�+r+1
n

→ r + 1

� + r + 1
= (r + 1)

∫ 1

0
x�+r dx,

which implies the assertion on the form of νr.

Thus, (63) yields

H(r, λ) = 1

r!
∫ 1

0
1F1(r, r + 2; −λu)ur du.

Using the Euler integral identity (see, e.g., [22, Eq. 16.5.2]),

p+1Fq+1(a1, . . . , ap, c; b1, . . . , bq, c + d; z)

= �(c + d)

�(c)�(d)

∫ 1

0
tc−1(1 − t)d−1

pFq(a1, . . . , ap; b1, . . . , bq; zt)dt,

with p = q = 1, c = r + 1, and d = 1 yields (65).

Example 7. (Riemann ζ distribution.) Let pn,j = j−αn/ζ (αn), j ∈ Mn = {1, 2, . . .}, and αn > 1,
n ≥ 1. Assume that n(αn − 1) → λ. Then

νr =
∑
k≥1

k−(r+1)

ζ (r + 1)
δ1/k. (66)

and

H(r, λ) = 1

(r + 1)!
∫
R

1F2(r; r + 1, r + 2; − λx) μr(dx), (67)
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where μr is the probability measure defined on (0, ∞) by

μr(dx) = 1

r!ζ (r + 1)

xr

ex − 1
dx. (68)

We first justify (66). Since p∗
n = 1/ζ (αn) we have

P(Pn = k−αn ) = k−αn(r+1)

ζ (αn(r + 1))
.

We have αn → 1 and thus, by Lebesgue dominated convergence,

E P�
n =

∑
k≥1

k−αn�
k−αn(r+1)

ζ (αn(r + 1))
→
∑
k≥1

k−� k−(r+1)

ζ (r + 1)
, � = 1, 2, . . . ,

which proves the assertion on νr.
By (63) we have

H(r, λ) = 1

(r + 1)!ζ (r + 1)

∑
k≥1

1F1

(
r; r + 2; − λ

k

)
1

kr+1
.

Expanding 1F1 according to (62) and changing the order of the sums, we get

H(r, λ) = 1

(r + 1)!ζ (r + 1)

∑
j≥0

(r)j

(r + 2)j

(−λ) j

j! ζ (j + r + 1). (69)

Let us recall an integral identity for product of ζ and � functions (see, e.g., [22, Eq. 25.5.1]):

ζ (s)�(s) =
∫ ∞

0

xs−1

ex − 1
dx, Re(s) > 1. (70)

Inserting (70) into the right-hand side of (69) we get

H(r, λ) = 1

(r + 1)!ζ (r + 1)

∑
j≥0

(r)j

(r + 2)j

1

�(r + j + 1)

∫ ∞

0

xr+j

ex − 1
dx

(−λ) j

j!

= 1

r!(r + 1)!ζ (r + 1)

∫ ∞

0

(∑
j≥0

(r)j

(r + 1)j(r + 2)j

(−λx) j

j!

)
xr

ex − 1
dx,

which proves (67) and (68).

Remark 2. Central limit theorems for various parameters (including the number of occupied
urns) for infinite urn models with assumptions on the probabilities (pj), j ≥ 1, similar to those
on (pn,j)j≥1, n ≥ 1, in Example 7 have been investigated in, e.g., [13].
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[3] BEŚKA, M., KŁOPOTOWSKI, A. AND SŁOMIŃSKI, L. (1982). Limit theorems for random sums of dependent
d-dimensional random vectors. Z. Wahrscheinlichkeitsth. 61, 43–57.

[4] BOBECKA, K., HITCZENKO, P., LÓPEZ-BLÁZQUEZ, F., REMPAŁA, G. AND WESOŁOWSKI, J. (2013).
Asymptotic normality through factorial cumulants and partition identities. Combinatorics Prob. Comput. 22,
213–240.

[5] CHAO, A. AND CHIU, C.-H. (2016). Species richness: Estimation and comparison. In Wiley StatsRef: Statistics
Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J. L. Teugels), John
Wiley, London.

[6] DUPUIS, P., NUZMAN, C. AND WHITING, P. (2004). Large deviation asymptotics for occupancy problems.
Ann. Prob. 32, 2765–2818.

[7] GNEDIN, A., HANSEN, B. AND PITMAN, J. (2007). Notes on the occupancy problem with infinitely many
boxes: General asymptotics and power laws. Prob. Surv. 4, 146–171.

[8] HELLAND, I. S. (1982). Central limit theorems for martingales with discrete or continuous time. Scand. J.
Statist. 9, 79–94.

[9] HWANG, H. K. AND JANSON, S. (2008). Local limit theorems for finite and infinite urn models. Ann. Prob. 36,
992–1022.

[10] JOAG-DEV, K. AND PROSCHAN, F. (1983). Negative association of random variables with applications. Ann.
Statist. 11, 286–295.

[11] JOGDEO, K AND PATIL G. P. (1975). Probability inequalities for certain multivariate discrete distribution.
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