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The paper deals with blow-up for the solutions of an evolution problem consisting in
a semilinear wave equation posed in a bounded C1,1 open subset of R

n, supplied
with a Neumann boundary condition involving a nonlinear dissipation. The typical
problem studied is

utt − ∆u = |u|p−2u in [0, ∞) × Ω,

u = 0 on (0, ∞) × Γ0,

∂νu = −α(x)(|ut|m−2ut + β|ut|µ−2ut) on (0, ∞) × Γ1,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

where ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, σ(Γ0) > 0, 2 < p � 2(n − 1)/(n − 2) (when n � 3),
m > 1, α ∈ L∞(Γ1), α � 0 and β � 0. The initial data are posed in the energy space.
The aim of the paper is to improve previous blow-up results concerning the problem.
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1. Introduction

We deal with the evolution problem consisting on a semilinear wave equation posed
in a bounded subset of R

n, supplied with a Neumann boundary condition involv-
ing a nonlinear dissipation. More precisely, we consider the initial–boundary-value
problem

utt − ∆u = f(x, u) in (0,∞) × Ω,

u = 0 on (0,∞) × Γ0,

∂νu = −Q(x, ut) on (0,∞) × Γ1,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)
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where u = u(t, x), t � 0, x ∈ Ω, and ∆ denotes the Laplacian operator with respect
to the x variable. We assume that Ω is a bounded and C1,1-open subset of R

n

(n � 1), ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅ with Γ0 and Γ1 being measurable with respect
to the natural (Lebesgue) measure on the manifold Γ = ∂Ω, henceforth denoted
by σ, and σ(Γ0) > 0. These properties of Ω, Γ0 and Γ1 are adopted, without
further comments, throughout the paper. The initial data are in the energy space,
i.e. u0 ∈ H1(Ω) and u1 ∈ L2(Ω), with the compatibility condition u0|Γ0 = 0 (in
the trace sense).

Moreover, Q represents a nonlinear boundary damping and, roughly, Q(x, v) �
α(x)(|v|m−2v + β|v|µ−2v), 1 < µ � m, β � 0, α ∈ L∞(Γ1), α � 0. When β > 0
and µ = 2 the term Q describes a realistic dissipation rate, linear for small v
and superlinear for large v (see, for example, [35]), possibly depending on the space
variable, while when β = 0 and α = 1 it is a pure power model nonlinearity. Finally,
f is a nonlinear source and roughly f(x, u) � |u|p−2u, 2 < p � 2∗, where as usual
2∗ denotes the Sobolev critical exponent 2n/(n − 2) when n � 3 and 2∗ = ∞ when
n = 1, 2.

The presence of the boundary damping in (1.1) plays a critical role in the context
of boundary control (see, for example, [12–15,28,29,31,34,58]). For this reason, and
for their clear physical meaning, problems such as (1.1) are the subject of a wide
literature. In addition to the papers already quoted, see also [9–11,16,17,21,24,32,
33,44,47,56].

The analysis of problems like (1.1) is related to the treatment of quasi-linear
wave equations with Neumann boundary conditions involving source terms (see
[4–6,30,43,55]).

In order to clearly describe the specific subject of this paper we consider prob-
lem (1.1) when f and Q are exactly the model nonlinearities, i.e. when problem (1.1)
reduces to

utt − ∆u = |u|p−2u in (0,∞) × Ω,

u = 0 on (0,∞) × Γ0,

∂νu = −α(x)(|ut|m−2ut + β|ut|µ−2ut) on (0,∞) × Γ1,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

with 1 < µ � m, β � 0, α ∈ L∞(Γ1), α � 0 and 2 < p � 2∗.
The local existence and uniqueness for weak solutions of problem (1.2) when

2 < p � 1 + 2∗/2 was first proved in [56, theorem 4] (see theorem 2.6 herein). In
the literature this parameter range is often referred to as the subcritical/critical
one, since the Nemytskii operator u �→ |u|p−2u is locally Lipschitz from H1(Ω) to
L2(Ω). In this case the nonlinear semigroup theory is directly applicable.

Theorem 4 in [56] was subsequently extended to more general nonlinearities Q
and f , of non-algebraic type, in [9, 11]. Moreover, at least when α is constant,
Hadamard well-posedness for problem (1.2) follows from the results in [5], dealing
with more general versions of problem (1.1), possibly involving internal nonlinear
damping and boundary source terms. It is worth observing that, when no internal
damping is present in the equation, the well-posedness result in [5] only applies to
the subcritical/critical range 2 < p � 1+2∗/2, due to [5, assumption 1.1]. Moreover,
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when u0 and u1 are small (in the energy space) the solutions of (1.2) are global in
time.

On the other hand, blow-up results for problem (1.2) are much less common in the
literature. In the particular case Γ1 = ∅ (the same arguments work also when α ≡ 0)
it is well known that, for a particular choice of data, local solutions of problem (1.2),
when they exist, blow up in finite time (see, for example, [2,22,25–27,36,37,48]; we
also refer the reader to the related papers [38,39], which deal with boundary source
terms). Payne and Sattinger [45] introduced the so-called ‘potential-well theory’ for
the semilinear wave equation with Dirichlet boundary condition, and, in particular,
blow-up for positive initial energy was proved. We also mention [20], which deals
with the equation utt − ∆u + |ut|m−2ut = |u|p−2u in [0,∞) × Ω with homogeneous
Dirichlet boundary conditions when 2 < p � 1 + 2∗/2 and m > 1; it was the first
paper to show the competition between nonlinear damping and source terms. In
particular, it was proved in [20] that solutions may blow up in finite time (depending
on initial data) if and only if m < p. The result was subsequently generalized to
positive initial energy and abstract evolution equations in several papers (see, for
example, [40, 46,52]).

The problem of global non-existence for solutions of (1.2) when Γ1 
= ∅ and m = 2
was studied in [54] using the classical concavity method of Levine, which is no longer
available for nonlinear damping terms. The first blow-up result for problem (1.2)
in the general case m > 1 (and 2 < p � 1 + 2∗/2) is contained in [56]. In order to
relate it, we need to introduce some basic notation. We denote by ‖ · ‖p the norm
in Lp(Ω) and the norm in [Lp(Ω)]n. We also introduce the Hilbert space

H1
Γ0

(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}

(where u|Γ0 is intended in the trace sense), equipped with the norm ‖∇u‖2, which
is equivalent, by a Poincaré-type inequality (see [57]), to the standard one. We also
introduce the functionals

J(u) =
‖∇u‖2

2

2
−

‖u‖p
p

p
and K(u) = ‖∇u‖2

2 − ‖u‖p
p (1.3)

for u ∈ H1
Γ0

(Ω). The energy associated with initial data u0 ∈ H1
Γ0

(Ω) and u1 ∈
L2(Ω) is denoted by E(u0, u1) := 1

2‖u1‖2
2 + J(u0). Moreover, we set

d = inf
u∈H1

Γ0
(Ω)\{0}

sup
λ>0

J(λu). (1.4)

It is well known that d > 0 (see lemma 4.1, which clarifies this property, and
also remark 4.2, where a variational characterization of d is recalled). Finally, we
introduce the ‘bad part of the potential well’ (this terminology was coined in [7])

Wu := {(u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) : K(u0) � 0 and E(u0, u1) < d}. (1.5)

Trivially, if E(u0, u1) < 0, then (u0, u1) ∈ Wu, since p > 2. The situation is
described clearly by figure 1.

In particular [56, theorem 7] asserts that solutions blow up in finite time if
(u0, u1) ∈ Wu and the further condition

m < m0(p) :=
2(n + 1)p − 4(n − 1)

n(p − 2) + 4
(1.6)
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d

E(u0,u1)

Legend:
no initial data
data in Wu with
negative energy
data in Wu with

non-negative energy

||∇u0||2

Figure 1. The sets of initial data considered by [3], having negative
initial energy, and those considered only in the present paper.

holds. Note that m0(p) > 2 when p > 2, so the case when 1 < m � 2 is fully
covered; but, when m > 2, condition (1.6) is rather restrictive (see figure 2).

In [6,11] the blow-up problem is also considered. These papers deal with a mod-
ified version of (1.2), where internal damping and boundary source terms are also
present. These papers do not include the assumption (1.6), since the combination
of internal and boundary sources is more effective in producing blow-up.

As for problem (1.2) without boundary sources, Gerbi and Said-Houari [21] prove
exponential growth, but not blow-up, for solutions of (1.2) when m < p. A general-
ized version of assumption (1.6) also appears in the recent paper [1], dealing with
much more general Kirchhoff systems and a larger class of initial data.

Assumption (1.6) was first skipped in [3], where blow-up for a modified version of
problem (1.2) is proved when m < 1 + p/2 and E(u0, u1) < 0. Even if the blow-up
result in [3] is stated in the presence of an internal damping, one easily sees that
the arguments in the proof also apply to problem (1.2). Clearly, assumption m <
1 + p/2 is more general than (1.6), since m0(p) < 1 + p/2 for p > 2 (figure 2). The
improvement in the assumption was obtained by using an interpolation estimate in
the full scale of Besov spaces instead of in the Hilbert scale used in [56].

Assumption (1.6) was also skipped in the more recent papers [18, 41], which
deal with the one-dimensional case n = 1, when β = 0 and α ≡ 1. Blow-up for
problem (1.2) is proved there when E(u0, u1) < d and either

(i) m < 1 + p/2 or

(ii) m � 1 + p/2 and |Ω| is sufficiently large.

The arguments used by Feng et al . [18] and Liu et al . [41] in the two cases are
different. Consequently, in dimension 1 the line m = p is not the threshold between
global existence and blow-up for suitable data. A natural conjecture is then that
the same phenomenon occurs in a higher spatial dimension, n, even if the one-
dimensional case is sometimes different from the higher-dimensional one (see, for
example, [49,50], where a similar situation occurs for well-posedness, and the related
paper [51]). Unfortunately, the arguments used to handle the case m � 1 + p/2
cannot be adapted to n � 2.
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m

1
2

2

2

2

1

m = p

m = p

m = 1 + p/2

m = 1 + p/2

p

p

m = m0( p)

m = m0( p)

(a)

(b)

2(n − 1)/(n − 2)

2(n − 1)/(n − 2)

2+2/(n − 4)

m

region covered by the previous and present results
region covered only by the present result

Figure 2. The sets of the (p, m) considered in [56] and in the present paper, in the two
cases (a) n = 1, 2 and (b) n � 3. The two cases are shown with different scales due to the
unboundedness of the sets considered in the first case.

The aim of this paper is to show that the technique in [56] can be adapted to
cover at least the case m < 1 + p/2. In this way we extend the blow-up result
from [3] to positive initial energy while extending the result from [41] to n � 1.
Instead of using interpolation theory, we adapt a more elementary estimate, used
in [18,41] when n = 1, to the case when n � 1.

Our main result concerning problem (1.2) is as follows.

Theorem 1.1. Let α ∈ L∞(Γ1), α � 0, β � 0,

2 < p � 1 + 2∗/2, 1 < m < 1 + p/2
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and (u0, u1) ∈ Wu. Then the weak solution u of problem (1.2) blows up in finite
time, i.e. there exists Tmax < ∞ such that ‖u(t)‖p → ∞ (and so also ‖u(t)‖∞ → ∞
and ‖∇u(t)‖2 → ∞) as t → T−

max.

Remark 1.2. The meaning of weak solutions will be made precise below. Moreover,
it will be clear (after the proof) that the parameter range 2 < p � 1 + 2∗/2 in
theorem 1.1 can be extended to 2 < p � 2∗, but when 1 + 2∗/2 < p � 2∗ we merely
obtain global non-existence of weak solutions, since a local existence theorem is
missing.

The paper is organized as follows. In § 2 we recall (from [56]) our main assump-
tions, local existence and potential-well theories for problem (1.1), with some addi-
tional remarks. Section 3 is devoted to stating and proving our main result, i.e. the-
orem 3.2, on problem (1.1). In § 4 we show that, when applying theorem 3.2 to
problem (1.2), we obtain theorem 1.1.

2. Preliminaries

In this section we recall some material from [56], to which we refer for most of the
proofs. We start by recalling the assumptions on Q and f needed for local existence.

(Q1) Q is a Carathéodory real function in Γ1 × R, and there exist α ∈ L1(Γ1),
α � 01, and an exponent m > 1 such that, if m � 2,

(Q(x, v) − Q(x, w))(v − w) � α(x)|v − w|m

for all x ∈ Γ1, v, w ∈ R, while, if 1 < m < 2,

(Q(x, v) − Q(x, w))(v − w) � α(x)||v|m−2v − |w|m−2w|m′

for all x ∈ Γ1, v, w ∈ R, where 1/m + 1/m′ = 1;

(Q2) there exist 1 < µ � m and c1 > 0 such that

|Q(x, v)| � c1α(x)(|v|µ−1 + |v|m−1)

for all x ∈ Γ1, v ∈ R.

Remark 2.1. The model nonlinearity

Q0(x, v) = α(x)(|v|µ−2v + |v|m−2v), 1 < µ � m, α � 0, α ∈ L1(Γ1), (2.1)

satisfies (Q1) and (Q2). Indeed, while (Q2) is verified trivially, assumption (Q1)
holds, when m � 2, up to multiplying α by an inessential positive constant, due to
the elementary inequality

(|v|m−2v − |w|m−2w)(v − w) � const.|v − w|m, v, w ∈ R
2. (2.2)

When 1 < m < 2 we get (Q1) by applying (2.2) to m′ > 2, |v|m−2v and |w|m−2w.
1The integrability of α on Γ1, although not explicitly assumed in [56, theorem 4], was tacitly

used there.
2This is a consequence of the boundedness of the real function (|t − 1|m−2(t − 1))/(|t|m−2t − 1)

when m � 2.
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We note, for future use, some consequences of (Q1) and (Q2). First, it follows
that

Q(x, v)v � α(x)|v|m (2.3)

for all x ∈ Γ1, v ∈ R. Moreover, Q(x, ·) is increasing for all x ∈ Γ1, and Q(·, 0) ≡ 0.
Then, after setting

Φ(x, u) =
∫ u

0
Q(x, s) ds, (2.4)

we obtain

Φ(x, u) � α(x)
m

|v|m for all x ∈ Γ1, v ∈ R. (2.5)

We now introduce some notation. When 1 < q � ∞ we denote by Lq(Γ, α) the Lq-
space on Γ associated with the measure µα defined by µα(A) =

∫
A

α(x) dσ for any
measurable subset A of Γ , while Lq(Γ ) denotes the standard Lq-space, i.e. Lq(Γ ) =
Lq(Γ, 1). An analogous convention will be adopted on Γ1 and in (0, T ) × Γ1 for
T > 0 (the measure µα being replaced by dt × µα in the latter case). Moreover, for
simplicity we shall write

‖ · ‖q,Γ,α := ‖ · ‖Lq(Γ,α), ‖ · ‖q,Γ := ‖ · ‖Lq(Γ ),

‖ · ‖q,Γ1,α := ‖ · ‖Lq(Γ1,α), ‖ · ‖q,Γ1 := ‖ · ‖Lq(Γ1).

Our assumption concerning f is as follows.

(F1) f is a Carathéodory real function in Ω × R, f(x, 0) = 0 and there exist p > 2
and c2 > 0 such that

|f(x, u) − f(x, v)| � c2|u − v|(1 + |u|p−2 + |v|p−2)

for all x ∈ Ω, u, v ∈ R.

Remark 2.2. The model nonlinearity

f0(x, u) = a|u|q−2u + b|u|p−2u, 2 � q < p, a, b ∈ R, (2.6)

satisfies (F1), due to the elementary inequality

||u|s−2u − |v|s−2v| � const.|v − w|(1 + |u|s−2 + |v|s−2), u, v ∈ R,

which holds for s � 2.

We define precisely the definition of weak solution used (implicitly) in [56].

Definition 2.3. When (Q1), (Q2) and (F1) hold and 2 < p � 2∗ we say that u is
a weak solution of problem (1.1) in [0, T ], T > 0, if

(a) u ∈ C([0, T ];H1
Γ0

(Ω)) ∩ C1([0, T ];L2(Ω)),

(b) the spatial trace of u on (0, T ) × Γ (which exists by the trace theorem) has a
distributional time derivative on (0, T )×Γ1, belonging to Lm((0, T ) × Γ1, α),
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(c) for all ϕ ∈ C([0, T ];H1
Γ0

(Ω)) ∩ C1([0, T ];L2(Ω)) ∩ Lm((0, T ) × Γ1, α) and for
almost all t ∈ [0, T ] the distribution identity∫

Ω

utϕ|t0 =
∫ t

0

∫
Ω

utϕt − ∇u∇ϕ +
∫ t

0

∫
Ω

f(·, u)ϕ −
∫ t

0

∫
Γ1

Q(·, ut)ϕ (2.7)

holds,

(d) u(0) = u0 and ut(0) = u1.

We say that u is a weak solution of problem (1.1) in [0, T ) if u is a weak solution in
[0, T ′] for all T ′ ∈ (0, T ). Finally, we say that a weak solution u in [0, T ) is maximal
if u cannot be seen as a restriction of a weak solution in [0, T ′), T < T ′.

Remark 2.4. The term
∫ t

0

∫
Ω

f(·, u)ϕ in (2.7) makes sense by (F1), the continu-
ity of Nemytskii operators and the Sobolev embedding theorem. Recognizing that
the last term in the right-hand side of (2.7) makes sense requires some deliber-
ation. First, we note that, by (b), we have α1/mut ∈ Lm((0, T ) × Γ1) and then
α1/m′ |ut|m−1 ∈ Lm′

((0, T ) × Γ1). Since ϕ ∈ Lm((0, T ) × Γ1, α), we have α1/mϕ ∈
Lm((0, T )×Γ1). Consequently, α|ut|m−1ϕ ∈ L1((0, T )×Γ1). Now, since µα(Γ1) < ∞
and µ � m, we have Lm((0, T ) × Γ1, α) ⊂ Lµ((0, T ) × Γ1, α). Hence, we can repeat
previous arguments with µ instead of m to show that α|ut|µ−1ϕ ∈ L1((0, T ) × Γ1).
Consequently, by (Q2) we get Q(·, ut)ϕ ∈ L1((0, T ) × Γ1).

Remark 2.5. For clarity, we state the following facts. Since the equation and
boundary conditions in problem (1.1) are autonomous, the choice of the initial
time as zero is purely conventional. Consequently, for any a ∈ R, we shall speak of
weak solutions in [a, a + T ], T > 0, of the problem

utt − ∆u = f(x, u) in (a,∞) × Ω,

u = 0 on (a,∞) × Γ0,

∂νu = −Q(x, ut) on (a,∞) × Γ1,

u(a, x) = u0(x), ut(a, x) = u1(x) in Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

when (a)–(d) in definition 2.3 hold true with 0 and T replaced by a and a + T ,
respectively. Moreover, we have the following.

(i) The function u is a weak solution of (1.1) in [0, T ] if and only if the time-shifted
function τau defined by

(τau)(t) := u(t − a) (2.9)

is a weak solution of (2.8) in [a, a + T ].

(ii) Let b ∈ R, let 0 < T1 < T2, let u1 be a weak solution in [b, b + T1] of
problem (2.8) with a = b and let u2 be a weak solution in [b + T1, b + T2]
of problem (2.8) with a = b + T1. Define u in [b, b + T2] by u(t) = u1(t) for
t ∈ [b, b + T1] and u(t) = u2(t) for t ∈ (b + T1, b + T2]. Then u is a weak
solution of (2.8) with a = b in [b, b + T2] if and only if u1(b + T1) = u2(b + T1)
and (u1)t(b + T1) = (u2)t(b + T1).

We now recall [56, theorem 4].
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Theorem 2.6. Suppose that (Q1) and (Q2) and (F1) hold, that 2 < p � 1 + 2∗/2,
and u0 ∈ H1

Γ0
(Ω), u1 ∈ L2(Ω). Then there is T > 0 and a unique weak solution of

(1.1) in [0, T ]. Moreover, u satisfies the energy identity

E(t) − E(s) = −
∫ t

s

∫
Γ1

Q(·, ut)ut (2.10)

for 0 � s � t, where

E(t) = E(u(t), ut(t)) = 1
2‖ut(t)‖2

2 + 1
2‖∇u(t)‖2

2 −
∫

Ω

F (·, u(t)) (2.11)

and

F (x, s) =
∫ s

0
f(x, τ) dτ for x ∈ Ω, s ∈ R. (2.12)

Remark 2.7. Actually, theorem 2.6 was stated in [56] for regular (i.e. C1) domains,
but one can immediately see that Ω can be also disconnected (even if this case is
not of particular interest).

As a consequence of the arguments used in the proof of theorem 2.6, we have the
following continuation principle, which was used in the quoted paper without an
explicit proof. For the sake of clarity, we include its proof here.

Theorem 2.8. Suppose that (Q1) and (Q2) and (F1) hold, that 2 < p � 1 + 2∗/2,
and u0 ∈ H1

Γ0
(Ω), u1 ∈ L2(Ω). Then (1.1) has a unique weak maximal solution u

in [0, Tmax). Moreover, the following alternatives hold:

(i) Tmax = ∞; or

(ii) Tmax < ∞ and limt→T −
max

‖u(t)‖H1
Γ0(Ω)

+ ‖ut(t)‖2 = ∞.

Proof. By the arguments in the proof of theorem 2.6 it easily follows that the
assured existence time T depends on the initial data u0 and u1 as a decreasing
function of ‖u0‖2

H1
Γ0

(Ω) + ‖u1‖2
2, which is henceforth denoted by

T ∗ = T ∗(‖u0‖2
H1

Γ0
(Ω) + ‖u1‖2

2).

From this remark the statement follows in a standard way. More precisely, we first
construct the unique maximal solution u as follows. We set U to be the set of all
weak solutions of (1.1) in right-open intervals [0, T ′), T ′ > 0.

Then we claim that for any couple u, v of elements of U , weak solutions respec-
tively in [0, Tu) and [0, Tv), u = v in the intersection [0, T ) of their domains. To
prove our claim we set

t0 := sup{t ∈ [0, T ) : u(s) = v(s) for all s ∈ [0, t)}, (2.13)

so t0 � T . Now we suppose by contradiction that t0 < T . Since

u, v ∈ C([0, t0];H1
Γ0

(Ω)) ∩ C1([0, t0];L2(Ω))

we easily get that u(t0) = v(t0) := v0 and ut(t0) = vt(t0) := v1. Now since u, v are
weak solutions (see remark 2.5) of (2.8) with a = t0 and initial data v0, v1, we see

https://doi.org/10.1017/S0308210515000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000165


768 A. Fiscella and E. Vitillaro

that τ−t0u and τ−t0v (defined in (2.9)) are both weak solutions in [0, T −t0) of (1.1)
with initial data v0 and v1. Hence, by the uniqueness assertion in theorem 2.6 we
get that τ−t0u = τ−t0v in [0, T ′′], T ′′ = T ∗(‖v0‖2

H1
Γ0

(Ω) + ‖v1‖2
2) > 0. Consequently,

u = v in [0, t0 + T ′′], contradicting (2.13). Hence, t0 = T , proving our claim. To
construct the maximal weak solution we define u to coincide with any element of
U in the union of the domains.

We now need to prove the alternative statement. We suppose, by contradiction,
that

Tmax < ∞ and lim inf
t→T −

max

(‖u(t)‖H1
Γ0

(Ω) + ‖ut(t)‖2) < ∞. (2.14)

Then there is a sequence tn → T−
max such that ‖u(tn)‖H1

Γ0
(Ω) and ‖ut(tn)‖2 are

bounded, so
M := sup

n
(‖u(tn)‖2

H1
Γ0

(Ω) + ‖ut(tn)‖2
2) < ∞.

By theorem 2.6 and the monotonicity of T ∗ asserted earlier for each n ∈ N, the
problem (1.1) with initial data u(tn) and ut(tn) has a unique weak solution vn in
[0, T1], T1 = T ∗(M). Hence, for each n ∈ N, wn = τtnvn is a weak solution of (2.8) in
[tn, tn +T1] with a = tn and initial data u(tn) and ut(tn). It follows (see remark 2.5)
that u can be extended to a weak solution of (1.1) in [0, tn + T1], contradicting the
maximality of u for n large enough.

We now recall from [56] the additional assumption on f needed to set up the
potential-well theory.

(F2) There exists c3 > 0 such that

F (x, u) � c3

p
|u|p

for all x ∈ Ω and u ∈ R, where F is the primitive of f defined in (2.12).

Remark 2.9. Recalling remark 2.2, it is clear that f0 in (2.6) satisfies (F1) and
(F2) when 2 � q < p, a � 0 and b ∈ R.

For 2 < p � 2∗, we set

K0 = sup
u∈H1

Γ0
(Ω),u �=0

∫
Ω

F (·, u)
‖∇u‖p

2
. (2.15)

By (F1) and (F2), we have 0 � K0 � p−1c3B
p
1 , where B1 is the optimal constant

of the Sobolev embedding H1
Γ0

(Ω) ↪→ Lp(Ω), i.e.

B1 = sup
u∈H1

Γ0
(Ω),u �=0

‖u‖p

‖∇u‖2
. (2.16)

We define3

λ1 =
(

1
pK0

)1/(p−2)

, E1 =
(

1
2

− 1
p

)
λ2

1 (2.17)

3This is the correct form of the equation for λ1, the unique positive maximum point of the
function 1

2λ2 − K0λp; in [56] the definition contains a typographical error.

https://doi.org/10.1017/S0308210515000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000165


Blow-up for the wave equation 769

when K0 > 0, while λ1 = E1 = +∞ when K0 = 0, and

W = {(u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) : E(u0, u1) < E1 and ‖∇u0‖2 > λ1}, (2.18)

where, in accordance with (2.11),

E(u0, u1) := 1
2‖u1‖2

2 + 1
2‖∇u0‖2

2 −
∫

Ω

F (·, u0). (2.19)

Clearly, when K0 = 0 then W = ∅, so what follows is of interest only when K0 > 0.
On the other hand, when K0 = 0 all weak solutions are global (see [56, p. 389]).
We recall the following result [56, lemma 2 (ii)].

Lemma 2.10. Suppose that the assumptions of theorem 2.6, together with (F2), hold
true. Let u be the maximal solution of (1.1). Assume moreover that (u0, u1) ∈ W .
Then there is λ2 > λ1 such that ‖∇u(t)‖2 � λ2 and ‖u(t)‖p � (pK0/c3)1/pλ2 for
all t ∈ [0, Tmax).

Our final assumptions are as follows.

(Q3) There exists a c4 > 0 such that

Q(x, v)v � c4α(x)(|v|µ + |v|m), 1 < µ � m,

for all x ∈ Γ1, v ∈ R.

(F3) There is an ε0 > 0 such that for all ε ∈ (0, ε0] there exists a c5 = c5(ε) > 0
such that

f(x, u)u − (p − ε)F (x, u) � c5|u|p

for all x ∈ Ω, u ∈ R.

Remark 2.11. Clearly, Q0 given in (2.1) also satisfies (Q3) with c4 = 1, as well as
(Q1) and (Q2) (as noted in remark 2.1). Moreover, (Q3) immediately follows from
(2.3) when m = µ, while it is not a consequence of (Q1) and (Q2) when µ < m.
Next, in addition to satisfying (F1) and (F2) (see remark 2.9), f0 given in (2.6)
satisfies (F3) when a � 0 and b > 0, with ε0 = p − q > 0 and c5(ε) = bε/p. Next
(F3) implies the standard growth condition

f(x, u)u � pF (x, u) for all x ∈ Ω, u ∈ R. (2.20)

Finally, observe that (F1), (F2) and (2.20) cannot be responsible of a blow-up
phenomenon, since f ≡ 0 satisfies them and blow-up does not occur in this case.

3. Main result

This section is devoted to stating and proving our main result. We start with a key
estimate.

Lemma 3.1. Let 1 < m � 1+p/2 and 2 < p � 2∗. Then there is a positive constant
C1 = C1(m, p, Ω, Γ0) such that

‖u‖m
m,Γ1

� C1‖u‖m−1
p ‖∇u‖2 for all u ∈ H1

Γ0
(Ω). (3.1)
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Proof. We first consider the auxiliary non-homogeneous Neumann problem

−∆w + w = 0 in Ω,

∂νw = 1 on Γ.

}
(3.2)

By the Riesz–Fréchet theorem, problem (3.2) has a unique weak solution, i.e. w ∈
H1(Ω) such that ∫

Ω

∇w∇φ +
∫

Ω

wφ =
∫

Γ

φ for all φ ∈ H1(Ω). (3.3)

Moreover, since Ω is bounded and C1,1, by the Agmon–Douglis–Nirenberg regu-
larity estimate (here used in the form stated in [23, theorem 2.4.2.7, p. 126]), we
have w ∈ W 2,q(Ω) for all q > 1. It follows, by Morrey’s theorem [8, corollary 9.15,
p. 285], that w ∈ C1(Ω̄)4.

Now let u ∈ H1(Ω). We claim that |u|m ∈ W 1,1(Ω). Since m � 2∗, by Sobolev
embedding theorem we have |u|m ∈ L1(Ω). Moreover, by using the chain rule for
Sobolev function (see [42, theorem 2.2]), we get that |u|m possesses a weak gradient
∇(|u|m) = m|u|m−2u∇u. Since m � 1 + 2∗/2, using Sobolev embedding theorem
again, we have |u|m−2u ∈ L2(Ω); hence, by the Hölder inequality we get that
∇(|u|m) ∈ [L1(Ω)]n and

‖∇(|u|m)‖1 � m

( ∫
Ω

|u|2(m−1)
)1/2

‖∇u‖2.

Since 2(m − 1) � p and Ω is bounded, it follows that

‖∇(|u|m)‖1 � m|Ω|1/2−(m−1)/p‖u‖m−1
p ‖∇u‖2, (3.4)

where |Ω| denotes the Lebesgue measure of Ω. Our claim is then proved. Conse-
quently (see [8, corollary 9.8 p. 277]), there is a sequence (φn)n in C∞

c (RN ) such
that φn|Ω → |u|m in W 1,1(Ω). By the trace theorem it follows that φn|Γ → |u|m|Γ
in L1(Γ ). Since, in particular, φn ∈ H1(Ω), (3.3) holds with φ = φn for n ∈ N.
Since w, |∇w| ∈ L∞(Ω) we can pass to the limit as n → ∞ to get∫

Ω

∇w∇(|u|m) +
∫

Ω

w|u|m =
∫

Γ

|u|m. (3.5)

Combining (3.4) and (3.5) we have

‖u‖m
m,Γ � ‖w‖∞‖u‖m

m + m‖∇w‖∞|Ω|1/2−(m−1)/p‖u‖m−1
p ‖∇u‖2

for all u ∈ H1(Ω). Since m � p � 2∗ and Ω is bounded, by using the Hölder
inequality again we get

‖u‖m
m,Γ � (‖w‖∞|Ω|1−m/p‖u‖p + m‖∇w‖∞|Ω|1/2−(m−1)/p‖∇u‖2)‖u‖m−1

p .

By now restricting to u ∈ H1
Γ0

(Ω), we use the Poincaré-type inequality recalled
above to get (3.1), where C1 is given by

C1 = ‖w‖∞|Ω|1−m/pB1 + m‖∇w‖∞|Ω|1/2−(m−1)/p,
4We recall, for the reader’s convenience, the definition of Ck(Ω̄) used in [8] for any k ∈ N,

i.e. Ck(Ω̄) := {u ∈ Ck(Ω) : Dαu has a continuous extension on Ω̄ for all α with |α| � k}.
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where B1 is the positive constant defined in (2.16). Since w depends only on Ω, the
proof is complete.

We can finally state our main result.

Theorem 3.2. Suppose that (Q1)–(Q3) and (F1)–(F3) hold, that α ∈ L∞(Γ1),

2 < p � 1 + 2∗/2, 1 < m < 1 + p/2

and (u0, u1) ∈ W , where, recalling the definition (2.18),

W = {(u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) : E(u0, u1) < E1 and ‖∇u0‖2 > λ1}.

Then for any solution of (1.1) we have Tmax < ∞ and ‖u(t)‖p → ∞ (so also
‖u(t)‖∞ → ∞ and ‖∇u(t)‖2 → ∞) as t → T−

max.

Proof. The proof is a variant of the proof of [56, theorem 7], where we use lemma 3.1
instead of the estimate [56, (50)]. Nevertheless, since the proof of [56, theorem 7]
was itself a variant of the proof of [52, theorem 2], in the following we give a self-
contained proof for clarity.

We first claim that our statement reduces to proving that problem (1.1) cannot
have global weak solutions, i.e. weak solutions in the whole of [0,∞). Indeed, once
this fact is proved, then we must have, by theorem 2.8, that Tmax < ∞ and

‖u(t)‖H1
Γ0

(Ω) + ‖ut(t)‖2 → ∞ as t → T−
max. (3.6)

Hence, to prove our claim, we have to show only that also ‖u(t)‖p → ∞ as t → T−
max.

We first note that, by (2.3) and (2.10), the energy function E (defined in (2.11)) is
decreasing. Hence, by (2.11),

1
2‖∇u(t)‖2

2 + 1
2‖ut(t)‖2

2 −
∫

Ω

F (x, u(t)) � E0 (3.7)

for t ∈ [0, Tmax), where E0 := E(u0, u1). Hence, by (F2), we have

1
2‖∇u(t)‖2

2 + 1
2‖ut(t)‖2

2 − c3

p
‖u(t)‖p

p � E0 (3.8)

for t ∈ [0, Tmax). Consequently, by (3.6), we get that ‖u(t)‖p → ∞ too, thus con-
cluding the proof of our claim.

We now have to prove that problem (1.1) cannot have global solutions. We sup-
pose by contradiction that Tmax = ∞. We fix E2 ∈ (E0, E1) and we set

H(t) = H(u(t), ut(t)) = E2 − E(u(t), ut(t)). (3.9)

Since, as noted before, E is decreasing, the function H is increasing and H(t) �
H0 := H(0) = E2 − E0 > 0. In the proof below we shall omit, for simplicity, the
explicit time dependence of u and ut in the notation. By lemma 2.10 we have

H(t) � E2 − 1
2‖∇u‖2

2 +
∫

Ω

F (·, u) � E1 − 1
2λ2

1 +
∫

Ω

F (·, u)

and then, by (2.17) and (F3),

H(t) �
∫

Ω

F (·, u) � c3

p
‖u‖p

p. (3.10)
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We now introduce, as in [20, 40], the main auxiliary function which shows the
blow-up properties of u, i.e.

Z(t) = H1−η(t) + ξ

∫
Ω

utu, (3.11)

where ξ > 0 and η ∈ (0, 1) are constants to be fixed later. In order to estimate the
derivative of Z it is convenient to estimate

I1 :=
d
dt

∫
Ω

utu. (3.12)

Using definition 2.3 we can take ϕ = u in (2.7) and get

I1 = ‖ut‖2
2 − ‖∇u‖2

2 +
∫

Ω

f(·, u)u −
∫

Γ1

Q(·, ut)u (3.13)

almost everywhere in (0,∞). Now we claim that there are positive constants c6 and
c7, depending on p and K0, such that

I1 � 2‖ut‖2
2 + c6‖u‖p

p + c7‖∇u‖2
2 + 2H(t) −

∫
Γ1

Q(·, ut)u (3.14)

in [0,∞). Using (2.11) and (3.9) we can write, for any ε > 0, the identity (3.13) in
the form

I1 = 1
2 (p + 2 − ε)‖ut‖2

2 + 1
2 (p − 2 − ε)‖∇u‖2

2

+
∫

Ω

[f(·, u)u − (p − ε)F (·, u)] + (p − ε)H(t) − (p − ε)E2 −
∫

Γ1

Q(·, ut)u.

(3.15)

Using (F3) for 0 < ε < min{ε0, p − 2}, we consequently get

I1 � 2‖ut‖2
2 +

∫
Ω

[f(·, u)u − (p − ε)F (·, u)] + 1
2 (p − ε − 2)‖∇u‖2

2 − (p − ε)E2

+ (p − ε)H(t) −
∫

Γ1

Q(·, ut)u

� 2‖ut‖2
2 + c5(ε)‖u‖p

p + 1
2 (p − ε − 2)‖∇u‖2

2 − (p − ε)E2 + 2H(t) −
∫

Γ1

Q(·, ut)u.

By lemma 2.10,

1
2 (p − ε − 2)‖∇u‖2

2 − (p − ε)E2 � c7(ε)‖∇u‖2
2 + c8(ε),

where

c7(ε) = 1
2 (p − ε − 2)(1 − λ2

1/λ2
2) and c8(ε) = 1

2 (p − ε − 2)λ2
1 − (p − ε)E2.

Clearly, c7(ε) > 0 and, as ε → 0+,

c8(ε) → 1
2 (p − 2)λ2

1 − pE2 > 1
2 (p − 2)λ2

1 − pE1 = 0,

so, in addition, c8(ε) > 0 for ε sufficiently small. Fixing a sufficiently small ε = ε̄
and setting c6 = c5(ε̄), c7 = c7(ε̄), we conclude the proof of (3.14).
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Now, in order to estimate I1, we estimate the last term in (3.14). Using (Q2),
the Hölder inequality (with respect to µα) and the assumption that α ∈ L∞(Γ1)
we obtain

I2 :=
∣∣∣∣
∫

Γ1

Q(·, ut)u
∣∣∣∣ � c1‖α‖∞,Γ1(‖ut‖µ−1

µ,Γ1,α‖u‖µ,Γ1 + ‖ut‖m−1
m,Γ1,α‖u‖m,Γ1).

Since µ � m, applying the Hölder inequality again, we get

I2 � C2(‖ut‖µ−1
µ,Γ1,α + ‖ut‖m−1

m,Γ1,α)‖u‖m,Γ1 (3.16)

with C2 = C2(µ, m, c1, ‖α‖∞,Γ1 , σ(Γ1)) > 0. By lemma 3.1 we consequently get

I2 � C3(‖ut‖µ−1
µ,Γ1,α + ‖ut‖m−1

m,Γ1,α)‖u‖1−1/m
p ‖∇u‖1/m

2 , (3.17)

where C3 = C3(µ, m, p, c1, ‖α‖∞,Γ1 , Ω, Γ0) > 0. We define

I3 := ‖ut‖µ−1
µ,Γ1,α‖u‖1−1/m

p ‖∇u‖1/m
2 and I4 := ‖ut‖m−1

µ,Γ1,α‖u‖1−1/m
p ‖∇u‖1/m

2 .

It is convenient to write

I3 = ‖ut‖µ−1
µ,Γ1,α‖∇u‖1/m

2 ‖u‖p(1/µ−1/2m)
p ‖u‖1−1/m−p(1/µ−1/2m)

p . (3.18)

We now apply a weighted Young inequality, for any δ > 0, to the first three mul-
tiplicands in the right-hand side of (3.18), with exponents p1 = µ′, p2 = 2m and
p3 = 2mµ/(2m − µ), so that

1
p1

+
1
p2

+
1
p3

= 1

(note that trivially p1, p2 > 1, while p3 > 1 as 1/p3 = 1/µ − 1/2m ∈ (0, 1) since
m � µ > 1). Thus, we get the estimate

I3 � (δ1/(1−µ)‖ut‖µ
µ,Γ1,α + δ‖∇u‖2

2 + δ‖u‖p
p)‖u‖1−1/m−p(1/µ−1/2m)

p (3.19)

and, by particularizing it to the subcase m = µ, we get

I4 � (δ1/(1−m)‖ut‖m
m,Γ1,α + δ‖∇u‖2

2 + δ‖u‖p
p)‖u‖1−1/m−p/2m

p . (3.20)

Moreover, by lemma 2.10 we have ‖u‖p � [c3(pK0)2/(p−2)]−1/p. Hence, since µ � m
implies

1 − 1
m

− p

(
1
µ

− 1
2m

)
� 1 − 1

m
− p

2m
,

we also have

‖u‖1−1/m−p(1/µ−1/2m)
p � [c3(pK0)2/(p−2)]1/µ−1/m‖u‖1−1/m−p/2m

p . (3.21)

By combining (3.17) and (3.19)–(3.21) we get

I2 � C4[S(δ)(‖ut‖µ
µ,Γ1,α + ‖ut‖m

m,Γ1,α) + δ‖∇u‖2
2 + δ‖u‖p

p]‖u‖1−1/m−p/2m
p , (3.22)

where S(δ) = (δ1/(1−µ) + δ1/(1−m)) and

C4 = C4(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0) > 0.
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Now we set

η̄ = −1
p

(
1 − 1

m
− p

2m

)
.

Since m < 1 + p/2, we have η̄ > 0. Moreover,

η̄ =
1

2m
− m − 1

pm
<

1
2m

< 1.

By combining (3.22) and (3.10) we get

I2 � C5[S(δ)(‖ut‖µ
µ,Γ1,α + ‖ut‖m

m,Γ1,α) + δ‖∇u‖2
2 + δ‖u‖p

p]H−η̄(t), (3.23)

where C5 = C5(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0) > 0. Since, by (2.10) and (Q3)
we have

H′(t) � c4(‖ut‖µ
µ,Γ1,α + ‖ut‖m

m,Γ1,α)

and H(t) � H0, by (3.23) we get, for any η ∈ (0, η̄),

I2 � C6[S(δ)H′(t)H(t)−η + δ‖∇u‖2
2 + δ‖u‖p

p], (3.24)

where C6 = C6(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0,H0) > 0. By combining (3.14)
and (3.24) we have the desired estimate for I1, i.e.

I1 � 2‖ut‖2
2+(c6−δC6)‖u‖p

p +(c7−δC6)‖∇u‖2
2+2H(t)−S(δ)H′(t)H−η(t). (3.25)

By choosing δ = min{c6, c7}/(2C6), from (3.25) we get

I1 � 2‖ut‖2
2 + 1

2c6‖u‖p
p + 1

2c7‖∇u‖2
2 + 2H(t) − C7H′(t)H−η(t), (3.26)

where C7 = C7(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0,H0) > 0.
By combining (3.11) and (3.26) we get, for any η ∈ (0, η̄),

Z ′(t) � (1 − η − C7ξ)H−η(t)H′(t) + 2ξH(t) + 2ξ‖ut‖2
2 + 1

2ξc6‖u‖p
p + 1

2ξc7‖∇u‖2
2.

We now fix

η = min
{

η̄

4
,
p − 2
4p

}
∈ (0, 1)

and we restrict to 0 < ξ � (1 − η)/C7. Hence, since H′ � 0, from the previous
estimate it follows that

Z ′(t) � ξc8(‖ut‖2
2 + ‖∇u‖2

2 + ‖u‖p
p + H(t)), (3.27)

where c8 = c8(p, K0) > 0. Next, since

Z(0) = H1−η
0 + ξ

∫
Ω

u0u1,

by fixing ξ = ξ0 = ξ0(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0, u0, u1) > 0 sufficiently small
we have Z(0) > 0, and hence Z(t) � Z(0) > 0 by (3.27). Now we define r = 1/(1−η)
and r̄ = 1/(1− η̄). Since 0 < η < η̄ < 1, we have 1 < r < r̄. Now, using the Cauchy–
Schwarz inequality as well as the elementary inequality (A + B)r � 2r−1(Ar + Br)
for A, B � 0, we have, from (3.11),

Zr(t) �
(

H1−η(t) + ξ0

∣∣∣∣
∫

Ω

utu

∣∣∣∣
)r

� 2r−1(H(t) + ξr
0‖ut‖r

2‖u‖r
2).

https://doi.org/10.1017/S0308210515000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000165


Blow-up for the wave equation 775

We now set q = 2/r = 2(1 − η). Since η < 1/2 − 1/p < 1/2, it follows that q > 1.
We can then apply Young’s inequality with exponents q and q′ = (1 − η)/( 1

2 − η)
to get

Zr(t) � 2r−1(H(t) + ξ2
0‖ut‖2

2 + ‖u‖1/((1/2)−η)
2 ).

Now, since 1/( 1
2 − η) < p, a further application of Young’s inequality yields

‖u‖1/((1/2)−η)
2 � 1 + ‖u‖p

2

and then, as Ω is bounded and H(t) � H0, by the Hölder inequality we get

Zr(t) � C8(H(t) + ‖ut‖2
2 + ‖u‖p

p), (3.28)

where C8 = C8(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0, u0, u1) > 0. By combining (3.27)
and (3.28), as r > 1, we get

Z ′(t) � C9Zr(t) for all t ∈ [0,∞),

where C9 = C9(µ, m, p, c1, c3, K0, ‖α‖∞,Γ1 , Ω, Γ0, u0, u1) > 0. Since r > 1, this final
estimate gives the desired contradiction.

4. Proof of theorem 1.1

This section is devoted to showing that theorem 1.1 is a simple corollary of theo-
rem 3.2. We first need to show that, for problem (1.2), E1 and W , as defined in
(2.17) and (2.18), are merely d and Wu (introduced in (1.4), (1.5)). The proof is an
adaptation of the proof of [19, lemma 4.1].

Lemma 4.1. Suppose f(x, u) = |u|p−2u, 2 < p � 2∗, σ(Γ0) > 0. Then E1 = d and
W = Wu.

Proof. When f(x, u) = |u|p−2u we have K0 = Bp
1/p. Hence,

λ1 = B
−p/(p−2)
1 and E1 =

(
1
2

− 1
p

)
B

−2p/(p−2)
1 . (4.1)

An easy calculation shows that for any u ∈ H1
Γ0

(Ω) \ {0} we have

max
λ>0

J(λu) = J(λ(u)u) =
(

1
2
−1

p

)(
‖∇u‖2

‖u‖p

)2p/(p−2)

, where λ(u) =
‖∇u‖2/(p−2)

2

‖u‖p/(p−2)
p

.

Hence, by (2.16), d = (1/2 − 1/p)B−2p/(p−2)
1 . Combining this result with (4.1), we

have d = E1.
In order to show that W = Wu we first prove that W ⊆ Wu. Let (u0, u1) ∈ W

and suppose, by contradiction, that K(u0) > 0. Hence ‖u0‖p
p < ‖∇u0‖2

2 by (1.3).
Moreover, J(u0) � E(u0, u1) < d = E1 and ‖∇u0‖2 > λ1. Then it follows that

E1 > E(u0, u1) � J(u0) >

(
1
2

− 1
p

)
‖∇u0‖2

2 >

(
1
2

− 1
p

)
λ2

1,

which contradicts (2.17).
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To prove that Wu ⊆ W , we take (u0, u1) ∈ Wu. We note that, by (2.16), we have
J(v) � h(‖∇v‖2) for all v ∈ H1

Γ0
(Ω), where h is defined by

h(λ) =
λ2

2
− Bp

1λp

p
for λ � 0.

One may easily verify that h(λ1) = E1. Then, since J(u0) � E(u0, u1) < E1, we
have ‖∇u0‖2 
= λ1. Moreover, since K(u0) � 0, by (2.16) we have

‖∇u0‖2
2 � ‖u0‖p

p � Bp
1‖∇u0‖p

p

and consequently ‖∇u0‖2 � B
−p/(p−2)
1 = λ1. Then ‖∇u0‖2 > B

−p/(p−2)
1 = λ1, con-

cluding the proof.

Remark 4.2. When f(x, u) = |u|p−2u, d is also equal to the mountain pass level
associated with the elliptic problem

−∆u = |u|p−2u in Ω,

u = 0 on Γ0,

∂νu = 0 on Γ1,

i.e. d = infγ∈Λ supt∈[0,1] J(γ(t)), where

Λ = {γ ∈ C([0, 1];H1
Γ0

(Ω)) : γ(0) = 0, J(γ(1)) < 0}.

The proof of this remark was given in [53, § 4].

We can now prove theorem 1.1.

Proof of theorem 1.1. By remark 2.11 the nonlinearities involved in problem (1.2)
satisfy assumptions (Q1)–(Q3) and (F1)–(F3), so we can apply theorem 3.2. Due
to lemma 4.1 we get exactly theorem 1.1.
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8 H. Brézis. Functional analysis, Sobolev spaces and partial differential equations. Universi-
text (Springer, 2011).

9 M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez. Existence and decay rate
estimates for the wave equation with nonlinear boundary damping and source term. J. Diff.
Eqns 203 (2004), 119–158.

https://doi.org/10.1017/S0308210515000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000165


Blow-up for the wave equation 777

10 M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano. Global solvability and
asymptotic stability for the wave equation with nonlinear boundary damping and source
term. In Contributions to nonlinear analysis, Progress in Nonlinear Differential Equations
and Their Applications, vol. 66, pp. 161–184 (Basel: Birkhäuser, 2006).
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