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Rapid granular flows down inclined planar
chutes. Part 2. Linear stability analysis

of steady flow solutions
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The linear stability of steady solutions for a rapid granular flow down an inclined
chute, modelled using a kinetic theory continuum model, is analysed. The previous
studies of Forterre & Pouliquen (J. Fluid Mech., vol. 467, 2002, p. 361) and Mitarai &
Nakanishi (J. Fluid Mech., vol. 507, 2004, p. 309) are extended by considering fully
three-dimensional perturbations, allowing variations in both the cross-slope and
downslope directions, as well as normal to the base. Our results demonstrate the
existence of three qualitatively different unstable perturbations, each of which can
be the most rapidly growing instability for different steady flows. By considering the
linear stability of many steady solutions along macroscopic flow curves, we show that
linear stability occurs in only a small part of parameter space, and furthermore the
regions of linear instability do not correlate with density inversion of the underlying
steady solutions. Our results suggest that inelastic clustering is the dominant instability
mechanism.

1. Introduction
In this paper, we further analyse rapid granular flows down inclined planar chutes,

extending the results reported in Woodhouse, Hogg & Sellar (2010, subsequently
referred to as Part 1). Our model adopts kinetic theory, adapted to describe inelastic
collisions between particles, to provide a continuum description of the highly agitated
flow. In Part 1, we determined solutions corresponding to a steady, fully developed
flow down the chute and investigated the character of these solutions as the controlling
parameters are varied. Here we assess the linear stability of these solutions to small
perturbations, focusing in particular on those parameter values that give rise to
multiple flow solutions for a given mass flux of material. An aim of this study is to
determine which of the steady solutions we calculate, if any, are linearly stable and
thus could be realized in experiments or simulations.

The experiments of Forterre & Pouliquen (2001) demonstrate the potential for
pattern forming instabilities to occur in rapid granular chute flows, with longitudinal
streaks occurring on the surface of the flowing layer. These streaks are interpreted as
the surface deformation caused by the formation of longitudinal vortices in the interior
of the flow. Furthermore, Forterre & Pouliquen (2002) show that a more complex
pattern of rectangular ‘scales’ can also occur, which may represent a development
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of the streaks or a separate unstable mode. Instabilities of granular flows have
also been seen in discrete element simulations, in both unbounded domains (see
e.g. Hopkins & Louge 1991; Goldhirsch & Zanetti 1993; McNamara & Young
1994; Tan & Goldhirsch 1997) and for shear flows in bounded geometries (e.g. Liss,
Conway & Glasser 2002; Conway & Glasser 2004). For a gravity-driven flow on an
inclined chute (the geometry considered here) a discrete element simulation has been
performed by Mitarai & Nakanishi (2001) on a large computational domain, and
they uncovered the signature of a clustering instability, with streamwise variations in
density appearing along the chute.

Theoretical investigations of the linear stability of rapid granular flows have
concentrated on shear flows in unbounded domains (see Savage 1992; Schmid &
Kytömaa 1994) and confined geometries (see e.g. Wang, Jackson & Sundaresan 1996,
1997; Alam & Nott 1998; Alam et al. 2005; Alam 2006). For an inclined chute
geometry, Forterre & Pouliquen (2002) performed a linear stability analysis of a
kinetic theory continuum model in order to rationalize their earlier experimental
observations. As the experimentally observed instability results in a cross-slope
structure, the analysis of Forterre & Pouliquen (2002) was limited to cross-slope
perturbations. Their analysis revealed the existence of unstable perturbations with a
vortical structure. As these instabilities were discovered as unstable perturbations to
steady profiles exhibiting a density inversion, where the steady flow density profile
has a maximum occurring in the interior of the flow, and where the base of the
flow is a source of fluctuation energy, Forterre & Pouliquen (2002) proposed a
mechanism akin to the well-known Rayleigh–Bénard convection in which a fluid
layer heated from below becomes unstable and forms vortices (Drazin & Reid 1981).
Mitarai & Nakanishi (2004) followed Forterre & Pouliquen (2002) in their linear
stability analysis, but considered perturbations only in the downslope direction in an
attempt to reproduce the instability observed in the discrete element simulations of
Mitarai & Nakanishi (2001). Again, linearly unstable perturbations were obtained
and interpreted by Mitarai & Nakanishi (2004) as density waves that form because
of clustering of the inelastic grains.

The analyses of Forterre & Pouliquen (2002) and Mitarai & Nakanishi (2004)
show that steady chute flows can be unstable to both purely cross-slope and purely
downslope perturbations, respectively. However, it is not clear in advance whether
either of these perturbations represents the most rapidly growing instability and so
is the dominant mode which may be seen in experiments. Nor is it easy to assess
the mechanism by which the instability proceeds. We therefore perform a three-
dimensional stability analysis, allowing perturbations to the underlying steady flow
with variations in the downslope and cross-slope directions as well as normal to
the chute base. Our results establish three qualitatively different linearly unstable
perturbations. Two of these occur for purely cross-slope perturbations and of these
one is a vortex-forming perturbation similar to that obtained by Forterre & Pouliquen
(2002) while the other is a non-vortex-forming clustering instability. The third
instability occurs for purely downslope perturbations, similar to that obtained by
Mitarai & Nakanishi (2004).

While our methodology is broadly similar to the previous studies of Forterre &
Pouliquen (2002) and Mitarai & Nakanishi (2004), there are some important
differences. Our analysis shows that the boundary conditions enforced by Forterre &
Pouliquen (2002), and subsequently by Mitarai & Nakanishi (2004), at the free
surface overprescribe the behaviour of the perturbation fields, and employ additional
artificial boundary conditions which are unnecessary. The far-field conditions have
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a particularly strong influence at small wavenumbers, for which we often find the
most rapidly growing mode. Our analysis also reveals the existence of a continuous
spectrum of eigenvalues that can interfere in the numerical calculation of the unstable
modes and leads to the requirement of high numerical accuracy in the computation
of both the base state and linear stability eigenvalues. We achieve this high accuracy
by employing a Chebyshev pseudospectral method, as described in Part 1.

This paper is organized as follows. In § 2 we recall the continuum equations
for granular flows and linearize these equations about the steady, fully developed
chute flow to obtain evolution equations for small perturbations, which are further
simplified by making a normal mode approximation. The algebraic details of these
calculations can be found in the Appendix. Typical results are presented in § 3, where
we demonstrate the existence of three qualitatively different unstable modes. We also
study the linear stability characteristics along macroscopic flow curves, showing that
linearly stable solutions exist only on a relatively small segment of the curves and for
a limited range of inclination angles. In § 4 we compare our results with the previous
studies of Forterre & Pouliquen (2002) and Mitarai & Nakanishi (2004), and discuss
the implications of our results for the proposed instability mechanisms. A summary
of our investigation is given in § 5.

2. Linearized governing equations
We recall the equations governing the evolution of a rapid granular flow under

gravity as

Dρ

Dt
= −ρ∇ · u, (2.1)

ρ
Du
Dt

= ρg − ∇ · P, (2.2)

3

2
ρ

DT

Dt
= −P : ∇u − ∇ · q − γ, (2.3)

where D/Dt = ∂/∂t + u · ∇ denotes the advective derivative, g is the acceleration due
to gravity, P is the pressure tensor, q is the heat flux and γ is the dissipation due to
inelastic collisions (Lun et al. 1984). These equations represent mass, momentum and
fluctuation energy conservation, respectively. The pressure tensor and heat flux are

P = (p − ξ (∇ · u)) I − 2ηS, (2.4)

q = −K∇T + K∗∇ν, (2.5)

S = 1
2

(
∇u + ∇uT

)
− 1

3
(∇ · u) I, (2.6)

where I is the identity matrix and S is the deviatoric part of the symmetric strain rate
tensor. The pressure p, viscosity η, bulk viscosity ξ , conductivities K and K∗, and
dissipation γ are given from a kinetic theory adapted to describe inelastic collisions
(here we adopt the constitutive theory of Lun et al. 1984) as functions of the volume
fraction and granular temperature:

p = g1(ν)T , η = g2(ν)T 1/2, ξ = g6(ν)T 1/2,

K = g3(ν)T 1/2, K∗ = g4(ν)T 3/2, γ = g5(ν)T 3/2,

}
(2.7)

where the dimensionless functions gi(ν) are given in Part 1.
In Part 1, we have found solutions of the governing equations corresponding

to a steady, fully developed flow. These solutions have been characterized by the
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a0 = ġ1(ν0)T0 b0 = g1(ν0)

c0 = ġ2(ν0)T
1/2
0 d0 = 1

2
g2(ν0)T

−1/2
0

e0 = ġ3(ν0)T
1/2
0 h0 = 1

2
g3(ν0)T

−1/2
0

e∗
0 = ġ4(ν0)T

3/2
0 h∗

0 = 3
2
g4(ν0)T

1/2
0

l0 = ġ5(ν0)T
3/2
0 m0 = 3

2
g5(ν0)T

1/2
0

Table 1. Functions of the steady solutions required for the linear stability analysis.
Note that ġi = dgi/dν.

macroscopic (dimensionless) mass flux Q0, mass hold-up M0, and centre-of-mass h0,
defined as the depth-integrated quantities:

Q0 =

∫ ∞

0

ν0u0 dz, M0 =

∫ ∞

0

ν0 dz, h0 =
1

M0

∫ ∞

0

ν0z dz. (2.8)

We have introduced a zero subscript to highlight that these quantities are determined
from the steady solutions. Parametric continuation of the steady solutions has shown
the existence of multiple steady flow solutions for a fixed mass flux of material in
some regions of the parameter space.

We investigate the linear stability of these steady solutions to small perturbations
using the classical normal mode analysis (Drazin & Reid 1981). The steady flow
solution, denoted by (ν0, T0, u0), is perturbed by a small disturbance such that

ν(x, y, z, t) = ν0(z) + ν1(x, y, z, t),

u(x, y, z, t) = u0(z) + u1(x, y, z, t),

v(x, y, z, t) = v1(x, y, z, t),

w(x, y, z, t) = w1(x, y, z, t),

T (x, y, z, t) = T0(z) + T1(x, y, z, t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.9)

The pressure, viscosity, conductivities and dissipation are linearized as

p(ν, T ) = p0 + a0ν1 + b0T1, η(ν, T ) = η0 + c0ν1 + d0T1,

K(ν, T ) = K0 + e0ν1 + h0T1, K∗(ν, T ) = K∗
0 + e∗

0ν1 + h∗
0T1,

γ (ν, T ) = γ0 + l0ν1 + m0T1,

⎫⎪⎬
⎪⎭ (2.10)

following the notation of Forterre & Pouliquen (2002). Here a zero subscript denotes
a quantity that depends only on the steady solution (so p0 =p(ν0, T0), ξ0 = ξ (ν0, T0)
etc.), and the functions a0, b0 etc. are given in table 1. The variables representing the
perturbation are denoted by the suffix 1 and are assumed to be much smaller than
the steady flow.

The governing equations are linearized (as detailed in the Appendix) about the
steady flow and we seek a normal mode solution of the perturbed fields of the form

(ν1, u1, v1, w1, T1) (x, y, z, t) = (ν̂, û, v̂, ŵ, T̂ )eσ t+ikxx+ikyy, (2.11)

where the variables (ν̂, û, v̂, ŵ, T̂ ) are functions of z. We consider the temporal
stability of the steady flow, so specify the disturbance wavenumbers kx, ky ∈ � and
determine the set of growth rates σ ∈ �. On inserting the normal mode ansatz into the
linear partial differential equations we obtain a linear system of ordinary differential
equations with the growth rate appearing as an eigenvalue, which can be written in
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matrix form as

L(kx, ky)
d2 X
dz2

+ M(ky, ky)
dX
dz

+ N(kx, kx)X = σΣ X, (2.12)

where X = (ν̂, û, v̂, ŵ, T̂ )T and the elements of the matrices L, M, N, Σ are functions of
the steady solutions and the disturbance wavenumbers, as given in the Appendix. The
linearized equations must be augmented with the appropriate linearized boundary
conditions at the chute base and the free surface, but first we consider the order of
the system of ordinary differential equations.

2.1. Order of linearized equations and the continuous spectrum

To determine the order of the linear system of ordinary differential equations, and
thus the number of boundary conditions required, we reduce the system (2.12) to a
system of first-order equations. The details of this calculation are presented in the
Appendix, and we conclude that (2.12) represents an eighth-order system.

The reduction to a first-order system of equations also shows that the system (2.12)
is singular whenever

σ = σc = −
ν0

(
a0K0 + b0K

∗
0

)
K0

(
ξ0 + 4

3
η0

) − ikxu0. (2.13)

These singular points give rise to a continuous spectrum of eigenvalues. The right-
hand side of (2.13) is a function of z, so we write the continuous spectrum as
σ = σc(z), and there is a singular point of the governing equations for each z ∈ (0, ∞).
However, as each of the steady flow quantities in (2.13) is positive over the entire flow
domain, Re (σc) � 0 and the continuous spectrum does not contribute to instability.
An example of the continuous spectrum is shown in figure 1. The previous studies of
the linear stability of chute flows (Forterre & Pouliquen 2002; Mitarai & Nakanishi
2004) did not identify the continuous spectrum.

Although the continuous spectrum does not result in instability, its presence can
cause numerical difficulties. Since Re (σc) → 0 as z → ∞, care must be taken to ensure
that potentially unstable, discrete eigenvalues with small real part are fully resolved.

2.2. Boundary conditions

The system of ordinary differential equations for the normal mode functions is
augmented with boundary conditions obtained by linearizing the physical boundary
conditions at the planar chute boundary and at the free surface. The linearized
boundary conditions of Richman (1988) provide four conditions at the solid boundary
which we write in matrix form as

Q
dX
dz

+ R(kx, ky)X = 0 at z = 0, (2.14)

where the components of the 4 × 5 matrices Q and R are functions of the steady flow
solutions, evaluated at the base, as given in the Appendix.

The free surface conditions are determined by making an asymptotic expansion of
the linearized governing equations as z → ∞, following Forterre & Pouliquen (2002),
as shown in the Appendix. We obtain the asymptotic behaviour of the perturbation
velocity components and the perturbation granular temperature:

û = (U10 + U11z) e−Kz, v̂ = (V10 + V11z) e−Kz,

ŵ = (W10 + W11z) e−Kz, T̂ = T10e
−Kz,

}
(2.15)
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Figure 1. The continuous spectrum of eigenvalues σc(z) obtained from a high temperature
steady chute flow with mass flux Q0 = 3, material parameters e = ew = 0.8, r = 0.6 and chute
slope tan θ = 0.3, for wavenumbers kx = 5 × 10−4, ky = 0. The real and imaginary parts of σc

are plotted as functions of the distance from the chute boundary and together on the complex
plane.

for z � 1, where K =
√

k2
x + k2

y and

V10 = −kx

ky

U10 − iK

ky

W10 − 7K

kxky

U11, V11 =
ky

kx

U11, W11 =
iK

kx

U11. (2.16)

The constants U10, U11, W10 and T10 remain undetermined. In these results our analysis
diverges from the previous studies (Forterre & Pouliquen 2002; Mitarai & Nakanishi
2004) that enforced purely exponential decay (so setting U11 = 0) and treated V10 as
an independent constant.

Since the fields and their derivatives vanish at infinity, the physical boundary
conditions of vanishing mass flux, momentum flux and energy flux are satisfied.
The asymptotic analysis provides four surface conditions to complement the four
base boundary conditions imposed on the system. Here our study also differs from
the previous contributions (Forterre & Pouliquen 2002; Mitarai & Nakanishi 2004),
in which two artificial boundary conditions were added to the system to provide 10
boundary conditions. We have shown that these are unnecessary and that together with
the enforced exponential decay, it is possible that the linear system was overprescribed
in these earlier studies.

2.3. Numerical method

In order to determine those growth rates for which the system above has a solution,
we must solve numerically the linear system of ordinary differential equations. The
differential eigenproblem can be reduced to a linear eigenproblem by a discretization
of the differential operator. The pseudospectral method of discretization is well suited
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to eigenvalue problems (Boyd 2000) and is used here to approximate the spatial
structure of the normal modes.

As in Part 1, we must transform the governing equations onto a computational
domain in order to apply the Chebyshev spectral expansion. The steady-flow
computational domain is found from an exponential mapping of the physical space

ζ0 = exp (−z/L) , (2.17)

where the map parameter L =2kT∞, for k ∈ �, is chosen to ensure analyticity in
the computational domain. Here, if we transform the physical domain in this way,
the perturbation fields are, in general, not analytic as ζ → 0, as seen from (2.15).
Instead, we use a truncation of the semi-infinite physical domain in combination
with a two-parameter algebraic mapping, as suggested by Malik (1990) for boundary-
layer flow and used in the linear stability analysis of the granular chute flow by
Forterre & Pouliquen (2002). The semi-infinite domain is truncated at z = zm and then
transformed to the computational domain, ζ1 ∈ [0, 1], using an algebraic mapping,

ζ1 =
a − zb

a − z
, (2.18)

for map parameters

a =
zmzh

2zh − zm

, b =
zh

2zh − zm

, (2.19)

where ζ1 = 1/2 at z = zh. This two-parameter mapping therefore allows the clustering
of collocation points at the boundary through our choice of zh.

In order to use the truncation of the semi-infinite physical domain, we need to
replace the asymptotic free surface boundary conditions, which are applied in the
limit z → ∞, with conditions at the finite truncation point z = zm. The conditions at the
truncation point must ensure that the perturbation fields match onto the asymptotic
behaviour required as z → ∞. It is sufficient to take the leading-order behaviour by
assuming zm/T∞ � 1, so that the volume fraction is sufficiently small for both the
steady flow and the perturbation. In our computations, we ensure that zm is large
enough so that ν0(zm) < 10−10, which typically results in zm/T∞ > 20. We construct a
simple system of coupled first-order equations that are applied at the truncation point
z = zm to ensure the correct asymptotic decays as z → ∞. The boundary conditions for
the velocity components at the truncation point are then given by a simple coupled
system of the form

û′ + a1û + b1v̂ + c1ŵ = 0,

v̂′ + a2û + b2v̂ + c2ŵ = 0,

ŵ′ + a3û + b3v̂ + c3ŵ = 0,

⎫⎪⎬
⎪⎭ (2.20)

where the coefficients are functions of the wavenumbers of the perturbation:

a1 =
8k2

x + 7k2
y

7K
, b1 =

kxky

7K
, c1 =

ikx

7
,

a2 =
kxky

7K
, b2 =

7k2
x + 8k2

y

7K
, c2 =

iky

7
,

a3 =
ikx

7
, b3 =

iky

7
, c3 =

6K

7
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21)

and are selected such that the general solution of (2.20) has the appropriate asymptotic
decay and the required coupling between the velocity components given by (2.15) and
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(2.16). For the granular temperature, we simply require

T̂ ′ + KT̂ = 0, (2.22)

at z = zm.
We now seek a spectral approximation to the normal mode amplitude functions,

writing, for example

ν̂ =

M+1∑
j=1

ν̂j Tj−1 (2ζ1 − 1) , (2.23)

and similarly for û, v̂, ŵ, T̂ , where the arguments of the Chebyshev polynomials
introduce a further mapping of the computational domain onto the domain of
the Chebyshev polynomials. On inserting the spectral expansions into the ordinary
differential equations for the normal modes and the boundary conditions at the base
and truncation point, after the appropriate transformation of derivatives into the
computational domain, we obtain a system of algebraic equations for the spectral
expansion coefficients.

The 5M+5 spectral expansion coefficients are determined by enforcing the algebraic
equations at a subset of the M + 3 collocation points, made up of the roots of
TM+1(2ζ1 − 1) = 0 together with the base boundary ζ1 = 1 and the truncation point
ζ1 = 0. The linear differential eigenproblem is reduced to a generalized eigenvalue
problem of the form

Ax = σBx, (2.24)

where the eigenvalue σ is the growth rate of the perturbation, and the eigenvector x is
the vector of spectral expansion coefficients. The matrices A and B are the discretized
governing equations evaluated at the collocation points, together with the four base
boundary conditions and the four conditions at the truncation point. The matrices A
and B are of dimension (5M + 5) × (5M + 5), are complex-valued and depend on the
wavenumbers of the perturbation. In addition, since the boundary conditions are time
independent, the eigenvalue does not appear in the boundary conditions. Therefore the
matrix B is singular and so the generalized problem cannot be reduced to a standard
eigenvalue problem by inverting B. The generalized eigenvalue problem can be solved
numerically using the standard QZ-algorithm for complex matrices (Moler & Stewart
1973; Anderson et al. 1999), which computes the complete spectrum of eigenvalues
and the corresponding eigenvectors.

It is well known that the pseudospectral discretization of the differential
eigenproblem produces spurious eigenvalues (Boyd 2000). These can be located by
making a second approximation with a higher truncation. The locations of the
spurious modes are sensitive to the spectral truncation, whereas the physical modes
remain in place. In addition, the physical modes are well resolved, so that the spectral
expansion coefficients (given in the eigenvector) show a characteristic exponential
decay. The spurious modes are not well resolved, so decay of the components of the
eigenvector can be used to confirm those physical eigenvalues.

Although the QZ-algorithm provides the whole spectrum of eigenvalues, the
computational cost increases dramatically for large matrices (the number of
operations increases with n3 for n × n matrices Golub & Van Loan 1989). Typically,
we take a truncation of M = 100, although it is often necessary to increase this
value when considering the linear stability of the dense steady solutions on the low
temperature branch where expansions of degree M = 500 may be required to obtain
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convergence. The second approximation is taken to be 20 % larger. As we seek the
stability of the steady flows over a large range of wavenumbers, we also make use of
an inverse iteration method to avoid excessive computational expense (Golub & Van
Loan 1989). Unlike the QZ-algorithm, inverse iteration is a local method with only a
single eigenvalue and eigenvector calculated. We therefore use the QZ-algorithm on a
coarse grid of wavenumbers, with the inverse iteration filling in, using the dominant
eigenvalue and its corresponding eigenvector at a neighbouring wavenumber as the
initial guess. Care must be taken to ensure the dominant eigenvalue is calculated by
the local iteration, particularly at mode crossings where it is necessary to employ the
QZ-algorithm on the fine mesh of wavenumbers.

In order to estimate the decrease in the time of computation when the iterative
procedure is employed, we calculated the most unstable mode for 10 wavenumbers
using the QZ-algorithm and the inverse iteration with a single QZ initiation. With
a truncation of M = 100 the inverse iteration was found to accurately calculate the
dominant eigenvalue, and the time required for the calculation was reduced by a
factor of seven when using the iterative method rather than the QZ-algorithm alone.
The speed-up in the calculation increases as the truncation increases, with a factor
10 reduction in computation time if M = 300. The calculation was performed on
a 2.8 GHz machine and the time taken when using the QZ-algorithm alone was
7 min 21 s when M = 100, rising to 4 h 18 min 38 s when M = 300. In comparison, if
iteration is employed, the calculation is completed in 1 min when M = 100 and 25 min
44 s when M = 300. The significant reduction in computational time when iteration
is employed is clearly beneficial when considering a large set of wavenumbers where
only the dominant eigenvalue is required.

3. Results
3.1. Typical eigenspectrum

Figure 2 shows a typical eigenspectrum, here taken from the high temperature steady
flow with mass flux Q0 = 3, material parameters e = ew = 0.8, r = 0.6 and chute slope
tan θ =0.3 (see figure 2, Part 1). The perturbation wavenumbers are kx = 5 × 10−4,
ky =0. Many of the discrete eigenvalues in the portion of complex plane shown
are well converged. However, there is a ‘balloon’ of poorly converged eigenvalues
surrounding the analytically determined continuous spectrum. These eigenvalues
converge extremely slowly on increasing the truncation of the pseudospectral series.
We note that the dominant eigenvalue, which here has positive real part, lies in close
proximity to this balloon, which can interfere in the calculation of this eigenvalue
unless a sufficiently large truncation of the pseudospectral series is employed. With
sufficient resolution the poorly converged eigenvalues remain in the stable half-plane
and unstable eigenvalues can be determined.

3.2. Linear stability of multiple steady flow solutions

In Part 1, we demonstrated the existence of multiple flow solutions for a fixed mass
flux of material. Here we consider a particular choice of flow parameters that give rise
to multiple solutions, taking e = ew = 0.8, r = 0.6 and tan θ = 0.3. The three possible
solutions with mass flux Q0 = 3 are shown in Part 1 and are described as the high
temperature, mid-temperature and low temperature flows. We consider now the linear
stability characteristics of these three steady flow solutions.

The growth rates Re (σ ) for the most unstable mode (i.e. the supremum of the
discrete set of eigenvalues) for the three steady solutions with Q0 = 3 are shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

03
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000315


470 M. J. Woodhouse and A. J. Hogg

–30 –25 –20 –15 –10 –5 0
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

(a) (b)

(c)

0.6

0.8

1.0

–0.10 –0.08 –0.06 –0.04 –0.02 0
–0.020

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

0.020

–1.5 –1.0 –0.5 0
–0.10

–0.05

0

0.05

0.10

Re (σ) Re (σ)

Im
 (
σ

)

Im
 (
σ

)
Im

 (
σ

)

Figure 2. The spectrum of eigenvalues obtained from the normal mode, linear stability
analysis of the high temperature steady chute flow with mass flux Q0 = 3 (e = ew = 0.8,
r = 0.6, tan θ = 0.3), with wavenumbers kx =5 × 10−4, ky = 0. (a) Eigenvalues calculated with
pseudospectral truncations of M =100 (+) and M = 200 (×). (b) Magnification of the
eigenspectrum showing the dominant eigenvalue and the analytically determined continuous
spectrum (—). (c) The balloon of poorly resolved eigenvalues surrounding the continuous
spectrum shrinks slowly on increasing the pseudospectral approximation with M = 100 (+),
M =200 (×) and M = 300 (◦).

in figure 3, as functions of the perturbation wavenumbers kx and ky . The most
unstable mode for the high temperature flow has wavenumbers kx = 0, ky =0.0100
and growth rate σ ≈ 0.00397. Thus, the fastest-growing mode is a purely cross-
slope perturbation, with a wavelength of the order of 600 particle diameters. The
contour plot for the mid-temperature flow is qualitatively similar to that of the
high temperature flow, with a region of instability for both kx > 0 and ky > 0, and
with the most unstable mode corresponding to a purely cross-slope perturbation.
The range of unstable purely cross-slope (kx = 0) wavenumbers is also similar, but the
corresponding range for purely downslope (ky = 0) wavenumbers is reduced. The most
unstable mode for the mid-temperature flow has wavenumbers kx = 0, ky = 0.0125, a
purely cross-slope perturbation, and growth rate σ ≈ 0.00102. The dispersion relation
for the low temperature flow is qualitatively different from those for the high and
mid-temperature flows. We again see exponentially growing modes for both kx > 0
and ky > 0 with the regions of instability extending to similar values of kx and ky ,
but the purely downslope perturbations generally have fastest growth. Indeed, the
most unstable mode is a purely downslope (ky =0) perturbation with wavenumber
kx = 0.011. The wavelength of the most unstable mode is then comparable to the
wavelengths of the most unstable modes for the high and mid-temperature modes.
For the low temperature flow the most unstable mode has σ ≈ 0.00727–0.0119i and
so the exponential growth rate is of the same order of magnitude as the growth rates

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

03
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000315


Rapid granular flows down inclined planar chutes. Part 2. 471

0.025

0.020

0.015

0.010

0.005

0

0.002

0.004

0.006

0.008

0.01 0.02 0.03 0.040

0.01

0.02

0.03

0.04

0.020
0.015
0.010
0.005
0
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012

0.025

0.020

0.015

0.010

0.005

0

0.001

0.002

0.003

0.004

0.005 0.010 0.015 0.0200

0.005

0.010

0.015

0.020

kx

kx

0.005 0.010 0.015 0.020

kx

ky

ky

ky

(a)

0.005

0

0.010

0.015

0.020

(b)

(c)

Figure 3. Contours of the maximum growth rate Re (σ ), as a function of the perturbation
wavenumbers kx, ky , for (a) the high temperature, (b) mid-temperature and (c) low temperature
steady chute flows with mass flux Q0 = 3 (e = ew = 0.8, r = 0.6, tan θ = 0.3). Note varying axes
and colour scales.

for the high and mid-temperature flows, and additionally the downslope perturbation
propagates in time relative to the steady flow.

In figure 4 we plot the eigenfunctions corresponding to the most unstable
perturbations of the three steady chute flows. For clarity we have plotted the
eigenfunctions to a height much smaller than the truncation height, given by zm in
(2.19), used in the numerical solution. The volume fraction perturbation is localized
at the base boundary and the exponential decay of the volume fraction perturbation
away from the base is clear, whereas the remaining fields decay more slowly since
their asymptotic profile is determined by the wavenumber of the perturbation, which
is smaller than the far-field granular temperature of the corresponding steady flow.
Note that the most unstable mode for the low temperature steady flow is a purely
downstream perturbation and there is no cross-slope velocity component for this
perturbation. For the high and mid-temperature steady flows the perturbation has a
three-dimensional velocity field, with the cross-slope velocity component out-of-phase
with the downslope and vertical components.

The perturbed fields can be reconstructed from the eigenfunctions by introducing
the sinusoidal downslope and cross-slope variations. The instantaneous fields for the
three steady flows are shown in figure 5 over two wavelengths. The structure of the
perturbations to the high and mid-temperature steady flows is broadly similar, with
the granular temperature perturbation largest in locally dilute regions of the flow
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Figure 4. Eigenfunctions of the most unstable perturbations to (a) the high temperature
(kx = 0, ky = 0.01), (b) mid-temperature (kx =0, ky = 0.0125) and (c) low temperature
(kx = 0.011, ky = 0) steady chute flows with mass flux Q0 = 3 (e = ew =0.8, r = 0.6, tan θ =0.3).
The real part (—) and imaginary part (– –) of the eigenfunctions are shown.

(where the volume fraction perturbation is negative). The downslope (u1) and vertical
(w1) perturbation velocity components are also largest in dilute regions, but the
cross-slope velocity is out-of-phase with the other velocity components by π/2. The
high and mid-temperature perturbations are stationary, since Im (σ ) = 0. In contrast,
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Figure 5. Contours of the most unstable perturbations to (a) the high temperature, (b)
mid-temperature and (c) low temperature steady chute flows with mass flux Q0 = 3. The grey
scale colouring is white for the most positive value and black for the most negative value. In
(a) and (b) kx = 0 and a slice has been taken across the chute slope, whereas in (c) ky = 0 and
we take a downslope slice.
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the downslope perturbation for the low temperature steady flow is a propagating
instability, so the fields are in motion relative to the steady flow. The wavelengths
of the perturbations to the three steady flows are similar, around 500 particle
diameters.

The nature of the instabilities can be elucidated by examining the transport of
grains by the perturbation fields. The local mass flux of the perturbation is defined
as the vector Q1 =

(
Qx, Qy, Qz

)
, where

Qx = ν0u1 + ν1u0, Qy = ν0v1, Qz = ν0w1. (3.1)

In figure 6 we plot vectors of the local perturbation mass flux together with
perturbation volume fraction contours for the most unstable mode for each of
the three steady chute flows. Although the structure of the perturbations for the high
and mid-temperature steady flows is qualitatively similar, as shown in figure 5(a, b),
the local transport of grains in these flows is distinctly different. For the high
temperature steady flow grains are transported out of locally dilute regions, where
the volume fraction perturbation is negative, into locally dense regions. Thus, the
density contrast is enhanced and the perturbation grows because of the clustering
of grains. In contrast, for the mid-temperature steady flow the perturbation results
in a vortical structure to the grain transport, with two counter-rotating vortices
in each wavelength. Vortex-forming perturbations were also found by Forterre &
Pouliquen (2002). The vortices form here because of a small cross-slope slip velocity
at the base boundary that is not present for the most unstable mode of the high
temperature steady flow. However, it is possible to obtain vortex-forming modes for
the high temperature steady flow at different wavenumbers. The perturbation to the
low temperature steady flow is a clustering instability, with a transport of grains from
locally dilute to locally dense regions. No vortex-forming perturbations have been
found for the low temperature steady flow.

3.3. Linear stability characteristics on macroscopic flow curves

We consider now the linear stability of steady flows when characterized by
macroscopic, depth-integrated variables. The stability analysis for the three steady
solutions with mass flux Q0 = 3 (e = ew =0.8, r = 0.6, tan θ = 0.3) shows that each of
the flows is linearly unstable to small perturbations, and we may ask whether any of
the steady flow solutions are linearly stable?

The linear stability of the steady flows along the Q–h curve for the material
parameters e = ew = 0.8, r = 0.6 and chute slope tan θ = 0.3 is shown in figure 7. A
region of linearly stable flows is found on the mid-temperature branch, occupying a
relatively small portion of the curve. The dilute, high temperature flows and the dense,
low temperature flows are found to be linearly unstable. The contours of the maximum
growth rate for selected steady flows along the Q–h curve demonstrate the cross-slope
instability at high temperature and downslope instability at low temperature. The
fastest growth rate in this set occurs for the steady flow with the lowest granular
temperature (the low temperature flow with Q0 = 3).

In figure 7(a) we have indicated those steady flows for which a density inversion
is found. For classical fluids, relatively dense flows overlying dilute flows are often
gravitationally unstable. For this reason, density inversions have been proposed as a
cause of instability (Forterre & Pouliquen 2001, 2002). However, we see from figure 7
that a density inversion in the steady flows is neither a necessary nor sufficient
condition for instability; there are steady flows with density inversions that are
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Figure 6. Local mass flux vectors and volume fraction contours for (a) the high temperature,
(b) mid-temperature and (c) low temperature steady chute flows with mass flux Q0 = 3
(e = ew =0.8, r = 0.6, tan θ = 0.3). For the cross-slope perturbations in (a) and (b) the vectors
have components

(
Qy,Qz

)
, whereas for the downslope perturbation in (c), the vectors are

(Qx,Qz). Shading indicates the perturbation to the volume fraction field, with dark regions
being locally dense and light regions locally dilute.
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Figure 7. (a) Linear stability of steady chute flows on a macroscopic Q–h curve. Material
parameters are set at e = ew = 0.8, r = 0.6 and the chute slope is tan θ = 0.3. Linearly stable
(—) and unstable (– –) regions are indicated, and a heavy line shows flows for which the steady
solution exhibits a density inversion. (b) Contours of the maximum growth rate as a function
of the wavenumbers kx and ky for selected steady flows along the Q–h curve.

linearly stable, and there are linearly unstable flows with no density inversion. This
latter finding was recognized by Forterre & Pouliquen (2002), who found linearly
unstable, non-inverted flows that are relatively dilute and deep, as we obtain here.

The effect of changing the slope inclination is shown in figure 8, where the linear
stability of steady flows is assessed along several macroscopic flow curves. The
material parameters are fixed as e = ew = 0.8 and r =0.6. For gently inclined chutes,
with tan θ � 0.28, all steady flows are linearly unstable. A region of linear stability
is found for inclinations with 0.29 � tan θ � 0.32, and this region always occurs on
the mid-temperature solution branch of the Q–h curve. The length of the linearly
stable region grows with increasing inclination until there is an abrupt change and,
on chutes with slopes tan θ � 0.33, the steady flows are again always linearly unstable.
This transition on relatively steep slopes coincides with a change in the structure of
the Q–h curves, from curves where three solutions for a fixed mass flux are possible to
curves where two solutions are always found for a specified mass flux. The transition
between density-inverted steady solutions and monotonic density profiles is not seen
to correlate with the linear stability of the steady flows.

4. Discussion
4.1. Comparison with previous studies

Our investigation of the linear stability of steady chute flows has identified three
qualitatively different instability modes: two cross-slope instabilities, one forming
counter-rotating vortices, the other a non-vortex-forming clustering of grains, and a
downslope, non-vortex-forming clustering. The vortex-forming cross-slope instability
has previously been identified by Forterre & Pouliquen (2002), and the downslope
instability by Mitarai & Nakanishi (2004). The cross-slope clustering instability
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Figure 8. Linear stability of steady chute flows on macroscopic curves as the chute slope is
varied with tan θ ∈ [0.25, 0.35], as indicated. Material parameters are set at e = ew = 0.8, r = 0.6.
Linearly stable (—) and unstable (– –) regions are found using a Chebyshev pseudospectral
stability analysis coupled with a pseudospectral continuation of the steady flow solutions. The
shaded regions indicate flows for which the steady solution exhibits a density inversion.
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appears to be novel. Our three-dimensional analysis shows that these instabilities
can coexist for a fixed set of material parameters and a fixed chute inclination.

In the examples seen above, the most unstable perturbation is two-dimensional
(i.e. either purely cross-slope, with kx =0, ky > 0, or purely downslope, with kx > 0,
ky = 0). However, it is possible to find steady solutions for which the most unstable
mode has both kx > 0 and ky > 0. These steady solutions typically occur on steep
slopes, with tan θ � 0.33 for material parameters e = ew = 0.8, r = 0.6, and at low
temperature. The resulting perturbations are a combination of downslope clustering
with cross-slope vortices, with the wavenumber of the cross-slope perturbation an
order of magnitude larger than the downslope perturbation. The instabilities found
above are long wavelength, with wavelengths of several hundred grain diameters. This
is in contrast with the instabilities calculated by Forterre & Pouliquen (2002), where
the wavelengths are typically of around 30 grain diameters.

It is not possible to compare the solutions of the continuum model with the
flows observed in the experiments of Forterre & Pouliquen (2001) since we cannot
achieve steady flows from the continuum model for the steep slopes used in the
experiments, where tan θ = 0.78. This suggests that either the experimental flows are
not fully collisional, or the simple kinetic theory of Lun et al. (1984) is not able to
describe these flows and an extended kinetic theory is required, perhaps accounting
for frictional interactions, or perhaps the experimental flows are not fully developed,
although this is unlikely in view of the large apparatus used. As the kinetic theory
of Lun et al. (1984) is derived for monodisperse spherical grains, and the experiment
of Forterre & Pouliquen (2001) was conducted with grains of sand, we do not expect
the kinetic continuum model to fully describe all aspects of the observations.

When examining the linear stability of steady solutions in parameter space, we
find that linearly stable steady solutions exist for only a limited range of inclination
angles. If the chute slope is sufficiently gentle or sufficiently steep, we are unable
to find linearly stable steady flows. This is in contrast to the results of Forterre &
Pouliquen (2002), who find an inclination angle below which all steady flows are
linearly stable to cross-slope perturbations. However, the instabilities on the relatively
gentle slopes which we find here occur for purely cross-slope perturbations with
kx = 0. The instabilities we find on the gently inclined chutes occur at long wavelength,
and at these small wavenumbers the contrast between purely exponential decay of
the perturbation fields, as employed by Forterre & Pouliquen (2002), and the far-
field behaviour given in (2.15) is enhanced. Furthermore, at small wavenumbers
the balloon of poorly converged eigenvalues surrounding the continuous spectrum
extends close to the unstable mode and the unstable mode can be lost within the
balloon unless a sufficiently large truncation of the pseudospectral series is taken.
The discrepancy between our results and those of Forterre & Pouliquen (2002) may
be due to insufficient numerical resolution in this earlier study.

4.2. Implications for the instability mechanism

The stability analysis performed by Forterre & Pouliquen (2002) suggests two physical
processes that lead to instability in the steady chute flow: (i) density inversion in the
underlying steady flow and (ii) inelastic clustering.

The density inversion of the steady flow is due to the production of fluctuation
energy at the base boundary, which leads to a heating of the interior and reduces
the density at the base, while collisions in the flow dissipate this energy and can
cause an increase in the density. A perturbation to a density-inverted steady flow
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may disrupt the energy balance in such a way that the dilute flow near the base
cannot support the dense fluid above, and the gravitational body force causes an
overturning. This process is in some ways analogous to the classical Rayleigh–
Bénard instability (Drazin & Reid 1981; Forterre & Pouliquen 2002), where a fluid
layer heated from below becomes unstable above a critical Rayleigh number and a
convective overturning of fluid is initiated. However, for the granular layer it is not
possible to define a control parameter analogous to the Rayleigh number (Forterre &
Pouliquen 2002). In addition, the heating of the granular layer at the base is due to
the motion of grains relative to the bumpy boundary and not by an external energy
source as for the fluid layer, and so a perturbation to the steady granular flow alters
the supply of fluctuation energy from the base. The density-inverted steady flows are
also dissipative in the interior, so fluctuation energy produced at the base may be
lost in the interior, whereas the energy input from the heated base is conserved in the
fluid layer and lost only at boundaries of the domain.

Inelastic clustering results from the dissipation of fluctuation energy in inelastic
collisions and has been identified as a robust instability mechanism in molecular
dynamics simulations of granular assemblies (e.g. Hopkins & Louge 1991;
Goldhirsch & Zanetti 1993; McNamara & Young 1994; Liss et al. 2002), and has been
observed in linear stability analysis of sheared granular systems (see Alam & Nott
1998; Alam 2006). A perturbation to a steady granular flow, in which there is a balance
between the production and dissipation of fluctuation energy, which locally increases
the density in some region, causes a local increase in the rate of collisions. The
increased dissipation cools the locally dense region, causing a temperature gradient
and a resulting transport of heat into this region. As the heat is carried as fluctuation
energy of the grains, a transport of heat into locally dense regions implies that
energetic grains are transported from locally dilute regions into locally dense regions.
Here collisions with less energetic grains result in a dissipation of energy. Thus,
grains are carried into the locally dense region. If this energy transport is sufficient
to balance the increased dissipation, the perturbation will not grow, otherwise the
additional energy is dissipated and the density is further increased, resulting in the
formation of dense clusters of grains.

Forterre & Pouliquen (2002) provide evidence that each of these mechanisms are
capable of causing the loss of stability in a granular chute flow and suggest that
the gravitationally induced overturning is the dominant mechanism in the parameter
regimes where density inversions are found, and the instability results in the formation
of longitudinal vortices. On the other hand, Mitarai & Nakanishi (2004), who take
downslope perturbations to a steady chute flow, suggest that inelastic clustering is
dominant and results in long-wavelength density waves.

Our analysis supports inelastic clustering as the dominant mechanism, although
we cannot discount the gravitational instability when there is a density inversion
of the steady solution. We have seen that cross-slope, vortex-forming instabilities
are present when the steady flow has a monotonic density profile, so a density
inversion is not necessary for overturning to occur. Furthermore, the most rapidly
growing perturbations to some density-inverted steady flows are long wavelength,
downslope perturbations with no vortices in the interior. The study of the linear
stability characteristics along macroscopic flow curves demonstrates that the regions
of linear stability do not correlate with the existence of density-inverted steady
flows. Finally, the unstable perturbations we find are most often long-wavelength
perturbations.
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5. Conclusion
In Part 1 of this paper, we developed a continuum model of rapid granular chute

flows and investigated the character of steady solutions. Here we have performed
a linear stability analysis of some of these steady flows. Our analysis has extended
those of Forterre & Pouliquen (2002) and Mitarai & Nakanishi (2004), by allowing
fully three-dimensional perturbations to the steady state, and corrects the free surface
boundary conditions that were overspecified in these previous studies. We have shown
the existence of a continuous spectrum of eigenvalues, which lies close to the origin
in the complex plane and results in a balloon of poorly resolved eigenvalues that may
obscure unstable eigenvalues. We therefore require high accuracy in the computation
of the steady solution and in the solution of the eigenproblem we obtain from the
normal mode analysis. The Chebyshev pseudospectral method developed in Part 1 to
compute the steady solutions provides a highly accurate polynomial approximation
of the steady solution fields.

We have demonstrated the existence of three qualitatively different forms of
instability: a cross-slope, vortex-forming perturbation; a cross-slope, clustering
(non-vortex-forming) perturbation; and a downslope clustering perturbation that
propagates against the steady flow. Each of these can be the most rapidly growing
perturbation for different steady flows.

Our study of the steady flows in Part 1 showed families of solutions for fixed flow
parameters, and we traced curves of the macroscopic, depth-integrated centre of mass
h as the mass flux Q was varied. In certain regions of parameter space, multiple
steady solutions were found for a fixed mass flux of material. An examination of the
linear stability characteristics for steady flows along these macroscopic flow curves
shows that a region of linear stability is confined to the mid-temperature branch and
exists only for a limited range of inclination angles. Outside this small region, all
steady flows are found to be unstable.

The results of our analysis support the inelastic clustering mechanism as the
dominant destabilizing influence, and although the Rayleigh–Bénard-like mechanism
for density-inverted steady flows has been shown to cause instability (Forterre &
Pouliquen 2002), we show that there is no correlation between the existence of
density-inverted steady flows and linear instability. Indeed, we find monotonic steady
flows that are linearly unstable to vortex-forming cross-slope perturbations, density-
inverted steady flows for which the most unstable mode does not result in overturning,
and steady flows with a density inversion that are linearly stable.

Through our analysis of rapid granular flows on inclined chutes, we have
developed a methodology for studying granular flows in more general settings.
The pseudospectral method employed in Part 1 to calculate steady solutions, and
developed here to determine the linear stability of these steady flows, could be adapted
to study granular flows in other geometries or with alternative constitutive relations.
For example, the basic kinetic theory used here has been extended systematically
to include Burnett order terms (Sela & Goldhirsch 1998; Kumaran 2008), and
phenomenologically to account for the development of enduring contacts between
grains (Jenkins 2007) in an attempt to model rapid granular flows at high density.
We anticipate that the techniques developed in this analysis could be used to analyse
the predictions of these more elaborate models of granular flow.

M.J. Woodhouse is grateful to the EPSRC for funding through a doctoral training
grant. We thank Richard Kerswell and James Jenkins for informative discussions.
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Appendix. Details of the linear stability analysis
A.1. Linearization of governing equations

When the perturbation from the steady flow solution is small, the system of partial
differential equations can be linearized. The linearized mass conservation equation
is

∂ν1

∂t
+ u0

∂ν1

∂x
+ ν0

(
∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z

)
+ w1

dν0

dz
= 0. (A 1)

Linearization of the momentum conservation equation gives components in the
downslope direction,

ν0

(
∂u1

∂t
+ u0

∂u1

∂x
+ w1

du0

dz

)
= ν1 tan θ

− ∂

∂x

(
a0ν1 + b0T1 −

(
ξ0 +

4

3
η0

)
∂u1

∂x
−

(
ξ0 − 2

3
η0

)
∂v1

∂y
−

(
ξ0 − 2

3
η0

)
∂w1

∂z

)

− ∂

∂y

(
−η0

∂u1

∂y
− η0

∂v1

∂x

)
− ∂

∂z

(
−η0

∂u1

∂z
− η0

∂w1

∂x
− c0

du0

dz
ν1 − d0

du0

dz
T1

)
, (A 2)

the cross-slope direction,

ν0

(
∂v1

∂t
+ u0

∂v1

∂x

)
= − ∂

∂x

(
−η0

∂v1

∂x
− η0

∂u1

∂y

)

− ∂

∂y

(
a0ν1 + b0T1 −

(
ξ0 − 2

3
η0

)
∂u1

∂x
−

(
ξ0 +

4

3
η0

)
∂v1

∂y
−

(
ξ0 − 2

3
η0

)
∂w1

∂z

)

− ∂

∂z

(
−η0

∂v1

∂z
− η0

∂w1

∂y

)
, (A 3)

and the normal direction,

ν0

(
∂w1

∂t
+ u0

∂w1

∂x

)
= −ν1 − ∂

∂x

(
−η0

∂w1

∂x
− η0

∂u1

∂z
− c0

du0

dz
ν1 − d0

du0

dz
T1

)

− ∂

∂y

(
−η0

∂w1

∂y
− η0

∂v1

∂z

)

− ∂

∂z

(
a0ν1 + b0T1 −

(
ξ0 − 2

3
η0

)
∂u1

∂x
−

(
ξ0 − 2

3
η0

)
∂v1

∂y
−

(
ξ0 +

4

3
η0

)
∂w1

∂z

)
.

(A 4)

Finally, linearization of the energy conservation equation gives

3

2
ν0

(
∂T1

∂t
+ u0

∂T1

∂x
+ w1

dT0

dz

)
= −p0

(
∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z

)
+ η0

du0

dz

∂u1

∂z

+

(
η0

∂w1

∂x
+ η0

∂u1

∂z
+ c0

du0

dz
ν1 + d0

du0

dz
T1

)
du0

dz
+ η0

du0

dz

∂w1

∂x

− ∂

∂x

(
−K0

∂T1

∂x
+ K∗

0

∂ν1

∂x

)
− ∂

∂y

(
−K0

∂T1

∂y
+ K∗

0

∂ν1

∂y

)

− ∂

∂z

(
−K0

∂T1

∂z
+ K∗

0

∂ν1

∂z
− e0

dT0

dz
ν1 − h0

dT0

dz
T1 + e∗

0

dν0

dz
ν1 + h∗

0

dν0

dz
T1

)
− l0ν1 − m0T1. (A 5)
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A.2. Matrices of the differential eigenvalue problem

The elements of the matrices that appear in (2.12) are presented below. We give only
the non-zero elements of the matrices and primes denote differentiation with respect
to z:

L22 = η0, L33 = η0, L44 = ξ0 + 4
3
η0, L51 = −K∗

0 , L55 = K0,

M14 = ν0, M21 = c0u
′
0, M22 = η′

0, M24 = ikx

(
ξ0 + 1

3
η0

)
, M25 = d0u

′
0,

M33 = η′
0, M34 = iky

(
ξ0 + 1

3
η0

)
, M41 = −a0, M42 = ikx

(
ξ0 + 1

3
η0

)
,

M43 = iky

(
ξ0 + 1

3
η0

)
, M44 = ξ ′

0 + 4
3
η′

0, M45 = −b0,

M51 = −K∗′

0 + e0T
′
0 − e∗

0ν
′
0, M52 = 2η0u

′
0, M54 = −p0, M55 = K ′

0 + h0T
′
0 − h∗

0ν
′
0,

N11 = ikxu0, N12 = ikxν0, N13 = ikyν0, N14 = ν ′
0,

N21 = tan θ − ikxa0 + (c0u0)
′ , N22 = −ikxν0u0 − k2

x

(
ξ0 + 4

3
η0

)
− k2

yη0,

N23 = −kxky

(
ξ0 + 1

3
η0

)
, N24 = −ν0u

′
0 + ikxη

′
0, N25 = −ikxb0 +

(
d0u

′
0

)′
,

N31 = −ikya0, N32 = −kxky

(
ξ0 + 1

3
η0

)
, N33 = −ikxν0u0 − k2

xη0 − k2
y(ξ0 + 4

3
η0),

N34 = ikyη
′
0, N35 = ikyb0, N41 = −1 + ikxc0u

′
0 − a′

0, N42 = ikx(ξ
′
0 − 2

3
η′

0),

N43 = iky(ξ
′
0 − 2

3
η′

0), N44 = −ikxν0u0 − (k2
x + k2

y)η0, N45 = ikxd0u
′
0 − b′

0,

N51 = c0u
′
0
2
+ (k2

x + k2
y)K

∗
0 + (e0T

′
0)

′ − (e∗
0ν

′
0)

′ − l0,

N52 = −ikxp0, N53 = −ikyp0, N54 = − 3
2
ν0T

′
0 + 2ikxη0u

′
0,

N55 = − 3
2
ikxν0u0 + d0u

′2
0 − (k2

x + k2
y)K0 + (h0T

′
0)

′ − (h∗
0ν

′
0)

′ − m0,

Σ11 = −1, Σ22 = ν0, Σ33 = ν0, Σ44 = ν0, Σ55 = 3
2
ν0.

A.3. Reduction to a system of first-order equations

To determine the order of the system (2.12), we seek to reduce it to a system of
first-order ordinary differential equations. The linearized mass conservation equation
contains only first-order derivatives, and when the normal mode expansion is made
it gives a first-order differential equation for ŵ which we write as

dŵ

dz
= − (N11 − σΣ11)

M14

ν̂ − N12

M14

û − N13

M14

v̂ − N14

M14

ŵ, (A 6)

and differentiation of this equation with respect to z allows us to replace the second-
order derivatives of ŵ with lower-order derivatives.

In addition, the linearized energy equation contains ν̂ ′′ and T̂ ′′ only in the
combination −K0T̂

′′ + K∗
0 ν̂

′′, where primes denote differentiation with respect to
z. We therefore introduce a new variable

β̂ = −K0ν̂
′ + K∗

0 T̂
′, (A 7)

which allows us to replace the second-order derivatives in the energy equation with
lower-order derivatives.

We are left with a first-order system of the form

C
dφ

dz
= Dφ, where φ = (ν̂, û, v̂, ŵ, T̂ , û′, v̂′, β̂)T, (A 8)
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and C and D are 8 × 8 matrices. We conclude that the system of ordinary differential
equations (2.12) is an eighth-order system.

The non-zero elements of the matrices are

C14 = M14, C21 = M21, C25 = M25, C26 = L22,

C37 = L33, C41 = M41 − L44(N11 − σΣ11)

M14

, C45 = M45,

C51 = M51 − L51, C55 = M55 − L55, C81 = −L51, C85 = −L55,

D11 = σΣ11 − N11, D12 = −N12, D13 = −N13, D14 = −N14,

D21 =
M24(N11 − σΣ11)

M14

− N21, D22 =
M24N12

M14

− (N22 − σΣ22),

D23 =
M24N13

M14

− N23, D24 =
M24N14

M14

− N24, D25 = −N25, D27 = −M22,

D31 =
M34(N11 − σΣ11)

M14

− N31, D32 =
M34N12

M14

− N32,

D33 =
M34N13

M14

−(N33−σΣ33), D34 =
M34N14

M14

−N34, D35 = −N35, D37 = −M33,

D41 =

(
M44

M14

− L44M
′
14

M2
14

− L44N14

M2
14

)
(N11 − σΣ11) − N41 +

L44

M14

(
N ′

11 − σΣ ′
11

)
,

D42 =
M44N12

M14

− N42 − L44

M2
14

[
N12M

′
14 − N ′

12M14 + N12N14

]
,

D43 =
M44N13

M14

− N43 − L44

M2
14

[
N13M

′
14 − N ′

13M14 + N13N14

]
,

D44 =
M44N14

M14

− (N44 − σΣ44) − L44

M2
14

[
N14M

′
14 − N ′

14M14

]
,

D45 = −N45, D46 =
L44N12

M14

− M42, D47 =
L44N13

M14

− M43,

D51 =
M54(N11 − σΣ11)

M14

− N51, D52 =
M54N12

M14

− N52, D53 =
M54N13

M14

− N53,

D54 =
M54N14

M14

− N54, D55 = σΣ55 − N55, D56 = −M52,

D66 = D77 = D88 = 1.

The system of differential equations is singular when det(C) = 0. The determinant
can be expanded easily as

det(C) = C14C26C37C58 (C41C85 − C45C81) ,

which we can write in terms of the flow quantities as

det(C) = −η2
0

[
K0(ξ0 + 4

3
η0)(σ + ikxu0) + a0ν0K0 + b0ν0K

∗
0

]
. (A 9)

A.4. Linearized base boundary conditions

Because the planar surface of the chute is an impenetrable boundary to the flowing
grains, we must have w ≡ 0 at z = 0. On linearization we trivially obtain

w1(0, x, y, t) = 0, (A 10)
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and in addition,

∂w1

∂x

∣∣∣∣
z=0

=
∂w1

∂y

∣∣∣∣
z=0

≡ 0. (A 11)

The transfer of momentum and energy between the flowing grains and the stationary
base boundary is described by the boundary conditions of Richman (1988)

M = P · n, q · n = −M · u − D. (A 12)

For a fully three-dimensional flow field, the components of the boundary traction
force M can be written as

Mx = νχT 1/2Sx, My = νχT 1/2Sy, Mz = νχT + νχT 1/2Sz, (A 13)

where we define

Sx =

√
2

π

(
−κu + d̄

(
κ − 1

2
Ar2

)
∂u

∂z

)
,

Sy =

√
2

π

(
−κv + d̄

(
κ − 1

2
Ar2

)
∂v

∂z

)
,

Sz =

√
2

π
d̄

(
B

∂w

∂z
− 1

2
Ar2 ∂u

∂x

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 14)

with the quantities A(ν) and κ(r) given by

A(ν) = 1 +
π

12
√

2

(
1 +

5

8νg0(ν)

)
, κ(r) =

2

3

(
2

1 +
√

1 − r2
−

√
1 − r2

)
, (A 15)

and where we define

B = A(r2 − 2) + κ + 2
√

1 − r2. (A 16)

The boundary dissipation is given as

D = ∆νχT 3/2, (A 17)

where ∆ is a function of the boundary geometry, through the roughness parameter r ,
and the coefficient of restitution in particle–wall collisions, ew , and is given by

∆ =

√
2

π

2(1 − ew)

1 +
√

1 − r2
. (A 18)

These quantities include the exclusion factor χ , which accounts for the shielding
of collisions between particles and the base by other particles in the flow. When
considering the steady chute flow in Part 1, we determine χ from the normal stress
balance at the base boundary.

The components of the boundary traction force can be linearized by making the
expansions

Sx = Sx,0 + Sx,1, Sy = 0 + Sy,1, Sz = 0 + Sz,1, (A 19)

with

Sx,0 =

√
2

π

(
−κu0 +

(
κ − 1

2
A0r

2

)
du0

dz

)
, Sx,1 = Sν

x ν1 + Su
x u1 + Suz

x

∂u1

∂z
,

Sy,1 = Sv
yv1 + Svz

y

∂v1

∂z
, Sz,1 = Su

z

∂u1

∂x
+ Swz

z

∂w1

∂z
,

⎫⎪⎪⎬
⎪⎪⎭ (A 20)
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where

Sν
x = −1

2

√
2

π
Ȧ0r

2 du0

dz
, Su

x = −
√

2

π
κ,

Suz

x =

√
2

π

(
κ − 1

2
A0r

2

)
, Sv

y = −
√

2

π
κ,

Svz

y =

√
2

π

(
κ − 1

2
A0r

2

)
, Su

z = −1

2

√
2

π
A0r

2,

Swz

z =

√
2

π
B0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 21)

and Ȧ0 = dA0/dν.
The balance between the normal stress in the flow at the base and the normal

component of the boundary traction force,

Pzz = Mz(χ), (A 22)

can be solved to give an expression for the exclusion factor χ . By determining χ in
this way we ensure that the normal stress balance at the boundary is satisfied. At
leading order in the perturbation quantities, we find

χ0 =
p0

νT0

=
g1(ν0)

ν0

, (A 23)

as we found when considering steady chute flows in Part 1. At first order in the
perturbations, we find an expression for χ1 which we write as

χ1 = χνν1 + χu ∂u1

∂x
+ χv ∂v1

∂y
+ χTT1 + χwz

∂w1

∂z
, (A 24)

where

χν =
a0ν0 − p0

ν2
0T0

, χu = −
(ξ0 − 2

3
η0)T

1/2
0 + p0S

u
z

ν0T
3/2
0

,

χv = −
(ξ0 − 2

3
η0)

ν0T0

, χT =
b0T0 − p0

ν0T
2
0

,

χwz = −
(ξ0 + 4

3
η0)T

1/2
0 + p0S

wz
z

ν0T
3/2
0

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 25)

In these expressions all quantities are to be evaluated at z = 0.
Substitution of χ into the shear stress balances and the energy flux condition at

the base gives three further boundary conditions to add to the mass flux condition.
We make the normal mode approximation, so ∂/∂x = ikx and ∂/∂y = iky , and then
the base boundary conditions are written in matrix form as

Q
dX
dz

+ RX = 0, (A 26)
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which are applied at z =0. The 4 × 5 matrices Q and R are functions of the steady
base flow and their non-zero components are given below:

Q22 = η0 + ν0χ0T
1/2
0 Suz

x , Q24 = ν0T
1/2
0 Sx,0χ

wz,

Q33 = η0 + ν0χ0T
1/2
0 Svz

y ,

Q41 = −K∗
0 , Q42 = η0u0,

Q44 = −∆ν0T
3/2
0 χwz, Q45 = K0,

R14 = 1,

R21 = c0u
′
0 + χ0T

1/2
0 Sx,0 + ν0T

1/2
0 Sx,0χ

ν + ν0χ0T
1/2
0 Sν

x ,

R22 = ikxν0T
1/2
0 Sx,0χ

u + ν0χ0T
1/2
0 Su

x , R23 = ikyν0T
1/2
0 Sx,0χ

v,

R25 = d0u
′
0 + ν0T

1/2
0 Sx,0χ

T + 1
2
ν0χ0T

−1/2
0 Sx,0, R33 = ν0χ0T

1/2
0 Sv

y ,

R41 = e0T
′
0 − e∗

0ν
′
0 + c0u0u

′
0 − ∆χ0T

3/2
0 − ∆ν0T

3/2
0 χν,

R42 = η0u
′
0 − ikx∆ν0T

3/2
0 χu, R43 = −iky∆ν0T

3/2
0 χv,

R45 = h0T
′
0 − h∗

0ν
′
0 + d0u0u

′
0 − ∆ν0T

3/2
0 χT − 3

2
∆ν0χ0T

1/2
0 .

A.5. Asymptotic free surface boundary conditions

As the linearized governing equations are posed on a semi-infinite domain, the
behaviour at the free surface is given by asymptotic conditions. To determine
the asymptotic conditions appropriate for the perturbation variables, we follow
the approach of Forterre & Pouliquen (2002), using the behaviour of the steady
flow quantities as z → ∞ to simplify the governing equations.

We recall from Part 1 that the volume fraction of the steady flow decays
exponentially as z → ∞ so that, from the linearized equation for the conservation
of mass, the volume fraction perturbation must also vanish. Forterre & Pouliquen
(2002) assume ν1 � ν0 � 1 and ν1 ∼ e−z/T∞ as z → ∞, which can be shown by making
an asymptotic series expansion of the linearized governing equations (Woodhouse
2008). In addition, we find

u′
0 ∼ ν0, T ′

0 ∼ ν0, p0 ∼ ν0, ξ0 ∼ ν2
0 ,

η0 ∼ η∞, K0 ∼ K∞, K∗
0 ∼ K∗

∞, γ0 ∼ ν2
0 ,

}
(A 27)

as z → ∞, where η∞, K∞ and K∗
∞ are constants. We make use of this behaviour to

eliminate vanishingly small terms from the linearized equations.
As z → ∞, the linearized momentum equations in the downslope, cross-slope and

normal directions become

∂

∂x

(
4

3

∂u1

∂x
− 2

3

∂v1

∂y
− 2

3

∂w1

∂z

)
+

∂

∂y

(
∂u1

∂y
+

∂v1

∂x

)
+

∂

∂z

(
∂u1

∂z
+

∂w1

∂x

)
= 0, (A 28)

∂

∂x

(
∂v1

∂x
+

∂u1

∂y

)
+

∂

∂y

(
−2

3

∂u1

∂x
+

4

3

∂v1

∂y
− 2

3

∂w1

∂z

)
+

∂

∂z

(
∂v1

∂z
+

∂w1

∂y

)
= 0,

(A 29)

∂

∂x

(
∂w1

∂x
+

∂u1

∂z

)
+

∂

∂y

(
∂w1

∂y
+

∂v1

∂z

)
+

∂

∂z

(
−2

3

∂u1

∂x
− 2

3

∂v1

∂y
+

4

3

∂w1

∂z

)
= 0.

(A 30)
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The linearized energy equation in the limit z → ∞ becomes

∂

∂x

(
∂T1

∂x

)
+

∂

∂y

(
∂T1

∂y

)
+

∂

∂z

(
∂T1

∂z

)
= 0. (A 31)

On making the normal mode expansion, (A 28)–(A 30) becomes a system of coupled
second-order ordinary differential equations

d2û

dz2
+

1

3
ikx

dŵ

dz
−

(
4

3
k2

x + k2
y

)
û − 1

3
kxkyv̂ = 0, (A 32)

d2v̂

dz2
+

1

3
iky

dw

dz
− 1

3
kxkyû −

(
k2

x +
4

3
k2

y

)
v̂ = 0, (A 33)

d2ŵ

dz2
+

1

4
ikx

dû

dz
+

1

4
iky

dv̂

dz
− 3

4

(
k2

x + k2
y

)
ŵ = 0. (A 34)

The energy equation (A 31) becomes

d2T̂

dz2
−

(
k2

x + k2
y

)
T̂ = 0. (A 35)

Solving the system we find that the velocity components, which decay in the limit
z → ∞, are given by

û = (U10 + U11z) e−Kz, v̂ = (V10 + V11z) e−Kz, ŵ = (W10 + W11z) e−Kz, (A 36)

for z � 1, where K =
√

k2
x + k2

y and

V10 = −kx

ky

U10 − iK

ky

W10 − 7K

kxky

U11, V11 =
ky

kx

U11, W11 =
iK

kx

U11. (A 37)

The energy equation can be solved simply to give

T̂ = T10e
−Kz. (A 38)

The constants U10, U11, W10 and T10 remain undetermined. We note that the perturbed
velocity and temperature fields decay exponentially to zero, with the decay rate
determined by the wavenumbers of the perturbation, and for sufficiently small
wavenumbers the fields decay to zero more slowly than the underlying steady flow.
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