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542 E. Lau and T. Zink

Introduction

The aim of this paper is to analyse the relation between truncated displays and truncated

Barsotti–Tate groups.

Let us recall the notion of a truncated display as used in [3]. We fix a prime number p.

Let R be a commutative ring with unit such that pR = 0. We denote by W (R) the ring

of p-typical Witt vectors and by Wn(R) the truncated ones. We write Fξ and V ξ for the

Frobenius and Verschiebung of an element ξ ∈ W (R).
A display P over R may be given by the following data: Two locally free finitely

generated W (R)-modules T and L and a Frobenius linear isomorphism

8 : T ⊕ L → T ⊕ L .

In the introduction we assume that T ∼= W (R)d and L ∼= W (R)c are free W (R)-modules.

Then 8 is given by an invertible block matrix(
A B
C D

)
∈ GLd+c(W (R)).

8

((
t
l

))
=

(
A B
C D

)( F t
F l

)
,

where t ∈ W (R)d and l ∈ W (R)c. The height of the display is h = d + c.

Assume a second display P ′ is given by a block matrix. Then a morphism P → P ′ is

the same as a block matrix: (
X J

Z Y

)
∈ M(h′× h,W (R)))

of size h′× h such that the following relation holds:(
A′ B ′

C ′ D′

)( FX J

p FZ F Y

)
=

(
X VJ

Z Y

)(
A B
C D

)
(1)

This is the description of the category of displays in terms of matrices.

To define truncated displays of level n we take all matrices with coefficients in Wn(R).
Since pR = 0 there is a Frobenius F : Wn(R)→ Wn(R). Therefore, the definition of a

morphism (1) makes perfect sense if we take V to be the composition

Wn(R)
V
→ Wn+1(R)

Res
−→ Wn(R).

Let P be a truncated display of level n and let m 6 n. The restriction morphism

Wn(R)→ Wm(R) applied to the matrix of P gives a truncated display P(m) of level

m, called the truncation of P. This is a functor.

A partial inverse of the display functor. By [3] we have a functor

8n,R : BTn(R)→ Dn(R)

from the category of truncated p-divisible groups of level n over R to the category of

truncated displays of level n over R. For m 6 n we denote the truncation of G ∈ BTn(R)
by G(m) = G[pm

], the kernel of pm idG . The functors 8n,R are compatible with the

truncation functors.
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We say that G ∈ BTn(R) is nilpotent of order e > 0 if the iterate of the Frobenius

Fe+1
G : G → G(pe+1) is zero on the first truncation G(1), or equivalently if Fe

G induces

zero on Lie(G∨), where G∨ is the Cartier dual of G. This condition can be formulated in

terms of the truncated display of G. By restriction we obtain a functor

8n,R : BT (e)
n (R)→ D(e)

n (R)

from the category of truncated p-divisible groups which are nilpotent of order e to the

category of truncated displays which are nilpotent of order e.

Theorem 1. Assume that pR = 0. Let n,m, e > 0 be natural numbers such that

n > m(e+ 1). There is a functor

BTm,R : D(e)
n (R)→ BT (e)

m (R)

such that we have natural isomorphisms

BTm,R(8n,R(G)) ∼= G(m) for G ∈ BT (e)
n (R),

8m,R(BTm,R(P)) ∼= P(m) for P ∈ D(e)
n (R).

This is proved in § 3 (Lemma 3.13 and Proposition 3.14). The construction of the

functor BTm,R is a variant of the functor BTR from nilpotent displays to p-divisible

groups in [9].

Extended versions of truncated displays. We define truncated displays also for

rings R in which p is nilpotent, and we develop a deformation theory for truncated

displays, based on a notion of relative truncated displays for a divided power extension

S→ R.

Let Crism(R) be the category of all pd-thickenings S→ R with kernel a such that

pma = 0. The central result about deformations is Propositon 2.3, which implies that all

liftings of a truncated display P over R to a relative truncated display P̃ for S→ R are

isomorphic; moreover, if P is nilpotent of order e, then the truncation of P̃ by m(e+ 1)+ 1
steps is unique up to unique isomorphism. This can be viewed as a refined version of

[9, Theorem 44] about deformations of nilpotent displays.

This leads to the construction of a crystal associated to a nilpotent truncated display:

Let P be a truncated display of level n over R which is nilpotent of order e and assume

that n > m(e+ 1)+ 1. We define a crystal DP of locally free O-modules on Crism(R) by

the rule DP (S) = P̃(1); see (36).

Theorem 2. Let t > n such that pt Wn(R) = 0. Then there is a functor

8n : BTt (R)→ Dn(R).

Let X be a p-divisible group R such that X R/pR is nilpotent of order e. Let P = 8n(X (t)).
For an object S→ R of Crism(R) where n > m(e+ 1)+ 1, we have a canonical

isomorphism

DX (S) ∼= DP (S)

where DX is the Grothendieck–Messing crystal of X defined in [5].
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544 E. Lau and T. Zink

This is proved in Propositions 3.4 and 3.2. Using Theorem 2 we prove a version of

Theorem 1 for algebras over Z/pmZ; see Proposition 3.16.

All functors BT and 8 are exact with respect to the obvious exact structures on the

categories.

Additional results and remarks. (1) Let R be a ring with pR = 0. For

truncated p-divisible groups G1,G2 of level n over R with associated truncated displays

Pi = 8n,R(Gi ) we consider the group scheme of vanishing homomorphisms

Homo(G1,G2) = Ker[Hom(G1,G2)→ Hom(P1,P2)],

and similarly for automorphisms. Following [3], elementary arguments show that if G is

nilpotent of order e and if n > m(e+ 1), then the truncation homomorphism

Auto(G)→ Aut(G(m))

is trivial. One deduces that there are functors BTm,R as in Theorem 1; see Proposition

4.6. This proof does not make the functors BTm,R explicit, but in exchange it avoids the

question of showing directly that 8n,R and BTm,R are compatible.

(2) We obtain a new proof of the equivalence between formal p-divisible groups over R
and nilpotent displays over R, proved first in [9] when R is excellent and in [2] in general:

The limit over m of Theorem 1 gives the case pR = 0, and the general case follows easily

by deformation theory.

(3) As a by-product of the proof of Proposition 2.3 we also obtain a purely local proof

of the smoothness of the functor 8n , viewed as a morphism of algebraic stacks over Fp;

see Proposition 2.6 and page 570.

In an appendix we prove that truncated displays satisfy f.p.q.c descent.

We thank the referees for a careful reading of the manuscript and valuable comments.

1. The category of truncated displays

We fix a prime number p. Let R be a ring such that p is nilpotent in R. For

fixed n ∈ N let Wn(R) be the ring of truncated Witt vectors. We consider the ring

homomorphism induced by the restriction Res : Wn+1(R)→ Wn(R) and the Frobenius

F : Wn+1(R)→ Wn(R):

(Res, F) : Wn+1(R)→ Wn(R)×Wn(R). (2)

The image of this ring homomorphism will be denoted by Wn(R). The kernel consists of

the elements V n
[s], where s ∈ R and ps = 0. It follows easily that R 7→Wn(R) is a sheaf

for the f.p.q.c.-topology; see the Appendix.

The two projections will be denoted by

Res :Wn(R)→ Wn(R), F :Wn(R)→ Wn(R).

If pR = 0 then Res :Wn(R)→ Wn(R) is an isomorphism. We use this to identify Wn(R)
and Wn(R). In this case, the Frobenius homomorphism F : Wn(R)→ Wn(R) is induced

from the absolute Frobenius endomorphism Frob : R→ R by functoriality.
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Let In+1 =
V Wn(R) ⊂ Wn+1(R). This is a Wn(R)-module by

ξ V η = V (Fξη), for ξ ∈Wn(R), η ∈ Wn(R).

The inverse of the Verschiebung defines a bijective map V−1
: In+1 → Wn(R), which is

F-linear with respect to F :Wn(R)→ Wn(R). We denote by κ : In+1 →Wn(R) the map

induced by (2). The cokernel of κ is w0 ◦Res :Wn(R)→ Wn(R)→ R.

Definition 1.1. A truncated display P of level n over a ring R in which p is nilpotent

consists of (P, Q, ι, ε, F, Ḟ). Here P and Q are Wn(R)-modules,

ι : Q → P, ε : In+1⊗Wn(R) P → Q,

are Wn(R)-linear maps, and

F : P → Wn(R)⊗Wn(R) P, Ḟ : Q → Wn(R)⊗Wn(R) P

are F-linear maps. (The tensor products are taken with respect to Res.)
The following conditions are required:

(i) P is a finitely generated projective Wn(R)-module.

(ii) The maps ι ◦ ε and ε ◦ (idIn+1 ⊗ ι) are the multiplication maps (via κ).

(iii) The cokernels of ι and ε are finitely generated projective R-modules.

(iv) There is a commutative diagram

In+1⊗Wn(R) P ε //

F̃

��

Q,

Ḟ

zz

Wn(R)⊗Wn(R) P

(3)

where F̃ is defined by F̃(V η⊗ x) = ηF(x).

(v) Ḟ(Q) generates Wn(R)⊗Wn(R) P as a Wn(R)-module.

(vi) We have an exact sequence

0→ Q/ Im ε
ι
−→ P/κ(In+1)P → P/ι(Q)→ 0.

(Only the injectivity of the second arrow is a requirement.)

Truncated displays of level n over R form an additive category in an obvious way, which

we denote by Dn(R).

The surjective R-linear map P/κ(In+1)P → P/ι(Q) is called the Hodge filtration of
the truncated display P.
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When pR = 0 we have just F-linear maps F : P → P, Ḟ : Q → P as in the case of

displays, but Q is not a submodule of P.

In the data of a truncated display, F is determined by Ḟ because for x ∈ P we have

F(x) = F̃(V 1⊗ x) = Ḟ ◦ ε(V 1⊗ x) by (iv). In particular, using (ii) we get

F(ι(y)) = pḞ(y), for y ∈ Q.

Definition 1.2. Let P = (P, Q, ι, ε, F, Ḟ) be a truncated display of level n over R. A

normal decomposition for P consists of (T, L , u, v) where T and L are finitely generated

projective Wn(R)-modules with isomorphisms

u : P ∼= T ⊕ L , v : Q ∼= In+1⊗Wn(R) T ⊕ L ,

such that the maps

ι : In+1⊗Wn(R) T ⊕ L → T ⊕ L

ε : In+1⊗Wn(R) T ⊕ In+1⊗Wn(R) L → In+1⊗Wn(R) T ⊕ L

are given as follows: ι is the multiplication on the first summand and the identity on the

second summand, while ε is the identity on the first summand and the multiplication on

the second summand.

The definition of a normal decomposition depends only on the data (P, Q, ι, ε). Unlike

in the case of displays, the isomorphism u : T ⊕ L ∼= P does not, in general, determine v.

Proposition 1.3. Every truncated display has a normal decomposition.

Proof. Let P = (P, Q, ι, ε, F, Ḟ) be a truncated display of level n over R.

We take a projective Wn(R)-module T which lifts P/ι(Q) and a projective

Wn(R)-module L which lifts Q/ Im ε. We choose liftings T → P and L → Q of the natural

projections P → P/ι(Q) and Q → Q/ Im ε. We consider the natural homomorphism

T ⊕ L → P,

induced by ι on the second summand. By (vi) this becomes an isomorphism if we tensor

it by R⊗Wn(R), and therefore it is an isomorphism.

Now we consider the natural homomorphism

ν : In+1⊗Wn(R) T ⊕ L → Q, (4)

induced by ε on the first factor.

We note that ε : In+1⊗ L → Q is the multiplication by (ii). This shows that the image

of ν contains the image of ε. Therefore, the homomorphism (4) is surjective. We show it

is injective.

Let us denote by 8 : T → Wn(R)⊗Wn(R) P the restriction of F to T and by

8̇ : L → Wn(R)⊗Wn(R) P

the composite of Ḟ with L → Q.
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We denote by 8̃ : In+1⊗Wn(R) T → Wn(R)⊗Wn(R) P the map defined by

8̃(V ξ ⊗ t) = ξ ⊗8(t).

Then we obtain a commutative diagram

In+1⊗ T ⊕ L ν //

8̃⊕8̇ ((

Q
Ḟ

xx

Wn(R)⊗Wn(R) P.

We now assume without loss of generality that L and T are free; see Lemma 1.4 below.

Let t1, . . . td be a basis of T and l1, . . . , lc be a basis of L. Since by the diagram 8̃⊕ 8̇ is

an F-linear epimorphism we conclude that 8(t1), . . . , 8(td), 8̇(l1), . . . , 8̇(lc) is a basis of

Wn(R)⊗Wn(R) P.

Consider an element in the kernel of ν:∑
V ξi ⊗ ti +

∑
η j l j ∈ In+1⊗ T ⊕ L , ξi ∈ Wn(R), η ∈Wn(R). (5)

Since 8̃⊕ 8̇ applied to this element must be zero in Wn(R)⊗Wn(R) P we conclude that

ξi = 0.

On the other hand the restriction to ν to 0⊕ L is injective because ι ◦ ν is the injection

0⊕ L ⊂ P. This proves that the element (5) is zero.

Lemma 1.4. Let S ⊂ R be a multiplicatively closed system. We denote by [S] ⊂Wn(R)
the multiplicatively closed system which consists of the Teichmüller representatives

[s] ∈Wn(R) of elements s ∈ S.

Let R′ = R[S−1
]. Then Wn(R′) =Wn(R)[[S]−1

].

Proof. The corresponding fact for Wn+1 is known. The kernel of Wn+1(R)→Wn(R) is

the module of p-torsion elements R[p], considered as an R/pR-module via Frobn . The

lemma follows.

Remark 1.5. Proposition 1.3 implies that Definition 1.1 coincides with the definition of

truncated displays in [3, Definition 3.4] if pR = 0. Indeed, the conditions on (P, Q, ι, ε)
imposed here are weaker than those of [3], which are equivalent to the existence of a

normal decomposition. But the difference disappears in the presence of (F, Ḟ). See also

Lemma 3.6 below.

Any normal decomposition is obtained as follows: Choose liftings T ′→ P/ι(Q) and

L ′→ Q/ Im ε, to projective Wn(R)-modules and extend them to homomorphisms T ′→ P
and L ′→ Q. Then ι : L ′→ P is injective and P = T ′⊕ L ′ is a normal decomposition.

We note that the maps F and Ḟ are uniquely determined by their linearisations:

F] : Wn(R)⊗F,Wn(R) P → Wn(R)⊗Wn(R) P
Ḟ] : Wn(R)⊗F,Wn(R) Q → Wn(R)⊗Wn(R) P
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As in the case of displays, from the normal decomposition we obtain an isomorphism

of Wn(R)-modules

F]⊕ Ḟ] : (Wn(R)⊗F,Wn(R) T )⊕ (Wn(R)⊗F,Wn(R) L)→ Wn(R)⊗Wn(R) P. (6)

We write the last map as a matrix (
A B
C D

)
, (7)

where

A : Wn ⊗F,Wn T → Wn ⊗Wn T, B : Wn ⊗F,Wn L → Wn ⊗Wn T,
C : Wn ⊗F,Wn T → Wn ⊗Wn L , D : Wn ⊗F,Wn L → Wn ⊗Wn L ,

are Wn(R)-linear maps.

Conversely, by the following construction, a matrix (7) which is an isomorphism of

Wn(R)-modules defines a truncated display of level n.

We set σ̇ = V−1
: In+1 → Wn(R) and consider this as an isomorphism of

Wn(R)-modules:

In+1 → Wn(R)[F],

where the last index denotes restriction of scalars by F . For an arbitrary Wn(R)-module,

σ̇ induces an isomorphism denoted by the same letter

σ̇ : In+1⊗Wn(R) T → Wn(R)⊗F,Wn(R) T .

This is F-linear with respect to F :Wn(R)→ Wn(R).
We also use the notation σ for the F-linear maps

σ : T → Wn ⊗F,Wn(R) T
` 7→ 1⊗ `.

To obtain a truncated display of level n from a matrix (7) we set

P = T ⊕ L , Q = In+1⊗ T ⊕ L .

Then we have obvious maps ι and ε as in Proposition 1.3. For vectors(
t
`

)
∈ T ⊕ L ,

(
y
`

)
∈ In+1⊗ T ⊕ L .

We define F and Ḟ as follows

F
(

t
`

)
=

(
A pB
C pD

)(
σ(t)
σ (`)

)
(8)

Ḟ
(

y
`

)
=

(
A B
C D

)(
σ̇ (y)
σ (`)

)
(9)
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Definition 1.6. Let T and L be finitely generated projective Wn(R)-modules. Assume we

are given a matrix (7) of homomorphisms A, B,C, D which is invertible.

More precisely this means that the homomorphism

Wn(R)⊗F,Wn(R) (L ⊕ T )→ Wn(R)⊗Wn(R) (L ⊕ T )

defined by this matrix is an isomorphism. If we define F , Ḟ by the formulae (8) and

(9) we obtain a truncated display S(T, L; A, B,C, D) level n which we call a standard

truncated display of level n over the ring R.

We now describe a homomorphism of standard truncated displays:

α : S(T, L; A, B,C, D)→ S(T ′, L ′; A′, B ′,C ′, D′).

We write P = T ⊕ L and so on. The morphism α is given by two module homomorphism

α0 : P → P ′ and α1 : Q → Q′ which have to be compatible with the maps ι, ε and F, Ḟ .

From the compatibility with the first two maps we see that there are homomorphisms

X ∈ HomWn(R)(T, T ′), U ∈ HomWn(R)(L , In+1⊗Wn(R) T ′),

Z ∈ HomWn(R)(T, L ′), Y ∈ HomWn(R)(L , L ′),
(10)

such that the homomorphisms α0 and α1 are given by the formulae:

α1

(
ξ ⊗ t
`

)
=

(
ξ ⊗ Xt +U`
κ(ξ)Zt + Y`

)
∈ In+1⊗Wn(R) T ′⊕ L ′, (11)

α0

(
t
`

)
=

(
X Û
Z Y

)(
t
`

)
, (12)

for t ∈ T , ` ∈ L, ξ ∈ In+1. Here Û is the composition of U with the multiplication

In+1⊗Wn(R) T ′→ T ′. We consider the map

σ̇ ⊕ σ : (In+1⊗Wn(R) T ′)⊕ L ′→ Wn(R)⊗F,Wn(R) T ′⊕Wn(R)⊗F,Wn(R) L ′.

If we apply this to the vector (11) we obtain:(
σ(X) σ̇ (U )
pσ(Z) σ (Y )

)(
σ̇ (ξ)σ (t)
σ (`)

)
∈ Wn(R)⊗F,Wn(R) T ′⊕Wn(R)⊗F,Wn(R) L ′.

Here we use the notation

σ(X) = idWn(R)⊗Wn(R)X : Wn(R)⊗F,Wn(R) T → Wn(R)⊗F,Wn(R) T ′,

and similarly σ(Z) and σ(Y ). The composition

L
U
→ In+1⊗Wn(R) T ′

σ̇
→ Wn(R)⊗F,Wn(R) T ′

is linear with respect to F :Wn(R)→ Wn(R). Its linearisation is

σ̇ (U ) : Wn(R)⊗F,Wn(R) L → Wn(R)⊗F,Wn(R) T ′. (13)
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The pair α0, α1 is a morphism of truncated displays iff the following diagram is

commutative:

Q
Ḟ

−−−−→ Wn(R)⊗Wn(R) P

α1

y yid⊗α0

Q′
Ḟ ′

−−−−→ Wn(R)⊗Wn(R) P ′

(14)

We have just computed

Ḟ ′ ◦α1

(
ξ ⊗ t
`

)
=

(
A′ B ′

C ′ D′

)(
σ(X) σ̇ (U )
pσ(Z) σ (Y )

)(
σ̇ (ξ)σ (t)
σ (`)

)
If we tensor (12) with Wn(R)⊗Wn(R) we obtain the matrix(

X̄ Ū
Z̄ Ȳ

)
.

Then the commutativity of (14) is equivalent with the equation(
A′ B ′

C ′ D′

)(
σ(X) σ̇ (U )
pσ(Z) σ (Y )

)
=

(
X̄ Ū
Z̄ Ȳ

)(
A B
C D

)
. (15)

Let us summarise the preceding considerations.

Definition 1.7. We define the category s Dn(R) of standard truncated displays of level n
over R as follows. Its objects are data (T, L; A, B,C, D) as above, and a morphism

(T, L; A, B,C, D)→ (T ′, L ′; A′, B ′,C ′, D′).

is a matrix of homomorphisms (10) which satisfies the equation (15).

Proposition 1.8. There is a functor

S : s Dn(R)→ Dn(R),

and this functor is an equivalence of categories.

Remark. We have not defined explicitly the composition in the category s Dn(R), but

the composition is uniquely determined by the requirement that S is a functor. See also

Definition 1.10 below.

1.1. Base change and truncation functors

Let φ : R→ S be a homomorphism of rings in which p is nilpotent. Let

S(T, L; A, B,C, D) be a standard truncated display of level n. We set T̃ =Wn(S)⊗Wn(R)
T and L̃ =Wn(S)⊗Wn(R) L. By tensoring the maps (7) by Wn(S)⊗Wn(R) we obtain an

object of s Dn(S). It is easily checked that this gives a functor

βs : s Dn(R)→ s Dn(S),
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which is the base change functor for standard truncated displays. Therefore, by

Proposition 1.8 we also get a base change functor

β : Dn(R)→ Dn(S). (16)

To make this canonical one can proceed in the standard way. Let P ∈ Dn(R). Then we

consider the category C whose objects are isomorphisms S → P, where S ∈ s Dn(R), and

we define β(P) as the projective limit over C:

β(P) = lim
←
βs(S).

If P = (P, Q, ι, ε, F, Ḟ) we write β(P) = (PS, QS, ιS, εS, FS, ḞS). We note that there is a

canonical isomorphism PS =Wn(S)⊗Wn(R) P.

In the same way we can define truncation functors

τm : Dm+1(R)→ Dm(R). (17)

They are compatible with the base change functors. We write P(m) := τm(P). More

generally, if P is a truncated display of level n > m we consider the truncation P(m).
One could also define the truncation and base change functors by a universal property

without referring to standard representations (but the proof that the functors exist uses

Proposition 1.8). Namely, for φ : R→ S as above and for truncated displays P over R
and P ′ over S of level n one defines homomorphisms P → P ′ over φ in the obvious way.

Then we have a universal homomorphism P → β(P) over φ. A similar remark applies to

the truncation functors.

1.2. Matrix description

For simplicity we often assume that the modules T respectively L are free of rank d and

c; see Lemma 1.4. We fix isomorphisms T ∼=W(R)d and L ∼=W(R)c. Then a standard

truncated display with normal decomposition given by T and L is determined by the

invertible matrix (
A B

C D

)
∈ GLd+c(Wn(R))

which defines the map (6). For V η ∈ I d
n+1, ζ ∈Wn(R)d , and ξ ∈Wn(R)c, we consider the

vectors: ( V η

ξ

)
∈ In+1⊗Wn T ⊕ L = Q,

(
ζ

ξ

)
∈ T ⊕ L = P.

Then F and Ḟ can be written in matrix form

F

((
ζ

ξ

))
=

(
A pB
C pD

)( Fζ

Fξ

)
.

Ḟ

(( V η

ξ

))
=

(
A B
C D

)(
η

Fξ

)
.
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As for displays we represent morphisms by matrices. Let P ′ be a second truncated

display with a given normal decomposition

P ′ = T ′⊕ L ′, Q′ = In+1⊗Wn(R) T ′⊕ L ′.

We fix isomorphisms T ′ ∼=Wn(R)d
′

and L ′ ∼=Wn(R)c
′

. We assume that P ′ is defined by

the matrix (
A′ B ′

C ′ D′

)
∈ GLd ′+c′(Wn(R)).

A morphism α : P → P ′ is given by a matrix(
X VJ

Z Y

)
, (18)

where

X ∈ HomWn(R)(T, T ′), Y ∈ HomWn(R)(L , L ′),

Z ∈ HomWn(R)(T, L ′), VJ ∈ HomWn(R)(L , In+1⊗ T ′).

The matrices X , Y , Z have coefficients in Wn(R) and J has coefficients in Wn(R).
The maps Q → Q′ and P → P ′ induced by α are given by the matrices(

X VJ

Z Y

)
: In+1⊗Wn(R) T ⊕ L → In+1⊗Wn(R) T ′⊕ L ′

and (
X κ(VJ)

Z Y

)
: T ⊕ L → T ′⊕ L ′,

where the first matrix needs a little interpretation.

The matrix (18) defines a morphism of truncated displays iff the following equation

holds: (
A′ B ′

C ′ D′

)( FX J

p FZ F Y

)
=

(
Res(X) V J̄

Res(Z) Res(Y )

)(
A B
C D

)
. (19)

Here J̄ is the restriction of J to a matrix with coefficients in Wn−1(R).
This equation shows in particular that J is already uniquely determined by X, Y, Z and

κ(VJ). Therefore, a morphism of truncated displays is already uniquely determined by

the induced Wn-module homomorphism P → P ′; i.e., we have proved the following.

Lemma 1.9. For two truncated displays P and P ′ of level n over R the forgetful

homomorphism

HomDn (P,P
′)→ HomWn(R)(P, P ′) (20)

is injective.

Definition 1.10. Let Mn(R) be the category whose objects are invertible block matrices:

F =

(
A B
C D

)
∈ GLh(Wn(R)),
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where A and D are square matrices of arbitrary size and whose morphisms F→ F′ are

block matrices X of the form (18) which satisfy the relation (19). If X′ : F′→ F′′ is a

second morphism then the composite X′ ◦X is the matrix(
X ′ VJ′

Z ′ Y ′

)
◦

(
X VJ

Z Y

)
:=

(
X ′X + κ(VJ′)Z V (FX ′J+ J′ F Y )

Z ′X + Y ′Z Z ′κ(VJ)+ Y ′Y

)
.

We have a fully faithful functor Mn(R)→ s Dn(R)
∼
−→ Dn(R). The essential image

consists of the truncated displays such that the modules in the exact sequence (vi) of

Definition 1.1 are free R-modules.

1.3. Nilpotent truncated displays

Let P be a truncated display of level n over a ring R. There is a unique homomorphism

of Wn(R)-modules

V ]
: Wn(R)⊗Wn(R) P → Wn(R)⊗F,Wn(R) P, (21)

such that for each y ∈ Q
V ](Ḟ(y)) = 1⊗ ι(y).

The existence follows as in the case of displays by using a normal decomposition. One

deduces from the last equation that

V ](ξF(x)) = pξ ⊗ x .

We assume now that pR = 0. Then we have Wn(R) =Wn(R) and In = κ(In+1). The

homomorphism (21) takes the form

V ]
: P → Wn(R)⊗F,Wn(R) P.

Iterating the last morphism we obtain for each natural number N :

(V N )] : P → Wn(R)⊗F N ,Wn(R) P. (22)

In the case pR = 0 we say that the truncated display P is nilpotent if for large N the

image of the map (22) is zero modulo In . Equivalently we can say that the map induced

by (22)

(V N )] : P/In P → R⊗FrobN ,R P/In P

is zero. In the case of general R we call P nilpotent if its base change to R/pR is

nilpotent. Assume that pR = 0. By definition the image of V ] coincides with the image

of the homomorphism Wn(R)⊗F,Wn(R) Q → Wn(R)⊗F,Wn(R) P induced by ι. This implies

that the map V ]
: P → R⊗Frob,R P/ι(Q) is zero. Therefore, V ] induces a homomorphism

P/In P → R⊗Frob,R ι(Q)/In P. By restriction we obtain the homomorphism

V̄ ]
: ι(Q)/In P → R⊗Frob,R ι(Q)/In P. (23)

Definition 1.11. Let P be a nilpotent truncated display of level n over a ring R. If pR = 0
the nilpotence order of P is the smallest natural number e > 0 such that

(V̄ e)] = 0,
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for the iterate of (23). If R is arbitrary the order of nilpotence of P is the order of

nilpotence of the base change PR/pR .

The same makes sense for displays.

Lemma 1.12. Let P be a truncated display of level n over R, which is given by the block

matrix (
A B
C D

)
.

We denote the inverse matrix by (
Ă B̆
C̆ D̆

)
.

Let D̂0 be the image of w0(D̆) in R/pR.

Then P has order of nilpotence 6 e iff

D̂(pe−1)
0 · . . . · D̂(p)

0 D̂0 = 0,

where the upper index (pi ) means that we take the pi -power of all entries.

Proof. This is similar to the case of nilpotent displays in [9, (15)].

We note that the order of nilpotence does not change under truncation (17). Also,

it does not change by base change with a ring homomorphism R→ S for which

R/pR→ S/pS is injective.

In the case of p-divisible groups, the nilpotence order can be expressed as follows.

Recall that a p-divisible group G over a ring R with pR = 0 is a formal group iff the

Frobenius F is nilpotent on G(1).

Definition 1.13. Let G be a formal p-divisible group over a ring R in which p is nilpotent.

If pR = 0 the nilpotence order of G is the smallest natural number e > 0 such that Fe+1

is zero on G(1). If R is arbitrary the order of nilpotence of G is the order of nilpotence

of G R/pR .

The same applies to infinitesimal truncated p-divisible groups.

Lemma 1.14. Let G be a formal p-divisible group over a ring R with pR = 0. Then the

nilpotence order of G is equal to the nilpotence order of the associated nilpotent display P.

Proof. Let G∨ be the dual of G. Then Lie(G∨) is isomorphic to Q/IR P such

that the Verschiebung V of G∨ corresponds to V̄ ]
: Q/IR P → (Q/IR P)(p). This is

the only relation between G and P we need. We define Ḡ by the exact sequence

0→ G[F] → G(1)→ Ḡ → 0 of finite locally free group schemes. Then Ḡ∨ ∼= G∨[F],
in particular Lie(G∨) = Lie(Ḡ∨).

Now Fe+1 is zero on G(1) iff Fe is zero on Ḡ iff V e
: (Ḡ∨)(p

e)
→ Ḡ∨ is zero. By the

equivalence between affine group schemes of finite presentation annihilated by F and

p-Lie algebras, this homomorphism V e is zero iff it induces zero on the Lie algebra,

which holds iff (V̄ e)] is zero.
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2. Relative truncated displays

We consider now a surjective ring homomorphism S→ R, such that p is nilpotent in S
and the kernel a is endowed with divided powers. We say that S/R is a pd-thickening.

We set

Jn+1 = Wn+1(a)+ In+1(S) ⊂ Wn+1(S).

Let κ : Jn+1 →Wn(S) be the homomorphism induced by (2).

The divided powers define an isomorphism of Wn+1(S)-modules

Wn+1(a) =

n∏
i=0

a[wi ]

which is given by the divided Witt polynomials Wn+1(a)→ a. The first factor on the

right hand side will be also written as ã ⊂ Wn+1(a). Since ã is an S-module it is a fortiori

a Wn(S)-module and therefore, Jn+1 = ã⊕ In+1(S) is a Wn(S)-module too.

The map V−1
: In+1(S)→ Wn(S) extends uniquely to:

σ̇ : Jn+1 → Wn(S), where σ̇ (ã) = 0. (24)

We write σ for the Frobenius map F :Wn(S)→ Wn(S). We can define relative truncated

displays of level n with respect to S→ R as before:

Definition 2.1. A relative truncated display P of level n for S→ R consists of

(P, Q, ι, ε, F, Ḟ). Here P and Q are Wn(S)-modules,

ι : Q → P, ε : Jn+1⊗Wn(S) P → Q

are Wn(S)-linear maps, and

F : P → Wn(S)⊗Wn(S) P
Ḟ : Q → Wn(S)⊗Wn(S) P

are σ -linear maps. As in Definition 1.1 we define a map

F̃ : Jn+1⊗Wn(S) P → Wn(S)⊗Wn(S) P
τ ⊗ x 7→ σ̇ (τ )⊗ Fx .

We require that the following properties hold:

(i) The Wn(S)-module P is projective and finitely generated.

(ii) The compositions ι ◦ ε and ε ◦ (id⊗ι) are the multiplication maps.

(iii) The cokernels of ι and ε are finitely generated projective R-modules.

(iv) The diagram similar to (3) is commutative, i.e., we have Ḟ ◦ ε = F̃ .

(v) The image Ḟ(Q) generates Wn(S)⊗Wn(S) P as a Wn(S)-module.

(vi) The following sequence is exact:

0→ Q/ Im ε
ι
−→ P/κ(Jn+1)P → P/ι(Q)→ 0. (25)
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Relative truncated displays of level n for S→ R form an additive category in an obvious

way, which we denote by Dn(S/R).

The surjective R-linear map P/κ(Jn+1)P → P/ι(Q) is called the Hodge filtration of

the relative truncated display P.

As before one can show that there is a normal decomposition

P = T ⊕ L , Q = Jn+1⊗Wn(S) T ⊕ L ,

where T and L are Wn(S)-modules. The map

F]⊕ Ḟ] : (Wn(S)⊗F,Wn(S) T )⊕ (Wn(S)⊗F,Wn(S) L)→ Wn(S)⊗Wn(S) P

is an isomorphism of Wn(S)-modules which we write in matrix form as before; see (7):(
A B
C D

)
.

This leads to the notion of a standard relative truncated display of level n with respect

to S/R, S(T, L; A, B,C, D). The data are the same as for standard truncated displays

over the ring S, but the notion of a morphism changes. A morphism of standard relative

truncated displays of level n

S(T, L; A, B,C, D)→ S(T ′, L ′; A′, B ′,C ′, D′)

is given by four homomorphisms of Wn(S)-modules:

X ∈ HomWn(S)(T, T ′), U ∈ HomWn(R)(L ,Jn+1⊗Wn(S) T ′),
Z ∈ HomWn(S)(T, L ′), Y ∈ HomWn(S)(L , L ′),

which satisfy the following relation:(
A′ B ′

C ′ D′

)(
σ(X) σ̇ (U )
pσ(Z) σ (Y )

)
=

(
X̄ Ū
Z̄ Ȳ

)(
A B
C D

)
.

Here in the relative case σ̇ is induced by the morphism (24) as in (13), and Ū is induced

by κ : Jn+1 →Wn(S) as follows:

Wn(S)⊗Wn(S) L
id⊗U
−→ Wn(S)⊗Wn(S) Jn+1⊗Wn(S) T ′→ Wn(S)⊗Wn(S) T ′.

As in the case of truncated displays (Proposition 1.8) we see that the category of standard

relative truncated displays is equivalent to the category of relative truncated displays.

Using this, again we define truncation functors:

Dn+1(S/R)→ Dn(S/R).

We also have obvious reduction functors which are compatible with truncation

Dn(S)→ Dn(S/R)→ Dn(R).

For a morphism of pd-thickenings

S −−−−→ S′y y
R −−−−→ R′

we have a base change functor Dn(S/R)→ Dn(S′/R′).
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2.1. Matrix description

Assume that T and L are free Wn(S)-modules. If we fix isomorphisms T ∼=Wn(S)d and

L ∼=Wn(S)c, the relative truncated display is given by a matrix in GLd+c(Wn(S)) as

before:

Ḟ
((

τ

`

))
=

(
A B
C D

)(
σ̇ (τ )

σ (`)

)
, τ ∈ J d

n+1, ` ∈Wn(S)c. (26)

Let P ′ = (P ′, Q′, ι′, ε′, F ′, Ḟ ′) be a second relative truncated display. Consider a normal

decomposition P ′ = T ′⊕ L ′ with T ′ ∼=Wn(S)d
′

and L ′ ∼=Wn(S)c
′

. Let(
A′ B ′

C ′ D′

)
∈ GLd ′+c′(Wn(S))

be the matrix of P ′. A homomorphism α : P → P ′ is a matrix(
X J
Z Y

)
, (27)

where

X ∈ HomWn(S)(T, T ′), Y ∈ HomWn(S)(L , L ′),

Z ∈ HomWn(S)(T, L ′), J ∈ HomWn(S)(L ,Jn+1⊗ T ′),

i.e., the matrices X , Y , Z have coefficients in Wn(S) and J has coefficients in Jn+1, which

satisfies the relation (
A′ B ′

C ′ D′

)(
σ(X) σ̇ (J )
pσ(Z) σ (Y )

)
=

(
X̄ J̄
Z̄ Ȳ

)(
A B
C D

)
. (28)

Here the bar denotes the image under the restriction map Wn(S)→ Wn(S) respectively

Jn+1 →Wn(S)→ Wn(S).
A morphism α given by a matrix (27) induces a homomorphism P → P ′ which is given

by the matrix (
X κ(J )
Z Y

)
.

This matrix already determines the matrix (27) uniquely. Indeed, from κ(J ) one obtains

J̄ . Then the equation (28) determines σ̇ (J ). Since the intersection of the kernels of the

two maps Jn+1 → Wn(S) given by σ̇ and J 7→ J̄ is zero, this determines J .

As for truncated displays we conclude:

Lemma 2.2. For relative truncated displays P and P ′ of level n for S→ R the forgetful

homomorphism

HomDn(S/R)(P,P ′)→ HomWn(S)(P, P ′) (29)

is injective.

Let us denote by Dn(S/R) the category of relative truncated displays with respect to

S→ R and by Mn(S/R) the corresponding category of matrices. The objects in Mn(S/R)
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are just invertible block matrices in GLh(Wn(S)). The compositions of morphisms (28)

are defined by (
X ′ J ′

Z ′ Y ′

)
◦

(
X J
Z Y

)
:=

(
X ′X + κ(J ′)Z X ′ J + J ′Y

Z ′X + Y ′Z Z ′κ(J )+ Y ′Y

)
.

Here the expression X ′ J + J ′Y makes sense because Jn+1 is a Wn(S)-module.

2.2. Lifting of truncated displays

The following is the main result of this section.

Proposition 2.3. Let S→ R be a pd-thickening as above with kernel a. Let m be a natural

number such that pma = 0. Let P̄1 and P̄2 be truncated displays of level n over R. Let

P1 respectively P2 be two relative truncated displays of level n for S→ R which lift P̄1
respectively P̄2. Then each morphism ᾱ : P̄1 → P̄2 lifts to a morphism

α : P → P ′. (30)

Assume moreover that P̄1 and P̄2 have order of nilpotence 6 e. If n > m(e+ 1)+ 1,

then the truncation

α(n−m(e+ 1)− 1) : P1(n−m(e+ 1)− 1)→ P2(n−m(e+ 1)− 1)

does not depend on the choice of α but only on ᾱ.

Proof. As in [9, Theorem 46] we may replace ᾱ by the automorphism
(

1 0
ᾱ 1

)
of P̄1⊕ P̄2.

Note that if P̄1 and P̄2 are nilpotent of order 6 e, then the same holds for P̄1⊕ P̄2. Thus

is suffices to prove the following assertion.

Let P̄ be a display of level n over R and let P and P ′ be two relative displays of

level n for S→ R which lift P̄. Then there is an isomorphism α : P → P ′ which lifts the

identity. If P̄ is nilpotent of order 6 e then the truncation α[n−m(e+ 1)− 1] is uniquely

determined.

We choose a normal decomposition P̄ = T̄ ⊕ L̄. For simplicity we assume that these

modules are free with a given basis. Let T and L be the free Wn(S)-modules with basis

which lift T̄ and L̄. Then we have normal decompositions:

P ∼= T ⊕ L , P ′ ∼= T ⊕ L ,

which lift the chosen normal decompositions of P̄. We are looking for homomorphisms

of the form: (
Ed 0
0 Ec

)
+

(
X J
Z Y

)
: P −→ P ′. (31)

The matrix J has coefficients in Wn+1(a) ⊂ Jn+1 and the matrices X, Y, Z have coefficients

in the kernel of Wn(S)→Wn(R).
Let us describe this kernel. An element ξ ∈ Wn+1(S) represents an element of the kernel

iff it takes the form ξ = η+ V n
[s], where η lies in Wn+1(a) and where s ∈ S satisfies ps ∈ a.

In this case the elements ξ̄ = Res ξ and σ(ξ) lie in Wn(a), and the pairs (ξ̄ , σ (ξ)) ∈Wn(S)
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for ξ = η+ V n
[s] as above are exactly the elements in the kernel. We write the logarithmic

coordinates of these elements with respect to the divided powers on a:

ξ̄ = [a0, . . . , an−1], σ (ξ) = [x1, . . . , xn].

The logarithmic coordinates of σ(V
n
[s]) ∈ Wn(a) are [0, . . . , 0, ps]. We see that xi = pai

for i 6 n− 1 and that xn ∈ pS ∩ a. Thus the elements of the kernel correspond bijectively

to vectors

〈a0, . . . an−1, xn〉, ai ∈ a, xn ∈ pS ∩ a

such that
σ(〈a0, . . . an−1, xn〉) = [pa1, . . . , pan−1, xn]

Res(〈a0, . . . an−1, xn〉) = [a0, . . . an−1].

With these notations we may write the matrices X, Y, Z , J :

X = 〈X (0), . . . , X (n)〉

where the X (i) are matrices with coefficients in a and moreover X (n) has coefficients in

pS ∩ a and similarly for Y and Z . For the matrix J ∈ Wn+1(a) we use the logarithmic

coordinates

J = [J (0), . . . , J (n)], σ̇ (J ) = [J (1), . . . , J (n)].

The J (i) are matrices with coefficients in a.

We assume that P and P ′ are given by matrices as above (26). We set(
ηA ηB
ηC ηD

)
=

(
A′ B ′

C ′ D′

)
−

(
A B
C D

.

)
The condition that (31) is a homomorphism of relative displays becomes:(

ηA ηB
ηC ηD

)
+

(
A′ B ′

C ′ D′

)(
σ(X) σ̇ (J )
pσ(Z) σ (Y )

)
=

(
X̄ J̄
Z̄ Ȳ

)(
A B
C D

)
.

This is an equation in the Wn(S)-module Wn(a). We rewrite it in logarithmic coordinates

and obtain for 0 6 i 6 n− 2 the equations:(
ηA(i) ηB(i)
ηC (i) ηD(i)

)
+

(
wi (A′) wi (B ′)
wi (C ′) wi (D′)

)(
pX (i + 1) J (i + 1)
p2 Z(i + 1) pY (i + 1)

)
=

(
X (i) J (i)
Z(i) Y (i)

)(
wi (A) wi (B)
wi (C) wi (D)

)
(32)

and for i = n− 1 we obtain the equation(
ηA(n− 1) ηB(n− 1)
ηC (n− 1) ηD(n− 1)

)
+

(
wn−1(A′) wn−1(B ′)
wn−1(C ′) wn−1(D′)

)(
X (n) J (n)
pZ(n) Y (n)

)
=

(
X (n− 1) J (n− 1)
Z(n− 1) Y (n− 1)

)(
wn−1(A) wn−1(B)
wn−1(C) wn−1(D)

)
. (33)

We see that for arbitrary given X (n), Y (n), Z(n), J (n) there are unique solutions of (33)

and of (32) for 0 6 i 6 n, which means that for given X (n), . . . , J (n) there is a unique

isomorphism (31) which lifts the identity.
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Assume now that P̄ is nilpotent of order 6 e. Let us write:

H(i) =
(

X (i) J (i)
Z(i) Y (i)

)
.

We claim that for each k > 1 and 0 6 i 6 n− k(e+ 1)− 1 the reduction of H(i) in a/pka is

independent of the choice of H(n). This proves the uniqueness assertion of the proposition.

Let (
Ă B̆
C̆ D̆

)
=

(
A B
C D

)−1

.

If we multiply (32) by the image of this matrix under wi , we obtain for 0 6 i 6 n an

equation

H(i) = R(i)+
(

wi (A′) wi (B ′)
wi (C ′) wi (D′)

)(
1 0
0 p

)
H(i + 1)

(
p 0
0 1

)(
wi ( Ă) wi (B̆)
wi (C̆) wi (D̆)

)
where R(i) is a given matrix with coefficients in a. Let

1′i =

(
wi (A′) pwi (B ′)
wi (C ′) pwi (D′)

)
, 1̆i =

(
pwi ( Ă) pwi (B̆)
wi (C̆) wi (D̆)

)
. (34)

Assume that H(i)06i6n and H ′(i)06i6n are two solutions of (32) and (33). For their

difference h = H − H ′ we obtain the equations

h(i) = 1′i · h(i + 1) · 1̆i (35)

for 0 6 i 6 n− 2. If we can show that for i > 0 the product of e+ 1 factors

1̆i+e · . . . · 1̆i+11̆i

has coefficients in pS, it follows by induction that for i > 0 and k > 1 the product of

k(e+ 1) factors

1̆i+k(e+1)−1 · . . . · 1̆i+11̆i

has coefficients in pk S. Then (35) implies that h(i) = 0 for i 6 n− k(e+ 1)− 1, which

proves the claim.

Let D̆0 be the first component of the Witt vector matrix D̆ modulo p. The assumption

that P̄ is nilpotent of order 6 e means that

D̆(pe−1)
0 · . . . · D̆(p)

0 D̆0 ≡ 0

modulo a(S/pS); see Lemma 1.12. But a p
∈ pS for a ∈ a since a has divided powers.

Thus we get

D̆(pe)
0 · . . . · D̆(p2)

0 D̆(p)
0 = 0.

Thus for i > 0 the lower right block of 1i+e · . . . ·1i+1 has coefficients in pS, and it follows

that all coefficients of 1i+e · . . . ·1i lie in pS as required. This finishes the proof.
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Corollary 2.4 (Rigidity). Let S→ R, a and m ∈ N be as in Proposition 2.3.

Let α1, α2 : P → P ′ be two morphisms of truncated displays of level n over S. We

denote the truncated displays over R which are obtained by base change with P̄ and P̄ ′
and assume that they are nilpotent of order 6 e.

If the two morphisms ᾱ1, ᾱ2 : P̄ → P̄ ′ agree, we have

α1[n−m(e+ 1)− 1] = α2[n−m(e+ 1)− 1]

for the truncations.

Proof. Let P̃ and P̃ ′ be the relative truncated displays obtained from P and P ′. It

suffices to prove the equation of the Corollary on the relative truncated displays. This is

a statement of the Proposition.

2.3. The crystal of a nilpotent truncated display

We explain how to associate to a nilpotent truncated display a “truncated crystal”. We

fix natural numbers n, e, and m such that n > m(e+ 1)+ 1. Let R be a ring in which p is

nilpotent. Let Crism(R) be the category of all pd-thickenings S→ R with kernel a such

that pma = 0.

Let P be a truncated display of level n over R which is nilpotent of order 6 e. We

construct a locally free S-module DP (S) as follows. We choose a lifting of P to a relative

truncated display P̃ with respect to S→ R. Then we define

DP (S) = S⊗Wn(S) P̃ (36)

where the tensor product is taken with respect to the projection Wn(S)→ S. In terms of

the truncation of level 1 of P̃ we may write the right hand side of (36) as S⊗W1(S) P̃[1].
Therefore, Proposition 2.3 shows that DP (S) does not depend on the choice of P̃ and

that DP (S) is functorial in P. If S1 → S2 is a morphism in Crism(R) we obtain a canonical

isomorphism

S2⊗S1 DP (S1) ∼= DP (S2).

Let P̄ be a truncated display of level n over R, which is not necessarily nilpotent.

Let P = (P, Q, ι, ε, F, Ḟ) be a relative truncated display which lifts P̄. We consider the

Hodge filtration of P̄:

R⊗Wn(R) P̄ = P̄/κ(In+1)P̄ → P̄/ι(Q̄).

This homomorphism can be identified with the Hodge filtration of P:

R⊗Wn(S) P = P/κ(Jn+1)P → P/ι(Q).

We define a lift of the Hodge filtration of P to S as a commutative diagram:

S⊗Wn(S) P −−−−→ T̆y y
R⊗Wn(S) P −−−−→ P̄/ι(Q̄),

where T̆ is a finitely generated projective S-module which lifts P̄/ι(Q̄).
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We consider a truncated display P ′ of level n whose associated relative display is P.

We have P ′ = (P, Q′, ι, ε, F, Ḟ) with Q′ ⊆ Q. The Hodge filtration of P ′ is a lift of the

Hodge filtration of P, and we get back Q′ as the kernel of

Q
ι
−→ S⊗Wn(S) P → P/ι(Q′).

Conversely, let T̆ be a lift of the Hodge filtration of P to S. Then we construct a

truncated display P ′ as above whose Hodge filtration coincides with T̆ .

Let Q′ be the kernel of

Q
ι
−→ S⊗Wn(S) P → T̆ .

We claim that we obtain a truncated display P ′ = (P, Q′, ι, ε, F, Ḟ) of level n over S.

It is easy to see that the restriction of ε : Jn+1⊗ P → Q to In+1,S ⊗ P lies in Q′, using

that ι ◦ ε is the multiplication map. Let T ⊆ P and L ⊆ Q be direct summands which

give a normal decomposition of P, which means that P ∼= L ⊕ T and Q ∼= Jn+1⊗ T ⊕ L.

The composition L → P → T̆ induces a homomorphism L → aT̆ , which we lift to

φ : L → Wn+1(a)T , for example using the inclusion a ⊂ Wn+1(a) by the first logarithmic

coordinate. If we replace the inclusion i : L → Q by i −φ, then L and T define a normal

decomposition for P ′. The remaining axioms for truncated displays for P ′ follows easily.

Thus, we have shown that lifts of P to truncated displays of level n over S correspond to

lifts of the Hodge filtration.

Proposition 2.5. Let P̄ be a truncated display of level n over R which is nilpotent of order

6 e. Let S→ R be a divided power extension in Crism(R) with n > m(e+ 1)+ 1. Then the

isomorphism classes of liftings of P̄ to a truncated display of level n over S correspond

bijectively to liftings of the Hodge filtration of P̄ to DP̄ (S) as in the following diagram:

DP̄ (S) //

��

T̆

��

DP̄ (R) = R⊗Wn(R) P̄ // P̄/ι(Q̄)

Proof. Let P̃ be a lifting of P̄ to S, and let P̃rel be the associated relative truncated

display for S→ R. By definition we have a well-defined isomorphism

DP̄ (S)
∼= S⊗Wn(S) P̃.

Thus the Hodge filtration of P̃ gives a lift of the Hodge filtration as in the proposition.

We obtain a map from the set of isomorphism classes of liftings of P̄ to S to the set of

liftings of the Hodge filtration. Since all liftings of P̄ to a relative truncated display for

S→ R are isomorphic, the preceding considerations show that this map is bijective.

We note that this Proposition gives only a bijection of isomorphism classes. The

bijection does not arise from an equivalence of categories.
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2.4. Lifting of displays

Let S→ R be a divided power extension of rings in which p is nilpotent with kernel a ⊂ S.

We want to see what the proof of Proposition 2.3 gives for non-truncated displays.

We recall the definition of relative displays. Let JS/R be the kernel of W (S)→ R. Let

σ̇ : IS → W (S) be the inverse of the Verschiebung and let σ̇ : JS/R → W (S) extend this

map by σ̇ (x) = 0 if x ∈ W (a) is an element with logarithmic coordinates [a, 0, 0, . . .]. A

relative display for S→ R consists of (P, Q, F, Ḟ) where Q ⊆ P are W (S) modules and

where F : P → P and Ḟ : Q → P are σ -linear maps such that

(i) P is a finitely generated projective W (S)-module;

(ii) JS/R P ⊆ Q and P/ι(Q) is a projective R-module;

(iii) Ḟ(ax) = σ̇ (a)F(x) for a ∈ JS/R and x ∈ P;

(iv) Ḟ(Q) generates P.

Proposition 2.6. Let P1 and P2 be two relative displays for S→ R and let P̄1 and P̄2 be

their reductions to displays over R. We consider the reduction map

ρ : Hom(P1,P2)→ Hom(P̄1, P̄2).

Then the following hold.

(a) If a is an S-module of finite length, the map ρ is surjective.

(b) If P and P ′ are nilpotent, the map ρ is bijective.

Assertion (b) is proved in [9, Theorem 44]. We recall it here for completeness.

Proof. By passing to P1⊕P2 it suffices to prove the following assertion.

Let P̄ be a display over R and let P and P ′ be two relative displays for S→ R which

lift P̄. If a is an S-module of finite length then there is an isomorphism P ∼= P ′ which

lifts the identity. If P̄ is nilpotent then there is a unique isomorphism P ∼= P ′.
We can assume that P and P ′ have the same underlying modules with normal

decomposition P = T ⊕ L and Q = JS/R T ⊕ L. For simplicity we assume that T and

L are free, T = W (S)d and L = W (S)c. Then P and P ′ are given by matrices
(

A B
C D

)
and(

A′ B′
C ′ D′

)
with difference in W (a):(

ηA ηB
ηC ηD

)
=

(
A′ B ′

C ′ D′

)
−

(
A B
C D

)
.

The components of ηA with respect to the isomorphism log : W (a) ∼= a∞ are denoted by

ηA(n) for n > 0. These are matrices with coefficients in a. As in (31) we are looking for

matrices

H(n) =
(

X (n) J (n)
Z(n) Y (n)

)
for n > 0 with coefficients in a such that for n > 0 we have

H(n) = R(n)+1′n H(n+ 1)1̆n
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where 1̆n and 1′n are defined as in (34). Here R(n) for n > 0 are given matrices

with coefficients in a. Let H = Mc+d(a). For n > 0 let Un : H→ H be the map

Un(H) = 1′n H1n . Then a solution H(n)n>0 exists if and only if the image of R(n)n>0 in

lim
←−

1(H U0
←− H U1

←− H U2
←− · · · )

is zero, and the solution is unique if and only if the S-module

lim
←−
(H U0
←− H U1

←− H U2
←− · · · )

is zero. Here we use that lim
←−

and lim
←−

1 are the kernel and cokernel of the map

HN
→ HN, (h0, h1, . . .) 7→ (h0−U0(h1), h1−U1(h2), . . .).

If a is an S-module of finite length, then H has finite length. Thus lim
←−

1 is zero by the

Mittag-Leffler condition. Assume that P̄ is nilpotent. Let pka = 0. We saw in the proof

of Proposition 2.3 that for each n > 0, the product 1̆n+k(e+1)−1 · . . . · 1̆n has coefficients

in pk S. Thus

Un+k(e+1)−1 ◦ . . . ◦Un = 0,

which implies that lim
←−

and lim
←−

1 are zero.

3. Truncated p-divisible groups and displays

3.1. The functor from groups to displays

Let S→ R a pd-thickening with kernel a. We assume that the divided powers on a are

compatible with the canonical divided powers on pS. In [3] one of us has defined a functor

8S/R : BT (R)→ D(S/R)

from the category p-divisible groups over R to the category of displays relative to S→ R,

and in the case pR = 0 also a functor

8n,R : BTn(R)→ Dn(R) (37)

from the category of truncated p-divisible groups over R of level n to the category of

truncated displays over R of level n. We indicate a few modifications to adapt this to

the notion of truncated displays which we use here and to the case of relative truncated

displays.

We use the derived category D[(E) of an exact category E . Let A[(E) be the full

subcategory of the bounded homotopy category K [(E) which consists of all complexes

which split into short exact sequences in the sense of E . By a result of [8, 1.11.6] (see

also [7]), A[(E) is épaisse as a subcategory if each idempotent e : E → E which factors

as E
α
→ F

β
→ E such that α ◦β = idF , is a split idempotent. In this case the localisation

of K [(E) with respect to A[(E) defines the derived category D[(E).
Let G be the category of finite locally free group schemes over R which admit

an embedding into a p-divisible group. We consider the bounded derived category
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D[(BT (R)) of p-divisible groups. (Note that every idempotent in BT (R) is split.) Writing

an object of G ∈ G as a kernel of an isogeny of p-divisible groups we obtain a fully faithful

functor

G → D[(BTR).

The image of this functor lies in the full subcategory D[

61(BTR) generated by complexes

X · of p-divisible groups for which X i
= 0 for i > 2. One can check that a morphism

X ·→ Y · in the category D[

61(BTR) may be represented by morphisms of complexes

X ·← Z ·→ Y ·,

where Z i
= 0 for i > 2 and where the left arrow is a quasiisomorphism.

Let us formalise the linear data of (relative) truncated displays. Let A be a ring and

let κ : c→ A be a homomorphism of A-modules such that for x, y ∈ c we have

κ(x)y = κ(y)x .

Main example: Consider a surjective ring homomorphism B → A and an ideal c ⊂ B
which is an A-module, i.e., annihilated by the kernel of B → A. We take κ : c→ B → A.

Definition 3.1. An (A, c)-module consists of (M, N , ι, ε), where M and N are A-modules

and ι and ε are A-module homomorphisms

c⊗A M
ε
→ N

ι
→ M,

such that the composition of these two maps is the multiplication, i.e., c⊗m is mapped

to κ(c)m, and such that the composition of the following maps is the multiplication:

c⊗A N
id⊗ι
−→ c⊗A M

ε
→ N .

The category of (A, c)-modules is in the obvious way abelian.

If P = (P, Q, ι, ε, F, Ḟ) is a truncated display over R (respectively relative to S→ R)

of level n, then (P, Q, ι, ε) is a (Wn(R), In+1) (respectively (Wn(S),Jn+1))-module.

We call a sequence of truncated or relative truncated displays exact if the underlying

sequence of (Wn(R), In+1)-modules or (Wm(S),Jm+1)-modules is exact. We obtain exact

categories in which every idempotent is split; note that all defining properties of (relative)

truncated displays pass over to direct summands. Thus again the bounded derived

categories exist:

D[(Dm(S/R)), D[(Dm(R)).

Similarly we have the bounded derived categories D[(D(R)) and D[(D(S/R)) of displays

and of relative displays. For each natural number m we obtain functors:

G → D[

61(BT (R))
8S/R
−−−→ D[

61(D(S/R))→ D[

61(Dm(S/R)). (38)

We consider the category Tm = Tm(S/R) of all data (P, Q, ι, ε, F, Ḟ) as in the definition

of a relative truncated display of level m, but we no longer require the conditions (i),

(iii), and (vi) of Definition 2.1. Let

(P1, Q1, ι1, ε1, F1, Ḟ1)→ (P2, Q2, ι2, ε2, F2, Ḟ2)
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be a morphism in Tm . Then one easily defines a cokernel (P, Q, ι, ε, F, Ḟ) such that

(P, Q, ι, ε) is the cokernel in the category of (Wn(S),Jn+1)-modules. For G ∈ G we apply

(38) and take H1, which is a cokernel. In this way, for each natural number m we obtain

a functor:

8m : G → Tm . (39)

Proposition 3.2. Let S→ R be a pd-thickening and assume that p is nilpotent in S. Let

n > m be natural numbers such that pnWm(S) = 0. Then (39) induces a functor

8m : BTn(R)→ Dm(S/R)

from the category of truncated p-divisible groups of level n over R to the category of

truncated relative displays of level m for S→ R.

Note that in the case pS = 0 we can take n = m.

Proof. The condition pnWm(S) = 0 is equivalent with pnWm(S) = 0.

Let Gn be the full subcategory of G which consists of truncated p-divisible groups

of level n. We claim that the functor 8m of (39) restricted to Gn takes values in the

category of relative truncated displays of level m, i.e., that the conditions (i), (iii), and

(vi) of Definition 2.1 are satisfied.

For G ∈ G let 8m(G) = (P, Q, ι, ε, F, Ḟ). Here P is a Wm(S)-module of finite

presentation. Coker(ι) and Coker(ε) are R-modules of finite presentation. These modules

are compatible with base change under homomorphisms of pd-thickenings from S→ R
to S′→ R′.

By [1, Théorème 4.4] we may lift a truncated p-divisible group over R to a truncated

p-divisible group over S. Zariski locally on Spec S, the lifted group can be embedded into

a p-divisible group. Therefore, to prove the claim we may assume that R = S.

If X is a p-divisible group over R and if X (n) is its truncation, we can use the resolution

0→ X (n)→ X
pn

→ X to compute 8m(G). Since we assumed that pnWm(S) = 0, we get

that 8m(G) is the m-truncation of the display associated to X . So the claim is proved in

this case.

If R is a noetherian complete local ring with perfect residue field, each truncated

p-divisible group G of level n over R takes the form X (n) for a p-divisible group X by

[1, Théorème 4.4]. So the claim holds over R.

If R is a noetherian ring, for each prime ideal p of A we find a faithfully flat ring

homomorphism Âp→ A′ where A′ is a noetherian complete local ring with perfect (or

algebraically closed) residue field. By descent (see Corollary A.3) it follows that for

G ∈ Gn , 8m(G) satisfies the conditions (i), (iii), and (vi) of Definition 2.1. This proves

the claim when R is noetherian.

Since a truncated p-divisible group embeds Zariski locally in a p-divisible group, if R
is noetherian we can extend the functor 8m from Gn to all truncated p-divisible groups

by descent of truncated displays (see Proposition A.5). Finally we can use base change

to define the functor 8m over a base which is not noetherian.

For S = R with pR = 0 and n = m, the functor 8n of Proposition 3.2 is (37). We note

that this functor preserves the order of nilpotence:
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Lemma 3.3. Let R be a ring with pR = 0. A truncated p-divisible group G over R of level

n > 1 has nilpotence order e iff the associated truncated display P = 8n(G) has nilpotence

order e.

Proof. The construction of 8n(G) gives an isomorphism Lie(G∨) ∼= ι(Q)/In P such that

the Verschiebung V of G∨ corresponds to the homomorphism V̄ ] of (23). Then the lemma

follows from the proof of Lemma 1.14.

Proposition 3.4. Let t > n such that pt Wn(R) = 0. Let X be a p-divisible group over R
such that X R/pR is nilpotent of order 6 e, and let P = 8n(X (t)). If S→ R is an object

of Crism(R) with n > m(e+ 1)+ 1, we have a canonical isomorphism

DX (S) ∼= DP (S) (40)

between the Grothendieck–Messing crystal of X and the crystal of P, evaluated at S→ R.

Proof. Let PX = 8R(X) be the display of X and P̃X = 8S/R(X) the display relative to

S→ R associated to X . Since P̃X (n) is a lift of PX (n) = P, by (36) the right hand side

of (40) is S⊗W (S) P̃. By the construction of the functor 8S/R , this module also coincides

with the left hand side of (40).

Later we use the following consequence.

Corollary 3.5. Let S be a ring with pm+1S = 0. Let X be a p-divisible group over

R = S/pS which is nilpotent of order e. For t > m(e+ 2)+ 2 the set of isomorphism

classes of lifts of X to S is bijective to the set of isomorphism classes of lifts of X (t) to S.

Proof. Let n = m(e+ 1)+ 2. Then t > n+m and thus pt Wn(S) = 0, using that

pnWn(R) = 0 and pm Wn(pS) = 0. Let P = 8n(X (t)). We have two maps

DefS/R(X)→ DefS/R(X (t))
8n
−→ DefS/R(P)

where DefS/R means set of isomorphism classes of lifts to S. By [1, Théorème 4.4], the

first map is surjective. Propositions 3.4 implies that the composition is bijective, using

that deformations of X and of P are both classified by lifts of the Hodge filtration, by

Proposition 2.5 and by the Grothendieck–Messing Theorem. It follows that the first map

is bijective.

3.2. Exactness and duality

Let us return for a moment to the study of (A, c)-modules. Let c→ A be as above. Let

u be the kernel of κ : c→ A and let R be its cokernel,

0→ u→ c→ A→ R→ 0.

Here R is a factor ring of A by the ideal κ(c), and u is an R-module since we have

κ(c)u = κ(u)c = 0. We assume in the following that all finitely generated projective

R-modules lift to finitely generated projective A-modules.

For given finitely generated projective A-modules T and L we define an (A, c)-module

S(T, L) as follows: We set

M = T ⊕ L , N = c⊗A T ⊕ L ,
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with the obvious maps ι and ε; see Definition 1.2. An (A, c)-module which is isomorphic

to some S(T, L) will be called standard projective, and M = T ⊕ L is called a normal

decomposition.

For an arbitrary (A, c)-module (M, N , ι, ε) we have a canonical isomorphism

Hom(S(T, L), (M, N , ι, ε)) = HomR(T,M)⊕HomR(L , N ).

In particular, S(T, L) is a projective object in the category of (A, c)-modules (this does

not need that T and L are finitely generated). Obviously we have projective resolutions

in this category.

To each (A, c)-module (M, N , ι, ε) we associate the following complex of A-modules:

0→ u⊗A (M/ι(N ))
ε′

−→ N → M → M/ι(N )→ 0 (41)

where ε′ is the restriction of ε. This map exists because the composition

u⊗ N
id⊗ι
−→ c⊗M

ε
→ N

is the multiplication and therefore zero by the definition of u.

Lemma 3.6. An (A, c)-module M̆ = (M, N , ι, ε) is standard projective iff the following

holds:

(i) M is a finitely generated projective A-module;

(ii) M/ι(N ) is a finitely generated projective R-module;

(iii) the sequence (41) is exact.

Proof. (Cf. [3, Lemma 3.3]) Clearly standard projective modules satisfy (i)–(iii). Assume

that (i)–(iii) hold. Since Im ε′ ⊂ Im ε, the exact sequence (41) implies that the following

is exact:

0→ N/ Im ε → M/cM → M/ι(N )→ 0.

Thus, N/ Im ε is a finitely generated projective R-module. Let T and L be

finitely generated projective A-modules which lift M/ι(N ) and N/ Im ε. We have a

homomorphism g : S(T, L)→ M̆ , and the associated homomorphism of exact sequences

(41) is an isomorphism on all components, except possibly on N . By the 5-Lemma g is

an isomorphism.

Lemma 3.7. Let 0→ M̆1 → M̆2 → M̆3 → 0 be a short exact sequence of (A, c)-modules.

If M̆2 and M̆3 are standard projective, then so is M̆1.

Proof. We write M̆i = (Mi , Ni , ιi , εi ). Clearly M1 is finitely generated projective over A.

Consider the commutative diagram with exact rows:

0 −−−−→ N1 −−−−→ N2 −−−−→ N3 −−−−→ 0y y y
0 −−−−→ M1 −−−−→ M2 −−−−→ M3 −−−−→ 0
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Applying the snake lemma and taking into account the exact sequences (41) for M̆2 and

M̆3 we obtain an exact sequence of projective R-modules:

0→ M1/ι(N1)→ M2/ι(N2)→ M3/ι(N3)→ 0.

In particular, M1/ι(N1) is finitely generated projective over R. Since the last sequence

remains exact under u⊗R , it follows that (41) is exact for M̆1.

Proposition 3.8. Let Pi = (Pi , Qi , ιi , εi , Fi , Ḟi ) for i = 1, 2 be two truncated displays of

level n over a ring R. Let α : P1 → P2 be a morphism such that P1 → P2 and Q1 → Q2
are surjective.

Then there is a truncated display of P level n and a sequence of truncated displays

0→ P → P1 → P2 → 0

such that the underlying sequence of (W(R), In+1)-modules is exact.

The same statement is true for relative truncated displays.

Remark. One can also show that surjectivity of P1 → P2 implies surjectivity of Q1 → Q2.

Proof. We consider the case of relative truncated displays. The kernel of α is

taken componentwise: P = (P, Q, ι, ε, F, Ḟ). Then (P, Q, ι, ε) is a standard projective

(Wn(S),Jn+1)-module by Lemma 3.7. The underlying sequence of (Wn(S),Jn+1)-modules

splits. Now P is a relative truncated display iff the operator F]⊕ Ḟ] of (6) is an

isomorphism. Since a block upper triangular matrix is invertible iff the diagonal blocks

are invertible, the fact that P1 is a relative truncated display implies the same for P.

Corollary 3.9. The functor 8m of Proposition 3.2 is exact.

Proof. A given short exact sequence 0→ G1 → G2 → G3 → 0 in BTn(R) embeds Zariski

locally into a short exact sequence of p-divisible groups 0→ X1 → X2 → X3 → 0. Let

Yi = X i/Gi . We have exact sequences in Dm(S/R) which define Mi :

0→Mi → τm8S/R(X i )→ τm8S/R(Yi )→ 8m(Gi )→ 0.

Here τm means truncation to level m. Indeed, the sequence without Mi is exact by

definition. Proposition 3.8 implies that the image and kernel of the middle arrow are

relative truncated displays.

By the snake lemma we obtain an exact sequence in Dm(S/R)

0→M1 →M2 →M3 → 8m(G1)→ 8m(G2)→ 8m(G3)→ 0.

Let 8m(Gi ) = (Pi , . . .). The rank of Pi is the height of Gi . Since the height is additive in

short exact sequences, it follows that M3 → P1 is the zero map. By Lemma 2.2 it follows

that M3 → P1 is zero.

Remark 3.10 (Duality). Let G be a truncated p-divisible group of level n over R. Assume

that G is the kernel of an isogeny of p-divisible groups: 0→ G → X0 → X1 → 0. Let

α : P0 → P1 be the morphism of relative truncated displays of level m, given by the
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functor 8S/R followed by truncation. By construction, 8m(G) = Cokerα. We claim that

there is a natural isomorphism

8m(G) ∼= Ker(α),

i.e., one could also define 8m using the kernel. First we note that the kernel is a relative

truncated display by Proposition 3.8. Now we have an exact sequence in BTn(R)

0→ G → X0(n)→ X1(n)→ G → 0.

Since 8m is exact and since 8m(X i (m)) = Pi the claim follows.

One can define the dual of (relative) truncated displays as in the case of (relative)

displays. The functor 8S/R preserves duality. Using the above isomorphism one can

deduce that the functor 8m preserves duality too. We leave the details to the reader.

3.3. Smoothness

The functors 8n over rings R with pR = 0 define a morphism

φn : BTn ×SpecFp → Dn ×SpecFp

of smooth algebraic stacks over Fp. By [3, Theorem 4.5] this morphism is smooth. Using

Proposition 2.6 we can simplify the proof. This remark is independent of the notion of

relative truncated displays. Let k be a field of characteristic p. We consider the ring

homomorphism S = k[ε] → R = k. To prove that φn is smooth it suffices to show that

the morphism of f.p.q.c stacks

φ : BT → D
from p-divisible groups to displays satisfies the lifting criterion of formal smoothness

with respect to S→ R. We equip the kernel of S→ R with the trivial divided powers.

We consider the commutative diagram of functors:

BT (S)
f
//

8S
��

BT (R)

8S/R

��

BT (R)

8R
��

D(S)
g
// D(S/R) h // D(R)

Here the left hand square is 2-Cartesian because lifts under f or under g correspond to

lifts of the Hodge filtration. For f this is the Grothendieck–Messing theorem, and for g
this is trivial. Proposition 2.6(a) implies that for each display over R all lifts under h are

isomorphic. The lifting criterion for S→ R follows easily.

3.4. From displays to groups

Let R be a ring with pR = 0. We view formal groups and group schemes with a nilpotent

augmentation ideal as functors on the category NilR of nilpotent R-algebras. We call such

group schemes infinitesimal.

Let G be a functor on NilR . We recall the definition of the Frobenius of G. For N ∈ NilR
we have the absolute Frobenius Frobn

: N → N[pn ]. This induces a homomorphism

Frobn
G : G(N )→ G(pn)(N ) = G(N(pn))
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which is called the Frobenius of G. We denote by G[Fn
] the kernel of Frobn

G . Let N ′ be

the kernel of Frobn
: N → N[pn ]. If G is left exact we have

G(N ′) = G[Fn
](N ) = G[Fn

](N ′).

Let Nil(n)R ⊂ NilR be the category of R-algebras N such that x pn
= 0 for all x ∈ N . For a

left exact functor G on NilR we can view G[F (n)] as the restriction of G to the category

Nil(n)R .

If G is a commutative formal group of dimension d then G[Fn
] is a finite locally free

infinitesimal group scheme of rank pdn over R. Finite locally free infinitesimal group

schemes which arise in this way are called truncated formal groups of level n over R. Let

FGn(R) be the category of such group schemes.

Let P = (P, Q, ι, ε, F, Ḟ) be a truncated display of level n over R. We chose a normal

decomposition

P = T ⊕ L , Q = In+1⊗ T ⊕ L .

Let N ∈ Nil(n)R . Then the W (R)-module W (N ) is a Wn(R)-module since for x ∈ W (N ) and

a ∈ W (R) we have V n
a · x = V n

(aFn(x)) = 0. Thus we can define

P̂N = Ŵ (N )⊗Wn(R) P, Q̂N =
V Ŵ (N )⊗Wn(R) T ⊕ Ŵ (N )⊗Wn(R) L .

Proposition 3.11. There is an exact sequence of abelian groups

0 −→ Q̂N
Ḟ−1
−−→ P̂N −→ FGn(P)(N ) −→ 0,

which defines FGn(P)(N ); the assertion is that the first map is injective. The functor

N 7→ FGn(P)(N ) on the category Nil(n)R is a truncated formal group of level n. This

defines an additive and exact functor

FGn : Dn(R)→ FGn(R)

for each ring R with pR = 0.

Proof. Let P ′ = (P ′, Q′, F, Ḟ) be a display over R with truncation P and let G = BT (P ′)
be the associated formal Lie group. By definition, for each N ∈ NilR we have an exact

sequence

0→ Q̂′N
Ḟ−1
−−→ P̂ ′N → G(N )→ 0.

If N lies in Nil(n)R , this sequence can be identified with the sequence of the proposition.

Thus that sequence is left exact, and FGn(P) = G[Fn
] is a truncated formal group of

level n.

Lemma 3.12. Let G be a truncated p-divisible group of level n over a ring R such that

pR = 0. There is a natural isomorphism

FGn(8n(G))
∼
−→ G[Fn

]. (42)
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Proof. Cf. Remark 3.10. Assume that G is the kernel of an isogeny of p-divisible groups,

0→ G → X0 → X1 → 0. We obtain an exact sequence

0→ G → X0(n)→ X1(n)→ G → 0.

Since the functors 8n and FGn preserve short exact sequences (Corollary 3.9) and since

8n(X i (n)) = 8R(X i )(n), we obtain an exact sequence of finite group schemes

0→ FGn(8n(G))→ BT (8(X0))[Fn
] → BT (8(X1))[Fn

].

By [3, Theorem 8.3] for each p-divisible group X over R there is a natural isomorphism

BT (8(X)) ∼= X̂ . (43)

This gives an isomorphism (42). The isomorphism does not depend on the chosen

resolution X0 → X1 of G. Since such resolutions exist Zariski locally, the lemma

follows.

For a truncated display P of level n over R and a natural number m we define a finite

group scheme over R:

BTm(P) = FGn(P)[pm
] (44)

Lemma 3.13. Let R a ring with pR = 0. Let P be a truncated display of level n over

R such that the order of nilpotence of P is 6 e. Let m be a positive integer such that

n > m(e+ 1). Then the group scheme BTm(P) is a truncated p-divisible group of level m.

Proof. Let P ′ be a display over R with truncation P and let G ′ = BT (P ′) be the

associated p-divisible formal group. Lemma 1.14 implies that G ′[p] ⊆ G ′[Fe+1
] and thus

G ′[pm
] ⊆ G ′[Fm(e+1)

] ⊆ G ′[Fn
] = FGn(P). It follows that BTm(P) = G ′[pm

], which is a

truncated p-divisible group.

Proposition 3.14. Let R be a ring with pR = 0. Let G be a truncated p-divisible group

of level n such that the order of nilpotence of G is 6 e (see Definition 1.13). Let m be a

natural number such that n > m(e+ 1). Then there is a natural isomorphism

BTm(8n(G)) ∼= G(m).

If P is a truncated display of level n and order of nilpotence 6 e we have a canonical

isomorphism

8m(BTm(P)) ∼= P(m)
We note that 8n(G) is nilpotent of order 6 e by Lemma 3.3, and therefore BTm(8m(G))

is a truncated p-divisible group by Lemma 3.13.

Proof. Since G is nilpotent of order 6 e we have G(1) ⊆ G[Fe+1
] and thus

G(m) ⊆ G[Fm(e+1)
] ⊆ G[Fn

]. By taking the kernel of multiplication by pm on both sides

of (42) we obtain the first isomorphism of the proposition:

BTm(8n(G)) ∼= G[Fn
][pm
] = G[pm

].

The second isomorphism follows using Lemma 4.4 below, applied to the restriction of the

functor BTm to the category of truncated p-divisible groups of level n which are nilpotent

of order 6 e; see also Remark 4.5.
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Remark 3.15. In the proof of Lemma 3.12 we have used the natural isomorphism (43)

for arbitrary p-divisible groups. The proof of this fact in [3] is complicated because it is

difficult to relate directly the functors 8 and BT .

If we want to prove Lemma 3.12 only for infinitesimal truncated p-divisible groups,

which is sufficient for Proposition 3.14, we can modify the proof as follows.

(a) One can work with resolutions 0→ G → X0 → X1 → 0 by formal p-divisible

groups. Such resolutions exist at least f.p.q.c. locally, because f.p.q.c. locally G extends

to a formal p-divisible group. By f.p.q.c. descent of relative truncated displays this is

sufficient to construct 8n . In this way we use (43) only for formal p-divisible groups,

which is easier than the general case; the proof uses the crystalline comparison of [9] and

the equivalence, denoted by (∗) in the following, between formal p-divisible groups and

nilpotent displays over arbitrary rings R in which p is nilpotent [2, 3].

(b) In addition, one can restrict the relevant base rings R and the f.p.q.c. coverings

R→ R′ such that G R′ extends to a p-divisible group. Namely, w.l.o.g. R is an Fp-algebra

of finite type, and we can take R′ =
∏

R̂m where m runs through the maximal ideals of

R.1 Over these rings the equivalence (∗) is already proved in [9], which is sufficient to

deduce (43) in the cases necessary for the proof of Lemma 3.12.

(c) One can also consider the following variant 8′n of the functor 8n restricted to

infinitesimal groups: Let G be an infinitesimal truncated p-divisible group of level n. If

there is a resolution 0→ G → X0 → X1 → 0 by formal p-divisible groups, let Pi be the

nilpotent display associated to X i by the equivalence (∗), and define 8′n(G) as the kernel

of the map of truncations P0[n] → P1[n]. In general, use f.p.q.c. descent to define 8′n(G).
Then the proof of Lemma 3.12 shows that BTm(8

′
n(G)) ∼= G(m) as before. As explained

in (b), with appropriate modifications the proof uses only the equivalence (∗) in the cases

covered by [9].

Finally we extend the last two Propositions to rings where p is nilpotent.

Proposition 3.16. Let S be a ring with pm+1S = 0 for some m > 0. For integers s, t, e > 0
such that t > (s+m)(e+ 1) and t > (m(e+ 2)+ 2)(e+ 1) there is a functor

BTs : D(e)
t (S)→ BT (e)

s (S).

If pnWt (S) = 0, then the composition BT (e)
n (S)

8t
−→ D(e)

t (S)
BTs
−−→ BT (e)

s (S) is isomorphic

to the truncation functor.

Proof. Let R = S/pS. By enlarging s we may assume that s > m(e+ 1)+ 2. For each

truncated display P ∈ D(e)
t (S) we chose a display P̃ over S which lifts P, and we set

X = BT (P̃), or equivalently P̃ = 8(X). We want to define BTs(P̃) = X (s). We have the

following commutative diagram of functors, where the solid arrows exist over S and over R

1One can also use that every truncated p-divisible group extends to a p-divisible group étale locally, but
this is more difficult to show.
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(see Proposition 3.2), while BTs+m exists only over R (see Lemma 3.13).

BT (e) //

8

��

BT (e)
s+m

8s
��

D(e) // D(e)
t

//

BTs+m

<<

D(e)
s

The diagram over R commutes by Proposition 3.14, in particular there is a canonical

isomorphism X (s+m)R ∼= BTs+m(PR). Corollary 3.5 and its proof imply that the

following maps of sets of isomorphism classes of deformations from R to S are bijective:

DefS/R(PR)→ DefS/R(P(s)R)
8s
←− DefS/R(X (s+m)R)

Assume that P ′ ∈ D(e)
t (S) is another truncated display and α : P → P ′ is an isomorphism.

We chose a lift P̃ ′ and X ′ = BT (P̃ ′) as above. Then β0 = BTs+m(αR) is an isomorphism

X (s+m)R ∼= X ′(s+m)R . Since α is a lift of αR it follows that there is a lift

β : X (s+m)→ X ′(s+m) of β0. By Lemma 3.17 below, the reduction β(s) : X (s)→ X ′(s)
is independent of the choice of β. Thus we have defined the functor BTs over S on the

level of groupoids, and this functor preserves finite direct sums since the construction is

independent of the choice of the lift P̃. Then a standard argument gives the full functor

BTs (compare [9, Proof of Theorem 46]).

To prove the last assertion we note that for P = 8t (G), at least f.p.q.c locally we can

lift G to a p-divisible group X . Then we choose P = 8(X) in the above construction,

thus BTs(8t (G)) = G(s). For a given isomorphism γ : G → G ′ with induced α : P → P ′
we can choose β = α(s+m), which implies that β(s) = α(s) as required.

Lemma 3.17. Let G and H be truncated p-divisible groups over S of level u > m. If a

homomorphism φ : G → H reduces to zero over R, then the truncation

φ(u−m) : G(u−m)→ H(u−m)

is zero.

Proof. For every commutative affine group scheme X over S, the kernel of X (S)→ X (R)
is annihilated by pm ; see [4, Lemma 3.4]. If we apply this to the base change of H to

S-algebras, it follows that pmφ = 0. Therefore, φ(u−m) = 0.

4. Vanishing homomorphisms

Let G and G ′ be truncated p-divisible groups of level n over a ring R with pR = 0, with

associated truncated displays P and P ′. We consider the commutative group scheme of

vanishing homomorphisms

Homo(G,G ′) = Ker[Hom(G,G ′)→ Hom(P,P ′)]

and the group scheme of vanishing automorphisms

Auto(G) = Ker[Aut(G)→ Aut(P)].
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By [3, Remark 4.8] this is a commutative finite locally free group scheme of rank pncd

where d = dim(Lie G) and c = dim(Lie G∨).

Lemma 4.1. The group scheme Homo(G,G ′) is infinitesimal finite locally free of rank

pncd ′ , where c = dim(Lie G∨) and d ′ = dim(Lie G ′).
Proof. Clearly Homo(G,G ′) is an affine group scheme over R. It is infinitesimal since the

functor 8n is an equivalence over perfect fields. We claim that the map

Auto(G)→ Endo(G), u 7→ u− 1

is an isomorphism of schemes. Indeed, let f ∈ Endo(G)(A) for some R-algebra A. There

is a nilpotent ideal I ⊂ A such that f + 1 ≡ 1 modulo I . It follows easily that f + 1 is an

automorphism. Thus, Endo(G) is finite locally free. Using the decomposition of pointed

R-schemes

Endo(G⊕G ′) = Endo(G)×Homo(G,G ′)×Homo(G ′,G)×Endo(G ′)

it follows that Homo(G,G ′) is finite locally free. Its rank is locally constant on the stack

BTn ×BTn . Since the generic points of BTn are ordinary, to compute the rank we may

assume that each of G and G ′ is either Z/pnZ or µpn . In those cases the rank is computed

in [3, Remark 4.8] as desired.

Proposition 4.2. Under the natural isomorphism Hom(Z/pn,G) ∼= G we have

Homo(Z/pn,G) ∼= G[Fn
].

Proof. Both Homo(Z/pn,G) and G[Fn
] are closed subgroup schemes of G which are

finite locally free of rank pnd . They coincide if G is ordinary. Since the generic points of

the stack BTn are ordinary, they coincide for all G.

We recall that G is called nilpotent of order 6 e if Fe+1 is zero on G(1); see Definition

1.13.

Corollary 4.3. If either G or (G ′)∨ is nilpotent of order 6 e, then for n > m(e+ 1) the

reduction map

Homo(G,G ′)→ Hom(G(m),G ′(m))
is zero.

Proof. We may assume that n = m(e+ 1). By duality it suffices to consider the case

where (G ′)∨ is nilpotent of order 6 e, which means that V e+1 is zero on G ′(1) and thus

V m(e+1) is zero on G ′(m). It follows that the subgroup scheme

G ′[Fm(e+1)
] = Im(V m(e+1))

of G ′ maps to zero under the surjection pme
: G ′→ G ′(m). Thus for G = Z/pn the

corollary follows from Proposition 4.2.

If G is arbitrary we consider an element u ∈ Homo(G,G ′)(A) for some R-algebra A.

Let A→ B be a ring homomorphism and let a ∈ G(B). The composition

Z/pn a
−→ G B

u
−→ (G ′)B

lies in Homo(Z/pn,G ′)(B). By the first case, its reduction to level m is trivial as

desired.
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Let BTn and Dn be the algebraic stacks over Fp of truncated p-divisible groups

respectively truncated displays of level n. Let BT (e)
n ⊂ BTn and D(e)

n ⊂ Dn be the closed

substacks where the nilpotence order is 6 e. For n > m we have the following commutative

diagram, where τ are the truncation maps.

BT (e)
n

8n //

τ

��

D(e)
n

τ

��

BT (e)
m

8m // D(e)
m

(45)

Here all morphisms are smooth and surjective because the diagram is the inverse image

under the inclusion D(e)
m → Dm of the corresponding diagram without (e), in which all

morphisms are smooth.

Lemma 4.4. For given n > m and e > 0, there is a morphism of stacks 0 : D(e)
n → BT (e)

m
such that 0 ◦8n ∼= τ iff the reduction map

ρ : Auto(G)→ Aut(G(m))

is zero for all G which are nilpotent of order 6 e. In that case 0 is unique up to unique

isomorphism, and we also have 8m ◦0 ∼= τ .

Proof. We consider truncated p-divisible groups of fixed height h and truncated displays

of rank h without changing the notation. Let U = Spec R→ BT (e)
n be a smooth

presentation given by a truncated p-divisible group G of level n over R. Since all arrows

in (45) are smooth and surjective, we also get smooth presentations of the other three

stacks. Let P = 8n(G) be the truncated display associated to G. Let G1,G2 and P1,P2
over U ×U be the inverse images of G and P under the two projections. We get a

commutative diagram of groupoids over U :

Isom(G1,G2)

τ

��

8n // Isom(P1,P2)

τ

��

Isom(G1(m),G2(m))
8m // Isom(P1(m),P2(m))

(46)

The associated diagram of stacks is (45). The morphism 8n in (46) is a torsor under

Auto(G1) by [3, Theorem 4.7]. Thus there is a morphism of schemes

0 : Isom(P1,P2)→ Isom(G1(m),G2(m))

such that the upper triangle commutes iff

ρ1 : Auto(G1)→ Aut(G1(m))

is trivial. In that case 0 is unique, and the lower triangle commutes as well. Since G1 is

the inverse image of the universal group under a faithfully flat map U ×U → BT (e)
n , the

reduction map ρ1 is trivial iff ρ is zero for all G which are nilpotent of order 6 e. This

proves the lemma.
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Remark 4.5. By a standard argument (see [9, Proof of Theorem 46]), the functor 0 of

groupoids extends to a functor of additive categories.

Proposition 4.6. For n > m(e+ 1) there is a functor BTm : D(e)
n → BT (e)

m such that BTm ◦

8n is isomorphic to the truncation functor. This functor BTm is unique up to unique

isomorphism, and 8m ◦ BTm is isomorphic to the truncation functor as well.

Proof. Use Corollary 4.3 for End(G) and Lemma 4.4.

Remark 4.7. By its uniqueness, the functor BTm of Proposition 4.6 necessarily coincides

with the functor of Proposition 3.14.

It is easy to see that the functors BTm for varying m are compatible in such a way that

they form an inverse to the functor

8 : lim
←−

n
BT (e)

n → lim
←−

n
D(e)

n ,

so this is an equivalence. This gives a new proof of the equivalence between formal

p-divisible groups and nilpotent displays over rings with pR = 0. The general case of

rings in which p is nilpotent follows easily by deformation theory.

Appendix. Descent for truncated displays

Proposition A.1. Let R→ S be a faithfully flat homomorphism of rings in which p is

nilpotent. Then the Cech complex

Wn(R)→Wn(S) →→ Wn(S⊗R S) →→
→

Wn(S⊗R S⊗R S) . . .

is acyclic.

Proof. To the simplicial complex above we have also the associated chain complex which

will be denoted by CWn(S/R).
Let R[p] be the kernel of the multiplication by p. By tensoring with ⊗R S:

S[p] = R[p]⊗R S.

By descent theory we know that the Cech complex of the R-module R[p] relative to the

covering Spec S→ Spec R is acyclic:

R[p] → S[p] →→ (S⊗R S)[p] →→
→

(S⊗R S⊗R S)[p] . . . .

Let C(S/R)[p] be the associated chain complex. Using the remarks after (2) we obtain

an exact sequence of complexes

0→ C(S/R)[p] → CWn+1(S/R)→ CWn(S/R)→ 0.

The definition and exactness of the complex in the middle follows from [9, Lemma 30].

This concludes the proof of the Proposition.

The notion of a W -descent datum [9] applies to Wn(R)→Wn(S) and is then called a

Wn-descent datum.

https://doi.org/10.1017/S1474748016000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000116


578 E. Lau and T. Zink

Proposition A.2. With the assumptions of the last Proposition let P be a finitely generated

projective Wn(S)-module with a descent datum

∇ :Wn(S⊗R S)p1,Wn(S)P →Wn(S⊗R S)p2,Wn(S)P. (47)

The associated chain complex CWn (P; S/R) (compare: [9, (43)])

P →Wn(S⊗R S)⊗Wn(S) P →Wn(S⊗R S⊗R S)⊗Wn(S) P → . . .

is exact. Here the Wn(S)-module structure on Wn(S⊗R . . .⊗R S) is via the last factor of

the tensor product.

If P0 is the kernel of the first arrow we have a canonical isomorphism

Wn(S)⊗Wn(R) P0 → P.

Proof. We begin with a general remark. Let R′ be an R-algebra. We denote by

nR′ ⊂ R′ the ideal of all elements annihilated by p. We set n = nR . If R→ R′ is flat then

nR′ = n⊗R R′ = nR′.
We denote by wn :Wn(R′)→ R′/nR′ the homomorphism induced by the Witt

polynomial of degree pn . For a Wn(R)-module P0 we set P̄0 = R/n⊗wn ,Wn(R) P0. We

have the isomorphism

R′/nR′⊗wn ,Wn(R′) (Wn(R′)⊗Wn(R) P0) ∼= R′/nR′⊗R/n P̄0.

If we tensor the descent datum (47) with Wn(S⊗R S)⊗Wn(S⊗R S) we obtain a Wn-descent

datum on Wn(S)⊗Wn(R) P and if we tensor with (S/nS⊗R/n S/nS)⊗wn ,Wn(S⊗R S) we

obtain a descent datum on the S/nS-module P̄ = S/nS⊗wn ,Wn(S) P.

By the definition of Wn(S) we have an exact sequence of Wn(S)-modules

0→ (S/nS)[wn ]
V n
→Wn(S)→ Wn(R)→ 0.

By tensoring with P we obtain the exact sequence

0→ P̄
V n
→ P → Wn(S)⊗Wn(S) P → 0. (48)

We have a commutative diagram

(S/nS⊗R/n S/nS)⊗wn◦p1,Wn(S) P
id⊗∇
−−−−→ (S/nS⊗R/n S/nS)⊗wn◦p2,Wn(S) P

V n
y yV n

Wn(S⊗R S)⊗p1,Wn(S) P −−−−→
∇

Wn(S⊗R S)⊗p2,Wn(S) P

Therefore, the exact sequence (48) is compatible with the descent data and yields an

exact sequence of complexes:

0→ C(P̄; (S/nS)/(R/n))→ CWn (P; S/R)→ CWn (P; S/R)→ 0

The first complex is the complex associated to the descent datum on the S/nS-module P̄
relative to R/n→ S/nS. By [9] and usual descent we know that except for the complex in
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the middle we have H i
= 0 for i > 1. Then this holds also for the complex in the middle.

Taking H0 we obtain the exact cohomology sequence

0→ P̄0 → P0 → P̆0 → 0.

By Wn-descent we know that the natural map

Wn(S)⊗Wn(R) P̆0 → Wn(S)⊗Wn(S) P

is an isomorphism. Let E be a finitely generated projective Wn(R)-module which lifts the

Wn(R)-module P̆0. We find a factorisation E → P0 → P̆0. By the Lemma of Nakayama

we conclude that

Wn(S)⊗Wn(R) E → P

is an isomorphism. Since the last arrow is compatible with the descent data on both sides

we obtain an isomorphism of complexes

CWn (Wn(S)⊗Wn(R) E; S/R)→ CWn (P; S/R).

It follows that E → P0 is an isomorphism.

Corollary A.3. For R→ S as above let P1 be a finitely presented Wn(R)-module such

that P =Wn(S)⊗Wn(R) P1 is projective. Then P1 is projective.

Proof. The module P carries a natural descent datum. Proposition A.2 gives a finitely

generated projective Wn(R)-module P0, and the natural map P1 → P factors over a

homomorphism g : P1 → P0 that becomes bijective over Wn(S). By Nakayama’s lemma

g is surjective. Then P1 ∼= P0⊕ N where N is finitely generated and Wn(S)⊗Wn(R) N = 0.

By Nakayama’s lemma it follows that N = 0.

Let R→ S be a faithfully flat ring homomorphism as before. Let P = (P, Q, ι, ε, F, Ḟ)
be a truncated display of level over R. We denote the base change to S by

PS = (PS, QS, ιS, εS, FS, ḞS). There is a natural homomorphism P → PS which is obvious

in terms of a normal decomposition. We obtain a simplicial complex

P → PS →→ PS⊗R S
→
→
→

PS⊗R S⊗R S . . . . (49)

Proposition A.4. The simplicial complex (49) induces exact chain complexes

0→ P → PS → PS⊗R S → PS⊗R S⊗R S . . .

0→ Q → QS → QS⊗R S → QS⊗R S⊗R S . . . .

Proof. We know that PS =Wn(S)⊗Wn(R) P. Therefore, we obtain the first exact

sequence from the first Proposition. To obtain the second exact sequence we choose a

normal decomposition P = T ⊕ L. Then QS = In+1(S)⊗Wn(R) T ⊕Wn(S)⊗Wn(R) L. The

exactness of the second sequence amounts therefore to that of

In+1(R)⊗Wn(R) T → In+1(S)⊗Wn(R) T → In+1(S⊗R S)⊗Wn(R) T → . . . .

But this is clear.

We have the notion of descent datum relative to S/R for a truncated display P̃ over S.

The Proposition shows that the functor which associates to a truncated display over R
the base change to a truncated display over S with a descent datum is fully faithful.
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Proposition A.5. Let R→ S be faithfully flat. The base change functor induces an

equivalence of the category Dn(R) of truncated displays of level n over R with the category

of truncated displays of level n over S endowed with a Wn-descent datum relative to S/R
(see: (47)).

Proof. It follows from the last Proposition that this functor is fully faithful. Therefore,

it suffices to show that a Wn-descent datum is always effective.

Following [3] we begin to prove a related descent result. We call a (Wn(R), In+1)-module

(P, Q, ι, ε) which admits a normal decomposition a truncated pair. In particular, the

R-modules P/ι(Q) and Q/ Im ε are projective finitely generated R-modules.

The first lines of the proof of Proposition 1.3 show that a second truncated pair

(P ′, Q′, ι′, ε′) is isomorphic to (P, Q, ι, ε) iff there are isomorphisms of R-modules

P/ι(Q) ∼= P ′/ι(Q′), Q/ Im ε ∼= Q′/ Im ε′.

More precisely, if two such isomorphisms are given, they are induced by an isomorphism

(P, Q, ι, ε)→ (P ′, Q′, ι′, ε′).

We fix projective finitely generated R-modules T̄ and L̄. Let F be the cofibred category

over the category of R-algebras S1, such that an object of FS1 is a truncated pair

(P, Q, ι, ε) over S1 endowed with isomorphisms

P/ι(Q) ∼= S1⊗R T̄ , Q/ Im ε ∼= S1⊗R L̄.

By the remark above any two objects in FS1 are isomorphic.

We fix an object (P0, Q0, ι0, ε0) ∈ FR . We denote by AS1 the automorphism of the base

change (P0, Q0, ι0, ε0)S1 . By [6, Chapter III § 4] the set of isomorphism classes of descent

data on (P0, Q0, ι0, ε0)S is bijective to the nonabelian Cech cohomology set Ȟ1(S/R,A).
We show below that this pointed set is trivial. Equivalently this says that any descent

datum in F relative to S/R is effective.

We can now prove the Proposition. Let P = (P, Q, ι, ε, F, Ḟ) be a truncated display

over S which is endowed with a descent datum. We denote by P̆ = (P, Q, ι, ε) the

associated truncated pair. The descent datum induces a descent datum on the S-modules

P/ι(Q) and Q/ Im ε. We find finitely generated projective R-modules T̄ and L̄ and

isomorphism which are compatible with the descent data on both sides

P/ι(Q) ∼= S⊗R T̄ , Q/ Im ε ∼= S⊗R L̄.

This makes P̆ an object in FS and the descent datum a morphism in FS⊗R S . Therefore,

we know that the descent datum is effective. Because of the fully faithfulness of descent

for truncated pairs the morphisms F and Ḟ descent too.

It remains to show the triviality Ȟ1(S/R,A). We vary now n and we set Fn = F .

Assume that n = 1. In this case we consider the image Ā1 by the map

A1 → Aut P0⊗W1(R) R.

This is just the additive group of an R-module and therefore the Cech cohomology of

Ā1 is trivial. The matrix representation of an element in the kernel of A1 → Ā1 has the

form E +X where E is the unit matrix and X a matrix with coefficients in R-modules.
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In the case pR = 0 we have (E +X )(E +X ′) = E +X +X ′. This shows the Cech

cohomology of the kernel is trivial. By the exact cohomology sequence for Cech

cohomology of presheaves we obtain that H1(S/R,A1) is trivial. In the general case

we consider the filtration of R by pm R and obtain the triviality too.

Let now n > 1. We denote by (P ′0, Q′0, ι
′

0, ε
′

0) ∈ Fn−1 the truncation of (P0, Q0, ι0, ε0).

We denote by An−1 its automorphism group. Let K be the kernel of the natural surjection

of presheaves An → An−1. By induction it suffices to show that the Cech cohomology of

K is trivial. Again we look at the matrix interpretation of K. The matrices in K are of

the form E +X where X has coefficients in an R-module. In the case pR = 0 we have

simply the additive group of this module and therefore the Cech cohomology is trivial.

In the general case we consider the filtration above. By the exact cohomology sequence

we obtain the triviality of H1(S/R,An). This proves the Proposition.
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