
POSITION PAPER

Defining configuring

DAVID C. BROWN
AI in Design Group, Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.

(Received October 31, 1997;Accepted February 5, 1998!

1. INTRODUCTION

This paper is intended to serve as part of the context in which
the other papers in this special issue should be read. Its main
goal is to revisit the basic definition of the configuration
task, on which many people depend, to show some of its
flaws, and to point out how it shapes thinking about the prob-
lem. We are concerned about characterizing the reasoning
processes used to produce a configuration.

2. THE DEFINITION

The most commonly used definition of the configuration
task:

“Given: ~A! a fixed, pre-defined set of components, where
a component is described by a set of properties, ports for
connecting it to other components, constraints at each port
that describe the components that can be connected at that
port, and other structural constraints;~B! some descrip-
tion of the desired configuration; and~C! possibly some
criteria for making optimal selections.”

“Build: One or more configurations that satisfy all the
requirements, where a configuration is a set of compo-
nents and a description of the connections between the
components in the set, or, detect inconsistencies in the
requirements.”

was given by Mittal and Frayman~1989, p. 1936!.
For example, for the problem of building a software sys-

tem from modules, thecomponentsare modules; theports
are the variables that need values or provide values; thecon-
straintsare descriptions of the number and types of values
needed, or constraints about the compatibility of one mod-
ule with another; and thedescriptionof the desired config-

uration is the user’s description of what the software system
is supposed to do.

Mittal and Frayman~1989! point out that three important
aspects of configuration are:

1. one cannot design new components during the config-
uration task;

2. each component is restricted in advance to only be able
to “connect” to other certain components in fixed ways
~i.e., they can’t be modified to get arbitrary connec-
tivity !; and that

3. the solution specifies not only the components in the
configuration but also how they are related.

3. ADEQUACY OF THE DEFINITION

There are some problems with this definition. Even though
we can not completely discuss the issues here, we will try
to give some indication of what they are.

Mittal and Frayman use the word “connect” throughout,
probably influenced by the computer configuration domain
in which they were working. However, not every configu-
ration has components that physically connect. For exam-
ple, the components may influence each other with fields,
or they may touch but not in any fixed position. Configu-
rations are determined by relationships, of which connect
and touch are examples.

There is also an issue with “ports.” For example, it is hard
to imagine where the ports are for some mechanical prob-
lems~such as gear pairs!. This term is also tied to the idea
of configurations whose parts are linked because some-
thing directly flows between them. It is not clear that must
be true for all configurations.

This problem with ports and connection can be handled
by concentrating on the idea of components with relation-
ships between them. A port can be defined as “where” on a
component a relationship acts, and by what kind of relation-
ship it can take part in. It need not be a precise, fixed, single
place, but might be an area, a portion of the component, or

Reprint requests to: David C. Brown, AI in Design Group, Computer
Science Department, Worcester Polytechnic Institute, Worcester, MA01609,
U.S.A. Tel: ~508! 831-5618; Fax:~508! 831-5776; E-mail: dcb@cs.wpi.
edu, http:00www.wpi.edu0;dcb0

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~1998!, 12, 301–305. Printed in the USA.
Copyright © 1998 Cambridge University Press 0890-0604098 $12.50

301

https://doi.org/10.1017/S0890060498124034 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124034

all of it. It might be thought of as a variable with a specific
range. It might be defined abstractly.

In general, the relationships might describe ways in which
one component might influence another. So, gears might have
torque-transferring ports, with a torque-transfer relation be-
tween them. Other components can be influenced by fields.
While others might be influenced by data flow.

Other important issues raised by the Mittal and Frayman
definition include at what level of abstraction the compo-
nents are “predefined,” and whetherall or just some of the
components need to be used in the configuration.

The issue of level of abstraction is related to 1 in 1–3
above. If the components allow additional refinement in any
way—such as color, dimension, or material—there is the
potential for producing something “new.” This is most clear
for dimensional refinement. An abstraction for the shape of
an object’s surface might refine to a square, or to a variety
of distinctly different rectangles.

For more complex shapes the situation is worse, espe-
cially as it might affect the object’s relationships~e.g., touch-
ing, or connecting!. Hence, there is a possible interaction
with point 2 above, as refinement might modify an object’s
allowed connections. This shows that allowing the com-
plete refinement of abstract components takes the problem
to theedgeof the class of problems we can safely refer to as
configuration.

4. DESIGN OR CONFIGURATION?

Refining abstract components by specifying the values for
their attributes is usually thought of as aDesigntask~e.g.,
decide the dimensions for the components of a piston en-
gine!. It may be difficult, and quite nonroutine.

Design is a complex task that means different things to
different people. Most “AI in Design”~Brown & Birming-
ham, 1997! researchers and “Design Theory & Methodol-
ogy” researchers consider design to have several logical
phases~Brown, 1991!. These roughly correspond to the types
of things that are being decided in that phase. These types
of decisions include the functionality, the type of device,
the general types of components, the configuration of types
of components, the actual components, and the values of
the attributes of those components.

Thus, the configuration task is an essentialingredientof
the complete design task. The convenient distinction that is
often made is that a design task produces~i.e., generates, or
synthesizes! values for attributes, whereas a configuration
task does not. Such distinctions are controversial.

For example, if one allows abstract components, there may
be a need to specify some or all of them completely before
a configuration can be produced—particularly if the al-
lowed relationships depend on those values. Note though
that configurations of abstract components can be pro-
duced, and that it may be useful to do so as part of a con-
figuration process.

Some well-known, knowledge-based design systems claim
to explicitly address the configuration task—for example,
MICON ~Birmingham et al., 1992!. Others do not, despite
having a strong flavor of it~e.g., Brown & Chandrasekaran,
1989; Steinberg, 1989!. For example, my AIR-CYL system
essentially configured by selecting between predetermined
configurations.

There are two special cases that occur when the relation-
ships between components are given. The first is when the
components have parameters that need values, but no addi-
tional refinement is needed for the relationships between
components. This corresponds to parametric design, and no
configuration is being done. The second case also has the
characteristic of parametric design, but is the special situa-
tion ~demonstrated in ten Teije et al., 1996!, where the com-
ponents are given astypes; those components are considered
as parameters of the configuration, and the values decided
are instances of those types. By deciding values, the con-
figuration is being refined.

5. LOGICAL INGREDIENTS OF THE
CONFIGURATION TASK

From now on we will try to refer to the process as “config-
uring” and the result as a “configuration.” The task of con-
figuring can belogically divided into several subtasks—we
are not arguing that they are sequential or physically sepa-
rate, as this depends on the techniques used to produce the
configuration.

The Selecting subtask controls which components are se-
lected. To be selected they each need to be able to play a
part in satisfying the requirements, and they need to “fit into”
the~current partial! configuration. Once selected, they have
to be placed into that configuration. We will refer to that
subtask asAssociating.Another logical subtask is Evaluating.

Thus, logically:

Configuring = Selecting + Asociating + Evaluating

where:

Selecting = Choosing components;

Associating = Establishing relationships between com-
ponents; and

Evaluating = Compatibility Testing + Goal Satisfac-
tion Testing.

Note that as Selecting may be imperfect, Associating may
fail. And, as Associating may be imperfect, Evaluating may
return result a result of “poor.”

The actual process used~i.e., the implementation! for a
configuration system depends on how much about each sub-
task is known in advance, on how much knowledge is used
in each subtask, and on the mix and order of these subtasks.

302 D.C. Brown

https://doi.org/10.1017/S0890060498124034 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124034

The actual process used for a configuration system also
depends on whether knowledge from later subtasks can be
moved forward into earlier subtasks to prevent failures. For
example:

Selecting1 = Choosing Components + Compatibility Testing.

It may be possible, for example, to ensure that only com-
patible components are selected. This sort of “knowledge
compilation” process, where one piece of knowledge is com-
piled into another, has even been applied to the generate
and test method, so that components generated do not need
to be tested, as the generator~with the test compiled into it!
only generates correct things~Mostow, 1991!.

6. RELATING AND ARRANGING

Associating, the establishing of relationships between a par-
tial configuration and a potentially compatible selected com-
ponent, can be done at different levels of abstraction. For
example, at the most precise level, geometric information
can be given that describes exactly how and where compo-
nent A touches component B. An abstract relationship might
just specifythatA touches B, for example.

We refer to Associating that uses abstract relationships,
that is, those that permit additional refinement, as Relating.
Associating using precise relationships is referred to as
Arranging.

In some cases:

Configuring5 Selecting1 Relating1 Arranging1 Evaluating,

where

Relating5 Establishing abstract relationships and

Arranging5 Establishing specific relationships.

Examples of abstract~or “logical”! relationships might be
“next to,” “touching,” or “connected to.” These do not spec-
ify the exact placement of one component relative to the
other. Specific relationships, used in Arranging, will pre-
cisely locate one component with respect to another or with
respect to some reference location. We refer to a configu-
ration that has been produced by Arranging as an “arrange-
ment.” This seems to be compatible with colloquial usage
of the term.

If there is any doubt that these concepts are different, imag-
ine three pulleys placed in roughly a triangle, with a rubber
belt that fits over the outside of all three so that the belt is
pulled tight. What has been described here is a configuration.

Precise description of the positions of all three pulleys
will constitute a particular arrangement~Fig. 1!. Moving a
pulley toward another pulley, hence changing the specific
relationships, produces another arrangement~Fig. 2!. Many
tasks that we casually refer to as “configuration”~i.e., Con-
figuring! also include Arranging. It is hard to imagine ar-

ranging being done without at least an implicit Selecting1
Relating. It may be appropriate to consider tasks that we
casually refer to as “arrangement” as configuring tasks with
the Arranging portion dominant. The common task of pro-
ducing a “layout” can be thought of as Arranging in 2D.
Thus:

Laying-out = Arranging in 2D.

To allow all the possibilities present, we need to also in-
clude Arranging in 1 dimension. This points out the strong
connection between configuring and planning, as, in plan-
ning, actions are configured into a plan in 1D, that is, time.
Hence:

Laying-out = Arranging in 2D or Arranging in 1D.

By allowing relationships in “time,” as opposed to “space,”
we can see that in most of the paper above there is an assump-
tion that the relationships that describe the configuration are
in terms of space. However, this need not be the case. It is easy
to imagine relationships in time, weight, or color; for exam-
ple, as these easily map in an analogical manner into space.
Others may be harder to imagine, and are not commonly in-
volved in what we think of as a configuration.

Note too that Associating, and hence both Relating and
Arranging, might be in threeor moredimensions. For ex-
ample, some linguistic theories consider a “place” to be de-
fined in time and space. Also consider the relationships

Fig. 1. Configuration1, arrangement1.

Fig. 2. Configuration1, arrangement2.

Defining configuring 303

https://doi.org/10.1017/S0890060498124034 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124034

involved in software configuration. They too can be mapped
into space, and perhaps also time.

While the analysis in this paper appears to be useful, other
authors have presented different analyses. For example, for
a more fine-grained analyses, see Runkel et al.~1992! and
its references. Another useful discussion can be found in
Wielinga and Schreiber~1997!.

Note that our analysis does raise some problems. For ex-
ample,~a! In Figure 2, is arrangement2 when viewed from
the other side~i.e., lookingout from the page! a different
arrangement?~b! Is it possible to specify an abstract rela-
tionship such that the configuration changes?

Another issue, suggested by discomfort with part of Wiel-
inga and Schreiber’s analysis~1997!, is which subtasks can
be eliminated so that a Configuring task still remains. They
suggest that even if the Selecting and Associating subtasks
are not required and only Evaluating~what they call “veri-
fication”! is done, then it is still a Configuring task. This,
however, appears to miss theessenceof Configuring, that
is, the Associating subtask.

7. TECHNIQUES

A variety of techniques can be used together to support Con-
figuring. Each technique supports different “ingredients” of
the configuring process to a greater or lesser degree. Some
of the key techniques are presented below.

Componentchoice plays a big role in how useful a com-
ponent is in general. A larger and more complex component
is more likely to have strong requirements for which other
components also need to be included, and have less flexible
use. Small components will probably provide more flexibil-
ity, but will require more configuring. Large components can
be considered to be preconfigured sets of smaller components.

Experience and Knowledgeaffect the directness of the
search for a configuration. Knowledge allows us to build
structured descriptions of the available components, so that
search is reduced. Experience allows us to build previously
discovered subconfigurations or heuristic into the system,
providing preferences that reduce errors.

Constraints are introduced by decisions. Selection of
components introduces new variables and new constraints
~Mittal & Falkenhainer, 1990!. Thus, in general, configu-
ration is a sequence ofConstraint Satisfaction Problems
~CSPs!, a DynamicCSP. Constraints can be used to record
decisions made which do not directly correspond to objects
in the system. Such apartial choice ~Frayman & Mittal,
1987! can describe something that must be true of sub-
sequent choices. In aleast commitmentmanner this re-
stricts the set of appropriate components, without deciding
them.

Hierarchies record abstractions that are used to imple-
ment a least-commitment strategy, to allow a top-down strat-
egy, to allow refinement guided by constraints, and to avoid
the combinatorics produced by considering excessive de-

tail too early. AComponenthierarchy groups specific com-
ponents into types and subtypes. AFunctional hierarchy
provides a way of storing functions organized by type and
abstractness.Part-subparthierarchies can be used for func-
tions, for components, or both~Lee et al., 1992!. A partic-
ular decomposition, if selected, provides a preformed
configuration due to the part-of relationships imposed.

Templatesrefer to any preformed piece of configuration
~i.e., from past experience!. A template may associate func-
tional and0or structural items, or record a decomposition.
Templates include components and relationships between
them at some level of abstraction. If alternative templates
are available then selection criteria may be needed, or both
alternatives can be explored.

Key Componentscorrespond to those that are~almost!
always required, or those on which many other choices de-
pend, suggesting that their correct choice should take pri-
ority ~Mittal & Frayman, 1989!.

8. SUMMARY

We have discussed the definition of the configuration task,
including some of its inadequacies; have described the re-
lationship between design and configuration; have outlined
one view of the problem-solving ingredients of configura-
tion; and have related these ingredients to some of the dif-
ferent approaches to implementing the configuration task.

ACKNOWLEDGMENTS

This paper is a revised portion of “Some Thoughts on Configura-
tion Processes,” that appeared inProc. AAAI 1996 Fall Sympo-
sium on Configuration. That paper was extracted from a longer
1992 report, sponsored by and written for Digital Equipment Cor-
poration. The author would also like to acknowledge the feedback
from other members of the WPI AI in Design Group, and from Dr.
Mark Klein.

REFERENCES

Birmingham, W., Gupta, A., & Siewiorek, D.~1992!. Automating the de-
sign of computer systems: The MICON project, Jones & Bartlett Pub-
lishers, Boston, MA.

Brown, D.C. ~1991!. Design. InEncyclopedia of Artificial Intelligence,
2nd ed.,~Shapiro, S.C., Ed.!, Wiley-Interscience, New York.

Brown, D.C., & Birmingham, W.~Eds.!. ~1997!. Special double issue of
IEEE Expert on AI in Design, 12(2), 3.

Brown, D.C., & Chandrasekaran, B.~1989!. Design problem solving:
Knowledge structures and control strategies. Research Notes in Arti-
ficial Intelligence Series, Pitman Publishing, Ltd., London, England.

Frayman, F., & Mittal, S.~1987!. COSSACK: A Constraints-Based Expert
System for Configuration. InKBES In Engineering: Planning and De-
sign, ~Sriram, D., & Adey, B., Eds.!, pp. 143–166. Computational Me-
chanics Publications, Southampton, U.K.

Lee, C.-L., Iyengar, G., & Kota, S.~1992!. Automated configuration de-
sign of hydraulic systems. InAI in Design ’92. ~Gero, J.S., Ed.!, pp. 61–
82. Kluwer Academic, Dordrecht, The Netherlands.

Mittal, S., & Falkenhainer, B.~1990!. Dynamic constraint satisfaction prob-
lems.Proc. 8th National Conf. Artificial Intelligence, AAAI-90, 25–32.

304 D.C. Brown

https://doi.org/10.1017/S0890060498124034 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124034

Mittal, S., & Frayman, F.~1989!. Towards a generic model of configura-
tion tasks.International Joint Conf. Artificial Intelligence, IJCAI-89,
1395–1401.

Mostow, J.~1991!. A transformation approach to knowledge compilation.
In Automating Software Design, ~M.R. Lowry & R.D. McCartney, Eds.!,
MIT Press, pp. 231–259. Cambridge, Massachusetts.

Runkel, J., Birmingham, W., Darr, T., Maxim, B., & Tommelein, I.~1992!.
Domain independent design system: Environment for rapid develop-
ment of configuration design systems. InArtificial Intelligence in De-
sign ’92, ~Gero, J.S., Ed.!, pp. 21–40. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Steinberg, L.~1989!. Design as refinement plus constraint propagation:
The VEXED experience.Int. Joint Conf. Artifical Intelligence, IJCAI-
89, 830–834.

ten Teije, A., van Harmelen, F., Schreiber, G., & Wielinga, B.~1996!. Con-
struction of problem-solving methods as parametric design.KAW’96:
Tenth Knowledge Acquisition for Knowledge-Based Systems Work-
shop, Calgary, Alberta, Canada.~http:00ksi.cpsc.ucalgary.ca0KAW0
KAW960KAW96Proc.html!

Wielinga, B., & Schreiber, G.~1997!. Configuration-design problem solv-
ing. IEEE Expert, 12~2!, 49–56.

Defining configuring 305

https://doi.org/10.1017/S0890060498124034 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124034

