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Abstract

In this paper we study first passage percolation on a random graph model, the
configuration model. We first introduce the notions of weighted diameter, which is
the maximum of the weighted lengths of all optimal paths between any two vertices
in the graph, and the flooding time, which represents the time (weighted length) needed
to reach all the vertices in the graph starting from a uniformly chosen vertex. Our result
consists in describing the asymptotic behavior of the diameter and the flooding time, as
the number of vertices n tends to infinity, in the case where the weight distribution G has
an exponential tail behavior, and proving that this category of distributions is the largest
possible for which the asymptotic behavior holds.
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1. Introduction

Many random graph models have been developed in recent decades in order to describe
real-world complex systems such as social networks and the internet. Given a connected graph
with n nodes, we assign positive random weights to the edges that represent the cost, the
transmission information time, or the infection time (for example in an epidemic model) among
the vertices. We typically assume that these weights are independent and identically distributed
(i.i.d.). The optimal path between two uniformly chosen vertices u and v is the path between
them with the minimal edge weights sum. More precisely, writing Xe ∼ G for an edge e and a
continuous distribution G, and writing �uv for the set of all paths between u and v, the weighted
length Ln = Ln(u, v) of the optimal path between u and v is given by

Ln = min
π∈�u,v

∑
e∈π

Xe.

So Ln can be viewed as the infection time of the vertex v knowing that u is infected (or vice
versa) in a network epidemic model. The diameter of the resulting graph will be the maxi-
mum of these optimal paths for any randomly chosen pair of vertices, and the flooding with
respect to a vertex u is the maximal time that we need to spend to reach all the vertices in the
graph starting from u. Again, we use first passage percolation (FPP) techniques to describe
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the asymptotic behavior of the diameter and the flooding in the weighted configuration model,
a random graph with prescribed degrees; FPP can describe how a fluid spreads in a medium.
Several authors, e.g. Fernholz and Ramachandran [6] and van der Hofstad, Hooghiemstra,
and Znamenski [9], have studied the asymptotic behavior of the diameter for a non-weighted
random graph.

Bhamidi, van der Hofstad, and Hooghiemstra [4, 5] obtained the asymptotic distributions
of the typical weight between two randomly chosen vertices and of the hopcount, which is
the number of edges in the optimal path, first in the exponential weight case [4] and then in
the general case [5]. Amini, Lelarge, and Draief [1, 2] obtained a law of large numbers of the
diameter and the flooding in the configuration model with exponential edge weights. In this
paper we give a generalization of their results to all edge weight distributions having a certain
exponential tail behavior.

2. Definitions and notations

We first recall the well-known configuration model described in detail in [8] and [5]. Given
an integer n and a sequence d := (dn

i )n
i=1 of non-negative integers such that

∑n
i=1 dn

i is even,
the configuration model on n vertices is constructed as follows.

We start with n vertices numbered 1 to n, and we assign dn
i half-edges to the ith vertex. The

random graph CMn(d) is obtained by randomly choosing pairs of half-edges to form edges
between the two corresponding vertices. Let Fn be the cumulative distribution of the degree of
a randomly chosen vertex, denoted by Dn, that is,

Fn(x) = 1

n

n∑
i=1

1{dn
i ≤x}.

We let Vn denote the set of vertices {1, 2, . . . , n} and let ln := ∑
i∈Vn di be the total degree of

the graph. We assume that there exists a distribution p = (pk)k≥0 such that d and p satisfy the
following regularity conditions, as in [2].

Condition 1.

(a) #{i | dn
i = r}/n → pr for all r ≥ 0, n → ∞,

(b) mini=1,...,n dn
i := dmin ≥ 3 and pdmin > 0,

(c) lim supn→∞ n−1 ∑
i (dn

i )2+δ < ∞ for a certain δ > 0.

Remark 2.1. Condition (c) above ensures the convergence of first and second moments of
Dn to the respective moments of D (a random variable distributed according to (pr)r≥dmin ).
Moreover, it gives an upper bound for the maximal degree �n of the graph constructed on n
vertices. Indeed, this condition is equivalent to supn E[D2+δ

n log Dn] < ∞ and hence E[D2
n] is

uniformly upper-bounded. By the uniform integrability of D2
n, we get∑

r≥3

r2p(n)
r →

∑
r≥3

r2pr,

where p(n)
r = #{i | dn

i = r}/n. The argument is similar for E[Dn] →E[D].

On the other hand, by writing �n for the maximal degree in CMn(d), we have

�2+δ
n = o(n) =⇒ �n = o(n1/(2+δ)) =⇒ �n = o

(√
n/ log n

)
.
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Under these conditions the resulting random graph may have loops or multi-edges, but we
will see that locally the random graph will not have either and will look like a random tree. This
will be detailed as a coupling argument in Sections 4 and 5, based on [2] and [5]. In fact, for
a vertex v picked at random among {1, 2 · · · n}, the number of vertices at (graphical) distance
r from v will tend in distribution, as n tends to infinity, to that of an inhomogeneous branching
process which for generation 1 has distribution p = (pk)k≥0 for the number of offspring but
thereafter has the ‘size-biased’ distribution

p̂ = (p̂k)k≥0 for p̂k = (k + 1)pk+1

m
(1)

for the number of offspring. Assumption (c) in Condition 1 guarantees that the distribution
p̂ = (p̂k)k≥0 has finite mean (which we denote by ν). Note that ν is greater than dmin − 1 ≥ 2.

We recall the Malthusian parameter α corresponding to the rate at which a continuous-time
branching process grows, with splitting law p̂ = (p̂k)k≥0 and lifetimes distributed as G. It is the
unique positive real number satisfying

ν

∫ ∞

0
e−αt dG(t) = 1. (2)

The population of the branching process will grow at rate α.
The following distribution, which tends to the size-biased distribution as n → ∞, will be

used for the upper bound of the diameter:

pn
k := k + 1

ln

n∑
i=1

1{di=k+1}.

We let νn denote its mean and αn its corresponding Malthusian parameter. It is easy to see that
νn → ν, and so we have that αn → α as n → ∞ using the fact that ln/n = n−1 ∑n

i=1 d(n)
i tends

to m by Condition 1.
We give i.i.d. positive random weights for the edges following a continuous law G that has

an exponential tail behavior, that is,

lim
x→∞

− log G(x)

x
= c ∈ (0, ∞), (3)

where G(x) := 1 − G(x).
We write distw(a, b) for the sum of the weights along the optimal path between a and b,

the weights being i.i.d. according to a continuous law G satisfying (3). We define the weighted
diameter and the weighted flooding time of CMn(d) as

diam(CMn(d)) := max{distw(a, b), a, b ∈ V},
flood(CMn(d)) := max{distw(a, b), b ∈ V},

where V is the set of vertices of CMn(d), and where the vertex a in the flood is chosen uniformly
at random in the flooding definition.

From now on we say that an event An holds with high probability (w.h.p.) when P(An) → 1
as n → ∞.

The same methods used in this paper together with complementary arguments can be used
to derive the general case (where dmin ≥ 1), in a similar way to [1].
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2.1. Exploration process

Instead of constructing the random graph and then looking for the optimal path between two
vertices, we use a coupling argument as in [2] and [5], by exploring balls of a particular size
around the vertices and constructing the graph at the same time. The shortest weighted path
between two vertices u and v will be described by the first time collision of the two exploration
balls around u and v. Another way to understand this is to imagine water percolating in the
graph started from two different nodes. In this case the growing exploration ball around a
vertex u at a time t can be seen as the set of nodes reached by the flow until this time starting
from u.

We now give a precise definition of this exploration process.

• At time 0 we look at the du half-edges incident to u and dv half-edges incident to v,
and remove all those forming self-loops at u or v. If two half-edges incident to u and
v, respectively, are matched, they form a collision edge, and we assign to it a random
weight according to G. We assign random weights with distribution G for the remaining
half-edges and write A(0) for these unmatched half-edges.

• We wait until the minimum of lifetimes, denoted by T1, of the active half-edges is
reached (the minimum is unique almost surely since G is continuous).

• The corresponding half-edge, denoted by e∗, with weight T1 is matched with any other
randomly chosen free half-edge, and we give weight T1 to the newly formed edge.

• We remove the newly discovered half-edges that are parts of loops or cycles, and update
A(T1) by removing e∗ from A(0) and adding the remaining newly discovered free half-
edges.

Remark 2.2. This exploration process shows how to explore a neighborhood of a vertex by
looking at the random weights on the edges and constructing the graph at the same time by
random matching of the half-edges. The order in which we choose the half-edges to be paired
in the configuration model does not affect this exploration process. In the rest of the paper we
will use different variants of this exploration process, which will be useful in getting upper
and lower bounds for the diameter of the random graph, in order to prove Theorem 3.1 given
below.

3. Main theorem, overview of the approach

We now state the main result of this paper.

Theorem 3.1. Let CMn(d) be a random graph constructed according to the configuration
model, with i.i.d. edge weights with common law G satisfying condition (3), and the degree
sequence satisfying Condition 1. Then we have

diamw(CMn(d))

log n

p−→ 1

α
+ 2

cdmin
,

floodw(CMn(d))

log n

p−→ 1

α
+ 1

cdmin
,

where α is the Malthusian parameter of a branching process with degree law p̂ and edge weight
distribution G for the particles; see [3].
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In the penultimate section we establish a ‘converse’.

Theorem 3.2. Let CMn(d) be a random graph constructed according to the configuration
model with i.i.d. edge weights with common continuous law G with the degree sequence
satisfying Condition 1. If we have

diamw(CMn(d))

log n

p−→ 1

α
+ 2

cdmin
,

floodw(CMn(d))

log n

p−→ 1

α
+ 1

cdmin
,

then (3) holds with value c ∈ (0, ∞).

Theorems 3.1 and 3.2 generalize the result in [2]. According to these two theorems, the
weighted diameter and flooding time on the configuration model are of order log n as n → ∞ if
and only if the weight distribution G belongs to a set of light-tailed distributions satisfying (3).

We will focus on proving Theorems 3.1 and 3.2 for the diameter of the graph. Based on the
same techniques, we show in Section 7 how to get the desired asymptotics in these theorems
for the flooding time.

The idea of the proof, for the diameter, is to study the growth of a ball centered, according to
the weighted distance, at a certain vertex, and the time needed until any two such balls intersect.
The same tools are used to study the behavior of the flooding, so its proof is fairly straightfor-
ward once the result for the diameter is proved. The coupling argument for the growth of the
balls and the construction of the graph at the same time are explained in detail in [2]. The idea
is to start from a vertex with a certain number of half-edges di and assign to each of them i.i.d.
weights according to G.

This idea of exploring the neighborhood of a vertex, and coupling it with a branching
process in order to study optimal paths on the configuration model, is similar to [5]. In this
paper we couple the neighborhood of vertices with different variants of branching processes
on which we impose some conditions (by ‘freezing’ some of the half-edges) in order to get
lower and upper bounds for the time needed for a ball centered at a vertex to reach a certain
size, which will allow us to compute the asymptotic behavior of the weighted diameter and
flooding time in the graph. According to [5], we know that the typical size of the balls around
two uniformly chosen vertices u and v for collision is of order

√
n. In our case, since we are

studying the weighted diameter of the graph and thus considering all the
(n

2

)
pairs of vertices,

we will see that we need to explore the neighborhood of the vertices up to a size of order√
n log n.
The proof will be divided into two parts. In Section 4 we will prove the upper bound for

the diameter by first finding an upper bound for the time needed to reach a size of K log n
half-edges while exploring the neighborhood of a vertex, where K is a constant that is chosen
to be large enough, and that will be useful for proving the upper bound (see Theorem 4.2).
We then show that for any ε > 0, with high probability, the time needed for all these K log n
half-edges to connect to new vertices is less than (1 + ε)(cdmin)−1 log n. We then show that we
need at most

√
log n time before having at least K log n/2 new splittings, each one giving at

least two new half-edges (so we have at least K log n new processes). Then, using a coupling
argument, we show that, as n → ∞, there exist at least two subprocesses, among the K log n
starting subprocesses, that will together reach a size of order

√
n log n in a time bounded by

(1 + ε)(2α)−1 log n.
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In Section 5 we show the lower bound for the diameter by finding at least two vertices u
and v such that, for any ε > 0,

distw(u, v) ≥ (1 − ε) log n

α
+ 2(1 − ε) log n

cdmin
w.h.p.

Finally, in the last section, we describe the behavior of the flooding time, as n → ∞, using the
same arguments and results as for the diameter.

The intuition behind this result can be compared to the result of flooding and diameter on a
weighted complete graph studied by Janson [7]. In his case he proved that the typical weighted
distance between two vertices is asymptotically log n/n. For the flooding time starting from a
certain vertex, there is an additional price of log n/n to pay, and this cost is added twice when
we consider the diameter.

In our case the typical weighted distance between two uniformly chosen nodes is of order
log n/α, as shown in a precise way in [5]. For the flooding time, we are fixing a node and
looking for the maximum amount of time needed to reach all the other vertices in the graph.
Some vertices are harder to reach, especially if they have the minimum number of neighbors
dmin and large weights on the edges connecting them with their neighbors. This is why there is
a certain price to pay (that will be equal to log n/(cdmin), as shown later) in order to guarantee
reaching all the other vertices in the graph.

For the diameter, we have two remote nodes that can be ‘bad’ in the sense that they have
dmin neighbors and large weights on their edges. In this case we need to pay twice the price of
log n/(cdmin).

4. Upper bound

The purpose of this section is to provide the upper bound for the diameter needed for
Theorem 3.1. As with [5], we will see that for two ‘typical’ vertices v and u, the weighted
distance will correspond to twice the time needed for the discovery process for v and u to reach
approximately

√
n log n half-edges.

We will write this time as U1(u) + U2(v) + U3, where U1(u) and U2(v) are the times for the
discovery processes for u and v, respectively, to gain K log n half-edges, and U3 is twice the
subsequent ‘time’ for the two clusters to meet. Typically (for any K) the values of U1 and U2
are of order o(log n), and it is U3 (of order log n) which dominates. However, we will see that
for exceptional ‘slow’ points u and v, U1 and U2 can be of order log n. We will also see that
for K fixed but large, the term U3/ log (n) is very close to 1/α uniformly over u and v.

In Sections 4.1 and 4.2 our chief aim is to bound the tails of the random variable U1(u) (or
U2(v)) uniformly over all vertices. For a vertex v ∈ V and positive C, we define the random
variable TC(v) = inf{t | the discovery process for v has at least C half-edges}. When a vertex v
is given or fixed we drop the dependence on v and write TC. The principal result for this section
(which will be proved in Section 4.2) is

Proposition 4.1. For any ε > 0 and any K < ∞, we have

P

(
max
v∈Vn

TK log n(v) <
(1 + ε) log n

cdmin

)
→ 1 as n → ∞.

Remark 4.1. Here and elsewhere we write TK log n and not T�K log n�, where an a priori non-
integer value is offered for an integer argument.
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This result evidently follows immediately from the lemma below, which is shown in
Section 4.2.

Lemma 4.1. For any ε > 0, there exists h > 0, δ > 0 such that, for sufficiently large n, we
have

P

(
TK log n(v) ≥ (1 + ε) log n

cdmin

)
≤ n−(1+δ)h.

4.1. The result for tree-branching process

In this subsection we consider a continuous-time generalized (non-Markov) branching
process (Z(t) : t ≥ 0) with Z(0) = dmin and so that individuals have a lifetime distributed inde-
pendently as G, at the end of which they split into a random number of ‘offspring’ with law size
equal to the biased distribution {̂pk}k≥dmin−1 given in (1). So by abuse of notation, in this sub-
section TK log n will denote the time for the branching process to attain population size K log n.
We prove the following result.

Lemma 4.2. For any ε > 0, there exists C and δ > 0 so that

P

(
TK log n >

(1 + 2ε) log n

cdmin

)
<

C

n1+δ
as n → ∞.

In Section 4.2 we will adapt the approach presented here to show the same result in the
general case (Lemma 4.1), where the exploring ball around a vertex up to size K log n contains
cycles, which is the case of any realization of the configuration model w.h.p.

We fix v. To analyze TK log n, which represents the time needed for the continuous-time
branching process starting from v to reach K log n half-edges, we use some comparisons with
simpler objects. This is chiefly to deal with the absence of the memoryless property for general
distribution G satisfying (3). For the branching process extra edges can only serve to reduce the
random variable TK log n, so we may (and shall) take the number of offspring to be determinis-
tically equal to dmin − 1 ≥ 2, since we are looking for an upper bound for TK log n. This being
the case, we may regard our branching process as derived from a rooted tree where the root
has dmin ‘offspring’ and subsequent vertices have dmin − 1 offspring. We associate with each
edge e of the tree the random variable Xe, where the Xe are i.i.d. random variables distributed
as G. The idea is to use condition (3) in order to stochastically upper-bound it by an expo-
nential random variable and use these exponential random variables to find the desired upper
bound. Our first real comparison process comes from ‘freezing’ the births of the branching
process Z beyond the (log n)γ generation for some fixed 0 < γ < 1. Alternatively we can see
this as changing all the variables Xe corresponding to edges from a (log n)γ generation vertex
to equal infinity. Such a process must necessarily reach (at a random time) the configuration
of dmin(dmin − 1)(log n)γ −1 individuals, which is bigger than K log n for large n. Thus, writing
T ′

K log n for the time this modified branching process has K log n individuals, we obviously have
TK log n ≤ T ′

K log n, and thus an upper bound on tail probabilities for the latter will serve for the
former. The next comparison process involves changing the Xe random variables to shifted
exponentials. Property (3) entails that for each ε > 0 there exists Rε < ∞ so that

1 − G(x) ≤ e−c(1−ε)x for all x ≥ Rε,
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from which it follows that G is stochastically dominated by the exponential distribution with
parameter c(1 − ε) shifted by Rε to the right. By abuse of notation we write

G
st≤ Rε + Exp(c(1 − ε)). (4)

Accordingly we can couple random variables Xe with i.i.d. Exp(c(1 − ε)) random variables
X′′

e so that for each edge e, Xe ≤ X′′
e + Rε.

Our final comparison involves T ′′
K log n, the time for the branching process with variables

G′′(e) to have K log n individuals where again no births after generation logγ (n) are permitted;
T ′′

K log n is obviously easier to deal with than its preceding objects. We also note that while in
general T ′′

K log n may be less than T ′
K log n, given that we only allow generations up to logγ (n),

we have
T ′

K log n ≤ T ′′
K log n + logγ (n)Rε,

and that the latter term is negligible compared to log n as n becomes large.
So our proof of Lemma 4.2 has been reduced to proving the following result.

Lemma 4.3. For ε > 0, there exists h, δ > 0 so that, for all n large,

P

(
T ′′

K log n >
(1 + 2ε) log n

cdmin

)
<

h

n1+δ
.

Before proving this lemma we will need an elementary counting result for regular trees. In
our deterministic branching model each birth increases Z, the population size, by dmin − 2.
Thus it will increase the jump rate of Z by dmin − 2 unless the dmin − 1 offspring are of
generation logγ (n), in which case the rate is reduced by 1.

Writing L for the number of splittings needed to reach size K log n, we have

dmin + L(dmin − 2) = K log n, =⇒ L = K log n − dmin

dmin − 2
. (5)

As mentioned above, all integer variables used in this paper (which represent a certain num-
ber of splittings, generations, or number of half-edges) are written without � � brackets for
simplicity.

We want to find an upper bound for T ′′
K log n that will also serve as an upper bound (stochas-

tically) for TK log n. To do so, we want to show that, in spite of the restrictions imposed on
our modified process (only dmin-degree vertices, freezing half-edges at generation (log n)γ ),
the number of half-edges discovered after each splitting is still sufficiently large to reach size
K log n in a time of order at most log n.

By (5), the time T ′′
K log n is equal to the sum of

L = K log n − dmin

dmin − 2

times between jumps of process Z. That is, T ′′
K log n = ∑L

i=1 Fi, where Fi is the time between the
(i − 1)th jump and the ith. Conditional upon the generational information of the jumps up to the
(i − 1)th jump, the random variable Fi is an exponential random variable of parameter c(1 − ε)
times an integer which is measurable with respect to the information up to the (i − 1)th jump.
Up to i = logγ (n) − 1, the parameter of Fi is non-random and equal to dmin + (i − 1)(dmin − 2)
times c(1 − ε). Thereafter the rate can rise or fall. The lemma below (which is far from optimal
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but equal to our needs) records that after this point the parameter of Fi, which we denote by fi,
has a large lower bound.

Lemma 4.4. For n large and for all logγ (n) − 1 ≤ i ≤ L, Fi has parameter fi satisfying

fi ≥ [ logγ (n)/2] × c(1 − ε).

Proof. Let M be the number of splittings at which generation (log n)γ is reached for the first
time. Obviously M ≥ logγ (n) − 1. If (log n)γ − 1 ≤ i < M, we have

fi = (dmin + (i − 1)(dmin − 2)) × c(1 − ε)

≥ (dmin + ((log n)γ − 2)(dmin − 2)) × c(1 − ε)

≥ [ logγ (n)/2] × c(1 − ε)

for large n and using the fact that dmin ≥ 3.
Suppose now that i ≥ M. After the Mth jump there is a path from the root v to one of

the generation (log n)γ individuals. Let uj be the vertex belonging to this path at generation
j ≤ (log n)γ . Notice that at least logγ (n)/2 generations can be discovered in the subtrees having
roots u1, u2, . . . , u(log n)γ /2 before each one of them reaches a total of logγ (n) generations. This
means that if one of these subtrees has only free half-edges at generation logγ (n) (that will
not contribute to the jump rate since they are ‘frozen’), then their number is at least (dmin −
1)logγ (n)/2.

However, for n sufficiently large we have

(dmin − 1)(log n)γ /2 > K log n.

This contradicts i ≤ L, where L is the number of splittings to reach size K log n. This shows that
each of these logγ (n)/2 subtrees has at least one free half-edge belonging to one of the first
logγ (n) − 1 generations of the main branching process. In other words we see that (provided
n is large enough) before time T ′′

K log (n) each one of these subtrees must ‘supply’ a jump rate of
at least c(1 − ε), and thus we have fi ≥ logγ (n)/2 × c(1 − ε). �

Proof of Lemma 4.3. Using the same notations as in Lemma 4.4, we write

T ′′
K log n = Exp(λdmin) +

L∑
i=2

Fi := Exp(λdmin) + T,

where λ := c(1 − ε). We want to show that, for

a := (1 + 2ε) log n

cdmin

and for any 0 < s < a, there exist h, δ > 0 such that

P(T ≥ a − s) < heλdminsn−(1+δ)
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for n large. This will finish the proof since

P(T ′′
K log n ≥ a) = e−λdmina +

∫ a

0
λdminP(T > a − s)e−λdmins ds

≤ ahn−(1+δ) + e−λdmina

∼ h′n−(1+δ) (6)

for a certain h′ > 0. Using the Markov inequality and Lemma 4.4, and recalling that

L = K log (n) − dmin

dmin − 2
,

we obtain for T

P(T ≥ a − s) = P(eλdminT ≥ eλdmin(a−s))

≤E[eλdminT ]e−λdminaeλdmins

≤
(log n)γ −2∏

i=2

(
1 + λdmin

((i − 1)(dmin − 2) + dmin)λ − λdmin

)

×
L∏

i=(log n)γ −1

(
1 + λdmin

(logγ (n)/2) × λ − λdmin

)
e−λdminaeλdmins

≤E

[(log n)γ −2∑
i=2

dmin

(i − 1)(dmin − 2)

]

×E

[
L∑

i=(log n)γ −1

dmin

(logγ (n)/2) − dmin

]
e−λdminaeλdmins

� exp

(
dmin

dmin − 2
logγ (n)

)
× exp

(
2dminL

(log n)γ (1 − o(1))

)
× e−λdminaeλdmins

= e−(1−ε)(1+2ε) log n(1−o(1))eλdmins.

Therefore, for large n and ε sufficiently small, there exists δ > 0 such that

P

(
T ≥ (1 + 2ε) log n

cdmin

)
≤ n−(1+δ)eλdmins.

This concludes the proof by (6). �

4.2. The result for the general case

In the previous section we showed the upper bound for the time needed to reach K log n
half-edges starting from a random vertex, assuming that no cycles or loops occur before that
time. In this section we show that the same bound holds when we have one or more cycles. We
say that two paths starting at a vertex v generate a cycle whenever they have another vertex v′
in common. We extend this definition to the case where two half-edges incident to the same
vertex are matched together and hence form a loop at this vertex.
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We will first show that, with high probability, we need at most (1 + ε)(cdmin)−1 log n time,
starting from a vertex v, to reach K log n half-edges if we only have exactly one cycle in the
exploration process. Then we will show that the probability of having two or more cycles
during this process is very small compared to n−1−δ for 0 < δ < 1, as n → ∞. Hence this will
be sufficient to prove the upper bound of TK log n in the general case.

Exactly one cycle. Suppose first that we have exactly one cycle before reaching K log n
half-edges. In this case the maximal degree of a newly discovered vertex should be less than
K log n (because we stop when we reach K log n half-edges). On the other hand, we have at
most K log n half-edges that can create a cycle during this exploration process (before reaching
K log n half-edges). Hence the probability of having a cycle can be bounded as follows:

P(one cycle at the ith splitting) ≤ K log n × K log n

ln − i
� C(log n)2

n
, (7)

where C = K2/m and where we used the fact that ln/n → m when n → ∞.
We will consider the dmin-regular case where all newly added vertices have degree dmin.

Then we will show that, even in this case, the time needed to reach size K log n (even if there
are cycles and loops) is upper-bounded by log n/(cdmin) with high probability.

In order to justify the restriction to the dmin-regular case, we use a comparison argument
similar to that in the previous section to simplify the current setting.

If we have one cycle before reaching K log n half-edges, we remove the two half-edges that
formed a cycle, to obtain an almost dmin-regular tree.

Let T ′′′
K log n be the time needed for this almost dmin-regular tree to reach size K log n (by

always connecting to new vertices with degree dmin). This amount of time is clearly greater
than or equal to that in the previous case, where only one cycle occurs and no restrictions on
the degrees of the vertices are made.

Thus it is sufficient to show that Proposition 4.1 also holds for T ′′′
K log n.

Notice first, as in the previous section, that the number Si of live particles after the ith
splitting in the dmin-regular branching process is given by

Si = dmin + (dmin − 2)(i − 1).

After removing the two half-edges that formed a cycle at the ith splitting (for a certain
integer i), there are dmin + (i − 1)(dmin − 2) − 2 remaining half-edges. Therefore we need at
most two new splittings to obtain at least Si half-edges, since

dmin + (i − 1)(dmin − 2) − 2 + 2dmin − 4 ≥ Si, dmin ≥ 3.

We let τ1 be the time spent until the ith splitting, τ2 the time to reach at least Si again after
removing the two bad half-edges, and τ3 the remaining time to reach K log n half-edges. We
write Rj = (i − 1 + j)(dmin − 2) for j = 1, 2. We obtain, for ε > 0,

P

(
τ2 ≥ ε log n

cdmin

)
= P

(
Exp(R1c(1 − ε)) + Exp(R2c(1 − ε)) ≥ ε log n

cdmin

)
= R2c(1 − ε)e−R1c(1−ε)ε log n/(cdmin) − R1c(1 − ε)e−R2c(1−ε)ε log n/(cdmin)

R2c(1 − ε) − R1c(1 − ε)

≤ R2e−R1c(1−ε)ε log n/(cdmin)

R2 − R1

= R2e−R1c(1−ε)ε log n/(cdmin)

≤ (1 + K log n)(dmin − 2)n−(dmin−2)/dmin ε(1−ε).
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We write Ci for the event ‘Exactly one cycle occurred, at the ith splitting’. We finally obtain,
using Lemma 4.3 and (7),

P

(
τ1 + τ2 + τ3 ≥ (1 + 3ε) log n

cdmin
, Ci

)
≤ C(log n)2

n
×

[
P

(
τ1 + τ2 + τ3 ≥ (1 + 3ε) log n

cdmin
, τ2 ≥ ε log n

cdmin

)
+ P

(
τ1 + τ2 + τ3 ≥ (1 + 3ε) log n

cdmin
, τ2 ≤ ε log n

cdmin

)]
≤

(
P

(
τ2 ≥ ε log n

cdmin

)
+ P

(
τ1 + τ3 ≥ (1 + 2ε) log n

cdmin

))
× C(log n)2

n

≤
(

(1 + K log n)(dmin − 2)n−(dmin−2)/dmin ε(1−ε) + hn(−1+ε)(1+2ε)
)

× C(log n)2

n
.

Writing C′ for the event ‘Exactly one cycle occurred before time K log n’, we get

P

(
τ1 + τ2 + τ3 ≥ (1 + 3ε) log n

cdmin
, C′

)
≤

(
(1 + K log n)(dmin − 2)n−(dmin−2)/dmin ε(1−ε) + hn(−1+ε)(1+2ε)

)
× KC(log n)3

n
.

Hence, taking the union of this event over all the vertices of the graph and writing h1 for this
probability, we get

h1 ≤
(

(1 + K log n)(dmin − 2)n−(dmin−2)/dmin ε(1−ε) + hn(−1+ε)(1+2ε)
)

× KC(log n)3 → 0, n → ∞.

This shows that, starting from any vertex, we need with high probability at most log n/(cdmin)
time to reach size K log n in the exploration process around this vertex, assuming that we have
at most one cycle in this exploration process.

Two or more cycles. On the other hand, using (7), the probability h2 of having two or more
cycles before reaching size K log n (starting from a fixed vertex) is bounded for large n by

h2 �
(

C(log n)2

n

)2

= C2(log n)4

n2
.

Writing C′′ for the event ‘Two or more cycles occurred before time K log n’, we thus obtain

P

((
τ1 + τ2 + τ3 ≥ (1 + ε) log n

cdmin
, C′′

))
≤ P(C′′) ≤ C2(log n)4

n2
.

Hence, taking the union of this event over all the vertices of the graph and writing h3 for this
probability, we get

h3 ≤ C2(log n)4

n
→ 0, n → ∞. (8)
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4.3. Time for at least K log n/2 splittings

Once we reach a number of K log n half-edges in the exploration process (with a time
upper-bounded with high probability by log n/(cdmin) as seen in the previous section), we let
(Rv

i )i≤K log n denote the random variables corresponding to the remaining times on the K log n
half-edges obtained in the previous branching process with the root v, and we write (Xv

i )i≤K log n

for the corresponding random variables with cumulative distribution function G representing
the total weights on these half-edges. So we have Rv

i ≤ Xv
i for all i ≤ K log n and any vertex v.

In the case of an exponential distribution for the edge weights (with rate 1, for example),
the Rv

i also have the same exponential distribution by the memorylessness property of the
exponential law. In this case we can study the time until collision between two balls around
vertices u and v, where both of these vertices have degree K log n. The law of the waiting time
before the first splitting in one of these balls is Exp(K log n) by the memorylessness property
of Exp(1).

Since Xv
i ∼ G and G does not have the memorylessness property, the random variables Rv

i
are not distributed according to G.

To circumvent this problem, we will show that at least K log n/2 of the K log n half-edges
will be connected to new vertices in an amount of time of order

√
log n. Since dmin ≥ 3, we will

get at least K log n new half-edges, and we have again that the lifetime of these new half-edges
is distributed according to G. Since

√
log n is negligible compared to log n, the waiting time to

get these K log n new half-edges will not affect the upper bound of the diameter, which will be
shown to be of order log n. We can put aside the half-edges that do not connect to new vertices
in this ∼ √

log n amount of time (there are at most K log n/2 of these half-edges). Hence, by
not considering such half-edges, we will need even more time to reach the typical size for
collision starting from at least K log n (newly discovered) half-edges. It is then sufficient to
show that the upper bound still holds in this case.

We will show the following theorem.

Theorem 4.1. Consider the K log n half-edges that were reached by the branching process
around v (as in Section 4.1), with (Rv

i )i≤K log n remaining time on these half-edges before they
connect to new vertices. Then we have

n × P

(
at least

K log n

2
of the Rv

i ≥ √
log n

)
→ 0, n → ∞.

This will show that, starting from any vertex v, with high probability, at least K log n/2 live
particles in the corresponding exploration process will die in the next

√
log n units of time,

giving birth to at least two new particles (since dmin ≥ 3).

Proof. To prove this, we first notice that the number of the explored weighted half-edges
needed to obtain K log n live particles is less than 3K log n. To see that, we again consider the
worst case where every vertex has degree dmin. In this case we need

K log n − dmin

dmin − 2

splittings to reach size K log n. Therefore, for n sufficiently large, the number of weighted
half-edges used in this process is given by

dmin + (dmin − 2 + 1)
K log n − dmin

dmin − 2
≤ K log n + dmin − 1 + K log n − dmin

dmin − 2
≤ 3K log n. (9)
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We let X1, . . . , X3K log n be the maximal set of random variables with cumulative distribution
function G that were discovered during the exploration process before reaching size K log n.
We let A be the event that at least K log n/2 of the Xv

i are bigger than
√

log n. Since Xv
i ≥ Rv

i
for all i and vertices v, it is sufficient to prove that P(A) → 0 faster than 1/n:

P(A) =
3K log n∑

r=K log n/2

(
3K log n

r

)(
G

(√
log n

))r(1 − G
(√

log n
))3K log n−r

�
(

3K log n

3K log n/2

)
×

(
5

2
K log n + 1

)
e−c

√
log n×K log n/2

∼ 23K log n
√

log n e−c
√

log n×K log n/2

= e−c
√

log n×K log n/2+3K log n log 2+ 1
2 log log n

→ 0, n → ∞,

where we used Stirling’s approximation

a! ∼ √
2πa

(
a

e

)a

, a → ∞,

to approximate
( 3K log n

3K log n/2

)
. �

Corollary 4.1. The result of Theorem 4.1 also holds in the general case, where one or multiple
cycles can be created by two or more of the K log n half-edges that were obtained by exploring
the neighborhood of a vertex v.

Proof. The probability of having two or more cycles is negligible as n → ∞ (see (8)).
In the case of one cycle, we can show that Theorem 4.1 holds in the exact same way

if we replace K log n/2 with K log n/2 + 1. In other words, with high probability, at least
K log n/2 + 1 half-edges will be matched within a time of order

√
log n. If one of them cre-

ates a cycle (by connecting to one of the K log n half-edges in the exploration process around
v), then the other K log n/2 half-edges will connect to new vertices with degree bigger than
dmin ≥ 3, so we reach at least K log n/2 × (dmin −1) ≥ K log n new subprocesses within a time
of order

√
n. �

4.4. Time for collision starting from K log n

Starting with K log n newly discovered subprocesses in the exploration process of vertices
u and v respectively (as explained in Section 4.3), we write S(u, v) for the time spent exploring
the 2 × K log n processes before the first collision between the two balls.

By Section 4.3, we may have more than K log n free half-edges in each ball at this stage,
but we consider only K log n of them, which have weights distributed according to G (whereas
other half-edges can have remaining lifetimes that are not distributed according to G).

The time needed for the collision between the two balls of size K log n is greater than
the time needed for collision of the original balls (which can contain more than K log n half-
edges, as explained above). Therefore it is sufficient to upper-bound the time needed to have
a collision between the two balls of size K log n each. We want to show that we need at most
((1 + δ)/α) log n time (with high probability) before the collision happens, for δ > 0 arbitrarily
small. The matching among these half-edges is explained in Section 2.1.
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The size-biased distribution corresponding to a distribution (pk)k≥0 is given by

p̂k := (k + 1)pk+1

m
, (10)

where m = ∑
r pr and we let ν := ∑

k kp̂k. We will use a slightly modified distribution in order
to couple each of the K log n processes with a continuous branching process with a maximal
finite degree �. For this, given ε > 0, we define an i.i.d. sequence (Yk)k≥0 with distribution

qn
k := P(Yi = k) :=

⎧⎪⎪⎨⎪⎪⎩
(((k + 1)/ln)

∑n
i=1 1{di=k+1} − ε) ∨ 0 0 < k < ε−1/3,

1 − ∑�−1
r=2 qn

r k = 0,

0 k ≥ ε−1/3,

(11)

where ε > 0 is small, � is the maximal degree in this case verifying � < ε−1/3, and ln is the
total number of half-edges corresponding to the total of n vertices in the graph. Similarly, we
define, for every k ≥ 0,

pn
k := k + 1

ln

n∑
i=1

1{di=k+1}.

Coupling the forward degrees. We now present a coupling between the forward degrees (the
degree minus 1 of a discovered vertex) and a sequence of i.i.d. random variables (Yi)i≥1 with
common law q given in (11) (we write q instead of qn for simplicity).

We start by showing that the two balls collide with high probability whenever their sizes
exceed C

√
n log n for some constant C. For this, we first define, for a vertex u and time s > 0,

Bu(s) := {h | h free half-edge at time t discovered by the exploration process around u}.
Proposition 4.2. For any pair of vertices u, v ∈ Vn, we have with high probability

distw(u, v) ≤ TAn (u) + TAn (v),

where An := √
3mn log n, and TAn (u) is the time needed for the ball around u to reach a total

of An half-edges.

Proof. Fix two vertices u and v and suppose that Bu(TAn (u)) and Bv(TAn (v)) are disjoint.
A free half-edge belonging to Bu(TAn (u)) will be matched uniformly at random with another
half-edge in the graph. Therefore the probability that it is not matched with a half-edge in
Bv(TAn (v)) is at most

1 −
√

3mn log n

ln
.

Hence the probability that the two balls do not intersect immediately is upper-bounded by(
1 −

√
3mn log n

ln

)√
3mn log n

� exp

(
−3mn log n

ln

)
< n−2−δ,

for sufficiently large n, where we used the fact that ln/n → m and fixed 0 < δ < 1. Thus, by
summing over all the pairs of vertices (u, v) in the graph, this probability will tend to 0. �

Let p̃k be the probability of having 1 ≤ k < ε−1/3 children after a splitting in one of the
two balls before the collision happens, and supposing that we have at most one cycle. This
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probability obviously depends on the number of already matched half-edges, but this number
is upper-bounded by 4

√
3mn log n by Proposition 4.2 and a computation similar to (9), so for

large n we have

p̃k �
∑n

i=1 (k + 1)1{di=k+1} − 4
√

3mn log n

ln − 4
√

3mn log n
� pn

k − ε = qk. (12)

We now focus on the evolution of the ball around u, by looking at the K log n processes related
to this ball. For the ith splitting, i ≥ 1, we let q̃k,i be the probability of obtaining k children, and
none of them belongs to a cycle or a loop, ε−1/3 ≥ k ≥ 2. Then, for large n, we have

q̃k,i ≥
∑

r≥1 (k + 1)1{dr=k+1} − 2
√

3mn log n

ln − 2
√

3mn log n
×

(
1 −

√
3mn log n

ln − 4
√

3mn log n

)k

� pn
k

(
1 − k

√
3mn log n

ln − 4
√

3mn log n

)
≥ qk.

We write (Ui)i≥1 for a sequence of i.i.d. uniform random variables in (0, 1). The branching
process approximation used in this section is constructed as follows.

• For the ith splitting of the K log n processes related to u, if we have k children with k >

ε−1/3, then we freeze these half-edges and they will not be taken into account later on.

• If k < ε−1/3, we keep these half-edges if they do not belong to a cycle and if Ui ≤ qk/q̃k,i.

This gives us a coupling between each of the K log n processes and a continuous branching
process with offspring distribution q.

Remark 4.2. By (12) and the fact that qk = 0 for k > ε−1/3, we see that the time needed before
the collision of the two balls is larger when considering the branching process with offspring
distribution q. This shows that the bound for this amount of time (before the collision) in the
branching process case is sufficient to bound the actual amount of time in the general case.

We now let Zn
t be the number of live particles at time t for a continuous branching process

with the law for the children given by (11), bounded by �, and continuous cumulative distribu-
tion G for the edge weights. We also write Zt for the number of live particles at time t for a con-
tinuous branching process with the size-biased law for the children and continuous cumulative
distribution G for the edge weights. By [3, page 152], we know that in the supercritical case

E[Zt] ∼ c′eαt, c′ = ν − 1

αν2
∫ ∞

0 ye−αy dG(y)
,

where ν is the average number of children at each splitting and α is the Malthusian parameter
corresponding to the process, which is the unique solution of

ν

∫ ∞

0
e−αy dG(y) = 1.

Lemma 4.5. Let νn and ν∗
n be the expectations corresponding to pn

k and qn
k respectively, let αn

and α∗
n be the corresponding Malthusian parameters, and let � denote the maximal degree of

the graph. Then we have
αn − α∗

n → 0, ε → 0.
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Proof. We first see that

νn − ν∗
n = ε(ε−1/3 − 1)ε−1/3

2
+

∞∑
k=ε−1/3+1

kpn
k ≤ ε1/3 +

∞∑
k=ε−1/3+1

kpn
k .

Since
∑∞

k=1 kpn
k converges uniformly by assumption (c) in Condition 1, we have νn − ν∗

n → 0
when ε → 0. Let αn and α∗

n be the corresponding Malthusian parameters of νn and ν∗
n , which

are the unique respective solutions of

H(αn) :=
∫ ∞

0
e−αny dG(y) = 1

νn
, H(α∗

n ) =
∫ ∞

0
e−α∗

n y dG(y) = 1

ν∗
n

.

We easily see that H is differentiable. Using the fact that νn →E[D∗ − 1] < ∞, the derivative
of H is bounded as follows for sufficiently large n:

H′(αn) = −1

αn

∫ ∞

0
αnye−αny dG(y) = − 1

νn
≤ − 1

2E[D∗ − 1]
< 0.

We then obtain, for a certain α0 ∈ ]α∗
n , αn[,

|H(αn) − H(α∗
n )| = |H′(α0)||αn − α∗

n | ≥ 1

2E[D∗ − 1]
|αn − α∗

n |.

Since νn − ν∗
n → 0 when ε → 0, we have

|αn − α∗
n | ≤ |H(αn) − H(α∗

n )| × (2E[D∗ − 1]) → 0, ε → 0. �
Theorem 4.2. For u, v ∈ Vn, we let

A(u, v) :=
{

S(u, v) >
1 + γ

α
log n

}
for γ > 0.

Then, for n large enough, there exists δ > 0 such that

P(A(u, v)) < n−2−δ,

where α is the Malthusian parameter defined in (2) and where we recall that S(u,v) is the time
spent exploring the 2 × K log n processes before the collision.

Remark 4.3. We need to mention that condition (3) on the tail of the distribution G was used
in Section 4 to upper-bound the time for the exploration process to reach size K log n, as well
as for the lower bound in Section 5, but it is not used to prove this theorem.

This will show that P( ∪(u,v)∈Vn×Vn A(u, v)) → 0, n → ∞. In other words, with probability
that tends to 1, and using the result of the previous section, we need at most

2

cdmin
log n + 1 + γ

α
log n

time before a collision happens between two exploration process around any two uniformly
chosen vertices for an arbitrarily small γ > 0.

Proof. Let Z∗,n
t denote the number of live particles in a continuous branching process

with law G for the edges and probability qk of having k children for every splitting and
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every k ≥ 1. Since we have at least K log n such processes coming from the exploration
balls of u and v respectively, in order to simplify the notations we will write these pro-
cesses as U1(t), . . . , UK log n(t) for those related to u and V1(t), . . . , VK log n(t) for v and Ui(t),
Vj(t) ∼ Z∗,n

t , 1 ≤ i, j ≤ K log n.
Let t∗ be such that eα∗

n t∗ = √
3mn log n. We first notice that, for any ε > 0, there exists n

sufficiently large that

t∗ = 1

α∗
n

log (
√

3mn log n) = 1

2α∗
n

(log (3m log n) + log n) ≤ 1

2α∗
n

log n(1 + ε).

We will now show that there exists at least a pair of processes (Ui(t), Vi(t)) that collide before
time t∗.

By Proposition 4.2, (Ui(t), Vi(t)) will collide with high probability before time t∗ whenever

Ui(t
∗), Vi(t

∗) > eα∗
n t∗ = √

3mn log n.

Since Zte−αt a.s.→ c′W and W has a continuous distribution (see [3]), there exists 0 < a < 1
such that, for large t,

P(Ui(t) < eα∗
n t) ≤ a.

From this, we can easily deduce, again using Proposition 4.2, that the probability of collision
between Ui(t∗) and Vi(t∗) is greater than (1 − a)2 for large n and for a certain 0 < a < 1.

Hence the probability that none of these pairs of processes (Ui(t), Vi(t)) collide before time
t∗ is upper-bounded by

P(A(u, v)) ≤ (1 − (1 − a)2)K log n = eK log n log (1−(1−a)2) = nK log (1−(1−a)2).

By taking K sufficiently large, we get that this probability is bounded by n−2−δ for δ > 0.
By summing over all the pairs of vertices (u, v) in the graph, we can directly conclude

that, with high probability, for any pair (u, v), and after reaching size K log n around these two
vertices, there will be collision in less than

2t∗ = 1

α∗
n

log n(1 + ε)

with high probability. By Lemma 4.5, for any ε > 0, there exists γ > 0 such that

αn
1 + ε

1 + γ
≤ α∗

n ≤ αn
1 + ε

1 + γ /2
.

We conclude that we need at most αn
−1 log n(1 + γ ) time, with high probability, to have a

collision between the two balls once they reach size K log n each. This finishes the proof since
γ is arbitrarily small and since αn → α as n → ∞. �

5. Lower bound

The goal of this section is to show that, for any ε > 0, we have with high probability

diam(CMn(d))

log n
≥

(
1

α
+ 2

cdmin

)
(1 − ε), n → ∞.
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To do this, it is sufficient to show that for any ε > 0, we can find two vertices u and v in the
graph such that

distw(u, v) ≥ (1 − ε) log n

α
+ 2(1 − ε) log n

cdmin
w.h.p.

We will only deal with the worst case, where the exploration process starting from any vertex
is a branching process.

Coupling the forward degrees. While exploring the neighborhood of a vertex u, we let d̂i be
the forward degree (the degree minus one) of the discovered vertex at the ith splitting. As in
[2], we set

βn := 3

√
m

ν − 1
n log n

and we present a coupling of (d̂i)i≤βn with an i.i.d. sequence of random variables. We write �n

for the maximum degree in the random graph on n vertices. By writing the order statistics of
the degrees as

d(1) ≤ · · · ≤ d(n),

we write m(n) := ∑
i≥(βn+1)�n

d(n)
(i) , and we define the size-biased empirical distribution without

considering the (βn + 1)�n − 1 lowest degrees as

π
(n)
k :=

∑
i≥(βn+1)�n

(k + 1)1
d(n)

(i) =k+1

m(n)
.

By Remark 2.1, we know that �n = o(
√

n/ log n). We then conclude that �nβn = o(n).
Hence it is easy to see that π (n) tends to the size-biased distribution p̂ defined in (10) as

n → ∞.
The following lemma, proved in [2], will be used for the proof of the main result of this

section, Proposition 5.1.

Lemma 5.1. For a randomly chosen vertex u and i ≤ βn,(̂
du(i) | d̂u(1), . . . , d̂u(i − 1)

) ≤st D
(n)
i ,

where D
(n)
i are i.i.d. with distribution π (n).

For a vertex u and time t > 0, let B′(u, t) := {v | distw(N(u), v) ≤ t}, where N(u) represents
the set of neighbors of u in the graph. Based on Proposition 4.3 in [2], we show the following
proposition.

Proposition 5.1. Let CMn(d) denote the random graph constructed with n vertices and a
degree sequence d = (di)n

i=1. Let

tn = (1 − ε) log n

2α
,

where α is the Malthusian parameter corresponding to a branching process with edge weight
distribution G and size-biased offspring distribution p̂. For any two uniformly chosen vertices
u, v ∈ Vdmin , we have with high probability

B′(u, tn) ∩ B′(v, tn) = ∅.
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Proof. According to [3], in the case of a supercritical age-dependent branching process
(Zt)t≥0, there exists a constant c′ such that

Zt

c′eαt
a.s.−→ W, E[W] = 1. (13)

Let u ∈ Vdmin . We consider the worst case for which B′(u, t) is the union of dmin branching

processes growing until time t > 0 and with forward degree D
(n)
i for the ith splitting. We denote

these branching processes by (Z1
t )t≥0, . . . , (Zdmin

t )t≥0. Writing

t′n := (1 − ε) log n

2αn
,

where αn is the Malthusian parameter corresponding to π (n) and G, we know that αn → α as
n → ∞. Let zn := √

n/log n. We define

qn := P
(
Z1

t′n , . . . , Zdmin
t′n

≤ zn
)
.

Using (13), we have, for any 1 ≤ dmin,

P(Zi
t′n ≤ zn) ∼ P

(
W ≤ zn

c′eαnt′n

)
= P

(
W ≤ nε

c′√log n

)
→ 1, n → ∞.

This implies that qn → 1 as n → ∞. Therefore, with high probability, the size of B′(u, t′n) is
bounded by zn. Consequently, the probability of getting a collision edge between B′(u, t′n) and
B′(v, t′n) is bounded by

z2
n

ln
∼ z2

n

nm
→ 0, n → ∞,

which completes the proof. �
Remark 5.1. By [2], we have that the number of free half-edges after βn splittings, Sβn (u), in
the exploration process around a vertex u satisfies, for large n,

Sβn (u) ≥ √
ν − 1βn ≥ √

3mn log n with probability ≥ 1 − o(n−3/2).

This means that, for any uniformly chosen vertex, we need with high probability at most βn

splittings before reaching size
√

3mn log n, which is the typical size order for collision accord-
ing to Proposition 4.2. Hence coupling the first βn forward degrees in the exploration process
of a given vertex before collision (with another ball) is sufficient with high probability.

Let Vdmin be the set of vertices of degree dmin and let

sn := 1 − ε

cdmin
log n.

A vertex in Vdmin is called bad if the weights on its dmin connected edges are all greater than
sn. We also write Au for the event that u is a bad vertex.

The following lemma shows that the average number of bad vertices in the graph tends to
infinity as n → ∞ but is negligible compared to n.

Lemma 5.2. For any ε > 0, there exist aε, bε > 0 such that

aεpdmin (1 + o(1))nε2 ≤E[Y] ≤ bεpdmin (1 + o(1))n2ε.
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Proof. By condition (3), for any ε > 0, there exist R′
ε such that

G
st≥ Exp(c(1 + ε)) − R′

ε.

Using this, and writing X1, . . . , Xdmin for the random weights on the half-edges connected to a
vertex u ∈ Vdmin , we have

P(Au) = P(X1 ≥ sn, . . . , Xdmin ≥ sn)

≥ P(Exp(c(1 + ε)) − R′
ε ≥ sn)dmin

= e−c(1+ε)R′
ε × e−c(1+ε)sndmin

= aεn−(1−ε2),

where aε := e−c(1+ε)R′
ε . From this, we get

E[Y] =
∑

u∈Vdmin

P(Au) ≥ aεpdmin (1 + o(1))nε2
.

The upper bound for E[Y] follows similarly using (4). �
Lemma 5.3. Let Y = ∑

u 1Au the number of bad vertices in the graph. Then we have

Y ≥ 2

3
E[Y] w.h.p.

Proof. Using the fact that Cov(1Au , 1Av ) and Var(1Au) are both upper-bounded by P(Au),
we get

Var(Y) =
∑

u∈Vdmin

Var(1Au ) +
∑

u∈Vdmin

∑
v∼u

Cov(1Au , 1Av )

≤
∑

u∈Vdmin

P(Au) +
∑

u∈Vdmin

∑
v∈N(u)

P(Au)

=E[Y] +
∑

v∈N(u)

E[Y]

= (dmin + 1)E[Y].

By Chebyshev’s inequality, we obtain for A > 0

P(Y ≤E[Y] − A) ≤ Var(Y)

A2
≤ (dmin + 1)E[Y]

A2
.

Taking A = 1
3E[Y], we get for large n

Y ≥ 2

3
E[Y] w.h.p. �

We let Y ′ denote the number of bad vertices belonging to

B′
(

a, sn + (1 − ε) log n

α

)
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for a uniformly chosen vertex a. By Proposition 5.1, we have, for any vertex i,

P(Ai, B′(a, tn) ∩ B′(i, tn) �= ∅) = o(P(Ai)) =⇒E[Y ′] = o(E[Y]).

By Markov’s inequality we deduce that Y ′ ≤ 1
3E[Y] with high probability and thus Y − Y ′ > 0

with high probability using Lemma 5.2.
We write R = (Y

2

)
for the number of pairs of distinct bad vertices and R′ for the number of

pairs of distinct bad vertices at distance at most

2sn + 1 − ε

α
log n.

By Proposition 5.1 it is easy to see that

P(Au, Av, B′(u, tn) ∩ B′(v, tn) �= ∅) = o(P(Au, Av)).

Using this, we get
E[R′] = o(E[Y2]).

Therefore, with high probability, the difference R − R′ is strictly positive by Lemma 5.2. We
deduce that for any ε > 0 we can find two vertices that are at distance bigger than

2sn + 1 − ε

α
log n.

In other words we obtain

diam(CMn(d)) ≥ 2sn + 1 − ε

α
log n.

Since ε is arbitrary, this proves the lower bound of the diameter, and thus, by Section 4, we
finally obtain

diam(CMn(d))

log n

p−→ 1

α
+ 2

cdmin
.

6. Proof of the converse theorem

A first step to proving Theorem 3.2 is the following, which amounts to saying simply that
exponential tails are required for the diameter (or flood) to scale as log n in the sense of the
theorem.

Lemma 6.1. If

lim inf
x→∞

− log (G(x))

x
= 0,

then for every M < ∞,

lim sup
n→∞

P(diam(CMn(d)) > M log n) = 1.

Remark 6.1. The claimed conclusion obviously contradicts the hypotheses of Theorem 3.2,
and so in particular any G for which the hypotheses of Theorem 3.2 hold must possess all
moments.
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Proof. It is easily seen that, by hypothesis, for every ε > 0 there exists a sequence of integers
nj tending to infinity so that

− log G(log nj)

log nj
< ε for all j.

Thus we easily have that with probability tending to 1 as j → ∞, there exist vertices v ∈ Vdmin ⊂
Vnj such that

min
u∼v

G(u, v) >
1

(dmin + 1)ε
log nj.

This implies that the diameter or flood for the graph CMnj(d) must exceed

1

(dmin + 1)ε
log nj.

The conclusion follows from the arbitrariness of ε > 0. �
As usual we establish convergence by suitably bounding the lim sup above and the lim inf

below. Theorem 3.2 follows from the next two lemmas.

Lemma 6.2. For distribution G satisfying the hypotheses of Theorem 3.2,

lim inf
x→∞

− log (G(x))

x
≥ c.

Lemma 6.3. For distribution G satisfying the hypotheses of Theorem 3.2,

lim sup
x→∞

− log (G(x))

x
≤ c.

Proof of Lemma 6.2. Suppose not. Then there exist ε > 0 and a sequence of integers nj

tending to infinity so that

− log G(log nj)

log nj
< c(1 − ε) for all j.

We can now argue as in Section 5. For random graph CMnj(d) we have that Mj, the number of

vertices v in V
nj
dmin

so that

min
u∈N(v)

G(u, v) ≥ log (nj)

dminc(1 − ε/2)
,

will satisfy the following two conditions with probability tending to one as j tends to infinity.

(i) Mj ≥ cn1−(1−ε)/(1−ε/2)
j for some universal strictly positive c.

(ii) For each δ > 0, with probability tending to one as j tends to infinity for two randomly
chosen vertices u and v among Mj such vertices, we have

B

(
u, log (n)

1 − δ

α

)
∩ B

(
u, log (n)

1 − δ

α

)
= ∅.
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Taking δ sufficiently small with respect to ε gives

lim sup
n→∞

P

(
diam(CMnj(d)) >

(
2

cdmin(1 − ε/3)
+ 1

α

)
log n

)
= 1,

which contradicts the hypotheses of Theorem 3.2. �
Proof of Lemma 6.3. Suppose not. In this case there exist ε > 0 and a sequence of integers

nj tending to infinity so that

− log G(log nj)

log nj
> c(1 + ε) for all j.

We may assume by Lemma 6.2 that

lim inf
x→∞

− log (G(x))

x
≥ c,

and from this we can apply the argument of Proposition 4.1 and see that, as j tends to infinity,
we have

P

(
sup

v∈Vnj
TK log nj(v) ≥ c log nj/(1 + ε/2)

)
→ ∞.

Thus

lim sup
n→∞

P

(
diam(CMnj(d)) <

(
2

cdmin(1 + ε/4)
+ 1

α

)
log n

)
= 1,

which again contradicts the hypotheses of Theorem 3.2. �

7. Flooding

In this section we show, based on the proofs and results obtained in Sections 4 and 5, that
with high probability the weighted flooding time behaves like(

1

α
+ 1

dmin

)
log n as n → ∞.

We first show that

flood(G) ≤
(

1

α
+ 1 + 2ε

dmin

)
log n w.h.p.

as n → ∞. We let Tu,
√

n log n(G) be the time, starting from vertex u, needed to reach
√

n log n
half-edges, given that the edge weights have cumulative distribution function G. We have
already shown, in Section 4, that with high probability, for any v vertex of the graph,

Tv,
√

n log n(G) ≤
(

1

2α
+ 1 + 2ε

dmin

)
log n.

Hence it is sufficient to show that

Ta,
√

n log n(G) ≤
(

1

2α

)
log n

for a randomly chosen vertex a.
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Using computations similar to those in Lemma 4.1, we have, for any ε′ > 0,

P

(
Ta,K log n(G) ≥ ε′

2α
log n

)
� n−ε

′c(1−ε
′)dmin/(2α) → 0, n → ∞.

By Section 4.4 we have that, with high probability, the time needed to reach
√

n log n half-
edges starting from K log n is smaller than (2α)−1 log n. Therefore we obtain

P

(
Ta,

√
n log n ≥ (1 + ε′) log n

2α

)
→ 0, n → ∞.

Since ε′ is arbitrary, we finally obtain

flood(G) ≤
(

1

α
+ 1 + 2ε

dmin

)
log n w.h.p.

For the lower bound we recall the notations introduced in Section 5. Since Y ′ ≤ 1
3E[Y] with

high probability and using Lemma 5.3, we have

Y − Y ′ > 0 w.h.p.

In other words, with high probability, there exists a vertex w that does not belong to

B′
(

a, sn + (1 − ε) log n

α

)
,

where

sn := 1 − ε

cdmin
log n.

This is equivalent to

flood(G) ≥ sn + (1 − ε) log n

α
= 1 − ε

cdmin
log n + (1 − ε) log n

α
w.h.p.
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