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Abstract We study the behaviour of representation varieties of quivers with relations under the operation
of node splitting. We show how splitting a node gives a correspondence between certain closed subvarieties
of representation varieties for different algebras, which preserves properties like normality or having
rational singularities. Furthermore, we describe how the defining equations of such closed subvarieties
change under the correspondence.

By working in the ‘relative setting’ (splitting one node at a time), we demonstrate that there are many
nonhereditary algebras whose irreducible components of representation varieties are all normal with
rational singularities. We also obtain explicit generators of the prime defining ideals of these irreducible
components. This class contains all radical square zero algebras, but also many others, as illustrated by
examples throughout the paper. We also show that this is true when irreducible components are replaced
by orbit closures, for a more restrictive class of algebras. Lastly, we provide applications to decompositions
of moduli spaces of semistable representations of certain algebras.
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1. Introduction

1.1. Context and motivation

Throughout, k is an algebraically closed field. We explicitly mention when it is necessary

to specialise to characteristic 0. The algebras we study are those of the form A= kQ/I,

where Q is a quiver and I a two-sided ideal.
Each dimension vector d for A determines a representation variety repA(d) with action

of a product of general linear groups GL(d) (see §2.3). Orbit closures in repA(d) have

remarkable connections with the representation theory of A and related objects; see
surveys such as [Bon98, Zwa11, HZ14] for detailed treatments. Interest in these varieties

is not confined to representation theory of algebras, however: they also naturally arise

in Lie theory, commutative algebra and algebraic geometry. The interested reader may

consult the introduction to [Kin18] for more detail and references.
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Even restricting our attention to representation theory of algebras, geometric methods
centered around the varieties repA(d), such as the construction of moduli spaces (see

§5), provide a tool kit for classification of representations which is complementary to

homological and functorial approaches.
The purpose of this paper is to relate representation varieties for algebras related by

splitting nodes, which we informally recall here. Node splitting is a well-known technique

that was introduced by Mart́ınez-Villa [MV80] (see §2.2 for details). In this paper, a node

of an algebra A = kQ/I is a vertex x of Q such that all the paths of length 2 passing
strictly through x belong to I. (The traditional definition of a node further requires that

x be neither a sink nor a source.) A node x of A can be split by the following local

operation around x:

· · ·

x· · ·

· · ·

�

· · ·

xt xh

· · ·

... (1.1)

resulting in a new algebra Ax with one fewer node (disregarding sources and sinks).

Algebraically, it is easy to see that the category of left A-modules is equivalent to the full

subcategory of left Ax-modules whose objects have no direct summand isomorphic to the
simple at xh. Geometrically, however, the representation varieties can be quite different,

as the bijection on isomorphism classes translates to a bijection of orbits but not an

isomorphism of varieties (even after stratification; see Example 3.9 for more detail).

The technique of this paper is to relate the representation varieties of A and Ax

by a homogeneous fibre bundle construction and ‘collapsing maps’ in the sense of

Kempf [Kem76]. This allows us to relate their singularities, in particular whether they

are normal or have rational singularities, and relate defining equations of the prime ideals
of equivariant closed subvarieties as well.

A special case of particular interest is when every vertex of A is a node, which is precisely

when rad2A= 0. Such algebras are historically significant because they are the first step
beyond semisimple algebras. Interesting remarks on the importance of radical square zero

algebras and their associated graphs in the development of the modern representation

theory of algebras can be found in the volume of Gabriel and Roiter [GR97, §§7.8,
8.7]. Turning to the history of geometry of representations of algebras, one can consider
Buchsbaum–Eisenbud varieties of complexes as representation varieties of the radical

square zero algebra associated to the quiver •→ •→ ·· ·→ •. These varieties were studied
extensively in the 1970s, and results on them were eventually generalised beyond the
radical square zero case (for this particular quiver) [ADFK81, LM98]. See the introduction

of [KR15] for more remarks and references on this. So from both representation-theoretic

and geometric perspectives, we can see the radical square zero case as an important
starting point for deeper developments.

While radical square zero algebras are an important special case, we emphasise that

our results apply more generally; see Examples 3.17, 3.21, 4.3, 4.15, 5.5 and 5.6.
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1.2. Statement of main results

Our main results require that chark = 0, aside from one exception noted after Corol-

lary 1.4, so we make this assumption for this subsection. Let A = kQ/I be an algebra

with node x. We start by giving a precise geometric description of how representation

varieties of A and Ax are related in §3.
Given an irreducible GL(d)-equivariant closed subvariety C ⊂ repA(d) (e.g., an

irreducible component or orbit closure), Proposition 3.13 uniquely associates to it an

irreducible GL(e)-equivariant closed subvariety Cx ⊂ repAx(e) for a dimension vector e
of Ax. Typically, Cx is geometrically easier to understand than C because Ax is defined

by fewer relations on a path algebra than A. We make this precise in the following two

theorems. Our first main result is the following theorem on singularities:

Theorem 1.2. The variety Cx is normal if and only if the variety C is normal. Moreover,

Cx has rational singularities if and only if C has rational singularities.

Next we describe how the prime defining ideals of irreducible components change
under node splitting (for a more general statement, see Theorem 4.12). For an arrow

α ∈Q1, we denote by Xα the d(tα)×d(hα) generic matrix of variables. We can identify

the coordinate ring k
[
rep

kQ(d)
]
with a polynomial ring in the entries of the matrices

{Xα}α∈Q1
. For x ∈ Q0, we write Hx (resp., Tx) for the d(x)×

(∑
hα=x

d(tα)

)
matrix

(resp.,

(∑
tα=x

d(hα)

)
×d(x) matrix) obtained by placing all matrices Xα with hα = x

next to (resp., with tα= x on top of) each other, in any order.

Theorem 1.3. Let P be a set of polynomials in k
[
rep

kQx(e)
]
that generate the prime

ideal defining Cx, and r the rank of Hx for a generic element in Cx. Then the prime

ideal defining C is generated by the following polynomials in k
[
rep

kQ(d)
]
:

(1) the (r+1)× (r+1) minors of Hx;

(2) the (d(x)− r+1)× (d(x)− r+1) minors of Tx;

(3) the entries of Tx ·Hx;

(4) the trace of Xγ , for every loop γ ∈Q1 at x;

(5) the GL(d(x))-saturation of the equations in P.

We single out the case of radical square zero algebras for special attention. In this
case every vertex is a node, so splitting nodes results in a quiver without relations

(i.e., a hereditary algebra), whose representation varieties are simply affine spaces. This

immediately yields the following result:

Corollary 1.4. Let A be a finite-dimensional k-algebra with rad2A = 0. Then for any
dimension vector d, each irreducible component C ⊂ repA(d) has rational singularities

(and is thus also normal, and Cohen–Macaulay).

In fact, the claim about normality and the Cohen–Macaulay property holds in positive

characteristic as well (see Remark 4.16). To our knowledge, this is the first result limiting
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the singularities of all irreducible components of representation varieties for such a large
class of nonhereditary, finite-dimensional algebras. Similarly, Theorem 1.3 allows us to

give an explicit set of defining equations for the irreducible components of representation

varieties of radical square zero algebras (see Corollary 4.13).

1.3. Relation to existing literature

When considering all algebras A = kQ/I, or even restricting to finite-dimensional ones,

there can be arbitrarily many irreducible components of the representation varieties

repA(d), and their singularities can be smoothly equivalent to any singularity that appears
in a finite-type scheme over Z. Thus, there is no reasonable expectation for results on

the geometry of repA(d) for arbitrary A and d. One instead restricts to specific classes

of algebras, and even then there are very few where singularity properties or prime ideals
of irreducible components (or orbit closures) can be described. We survey some literature

on these problems and how our work relates.

Comparison with stratification methods. Stratification and partition methods
have been used quite successfully in works such as [HZ07, BHZT09, GHZ18] to study

representation varieties, specifically to parametrise irreducible components and describe

generic properties of representations in them. The map we call rx(M) in §3 counts the
number of simple summands of radM ∩ socM which are supported at x when x is a

node, and has been used in the works already cited to stratify representation varieties.

Example 3.9 illustrates a limitation of stratification methods in studying singularities of

repA(d) and its closed subvarieties, motivating the additional techniques in the present
work.

Singularities and defining equations. The authoritative source on singularities in

representation varieties is the survey of Zwara [Zwa11]. Some additional contributions
to this topic can be found in more recent papers such as [Bob12, RZ13, LZ14, Sut15,

Lőr15, LW19]. To the best of our knowledge, our results give the first classes of algebras

(other than the trivial hereditary case) where every irreducible component of every
representation variety is known to have rational singularities.

Particular cases of radical square zero algebras have been studied from the point of view

of singularities and defining equations. In [Kem75, DCS81, Str82, Str87, MT99a, MT99b]
the authors study radical square zero algebras of quivers of type A,Ã1,Ã2, prove that the

irreducible components of the respective varieties of complexes and circular complexes

(more generally, the respective varieties Cr as defined in Theorem 3.19) have rational

singularities and provide generators of their defining ideals. In this paper we generalise
these results to arbitrary quivers (see also Remark 4.16).

Irreducible components. Irreducible components of representation varieties have been
studied for many algebras, both in works already mentioned and also, for example, in

[BS01, GS03, Sch04, RRS11, KW14, BS19a, BS19b, Bob21]; see also [HZG12] for a survey.

All our results on parametrisation of irreducible components appeared or can be derived
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from earlier results in the literature, but in other language; thus we include our own
treatment for completeness. Detailed citations are given in the body of the text.

Moduli spaces. Moduli spaces were introduced into the representation theory of finite-
dimensional algebras by A. D. King [Kin94], motivated by earlier work on moduli spaces

of vector bundles such as [GR87, Bon90] (see also [Hos18] for a more recent review). One

motivation to study the normality of irreducible components of representation varieties
comes from the main theorem of [CK18], which gives decompositions of moduli spaces

of semistable representations. These decompositions were first proven for algebras of the

form A= kQ with Q acyclic in [DW11] (see also [CB02]), then extended to certain classes

of nonhereditary algebras in works such as [Chi13, CC15, CCKW20]. We discuss such
applications and related semistability results in §5.

2. Background

2.1. Quivers

We denote a quiver by Q= (Q0,Q1,t,h), where Q0 is the vertex set, Q1 the arrow set and

t,h : Q1 →Q0 give the tail and head of an arrow tα
α−→ hα. A representation M of Q is a

collection of (finite-dimensional) k-vector spaces (Mz)z∈Q0
assigned to the vertices of Q,

along with a collection of k-linear maps (Mα : Mtα →Mhα)α∈Q1
assigned to the arrows.

We recall some key facts here, but for a more detailed recollection we refer the interested

reader to standard references such as [ASS06, Sch14, DW17].

A quiver Q determines a path algebra kQ. The category of (left) modules over the
algebra kQ/I is equivalent to the category of representations of the quiver with relations

(Q,R), where R is usually taken to be a minimal set of generators of I. These equivalences

can be used freely without significantly affecting the geometry, as was made precise
in [Bon91].

Given a nonnegative integer n, we write Q≥n for the set of all paths of Q of length

greater than or equal to n, and kQ≥n ⊆ kQ for the linear space of this set. An ideal is
admissible if kQ≥N ⊂ I ⊂ kQ≥2 for some N ≥ 2. Given a finite-dimensional k-algebra A,

it is Morita equivalent to a quotient of a path algebra kQ/I. If I is taken to be admissible

(which is always possible), then Q is uniquely determined, and the Jacobson radical

rad(kQ/I) is spanned by Q≥1 modulo I. We always assume that I ⊂ kQ≥2 throughout
the paper, and in §5 that I is admissible for our results on moduli spaces.

2.2. Node splitting

The operation of node splitting for Artin algebras was introduced by Mart́ınez-

Villa [MV80] and further publicised in [ARS97, X.2]. Here we recall this notion in language

translated to quotients of quiver path algebras. We say that x∈Q0 is a node of an algebra
A= kQ/I if αβ ∈ I for all pairs α,β ∈Q1 such that hα = x and tβ = x. In other words,

any path having x as an intermediate vertex is 0 in A. Note that we allow sinks and

sources to be nodes in this paper, contrary to the usual definition, which omits them.
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Given a quiver Q and x ∈Q0, we can consider the quiver Qx with vertex set

(Qx)0 = (Q0\{x})∪{xt,xh}

and arrow set (Qx)1 = Q1. Tail and head functions t,h : (Qx)1 → (Qx)0 are the same as
in Q except that x is replaced with xt in the codomain of t, and x is replaced with xh in

the codomain of h. The operation locally around x is illustrated as follows:

Q=

· · ·

x· · ·

· · ·

� Qx =

· · ·

xt xh

· · ·

...

Notice that Qx
≥1 can be naturally identified with a subset of Q≥1, inducing an inclusion

of vector spaces kQx
≥1 ⊂ kQ≥1.

Let x be a node of an algebra kQ/I. The algebra Ax = kQx/Ix is defined with Qx as
before and Ix = I ∩kQx

≥1. It is easily observed that if x is a node of A= kQ/I, then Ax

has exactly one fewer node than A (not counting sources and sinks). Furthermore, it is

not difficult to see that the category of left A-modules is equivalent to the full subcategory

of left Ax-modules which have no direct summand isomorphic to the simple at xh.
An algebra A = kQ/I such that every vertex of Q is a node is a radical square zero

algebra, which is equivalent to I = kQ≥2 and to rad2A= 0.

2.3. Representation varieties

Given a quiver Q and dimension vector d : Q0 →Z≥0, we study the representation variety

repQ(d) =
∏

α∈Q1

Mat(d(hα),d(tα)),

where Mat(m,n) denotes the variety of matrices with m rows, n columns and entries in

k. We consider the left action of the base change group

GL(d) =
∏
z∈Q0

GL(d(z))

on repQ(d) given by

g ·M =
(
ghαMαg

−1
tα

)
α∈Q1

,

where g = (gz)z∈Q0
∈GL(d) and M = (Mα)α∈Q1

∈ repQ(d).
Now consider an algebra A = kQ/I with corresponding quiver with relations (Q,R).

Then the representation variety repA(d) is the closed GL(d)-stable subvariety of repQ(d)

defined by

repA(d) =
{
M ∈ repQ(d) |M(r) = 0, for all r ∈R

}
.

Thus, the points of repA(d) are representations of (Q,R) of dimension vector d. Simply

from the definitions, GL(d)-orbits in repA(d) are in bijection with isomorphism classes
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of representations of A of dimension vector d. For a representation M of A of dimension
vector d, we denote by OM the orbit in repA(d) corresponding to the isomorphism class

of M , and by OM the closure of this orbit.

2.4. Rational singularities

We say that a morphism between algebraic varieties f : Z → X is a resolution of

singularities if both Z is smooth and f is proper and birational.
When chark = 0, we say that an algebraic variety X has rational singularities, if for

some (hence, any) resolution of singularities Z →X, we have

(a) X is normal – that is, the natural map OX → f∗OZ is an isomorphism – and
(b) Rif∗OZ = 0, for i > 0.

It is known that if X has rational singularities, then X is a Cohen–Macaulay variety. For

more details, we refer the reader to [Wey03, § 1.2].

2.5. Homogeneous fibre bundles

Let G be an algebraic group and H ≤ G a closed algebraic subgroup, and suppose we
have an action of H on a quasi-projective algebraic variety S. We write G×H S for the

quotient of G×S by the free left action of H given by h · (g,s) =
(
gh−1,h ·s

)
, called an

induced space or homogeneous fibre bundle. We consider this quotient as a G-variety by
the action g · (g′,s) = (gg′,s). Furthermore, we embed S ↪→G×H S via the map s 
→ (1,s).

The following lemma can be proven directly from definitions (see, for example, [Tim11,

§2.1] for further discussion):

Lemma 2.1. The following maps are mutually inverse, inclusion-preserving bijections:{
G-stable subvarieties

of G×H S

}
↔
{

H-stable subvarieties

of S

}
Y 
→ Y ∩S

G×H Z ←� Z.

In particular, they give a bijection on orbits and an isomorphism of orbit closure posets.

3. Node splitting and bundles

Consider an algebra A= kQ/I and d a dimension vector of Q.

3.1. Node splitting on strata

Throughout we use the following notation:

Definition 3.1. For x ∈Q0 and M ∈ repA(d), we define linear maps hx(M) and tx(M)

by

hx(M) =
⊕
hα=x

Mα :
⊕
hα=x

Mtα →Mx, tx(M) =
⊕
tα=x

Mα : Mx →
⊕
tα=x

Mhα. (3.2)
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Given a nonempty subset S ⊂ repA(d), we define the x-rank of S to be the number

rx(S) := max
M∈S

{rankhx(M)} .

Moreover, we denote by S◦
x = {M ∈ S | rx(M) = rx(S)}, where rx(M) := rx({M}).

Now assume that x ∈Q0 is a node of A. Let Ax = kQx/Ix be the algebra obtained by

splitting the node x, as explained in §2.2. Fix an integer r with 0≤ r ≤ d(x). We denote

by dx
r the dimension vector of Qx obtained by putting dx(xh) = r, dx(xt) = d(x)− r,

and at the rest of the vertices dx coincides with d. We can view GL(dx
r ) naturally as a

subgroup of GL(d) via diagonal embedding at x. We realise the variety repAx (dx
r ) as a

GL(dx
r )-stable closed subvariety of repA(d) by an embedding i : repAx (dx

r ) ↪→ repA(d).
Namely, given M = (Mα)α∈Q1

in the domain, we take i(M) = (Nα)α∈Q1
where

Nα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mα, tα 
= x 
= hα,[
Mα
0

]
, hα= x and tα 
= x,

[0 Mα ], tα= x and hα 
= x,[
0 Mα
0 0

]
, tα= x and hα= x.

(3.3)

In the remainder of the paper we implicitly use this specific embedding repAx (dx
r ) ⊂

repA(d) without mentioning the map i.
If C is a GL(dx

r )-stable irreducible closed subvariety of repAx (dx
r ) (hence of repA(d)),

we take its GL(d(x))-saturation to obtain the GL(d)-stable subset GL(d(x)) ·C of

repA(d). Note that we have rx(GL(d(x)) ·C) = rxh
(C)≤ r.

Retaining our notation, furthermore let Pr ≤ GL(d(x)) be the parabolic subgroup of
block upper triangular matrices with two blocks along the diagonal, of size r in the upper

left and d(x)−r in the lower right. From equation (3.3) we see that repAx (dx
r ) is not only

GL(dx
r )-stable but also a Pr-stable subvariety of repA(d), since the unipotent radical of

Pr acts trivially on repAx (dx
r ).

Remark 3.4. In our setup, let P x
r (d) ≤ GL(d) be the subgroup where the factor

GL(d(x)) is replaced by Pr, so we have also that P x
r (d)≥GL(dx

r ). We observe here that

GL(d(x))×Pr
C = GL(d)×Px

r (d)C for any GL(dx
r )-stable irreducible closed subvariety

C ⊂ repAx (dx
r ), and the saturations GL(d(x)) ·C and GL(d) ·C are the same. We use

this observation (particularly when applying Lemma 2.1) throughout the article without

always explicitly mentioning it.

Proposition 3.5. Let 0≤ r ≤ d(x) and consider the locally closed subvariety of repA(d)

consisting of all points of x-rank exactly r:

reprA(d) := {N ∈ repA(d) | rx(N) = r} .

Then reprA(d) is nonempty if and only if rx (repAx (dx
r )) = r, in which case the following

map is an isomorphism of varieties:

Ψ: GL(d(x))×Pr
repAx (dx

r )
◦
x −→ reprA(d), (g,M) 
→ g ·M.
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Proof. The map is well defined, since Ψ
(
gp−1,pM

)
=Ψ(g,M). To construct the inverse

morphism, take any N ∈ reprA(d), so we know that imagehx(N) is an r-dimensional
subspace of kd(x). Then we can find g ∈GL(d(x)) such that

imagehx

(
g−1 ·N

)
= g−1

x (imagehx(N)) = k
r ⊂ k

d(x),

the subspace spanned by the first r standard basis vectors. Since x is a node in A, this
means g−1 ·N ∈ repAx (dx

r ) via the identification of equation (3.3). This g is not unique,

but any g0 ∈ GL(d(x)) with the same property satisfies that g−1
0 g stabilises k

r, which

is to say g−1
0 g ∈ Pr. Thus

(
g,g−1 ·N

)
and

(
g
(
g−1
0 g

)−1
,
(
g−1
0 g

)
g−1 ·N

)
=
(
g0,g

−1
0 ·N

)
represent the same point in the quotient variety GL(d(x))×Pr

repAx (dx
r )

◦
x, so N 
→(

g,g−1 ·N
)
gives a well-defined inverse morphism to Ψ.

The following well-known result of Mart́ınez-Villa [MV80] follows quickly from Propo-

sition 3.5. We include a short proof to illustrate the use of geometric methods in
representation theory of algebras.

Corollary 3.6. There is a bijection between the set of isomorphism classes of inde-

composable representations of A and the set of isomorphism classes of indecomposable
representations of Ax which contain no simple direct summand supported at xh.

Proof. It is immediate from Proposition 3.5 that for any d and 0≤ r ≤ d(x), we have a

bijection⎧⎨⎩
isomorphism classes of

representations M of repAx (dx
r )

with rxh
(M) = r

⎫⎬⎭↔

⎧⎨⎩
isomorphism classes of

representations N of repA(d)

with rx(N) = r

⎫⎬⎭ . (3.7)

Let Sxh
denote the simple supported at xh. Clearly, if M ∈ repAx (dx

r ) with rxh
(M)< r,

then Sxh
is a summand of M . This shows that the only indecomposable representation

of Ax that does not appear in the sets on the left-hand side of formula (3.7) is Sxh
.

We are left to show that under the correspondence in formula (3.7), indecomposable

representations are mapped to indecomposable representations. We use the well-known

fact that a representation is indecomposable if and only if its stabiliser in the projective

linear group is unipotent [Bri12, Cor. 2.10]. Let H be the PGL(dr
x)-stabiliser of M ∈

repAx (dx
r ). SinceGL(d) ·OM

∼=GL(d(x))×Pr
OM , the PGL(d)-stabiliser ofM in repA(d)

is U �H, where U is the unipotent radical of Pr
∼= U � (GL(r)×GL(d(x)− r)). Clearly,

H is unipotent if and only if U �H is.

A representation M of A is called Schur if EndA(M) = k. A Schur representation is
indecomposable. The following corollary (also well known in representation theory) shows,

in particular, that a Schur representation of Ax does not necessarily correspond to a Schur

representation of A via the bijection in Corollary 3.6:
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Corollary 3.8. If M is a Schur representation of A, then either hx(M) = 0 or tx(M) = 0.

Moreover, the bijection in 3.6 descends to a bijection⎧⎨⎩
isomorphism classes of

Schur representations M 
= Sxh
of Ax

with either Mxh
= 0 or Mxt

= 0

⎫⎬⎭↔
{

isomorphism classes of

Schur representations of A

}
.

Proof. We use the notation as in the proof of Corollary 3.6. A representation is Schur
if and only its stabiliser in the projective linear group is trivial. If H is the PGL(dr

x)-

stabiliser of M 
= Sxh
in repAx (dx

r ), then U�H is the PGL(d)-stabiliser of M ∈ repA(d).

Hence M ∈ repA(d) is Schur if and only if M ∈ repAx (dx
r ) is Schur and U is trivial. But

U is trivial if and only if r = rx(M) is equal to either 0 or d(x), hence the claim.

The following example illustrates a limitation of recovering geometric information about

the whole representation variety by studying strata, motivating the use of collapsing maps

in the next section:

Example 3.9. Let A = k[t]/
(
t2
)
(i.e., the path algebra of the one-loop quiver modulo

the radical square). Then repA(2) is a singular variety of dimension 2 defined by two

equations:

repA(2) =
{[

a b
c d

]
| a+d= 0, ad− bc= 0

}
. (3.10)

Splitting the node yields Ax � k(•→•) and an equivalence of categories A-mod�T ⊂Ax-

mod, where T is the full subcategory whose objects have no direct summand isomorphic to

the simple at the sink. Partitioning the orbits by dimension of the top of the corresponding
module (equivalently, dimension of the kernel of the action of t), this induces a bijection

{orbits in repA(2)}←→ {nonzero orbit in repAx((1,1))}
∐

repAx((2,0)). (3.11)

Notice that the variety repA(2) containing all orbits appearing on the left-hand side is
singular of dimension 2, while the varieties for Ax containing the orbits in each piece of

the right-hand side are smooth of dimensions 1 and 0.

3.2. Passage to closed subvarieties

The stratifications of the previous section generally lose information about singularities

of closed subvarieties, as seen in Example 3.9. However, ‘collapsing maps’ as in the work
of Kempf [Kem76] can be used to partially rectify this.

Proposition 3.12. Let 0 ≤ r ≤ d(x) and C be a GL(dx
r )-stable irreducible closed

subvariety of repAx (dx
r ) with rxt

(C) = r. Then GL(d(x)) ·C is an irreducible closed

subvariety of repA(d), and the following map is a proper birational morphism of GL(d)-

varieties:

ΨC : GL(d(x))×Pr
C −→GL(d(x)) ·C, (g,M) 
→ g ·M.

Proof. The Grassmannian GL(d(x))/Pr
∼= Grass

(
r,kd(x)

)
is a projective variety. We

have an isomorphism of varieties GL(d(x))×Pr
repA(d)

∼=GL(d(x))/Pr × repA(d) given
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by the map (g,x) 
→ (g,gx). Hence, the multiplication map

GL(d(x))×Pr
repA(d)→ repA(d), (g,M) 
→ g ·M,

is proper. Since C is closed in repA(d), it then follows by Lemma 2.1 that GL(d(x)) ·C
is closed in repA(d) as well. By Proposition 3.5, the map ΨC induces an isomorphism on

the open subsets

GL(d(x))×Pr
C◦

x

∼=−→ (GL(d(x)) ·C)◦x.

Hence ΨC is birational.

Proposition 3.13. For each 0≤ r≤d(x), the following maps below are mutually inverse,

inclusion-preserving bijections:⎧⎨⎩
irreducible closed

GL(dx
r )-stable subvarieties

of repAx (dx
r ) of xh-rank r

⎫⎬⎭↔

⎧⎨⎩
irreducible closed

GL(d)-stable subvarieties
of repA(d) of x-rank r

⎫⎬⎭
C 
→GL(d(x)) ·C

D∩ repAx (dx
r )←� D.

Proof. It follows by Proposition 3.12 that C 
→ GL(d(x)) ·C is a well-defined function
between the sets. Each subvariety C (resp., D) in the set on the left-hand (resp., right-

hand) side is uniquely determined by C◦
x (resp., D◦

x) via C = C◦
x (resp., D =D◦

x), hence

the map C 
→GL(d(x)) ·C is bijective by Proposition 3.5 and Lemma 2.1.
To show that the inverse map is the one claimed, it remains to show that

(GL(d(x)) ·C)
⋂

repAx (dx
r ) = C

(in fact, this holds for any GL(dx
r )-stable subset C of repAx (dx

r )). The containment ⊇
is immediate, so we must show the other direction. Take g ∈GL(d(x)) and M ∈ C such

that g ·M ∈ repAx (dx
r ). We want to show that g ·M ∈ C. To do so, it is enough to find

g′ ∈ GL(r)×GL(d(x)− r) such that g′ ·M = g ·M , since C is GL(dx
r )-stable. Such a

g′ exists if and only if M is isomorphic to g ·M when considered as a representation of
Ax. So this containment is essentially just saying that if two representations of A are

isomorphic (by g), then they are isomorphic when considered as representations of Ax

(by g′). Let B1 (resp., B2) be the matrix of the map hx(M) (resp., hx(g ·M)). Since
M,g ·M ∈ repAx (dx

r ), the images of both α1 and α2 are contained in k
r. Hence only the

first r rows of B1 (resp., B2) are nonzero. We denote the matrix formed by the first r

rows of B1 (resp., B2) by B′
1 (resp., B′

2). Since B1 and B2 are row-equivalent (i.e., have
the same reduced row echelon form), the matrices B′

1 and B′
2 are also row-equivalent.

Using the same argument with the maps with source x, we see that there is a matrix

g′ ∈GL(r)×GL(d(x)− r) such that g′ ·M = g ·M .

The following two corollaries are immediate from Proposition 3.13. The first can also

be easily obtained from stratification methods, but we record it here for the completeness

of our exposition.
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Corollary 3.14. There is an injective map of sets∐
d

{
irreducible components

of repA(d)

}
↪→

∐
e

{
irreducible components

of repAx(e)

}
(3.15)

from the set of all irreducible components of all repA(d) to the set of all irreducible

components of all repAx(e).

Corollary 3.16. Set N ∈ reprA(d), and consider its GL(d)-orbit ON in repA(d). Take

any M ∈ ON

⋂
repAx (dx

r ) (such an element exists by formula (3.7)). Then ON =
GL(d(x)) ·OM , where OM denotes the closure of the GL(dx

r )-orbit OM in repAx (dx
r ).

3.3. Irreducible components

The results of this section can be derived from the methods used in [BCHZ15, HZS17] to
study radical square zero algebras and truncated path algebras, respectively (see later for

more specific references). We include our own proofs and examples for completeness,

and to emphasise the ‘relative setting’ we work in: namely, repeated application of
Corollary 3.14 can be used to classify irreducible components of repA(d) if splitting the

nodes eventually results in any representation variety whose irreducible components are

known.

Example 3.17. Consider the algebra A = kQ/I, where Q is given as follows and I is
generated by the 12 relations necessary to make x a node, along with the relation cba= 0:

Q= x

1 2

3

4

5

6

c
b

a

� Qx = xh xt

1 2

3

4

5

6

c
b

a

Notice that A does not fall within a well-studied class (special biserial, radical square

zero, etc.). The overlapping relations make direct analysis of irreducible components of
repA(d) challenging. Also, A is not representation-finite, so irreducible components cannot

be determined by computing dimensions of Hom spaces as in [Zwa99]. But each repAx (dx
r )

decomposes as the product of an affine space with a union of orbit closures (determined
by the relation cba) in a representation variety for the subquiver of Dynkin type A4 with

arrows a,b,c. So these can be explicitly determined for any given dx
r .

For example, take d= (3,2,2,1,3,3,3) (with the convention that d(x) is the last entry).

By Proposition 3.13, the irreducible components of repA(d) are among the GL(d)-
saturations of the irreducible components of repAx (dx

r ) for r = 0,1,2,3, which reduce

to the quiver of type A4 with the following dimension vector:

(3− r) 2 3 r.
a b c

We first describe the irreducible components of this A4 quiver, with the convention that

indecomposables correspond to roots (their dimension vectors). In the cases r = 0 and
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r = 3, the representation varieties are irreducible affine spaces C0,C3. When r = 1, the
representation variety has two components C1 and C ′

1, which are the orbit closures of

the representations (1,1,1,0)⊕2⊕ (0,0,1,1) and (1,0,0,0)⊕ (1,1,1,0)⊕ (0,1,1,1)⊕ (0,0,1,0),

respectively. For r= 2, there are again two components C2 and C ′
2, which are the closures

of (1,1,1,0)⊕ (0,1,1,1)⊕ (0,0,1,1) and (1,0,0,0)⊕ (0,1,1,1)⊕2⊕ (0,0,1,0), respectively.

By abuse of notation, we use the same symbols for the components for Ax obtained

from these components. Since all the components have maximal xh-rank, their GL(d)-

saturations yield irreducible closed subsets in repA(d) according to Proposition 3.13. By
looking at generic ranks of matrices along each nontrivial path in Qx, we see that there

are no inclusions among the saturations of irreducible components. Here we must use

all paths in Qx and not just those in the A4 subquiver: for example, the ranks of all
paths in the A4 subquiver for points in C0 are less than those ranks for points in C1,

but on the other hand, the rank of the map over the arrow x→ 5 is generically 3 on C0

but generically 2 on C1, so we cannot have C0 contained in C1. Thus repA(d) has six
irreducible components, which are given by the GL(d)-saturations of C0,C1,C

′
1,C2,C

′
2,C3.

In Proposition 3.13 the irreducible components of repAx (dx
r ) do not necessarily yield

irreducible components in repA(d) under the map C → GL(d(x)) ·C. Nevertheless, we

give a condition when this indeed happens:

Lemma 3.18. Let C be an irreducible component of repAx (dx
r ) with rxh

(C) = r, and

assume that there is a representation M ∈C such that the map txt
(M) is injective. Then

GL(d(x)) ·C is an irreducible component of repA(d).

Proof. Assume by contradiction that GL(d(x)) ·C is strictly contained in an irreducible

component C ′ of repA(d). By Proposition 3.13, we must have rx(C
′) > r. On the open

subset of C ′ of representations N with rx(N) = rx(C
′), we must have dimker tx(N) >

r. Since C ′ is irreducible, this shows that for all representations N ∈ C ′, we have

dimker tx(N) > r. But the assumptions imply that for M (viewed as a representation
in repA(d)), we have dimker tx(M) = r. Hence M /∈ C ′, a contradiction.

Applying Proposition 3.13 recursively, we give an explicit description of the irreducible

components of representation varieties for radical square zero algebras. All parts of the

following theorem have appeared elsewhere in various forms, where our r corresponds to
the dimension vector of the semisimple module T :

• Part (1) is a consequence of the more general results on varieties of representations
with a fixed radical layering for truncated path algebras in [BHZT09, Theorem 5.3
by way of Proposition 2.2].

• Part (2) is found in [BCHZ15, Definition and Comments 3.3].
• Part (3) is equivalent to the representation-theoretic version [BCHZ15, Proposition

3.9].

We include a more geometric proof, as it implicitly also constructs a resolution of

singularities of each Cr, which is used for example in [Lőr20b, Corollary 4.2].

Theorem 3.19. Consider a radical square zero algebra A= kQ/kQ≥2 and a dimension

vector d. For a dimension vector r ≤ d, we denote by Cr the closure of the set of
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representations M ∈ repA(d) such that rx(M) = r(x) for all x ∈ Q0. Furthermore, set

s= d−r, and for x ∈Q0 let lx be the number of loops at x and put

ux(r) =
∑
hα=x

s(tα)−r(x), vx(r) =
∑
tα=x

r(hα)− s(x).

Then we have the following:

(1) Cr is irreducible.

(2) Cr is nonempty if and only if ux(r)≥ 0 for all x ∈Q0.

(3) Cr is an irreducible component of repA(d) if and only if it is nonempty and vx(r)≥ 0
for all x ∈Q0 with ux(r)> lx. Moreover, all irreducible components of repA(d) are

of such form.

Proof. Let Qsp denote the quiver obtained by splitting all the vertices of A. Clearly,

|Qsp
0 | = 2|Q0|, and the vertices of Qsp are sinks xh and sources xt corresponding to the

vertices x ∈ Q0. Since the quiver Qsp has no relations, all of its representation varieties

are irreducible affine spaces.

Fix r ≤ d and let s = d− r. For (1), we can assume that Cr is nonempty. To show

that Cr is irreducible, it is enough to show that C◦
r :=

⋂
x∈Q0

(Cr)
◦
x is so. Starting with the

representation variety repA(d) and splitting the nodes of A repeatedly with respect to the
ranks given by the dimension vector r, we arrive at the representation variety repQsp(e),

where e is the dimension vector given by e(xh) = r(x) and e(xt) = s(x) for x ∈ Q0. Via

the isomorphisms in Proposition 3.5 (applied recursively), C◦
r corresponds to the open

subset of representations N ∈ repQsp(e) such that rxh
(N) = e(xh) = r(x) for all x ∈ Q0.

Since the latter is irreducible, this shows that C◦
r is irreducible as well. Moreover, under

the bijections in Proposition 3.13 (applied recursively), Cr corresponds to repQsp(e).

Now consider (2). Given x ∈ Q0, it is easy to see that there is a representation N ∈
repQsp(e) such that rxh

(N) = r(x) if and only if ux(r)≥ 0. Since repQsp(e) is irreducible,

we obtain by Proposition 3.5 applied as before that Cr is nonempty if and only if ux(r)≥ 0

for all x ∈Q0.
Now take Cr nonempty in (3). We show that if r satisfies ux(r)> lx and vx(r)< 0 for

some x ∈ Q0, then Cr ⊂ Cr′ , where r′(x) = r(x)+ 1 and r′(y) = r(y) for y ∈ Q0 \ {x}.
First we show that Cr′ is nonempty. We have ux(r

′) = ux(r)− lx−1≥ 0. Since vx(r)< 0,
we have in particular that s(x) > r(y) for any vertex y 
= x such that there is an arrow

from x to y, and so uy(r
′) ≥ s′(x)− r′(y) = s(x)−1− r(y) ≥ 0. We obtain uz(r

′) ≥ 0 for

all z ∈ Q0, and hence Cr′ is nonempty and corresponds to repQsp(e′) via the bijections

in Proposition 3.13. Now take any M ∈ Cr. By abuse of notation, we can view M as
a representation in repQsp(e). We see that since vx(r) < 0, we have a decomposition

M ∼= N ⊕Sxt
, where Sxt

denotes the simple at xt. Hence, as representations of A, we

have M ∼= N ⊕Sx. But then N ⊕Sxh
∈ repQsp(e′), which shows that M ∼= N ⊕Sx ∈ Cr′

as well. Hence Cr ⊂ Cr′ . We have shown that

repA(d) =
⋃
r≤d

r as in (3)

Cr.
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It remains to show that there are no containments between the irreducibles. Take Cr,Cr′ ,
two irreducibles from the union, and assume that Cr ⊂Cr′ . Clearly, we must have r≤ r′,
and so s′ ≤ s. Assume that there is a vertex x ∈Q0 such that r(x)< r′(x). Since ux(r)>

ux(r
′)+ lx ≥ lx, we must have vx(r) ≥ 0. Then there is a representation M ∈ repQsp(e)

such that the map txt
(M) is injective. We conclude as in Lemma 3.18 that M /∈ Cr′ , a

contradiction.

Remark 3.20. The generic decomposition is a generalisation to quivers with relations of
Kac’s canonical decomposition [Kac80, Kac82] for quiver representations. It was further

studied in [Sch92, CBS02, DW02, DW11]. It is based on the geometric Krull–Schmidt

theorem of Crawley-Boevey and Schröer [CBS02, Theorem 1.1] (see also de la Peña’s
[dlP91, Lemma 1.3]).

For quivers with relations, Babson, Huisgen-Zimmermann and Thomas studied generic

behaviour of representations in irreducible components in [BHZT09], obtaining the

sharpest results for truncated path algebras. Carroll has given a combinatorial method
of producing the generic decomposition for acyclic gentle algebras in [Car15].

In [BCHZ15, Theorem 5.6], Bleher, Chinburg and Huisgen-Zimmermann describe the

generic decomposition of each irreducible component C for a radical square zero algebra
in terms of the Kac canonical decomposition of the representation variety for the quiver

associated to C by splitting all nodes. We remark here that our methods yield a relative

version of this for splitting one node of any algebra with a node.
We recall that an algebra has the dense orbit property in the sense of [CKW15] if

each irreducible component of each of its representation varieties has a dense orbit. Since

it is enough to check this property on indecomposable irreducible components, an easy

consequence of the foregoing considerations is that an algebra Ax has the dense orbit
property if and only if A has the dense orbit property. This implies, for example, that

a radical square zero algebra has the dense orbit property if and only if it is already

representation-finite [BCHZ15, Theorem 7.2].

We illustrate this in the following example, where splitting nodes yields a gentle algebra:

Example 3.21. Consider the algebra given by the quiver

Q=

1 2

34

with I ⊂ kQ generated by relations such that vertices 1 and 3 are nodes, and additionally
all 2-cycles are zero. Splitting both nodes 1 and 3 yields the gentle algebra of [Car15,

Example 1]. Irreducible components for representation varieties of this gentle algebra

can be parametrised by maximal rank sequences. Carroll gives a combinatorial method
for determining the generic decomposition into string and band representations for each

such irreducible component, and thus Remark 3.20 gives the generic decomposition for

the corresponding irreducible component of the nongentle algebra in this example.
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4. Main results

Assume chark = 0 throughout this entire section (but see Remark 4.16). Here we apply
the initial work shown so far to obtain results about singularities of equivariant closed

subvarieties, as well as generators of their defining ideals.

4.1. Singularities

We continue with a fixed x ∈Q0 which is a node of A, and Ax is the algebra obtained by

splitting the node x as in §2.2. We now prove Theorem 1.2.

Theorem 4.1. Let C be a GL(dx
r )-stable irreducible closed subvariety of repAx (dx

r ) for
some 0 ≤ r ≤ d(x), and consider the irreducible GL(d)-stable variety GL(d(x)) ·C ⊂
repA(d). Then C is normal (resp., has rational singularities) if and only if GL(d(x)) ·C
is normal (resp., has rational singularities).

Proof. We apply Kempf’s results [Kem76] on collapsing of vector bundles to our setup.

Recall that GL(d) acts on the affine space repQ(d), in which repAx (dx
r ) is a closed Pr-

stable subvariety, with the unipotent radical of Pr acting trivially. In the language of

[Kem76, §2], Pr acts on repAx (dx
r ) completely reducibly. Hence, Pr acts on C completely

reducibly as well. By Proposition 3.12, we have the birational ‘collapsing map’

ΨC : GL(d(x))×Pr
C →GL(d(x)) ·C.

One implication on normality now follows from [Kem76, Proposition 1], and on

rational singularities from [Kem76, Theorem 3]. The converse statements follow from

isomorphism (4.11) due to the direct summand property [Bou87].

Splitting successively as in Theorem 3.19, we obtain the following statement:

Corollary 4.2. Consider a radical square zero algebra A = kQ/kQ≥2. For any r ≤ d,
the variety Cr ⊂ repA(d) has rational singularities.

The following example illustrates how to use the theorem to give other examples
of algebras where all irreducible components of representation varieties have rational

singularities:

Example 4.3. Consider again the algebra A of Example 3.17. We noted there that any

representation variety for Ax is the product of an affine space with a union of orbit

closures in an equioriented type A quiver representation variety. Each of these orbit
closures, and thus each irreducible component of any repAx (dx

r ), is known to have rational

singularities [ADFK81]. Therefore every irreducible component of any repA(d) for this

algebra has rational singularities by Theorem 4.1.

When splitting nodes of an algebra A results in an algebra whose orbit closures are
known to be normal or have rational singularities (e.g., Dynkin types A [LM98, BZ01]

or D [BZ02]), then we can conclude the same for orbit closures of A (see Examples 4.14

and 4.15).
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4.2. Defining ideals

In this section, we describe how the defining equations of irreducible varieties change

under node splitting. For this, we start with a preliminary result for a particular class

of radical square zero algebras. We recall the notation used in the introduction before

Theorem 1.3, and the definition for Cr used in Theorem 3.19.

Proposition 4.4. Consider the algebra A= kQ/kQ≥2, where Q is the quiver

1 2 3a

c1

c2

cl

...

b

with l ∈ Z≥0. Let d = (m,d,n) be a dimension vector and r an integer with 0 ≤ r ≤
min

{
d,
⌊
m+d·l
l+1

⌋}
, and consider the rank sequence r=(0, r, min{n,d− r}). Then the prime

ideal defining Cr is generated by the following polynomials in k
[
rep

kQ(d)
]
:

(1) the (r+1)× (r+1) minors of H2,

(2) the (d− r+1)× (d− r+1) minors of T2,

(3) the entries of T2 ·H2 and

(4) the trace of Xci , for i= 1, . . . ,l.

Proof. We first note that the condition on r means that Cr is a nonempty irreducible

subvariety by Theorem 3.19. Let us write V1 = k
m,W = k

d, V2 = k
n, so that we have a

natural identification

rep
kQ(d) = V ∗

1 ⊗W ⊕W ∗⊗V2⊕
l⊕

i=1

W ∗⊗W.

Denoting by x the middle node 2, we arrive by splitting x at a resolution of singularities
of Cr as in Proposition 3.12:

GL(d)×Pr
rep

kQx (dx
r )−→ Cr. (4.5)

On Grass(r,d) we have the exact sequence of bundles

0→R→W →Q→ 0, (4.6)

where R (resp., Q) denotes the tautological subbundle (resp., quotient bundle) of rank r

(resp., d− r), and for simplicity we write W for the trivial bundle Grass(r,d)×W . With

this notation, the space GL(d)×Pr
rep

kQx (dx
r ) in formula (4.5) corresponds to the bundle

Z = V ∗
1 ⊗R⊕Q∗⊗V2⊕

l⊕
k=1

Q∗⊗R.
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The idea now is to consider the intermediate bundle

Y1 = V ∗
1 ⊗R⊕W ∗⊗V2⊕

l⊕
k=1

W ∗⊗R.

Clearly, we have inclusions of bundles Z ⊂ Y1 ⊂Grass(r,d)× rep
kQ(d), and so a diagram

Z i ��

���
��

��
��

��
� Y1

i1 ��

p1

��

Grass(r,d)× rep
kQ(d)

p
�����

���
���

���
�

q

��
Grass(r,d) rep

kQ(d).

Let ξ (resp., ξ1) be the dual of the quotient bundle Y1/Z (resp.,
(
Grass(r,d)× rep

kQ(d)
)

/Y1) on Grass(r,d), namely

ξ =R⊗V ∗
2 ⊕

l⊕
k=1

R⊗R∗, ξ1 = V1⊗Q∗⊕
l⊕

k=1

W ⊗Q∗.

We have the following Koszul complex on Y1 (compare [Wey03, Proposition 5.1.1]):

K• : 0→
r(n+rl)∧

p∗1(ξ)→ ·· · →
i∧
p∗1(ξ)→ ·· · → p∗1(ξ)→OY1

→ i∗OZ → 0.

Put S = k
[
rep

kQ(d)
]
and denote by J1 ⊂ S the ideal generated by the equations of

type (1) – that is, (r+1)× (r+1) minors of H2. Note that Y1 is the desingularisation
of Spec(S/J1) via q ◦ i1 (compare [Wey03, §6.1]). Let I denote the defining ideal of Cr.

Since Spec(S/J1) (resp., Cr) has rational singularities, we haveR
•q∗i1∗OY1

∼=S/J1 (resp.,

R•q∗i1∗i∗OZ ∼= S/I).
Now we analyse the other terms of the complex K•. We claim that we have

Hk

(
Y1,

t∧
p∗1(ξ)

)
= 0 for all k ≥ t−1≥ 0 unless (k,t) ∈ {(0,1),(d− r,d− r+1)}. (4.7)

To show the claim, we consider the natural isomorphisms (compare [Wey03, Proposition

5.1.1(b)])

Rkq∗i1∗

(
t∧
p∗1(ξ)

)
∼=Hk

(
Y1,

t∧
p∗1(ξ)

)
∼=Hk

(
Grass(r,d), Symη⊗

t∧
ξ

)
,

where η = Y∗
1 . Through the Cauchy formulas [Wey03, Corollary 2.3.3], Symη⊗

∧t
ξ can

be decomposed as a direct sum of bundles of the form

SλV1⊗SμW ⊗SνV
∗
2 ⊗SαR⊗SβR∗,for some partitions λ,μ,ν,α,β with |α|= t. (4.8)

Here |α| denotes the size of the partition α, and Sα(−) denotes the Schur functor [Wey03,

§ 2]. Hence, for the vanishing in equation (4.7), it is enough to show the corresponding

vanishing of Hk(Grass(r,d),SαR⊗SβR∗), with |α|= t.
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Assume that Hk (Grass(r,d),SαR⊗SβR∗) 
= 0, for some k > 0 and |α| ≤ k+1. Then by
the Littlewood–Richardson rule and Bott’s theorem [Wey03, Theorem 2.3.4 and Corollary

4.1.9], we see by inspection that we must have α = (d− r+1), so that t = d− r+1 and

k = d− r. This proves claim (4.7).

Let f denote the map f : H0 (Y1,p
∗
1(ξ)) → S/J1 induced from the beginning of K•.

Pushing forward the complex K• via q ◦ i1, we get using equation (4.7) via a standard

spectral sequence argument an exact sequence of S-modules

Hd−r

(
Y1,

d−r+1∧
p∗1(ξ)

)
g−→ (S/J1)/(imf)→ S/I → 0.

To finish the proof, we show thatH0 (Y1,p
∗
1(ξ)) contributes with the equations of types (3)

and (4) via f , while Hd−r
(
Y1,

∧d−r+1
p∗1(ξ)

)
contributes with the equations of type (2)

via g.

By [Wey03, Basic Theorem 5.1.2], we have a surjective map of S-modules

⊕
k≥0

Hk

(
Grass(r,d),ξ⊗

k∧
ξ1

)
⊗S(−k)−→H0 (Y1,p

∗
1(ξ)) .

Using Bott’s theorem as before, we see that Hk
(
Grass(r,d),ξ⊗

∧k
ξ1

)

= 0 if and only

if k ∈ {0,1}. When k = 0 we get a GL(d)-invariant element in degree 1 for each loop,

which must be sent to the equations of type (4) via f . When k = 1, we obtain a GL(d)-

representation in degree 2 for each pair of composable arrows, which must be sent to the
equations of type (3) via g.

Now we analyse Hd−r
(
Y1,

∧d−r+1
p∗1(ξ)

)
by introducing another intermediate bundle

Y2 = V ∗
1 ⊗W ⊕Q∗⊗V2⊕

l⊕
k=1

Q∗⊗W.

Again, we have inclusions of bundles Z j−→Y2
i2−→ rep

kQ(d), and Y2 is a desingularisation

of Spec(S/J2) via q ◦ i2, where J2 is the ideal generated by the minors of type (2). Let ξ2
denote the dual bundle of the quotient rep

kQ(d)/Y2:

ξ2 =R⊗V ∗
2 ⊕

l⊕
k=1

R⊗W ∗.

We have a Koszul complex on Grass(r,d)× rep
kQ(d) of the form

L• : 0→
r(l+n)∧

p∗(ξ2)→·· ·→
i∧
p∗(ξ2)→·· ·→ p∗(ξ2)→OGrass(r,d)×rep

kQ(d) → i2∗OY2
→ 0.

The inclusions of bundles i,j,i1,i2 induce a map of complexes L• → i1∗K•. The claim

analogous to equation (4.7) holds for L• as well. Note that H0(Grass(r,d),ξ2) = 0. Hence,
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the map of complexes induces via spectral sequence a commutative diagram

Hd−r

(
Grass(r,d)× rep

kQ(d),
d−r+1∧

p∗(ξ2)

)
��

h

��

S ��

��

S/J2

��

�� 0

Hd−r

(
Y1,

d−r+1∧
p∗1(ξ)

)
�� (S/J1)/(imf) �� S/I �� 0

with exact rows. As J2 is generated by the equations of type (2), it is enough to show that h

is surjective. We have seen by decomposing into summands that Hd−r
(
Y1,

∧d−r+1
p∗1(ξ)

)
yields nonzero cohomology only for summands as in formula (4.8) with α = (d− r+

1). By decomposing in an analogous way, we see that the contributing summands to

Hd−r
(
Grass(r,d)× rep

kQ(d),
∧d−r+1

p∗(ξ2)
)
are of the form

SλV1⊗SμW ⊗SνV
∗
2 ⊗S(d−r+1)R⊗SβW

∗, for some partitions λ,μ,ν,β. (4.9)

The map h descends to a map on (d−r)th cohomology from the summands of type (4.9) to

their corresponding summands of type (4.8) (with α= d−r+1). To show the surjectivity

of h, we are left to show that the map S(d−r+1)R⊗SβW
∗ → S(d−r+1)R⊗SβR∗ induces

a surjective map on (d− r)th cohomology. By Bott’s theorem we have

Hd−r
(
Grass(d,n),S(d−r+1)R⊗SβR∗)= S(1d−r+1,−β)W,

where the latter term is zero if β has r parts. Consider the exact sequence of bundles

0→ Sd−r+1R⊗K→ S(d−r+1)R⊗SβW
∗ → S(d−r+1)R⊗SβR∗ → 0.

We show that Hd−r+1
(
Grass(d,k),S(d−r+1)R⊗K

)
has no summand S(1d−r+1,−β)W , thus

proving the claim on surjectivity. The tautological sequence (4.6) gives rise to a filtration

of SβW
∗ with composition factors that are direct summands of Sβ(Q∗ ⊕R∗). Hence,

by the corresponding Littlewood–Richardson rule [Wey03, Proposition 2.3.1], K has a

filtration with associated graded a direct sum of terms Sβ1
Q∗ ⊗ Sβ2

R∗, where β1,β2

are partitions with β1 
= 0. By Bott’s theorem again, we see by inspection that since
β1 
= 0, the cohomology groups of the bundle Sβ1

Q∗ ⊗ S(d−r+1)R⊗ Sβ2
R∗ cannot have

representations corresponding to partitions with strictly positive (d− r + 1)th part.

Since the cohomology of the associated graded has no summand S(1d−r+1,−β)W , neither

does Hd−r+1
(
Grass(d,k),S(d−r+1)R⊗K

)
. Thus h is onto, finishing the proof of the

proposition.

Remark 4.10. The equations given in Proposition 4.4 do not form a minimal set of

generators in general. In the case l=0, the equations are minimal except some degenerate

cases (compare [Lőr20a, Theorem 4.2]). But in the case l > 0, if 2r ≤ d (resp., if 2r > d)
then the minors of T2 (resp., H2) that do not involve rows from Xb (resp., columns from

Xa) can be obtained by Laplace expansions from the minors of H2 (resp., T2). When the

quiver is one loop, minimal equations are given in [Wey89, Example 5.6].
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Let Q be a quiver and d a dimension vector. Let C be a GL(dx
r )-stable closed subvariety

of rep
kQx (dx

r ) (for some 0 ≤ r ≤ d(x)). Denote by U− the transpose of the unipotent

radical of Pr. We have a natural map k[GL(d(x)) ·C] → k[C], which descends onto an
isomorphism (see, e.g., [Lőr20b, Proposition 3.14])

k[GL(d(x)) ·C]U
− ∼=−−→ k[C]. (4.11)

As a consequence, the algebra k[C] is a direct summand of k[GL(d(x)) · C] as a

k[C]-module. In particular, when C = rep
kQx (dx

r ), we can identify polynomials in

k
[
rep

kQx (dx
r )
]
naturally inside k

[
rep

kQ(d)
]
. With this, we formulate the following result:

Theorem 4.12. Let C be a GL(dx
r )-stable closed subvariety of rep

kQx (dx
r ) for some

0 ≤ r ≤ d(x). Let P be a set of polynomials in k
[
rep

kQx (dx
r )
]
that generate the radical

ideal defining C. Then the radical ideal defining GL(d(x)) ·C is generated by the following
polynomials in k

[
rep

kQ(d)
]
:

(1) the (r+1)× (r+1) minors of Hx,

(2) the (d(x)− r+1)× (d(x)− r+1) minors of Tx,

(3) the entries of Tx ·Hx,

(4) the trace of Xγ , for every loop γ ∈Q1 at x, and

(5) a basis of span
k
GL(d(x)) ·P.

Proof. For C = rep
kQx (dx

r ) the statement follows from Proposition 4.4. The relative
result is now a consequence of [Lőr20b, Theorem 3.14].

As saturations of minors giving the required rank conditions are again minors of such

type, we obtain the following result:

Corollary 4.13. Consider a radical square zero algebra A = kQ/kQ≥2 and let Cr ⊂
repA(d) be nonempty. Then the prime ideal of Cr is generated by the following polynomials

in k
[
rep

kQ(d)
]
, as x runs through all the vertices in Q0:

(1) the (r(x)+1)× (r(x)+1) minors of Hx,

(2) the (d(x)−r(x)+1)× (d(x)−r(x)+1) minors of Tx,

(3) the entries of Tx ·Hx and

(4) the trace of Xγ , for every loop γ ∈Q1 at x.

The following examples illustrate how to use these results.

Example 4.14. Consider the radical square zero algebra A= kQ/kQ≥2, where

Q= • �� • ����
• ����

· · · �� • ����
• .

Splitting the nodes, we arrive at the hereditary algebra Asp of the type A quiver

Qsp = • �� • • ���� • • ���� · · · •�� �� • .

Orbit closures of representations for type A quivers have rational singularities by [BZ01],

so combining Corollary 3.16 with Theorem 4.1 shows that all orbit closures for A have
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rational singularities as well. Furthermore, defining equations for orbit closures of type A
quivers were described in [RZ13, Theorem 6.4] (see also [KR15, § 3.1]), so Theorem 4.12

gives defining equations for orbit closures of representations of A. Note that the algebra

A is of finite representation type (see Corollary 3.6), so the irreducible components of its
representation varieties are always orbit closures.

We illustrate the defining equations in more detail for a specific size Q, which readily

generalises. Take the following dimension vector and let Ai,Bi be generic matrices of

variables of appropriate sizes:

Q= d1
A1 �� d2

A2 ��

B1

��
d3

A3 ��

B2

��
d4

Qsp = d1
A′

1 �� d′2 d′′2
A′

2 ��B′
1�� d′3 d′′3

A′
3 ��B′

2�� d4.

Let O ⊂ repA(d) be an orbit closure and O
sp ⊂ repQsp(dsp) the associated type A orbit

closure. We follow the numbering of Theorem 4.12, noting that all specific minor sizes in

what follows are determined by O. Polynomials of types (1) and (2) are minors of the
matrices

H2 =
[
A1 B1

]
, H3 =

[
A2 B2

]
, T2 =

[
B1

A2

]
, T3 =

[
B2

A3

]
.

Polynomials of type (3) are the entries of A2A1,B1A1,B
2
1,A2B1 and A3A2,B2A2,B

2
2,A3B2;

and type (4) are the traces of B1 and B2. Finally, a set of polynomials P defining O
sp

comes from minors that give rank conditions on the 15 submatrices of⎡⎣A′
1 B′

1 0
0 A′

2 B′
2

0 0 A′
3

⎤⎦,
which correspond to the 15 connected subquivers of Qsp that contain at least one arrow.
Thus, equations of type (5) come from a basis of the linear span of the GL(d2)×GL(d3)-

saturation of P, which can be chosen to be the respective minors (giving the same rank

conditions) of the matrix

⎡⎣A1 B1 0

0 A2 B2

0 0 A3

⎤⎦ .
Example 4.15. Consider the following algebra A= kQ/I obtained by deleting vertex 6

from the algebra in Example 4.3, so I is generated by the six relations necessary to make
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x a node, along with the relation cba= 0:

Q= x

1 2

3

4

5

c
b

a

� Qx = xh xt

1 2

3

4

5

c
b

a

Orbit closures of Ax are orbit closures for a type D quiver, and thus have rational

singularities by [BZ02] (see also [KR] for a proof by entirely different methods). Therefore,

combining Corollary 3.16 with Theorem 4.1 shows that all orbit closures for A have
rational singularities.

Since defining equations for orbit closures are not known in type D, we cannot yet

get defining equations for orbit closures for A. However, the irreducible components of

representation varieties for Ax are defined by a relation which is constrained to a type A

subquiver, so defining equations for irreducible components of representation varieties of

A are obtained from Theorem 4.12 as in the previous example. Note that the algebra A

is of finite representation type (see Corollary 3.6).

Remark 4.16. Many of our results carry over to a field of arbitrary characteristic. In

fact, the statements of Corollaries 4.2 and 4.13 (the latter in the case when no loops are

present) are true over any field. This relies on a characteristic-free extension of Kempf’s
work [Kem76] and further results on defining ideals, pursued in [Lőr20b]. In the case when

there are loops, more equations are needed besides the ones in Corollary 4.13, as can be

seen already for the one-loop quiver [Str87].

5. Moduli spaces of representations

In this section we apply the foregoing results to moduli spaces of semistable representa-

tions. We give only a minimal recollection of the background here, referring the reader

to King’s original paper [Kin94] or [Rei08, DW17] for more detailed treatments. We
then make some observations about semistable representations of algebras with nodes,

and provide an example where Theorem 1.2 applies to studying the structure of moduli

spaces of representations. We continue to assume chark= 0.

5.1. Background and notation

King’s idea was to apply the general machinery of geometric invariant theory [MFK94,

New09] to study representations of finitely generated algebras. The tools of invariant

theory are very useful for understanding closed orbits of the action of a reductive group
on a variety. However, in the situation of GL(d) acting on repA(d), the closed orbits

correspond to just the semisimple representations, so there is only one such representation

per d when A is finite-dimensional.
It turns out that there are many subcategories of the category of representations

of A with richer collections of semisimple objects. From the representation-theory

perspective, each choice of weight θ ∈ ZQ0 determines an abelian subcategory of
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θ-semistable representations of A. The simple objects of this category are called θ-stable
representations. The choice of θ can be arbitrary in our results to follow.

More precisely, for each d satisfying θ ·d = 0, the collection of θ-semistable points of

repA(d) is defined by

repA(d)
ss
θ := {M ∈ repA(d) | ∀N ≤M, θ ·dimN ≤ 0} .

This is an open subvariety of repA(d) (possibly empty!). There is a corresponding
projective variety M(d)ssθ known as the moduli space of θ-semistable representations

of A of dimension vector d, and a morphism of varieties

π : repA(d)
ss
θ � M(d)ssθ

which is a quotient map in a sense made precise by geometric invariant theory. The θ-
stable points (those θ-semistable M such that θ ·N < 0 for all proper, nonzero N <M)

form an open subvariety repA(d)
s
θ ⊂ repA(d)

ss
θ on which GL(d) acts freely; π is an honest

quotient map when restricted to this subvariety (again possibly empty). We extend the
notations to subsets C ⊂ repA(d), writing Css

θ for the set of θ-semistable points in C and

M(C)ssθ for the image of π (Css
θ ). We say C is θ-semistable if Css

θ 
=∅.

Since the θ-stable representations are the simple objects in the abelian category of

θ-semistable representations, every θ-semistable representation M has a well-defined set
of θ-stable composition factors from the Jordan–Hölder theorem, and associated graded

representation grθ(M).

The process of passing from M to grθ(M) can be carried out in a geometric setting,
known as a θ-stable decomposition. We follow the exposition of [CK18, §2.4] which is a

slight generalisation of [Chi13, § 3C], based on the original idea of [DW11] in the case

that A= kQ for an acyclic quiver Q.

Definition 5.1. Let C be a GL(d)-invariant, irreducible, closed subvariety of repA(d),

and assume C has a nonempty subset of θ-semistable points. Consider a collection {Ci ⊂
repA(di)}ki=1 of irreducible components such that each has a nonempty subset of θ-stable

points, Ci 
= Cj for i 
= j, and also consider some multiplicities mi ∈ Z>0, for i= 1, . . . ,k.

We say that {(Ci,mi)}ki=1 is a θ-stable decomposition of C if, for a general representation

M ∈ Css
θ , its corresponding grθ(M) is in C⊕m1

1 ⊕·· ·⊕C⊕mk

k , and we write

C =m1C1 � · · ·�mkCk.

It is shown in [CK18, Proposition 3] that any GL(d)-invariant, irreducible, closed
subvariety of C ⊆ repA(d) such that Css

θ 
= ∅ admits a θ-stable decomposition. The

following result makes precise how the geometry of a moduli space of θ-semistable

representations is constrained (and in some cases completely determined) by the geometry
of moduli spaces arising from its θ-stable decomposition. Here, the mth symmetric power

Sm(X) of a variety X is the quotient of
∏m

i=1X by the action of the symmetric group on

m elements which permutes the coordinates.

Theorem 5.2 ([CK18]). Let A be a finite-dimensional algebra and let C ⊂ repA(d)
ss
θ be

an irreducible component such that Css
θ 
= ∅. Let C = m1C1 � · · ·�mkCk be a θ-stable
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decomposition of C, where Ci ⊂ repA(di), 1 ≤ i ≤ k, are pairwise distinct θ-stable

irreducible components.

If M(C)ssθ is an irreducible component of M(d)ssθ , then there is a natural morphism

Ψ: Sm1 (M(C1)
ss
θ )×·· ·×Smr (M(Ck)

ss
θ )→M(C)ssθ

which is finite and birational. In particular, if M(C)ssθ is normal, then Ψ is an

isomorphism.

Every irreducible component ofM(d)ssθ is of the formM(C)ssθ , where C is an irreducible

component of repA(d), so this covers all of them. Here we have combined the three parts

of the main theorem of [CK18] for simplicity; this is enough for our application. We also
note that the map of this theorem is quite simplistic on the set-theoretical level, sending

a list of representations to their direct sum. The entire content is that Ψ is a morphism

of varieties with nice properties.

5.2. Moduli spaces of representations of algebras with nodes

In this subsection we observe that semistability of representations for an algebra A with
a node x is particularly simply behaved around x. Recall hx,tx from equation (3.2).

Proposition 5.3. Assume that A= kQ/I with x∈Q0 a node, and let θ∈ZQ0 be a weight.
Consider a θ-semistable representation M of A. Then one of the following occurs:

(a) If θ(x)< 0, then hx(M) is surjective and tx(M) = 0.

(b) If θ(x)> 0, then hx(M) = 0 and tx(M) is injective.

(c) If θ(x) = 0, then the θ-semistability of M is equivalent to the θ-semistability of M ′,
where M ′ is obtained from M by putting M ′

x = 0 (so hx(M
′) = tx(M

′) = 0) and

leaving the rest of the maps of M unchanged.

Proof. Clearly, we can assume Mx 
= 0. Consider first the case when M is θ-stable. In

particular, it then must be a Schur representation. By Corollary 3.8, either hx(M) or
tx(M) is 0. Assume that the latter holds (the former case is analogous). Then Mx 
= 0

implies that Sx is a subrepresentation of Mx. Since M is θ-stable, either Sx = M , in

which case θ(x) = θ ·dimSx = 0, or θ(x) < 0, in which case hx(M) is onto, as M 
= Sx is
indecomposable.

Now let M be θ-semistable. Let us prove part (a) (part (b) is analogous). Then θ(x)< 0

implies that for all θ-stable composition factors N of M , the map hx(N) is onto. Hence,

hx(grθ(M)) is onto, and then hx(M) is onto as well.
We are left with part (c), in which case the simple Sx is θ-stable. Then the assertion

follows from the fact that the set of θ-semistable representations forms an abelian category

which is closed under extensions, and that x being a node forces every copy of Sx to lie
in the top or socle of any representation.

We now spell out the implication of Proposition 5.3 for moduli spaces of algebras
with nodes. Note that the results for moduli spaces are not trivial consequences of the

embedding of categories resulting from node splitting described in §2.2, since having a

bijection between the points of two varieties does not guarantee that they are isomorphic.
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In the following, we add subscripts to the moduli space notation to clarify which algebra
is being considered.

Proposition 5.4. Assume that A = kQ/I with x ∈ Q0 a node, and let θ ∈ ZQ0 be a

weight. Consider a representation variety repA(d) that is θ-semistable. Then there exists

an algebra A′, which is a proper quotient of A by an ideal generated by some arrows from
Q making x a sink or source in A′, such that MA(d)

ss
θ =MA′(d)ssθ .

Proof. If θ(x) < 0, Proposition 5.3(a) shows that we can obtain such an A′ from A

as the quotient by the ideal generated by all arrows with tail x, since repA′(d)ssθ =

repA(d)
ss
θ under the identification repA′(d)⊆ repA(d). The case of θ(x)> 0 follows from

Proposition 5.3(b) similarly.

If θ(x) = 0, consider the algebra A′ obtained from A as the quotient by the ideal gener-

ated by all arrows incident to x. The closed embedding repA′(d)⊆ repA(d) immediately
gives MA′(d)ssθ ⊆ MA(d)

ss
θ . On the other hand, the proof of Proposition 5.3(c) shows

that for M ∈ repA(d)
ss
θ we have grθ(M) =M ′⊕S, where S is a direct sum of copies of

Sx and M ′ is not supported at x, which is to say that grθ(M) ∈ repA′(d)ssθ . This gives
the reverse inclusion MA(d)

ss
θ ⊆MA′(d)ssθ .

We illustrate this for radical square zero algebras in the following example:

Example 5.5. Let Q be any quiver, A = kQ/kQ≥2 and θ a weight for Q which is not
identically zero. Define a quiver Qθ by:

• deleting vertices x and all incident arrows to x if θ(x) = 0,
• deleting all arrows with head x if θ(x)> 0 or
• deleting all arrows with tail x if θ(x)< 0.

Then Qθ is an acyclic (in fact, bipartite) quiver and Proposition 5.4 implies that
MA(d)

ss
θ =MkQθ (d)ssθ for any dimension vector d. Thus any moduli space for a radical

square zero algebra is equal to a moduli space for some bipartite quiver without relations.

5.3. Applications of main results to moduli spaces of representations

Although semistability around a node has a simple behaviour, we can apply our main
results to moduli spaces of representations in more interesting situations as well.

If we add to the quiver of a radical square zero algebra some additional arrows

and vertices (without adding additional relations), then the irreducible components of
representation varieties of the obtained algebra are still normal, and hence the map Ψ

in Theorem 5.2 is again an isomorphism. On the other hand, such algebras have richer

moduli spaces. We illustrate these considerations with the following example:
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Example 5.6. Consider the following quiver and dimension vector:

Q=

· · ·

x· · ·

· · ·

d=

a1 a2 · · · am

c· · ·

b1 b2 · · · bn

To study its moduli spaces, we may assume ai,bi ≤ c for all i, and only consider
representations where maps along the top row of arrows are injective, those along the

bottom row of arrows are surjective and those along the loops are nilpotent. Such a

representation determines configuration data ((Wi), (Vj),(ϕk),k
c), where

• k
c is regarded as the ambient space,

• (Wi) = (W1, . . . ,Wm) is the sequence of subspaces of kc given by the images of the
arrows along the top row,

• (Vj) = (V1, . . . ,Vn) is the sequence of subspaces of kc given by the kernels of the
arrows along the bottom row and

• (ϕk) = (ϕ1, . . . ,ϕl) is the the sequence of nilpotent endormorphisms of kc associated
to the loops.

In the moduli space M(d)ssθ , certain unstable configurations are omitted (depending on
θ), and two configurations ((Wi), (Vj),(ϕk),k

c) and
(
(W ′

i ),
(
V ′
j

)
, (ϕ′

k),k
c
)
represent the

same point if there is an ambient linear transformation g ∈GL(kc) such that g ·Wi =W ′
i ,

g ·Vi = V ′
i and gϕig

−1 = ϕ′
i for all i. (Note that the last statement is not ‘if and only if’,

because strictly semistable representations can be identified in the moduli space.)
If we study moduli spaces for quotients A= kQ/I, each relation of the form ai → c→ bj

in I imposes the incidence condition that Wi ⊂ Vj , and relations involving the loops

similarly specify that the images and kernels of these transformations contain certain
subspaces of the configuration. Allowing arbitrary relations (even without loops) leads to

moduli spaces where any singularity type of finite type over Z can appear, for example by

taking c=3 and ai = bi =1 for all i and considering Mnëv’s universality theorem [Mnë88].
Thus we restrict the kinds of relations we consider in order to be able to apply our results.

Let Q′ ⊂Q be a subquiver containing x. Let I ′ = kQ′
≥2, and let I ⊂ kQ be generated by

I ′ and a nilpotency relation for each loop not in Q′, and set A= kQ/I and A′ = kQ′/I ′.
Now let d be a dimension vector for Q, let d′ be its restriction to Q′ and let C ⊂ repA(d)
be an irreducible component. Then we have that repA(d) is the product of repA′(d′) with
an affine space and additional factors which are nilpotent cones in matrix spaces. So C

is the product of some irreducible component C ′ ⊂ repA′(d′) with that same affine space
and products of nilpotent cones in matrix spaces.

By Corollary 1.4, we know C ′ is a normal variety, so C is as well. Thus M(C)ssθ is

normal by applying [DK02, Prop. 2.3.11] to the definition of M(C)ssθ , and we can apply
Theorem 5.2 to decompose the moduli spaceM(C)ssθ . We note that there is not necessarily

any relation between M(C)ssθ and M(C ′)ssθ ; although C and C ′ have essentially the same

singularities, their GL(d)-orbit structures can be drastically different.
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[BZ02] G. Bobiński and G. Zwara, Schubert varieties and representations of Dynkin
quivers, Colloq. Math. 94(2) (2002), 285–309.

[Bon90] A. I. Bondal, Helices, representations of quivers and Koszul algebras, in Helices
and Vector Bundles, London Mathematical Society Lecture Note Series, 148,
pp. 75–95 (Cambridge University Press, Cambridge, UK, 1990).

[Bon91] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139(1)
(1991), 159–171.

[Bon98] K. Bongartz, Some geometric aspects of representation theory, in Algebras and
Modules, pp. 1–27 (American Mathematical Society, Providence, RI, 1998).

[Bou87] J.-F. Boutot, Singularités rationalles et quotients par les groupes réductifs, Invent.
Math. 88 (1987), 65–68.

[Bri12] M. Brion, Representations of quivers, in Geometric Methods in Representation
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[CBS02] W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of
modules, J. Reine Angew. Math. 553 (2002), 201–220.

[DCS81] C. De Concini and E. Strickland, On the variety of complexes, Adv. Math. 41
(1981), 57–77.

[dlP91] J. A. de la Peña, On the dimension of the module-varieties of tame and wild
algebras, Comm. Algebra 19(6) (1991), 1795–1807.

[DK02] H. Derksen and G. Kemper, Computational Invariant Theory: Invariant Theory
and Algebraic Transformation Groups, I, Enclopaedia of Mathematical Sciences, 130
(Springer-Verlag, Berlin, 2002).

[DW02] H. Derksen and J. Weyman, On the canonical decomposition of quiver represen-
tations, Compos. Math. 133(3) (2002), 245–265.

[DW11] H. Derksen and J. Weyman, The combinatorics of quiver representations, Ann.
Inst. Fourier (Grenoble) 61(3) (2011), 1061–1131.

[DW17] H. Derksen and J. Weyman, An Introduction to Quiver Representations, Gradu-
ate Studies in Mathematics, 184 (American Mathematical Society, Providence, RI,
2017).

[GR97] P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras
(Springer-Verlag, Berlin, 1997). Reprint of the 1992 English translation from the
Russian, with a chapter by B. Keller.
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