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Although taxonomic sufficiency (TS) was developed for rapid environmental assessments, it has recently been adopted to study
the spatial patterns of macrobenthos in relation to natural environmental gradients. To accept TS as a routine approach in
wider benthic studies, it needs to be valid for various taxa and geographically different water masses. This study examined the
effects of taxonomic resolution on depth-related multivariate patterns of macrobenthic polychaetes on the western Indian con-
tinental shelf. An extensive data set based on samples collected from a wide geographical area (78–228N latitudes) covering a
large depth gradient (30–200 m) has been analysed. Species level polychaete community data had shown a significant vari-
ation between shallow and deeper waters. Our results indicated that generic and family level data also can detect community
shifts along a depth gradient in a similar way to species level data. The entire western continental margin (200 m depth) is
lying in the oxygen minimum zone (dissolved oxygen ,0.5 ml l21). This study indicated that family level results were suffi-
cient to document the correlations of low oxygen on macrobenthic polychaetes. This study also tested the effects of transform-
ations on depth-related patterns of polychaetes. In multivariate analyses, transformations play a role in defining the balance
between contributions from common and rare species in the measure of similarity of two samples. Our results showed that the
type of transformations did not make any prominent differences in the multivariate analyses.
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I N T R O D U C T I O N

For over two decades, considerable attention has been given to
finding cost-effective methods for benthic studies owing to
their inherent difficulties in sampling and laboratory proces-
sing efforts. Taxonomic sufficiency (TS) (Ellis, 1985), which
is the identification of taxa to taxonomic levels higher than
species, without considerable loss of information about com-
munity response, was found to be a convenient approach to
reduce identification efforts. TS was initially used to identify
effects of pollution on benthic communities (Heip et al.,
1988; Warwick, 1988a, b; Ferraro & Cole, 1990; Gray et al.,
1990; Warwick et al., 1990; Somerfield & Clarke, 1995;
Wright et al., 1995; Mistri & Rossi, 2001; Gesteira et al.,
2003) and later was also found suitable to explain spatial pat-
terns of benthic communities along natural environmental
gradients (James et al, 1995; Chapman, 1998; De Biasi et al.,
2003; Lasiak, 2003; Dethier & Schoch, 2006; Sajan et al.,
2010). These studies analysed the costs and benefits when
data from higher taxonomic levels are used. As identification

moves progressively to species level, costs, in terms of the
expertise and time needed also increase (Heip et al., 1988).
It is easier to train personnel to sort higher taxonomic levels
than species, and the risk of potential taxonomic classification
error is lower at a higher level of identification (Dauvin et al.,
2003). However, to accept TS as a routine approach in benthic
studies, it needs to be proved valid for various taxa and in geo-
graphically different water masses. The present study investi-
gates the validity of TS for macrobenthic polychaetes by
analysing an extensive data set based on samples collected
from a wide geographical area covering a large depth gradient.
For this study, samples were collected from every degree
square of the western Indian continental shelf (78–228N lati-
tudes) with representative samples from 30, 50, 100 and 200 m
depths. Polychaetes were the dominant macrobenthic group,
contributing 57% of the population, with 165 species belong-
ing to 32 families, showing shifts in community structure in
relation to depth (Joydas & Damodaran, 2009; Joydas et al.,
2009).

Within marine benthic samples, there is usually a great
range of abundances (Olsgard et al., 1997). Some taxa are
dominant, while others are occasional or rare. In multivariate
analyses, data transformation plays a role in defining the
balance between contributions from common and rare
species in the measure of similarity of two samples (Clarke
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& Warwick, 2001). In this study, we use various transformed
forms of polychaete data of three taxonomic levels and test
which analyses can document the species-level depth-related
pattern in the western Indian continental shelf.

Our previous study on the environmental correlates of
polychaete distributions revealed that depth-related patterns
are a function of variation in bottom water dissolved oxygen
(DO) and temperature (Joydas & Damodaran, 2009). Sharp
decreases in DO and temperature with increase in depth
were evident and the DO values observed in the 200 m
depth zone (0.0005–0.24 ml l21) indicated that this area is
lying within the oxygen minimum zone (OMZ: ,0.5 ml l21;
Levin, 2003).

The overall objectives of the study are: (i) to identify
whether depth- and oxygen-related patterns of polychaetes
at species level are conserved at reduced taxonomic levels in
a natural environment; and (ii) to examine the effect of
various data transformations on the community patterns of
polychaetes.

M A T E R I A L S A N D M E T H O D S

Sampling and laboratory analysis
Macrobenthic samples for the present study were collected
on-board the Indian Fishery and Oceanographic Research
Vessel (FORV) ‘Sagar Sampada’. Data from two cruises
(Cruise No. 162 conducted during February –March 2008
and Cruise No. 192A during February 2001) were used for
this study. Seventy-five stations representing various depths,
distributed along 17 transects (T) that were usually perpen-
dicular to shore, were sampled; they extended from
07810′22′′ to 22814′31′′N and 67857′41′′ to 77821′58′′E
(Figure 1). Sampling was conducted at depths of 30, 50, 100
and 200 m along each transect in order to study the change
in fauna with depth.

Two grab samples were collected using a Kahlsico No. 214
WA 250 modified Smith–McIntyre grab (surface area:
0.1 m2) from each station. The sediment samples were
sieved through a 0.5 mm mesh and fixed in 5% neutral forma-
lin mixed with rose Bengal stain. Macrobenthic organisms
were initially sorted to higher taxa levels and members of
the dominant taxon, polychaetes, were identified to species
level (Fauvel, 1953; Day, 1967) followed by counting of indi-
viduals. The numerical abundance (as individuals) of poly-
chaetes was expressed in individuals per m2 and was the
average of the two grab samples per station.

Data treatment
To study the effects of TS, we performed regression analyses to
identify species versus genera and species versus family
relationships for richness and species diversity of polychaetes
using Microsoft Excel. Prior to this, univariate (Shannon–
Wiener diversity, H′ log2) and multivariate analyses were
carried out using PRIMER (Plymouth Routines in
Multivariate Ecological Research, version 6.1.5: Clarke &
Warwick, 2001) with the abundance matrices at the three
levels of taxonomic resolution for 30, 50, 100 and 200 m
depths. Resemblances (Bray–Curtis similarity index (Bray &
Curtis, 1957)) among all the matrices were determined by
the Spearman rank correlation coefficient (Clarke &

Warwick, 2001). To reveal the effect of transformations in
the multivariate analyses in explaining the depth variation
of polychaete taxa, each of the matrices obtained previously
were none, square root, fourth root, log(x + 1) and pres-
ence/absence transformed, which resulted in 60 matrices.
The rank ordered correlations were treated like a similarity
matrix and inputted to a second-stage non–metric multi-
dimensional scaling ordination (second-stage MDS:
Somerfield & Clarke, 1995). This method is appropriate to
examine the degree of resemblance among similarity matrices
obtained with different aggregations and depths. One-way
analysis of similarity (ANOSIM) of PRIMER was used to
test differences found in the communities (with various trans-
formations of data of species, genus and family levels) between
selected depth bands.

We also studied the patterns with environmental gradients
on the species, genus and family levels of polychaete taxa. The
variables selected were depth, DO, temperature and sediment
organic matter % (OM). Analysis of variance (ANOVA) indi-
cated that only temperature and DO showed significant depth
variations (P , 0.05) on the western continental shelf of
India. OM was included as it had shown higher levels in the
central region of 30–100 m depths compared to north and
south (Joydas & Damodaran, 2009). Stations were categorized
as south (s: T1–T6), central (c: T7–T12) and north (n: T13 –
T17).

Detrended normal q–q plotting was carried out to obtain
the gradient length of all the data. Since the gradient lengths
were ≤1.0 SD, a canonical correspondence analysis (CCA:
ter Braak & Verdonschot, 1995) was performed to identify
relationships between polychaetes of species, genus and
family level taxa and environmental gradients. For CCA, we
used density data for 20 dominant species, 15 dominant
genera and 10 dominant families and environmental variables.
CCA included a Monte Carlo permutation test (with 999
unrestricted permutations) to determine the significance of
taxa–environment relationships. We used the Statistical
Package for the Social Sciences (SPSS) version 16.0 for
Windows for detrended normal q–q plotting and XLStat soft-
ware (Version 2009.6.01, Addinsoft) for CCA and ANOVA.

R E S U L T S

TS in polychaetes of the western continental
shelf of India
All polychaete families and their numbers of genera and
species are presented in Table 1. Eunicidae (22 species),
Spionidae (14 species) and Terebellidae (11 species) were the
most speciose families. Many families were represented
by only one species. Linear regression results showed strong
(R2 . 0.87) relationships between the three levels of taxo-
nomic resolution for taxa richness (Figure 2A) and diversity
(Figure 2B). Species and genus showed stronger positive corre-
lations than species and family for both richness and diversity.

Testing depth-related patterns in polychaetes
with TS and transformations
Community similarities for the three levels of taxonomic res-
olution at the selected depths were compared with a PRIMER
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second stage resemblance matrix. Each depth zone was dis-
tinctly plotted in the second stage MDS plot: within each
depth zone, a vertical arrangement for different transform-
ations was visible from none on the top to presence/absence
on the bottom (Figure 3). The Spearman rank correlations
obtained among the species similarity matrices and higher
taxonomic levels of the five transformations were significant
for all depths (P , 0.001) (Figure 4). Higher correlations
were obtained for species–genus (R value range: 0.67–0.95)
and genus–family (0.73–0.92) than species–family (0.42–
0.82) similarity matrices. Considerably lower correlations
(R , 0.5) were obtained for species–family matrices in the
50 m depth zone. In this depth zone, the highest number of
taxa (122 species and 76 genera from 33 families) was
observed and ten families had 6–15 species.

Polychaete community dissimilarity at various depths for
each level of taxonomic resolution with various transform-
ations was tested using one-way ANOSIM (Figure 5).
Communities in the shallower waters (30 m and 50 m)
showed significant differences (P , 0.001) from the deeper
water (200 m) for all three taxonomic levels and five trans-
formations. Evaluation of R values indicates that the com-
munity differences between shallow and deeper waters and
between 100 m and 200 m depths were pronounced at
family level. R values also revealed that the community
differences between depths in species, genus and family
levels were similarly expressed with square root, fourth
root and log (x + 1) transformations. Generally, none and
presence/absence transformations showed relatively lower
R statistics.

Fig. 1. Location of the sampling stations of the western Indian continental shelf.
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Links between faunal patterns and
environmental variables
The CCAs demonstrated the relationship of DO and tempera-
ture to the depth-related patterns of polychaetes (Figure 6).
The variables explained 69%, 77% and 81% of the variance

of the first two CCA axes for species, genus and family
levels respectively. Eigenvalues and the correlation coefficients
of the variables for the three taxonomic resolutions are given
in Table 2. The Monte Carlo permutation test (with forward
selection) indicated that depth was positively correlated,
whereas DO and temperature were negatively correlated
with axis 1. OM exhibited a negative correlation with axis 2.
Three clusters were distinct in these plots; the first cluster
with stations belonging to 30 and 50 m, second cluster with
stations from 100 m and third cluster with stations from
200 m depths. CCA plots indicated that in all three taxonomic
levels, the first axis separated shallower stations (30 and 50 m)
from deeper (100 and 200 m) stations. The second axis further
divided 100 and 200 m depth zones in the family level plot.
The DO and temperature were found to correlate strongly
with depth variation in fauna, with DO having a primary
role. The CCA plots revealed a latitudinal separation of
stations which corresponded with the OM distribution.
Generally, higher OM levels were recorded from the central
(average 4.9%) than the southern (2.1%) and the northern
(1.6%) latitude stations in 30 and 100 m depth zones. In the
plots (Figure 6), the central latitude stations in these depth
zones were positioned below the northern and southern
stations. Such variation was not prominent in 50 and 200 m
depth zones. The CCA also revealed relationships between
dominant species (20), genera (15) and families (10) with
the environmental variables. Species and genera belonging
to the families Sternaspidae, Magelonidae, Cossuridae,
Eunicidae, Pilargidae, Nephtydae and Glyceridae were
typical of 30 and 50 m depths, while Maldanidae and
Spionidae were typical of 100 m depths. Spionidae,
Paraonidae and Cirratulidae were found to be typical of the
OMZ.

D I S C U S S I O N

Depth-related patterns in polychaetes and TS
The present study with a large data set showed that
depth-related community patterns of polychaetes are con-
served at lower taxonomic resolutions on the western Indian
continental shelf. The Spearman rank correlations obtained
among the species similarity matrices and higher taxa were

Table 1. A summary of the families and the species and genus numbers in
each family.

Family Genus Species Family Genus Species

Aphroditidae 2 3 Chaetopteridae 1 1
Amphinomidae 5 7 Orbinidae 4 8
Pisionidae 1 1 Paraonidae 5 8
Phyllodocidae 2 3 Ophelidae 3 4
Alciopidae 1 1 Cossuridae 1 1
Pilargidae 1 3 Scalibregmidae 2 2
Hesionidae 5 5 Capitellidae 3 6
Syllidae 4 6 Maldanidae 1 1
Nereidae 3 4 Sternaspidae 1 1
Nephtyidae 1 6 Flabelligeridae 2 2
Lacydonidae 1 1 Pectinaridae 1 1
Glyceridae 2 8 Ampharetidae 5 5
Eunicidae 9 22 Terebellidae 4 11
Spionidae 9 14 Sabellidae 4 7
Magelonidae 1 1 Serpulidae 3 4
Cirratulidae 5 9 UI family 1 6
Trochochaetidae 1 1

Fig. 3. Second stage non-metric multidimensional scaling of three taxonomic
levels of polychaetes of the four depths with various transformations. Prefixes
‘s’, ‘g’ and ‘f ’ are species, genus and family respectively. Suffixes ‘a’, ‘b’, ‘c’, ‘d’
and ‘e’ are none, square root, fourth root, log (X + 1) and presence/absence
transformations respectively. 1, 2, 3 and 4 represent clusters of 30 m, 50 m,
100 m and 200 m depth zones respectively.

Fig. 2. Species versus genera versus family relationships for (A) richness and
(B) diversity for the three levels of taxonomic resolution of polychaetes.
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very high in most cases, although the R values decreased as it
goes to family level. Our species level data exhibited a differ-
ence between shallow water and shelf edge communities and
a similar variation was identified when generic and family
levels data were tested. In this study, ANOSIM results revealed
two types of community variations: (i) between stronger depth
gradients (30 or 50 m and 200 m depth zones); and (ii)
between weaker depth gradients (100 and 200 m depth
zones). The former was visible at all three levels of taxonomic
resolution, while, the latter was more evident in family level
data. ANOSIM results indicate that community dissimilarity
between 100 and 200 m depth zones increases from species
level to family level (Figure 5).

Taxonomic sufficiency reduces the cost of identification up
to 55% for family level identification versus species level
(Ferraro & Cole, 1995), although, the potential for saving
time depends on other factors such as the number of taxono-
mically difficult families and the expertise available (Olsgard

et al., 1997). Generally, identification errors that are
common at the species level can be avoided by opting for
family level identification. At the same time, species level
identification is considered to be a fundamental tool to under-
stand the functioning of ecosystems and there are problems
with TS particularly in the exclusion of rare species and loss
of valuable ecological information (Maurer, 2000). Although
such issues remain, the TS approach is very convenient in fast-
track community assessment studies, and our results rec-
ommend its use in the Indian continental shelf waters.

Depth-related patterns in polychaetes
and transformations
Transformations can affect the analyses of multivariate pat-
terns (Olsgard et al., 1998; Legendre & Gallagher, 2001;
Stark et al., 2003) by shifting the emphasis from the most

Fig. 4. Spearman rank correlations between data sets of species, genus and family and types of transformations in the four depth zones.

Fig. 5. Results of the analysis of similarity performed among depth zones using various taxonomic levels and types of transformations. ∗ , P , 0.002; ∗∗ , P , 0.004;
∗∗∗ , P , 0.007. Remaining community differences are at P , 0.001 significant level.
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abundant and dominant species or taxa (for untransformed
data) to rare taxa (for presence/absence data) (Anderson
et al., 2005). In this study, the type of transformations did
not make major differences in the R values when species
data were correlated to higher taxa data and community pat-
terns were tested along the depth gradients (Figures 3–5). The
absence of a transformation effect is likely due to both low
dominance and even lower number of rare species in the
study area. Generally, the average dominance index was
,0.22 at 30, 50 and 100 m depth zones and was slightly
higher (0.32) at 200 m (Joydas & Damodaran, 2009). Our
species level results also showed that about 72% of the
species occurred in all the depth zones and that contributed
to about 98% of the total individuals (Joydas & Damodaran,
2009). Thus, rare species did not make a sizeable contribution,
resulting in presence/absence data not exhibiting notable
differences compared to other transformations.

Faunal patterns versus environmental variables
The CCA showed that stations cluster according to depth, DO
and temperature. The effect of DO was more pronounced in
the 200 m depth zone, which lies within the OMZ. Previous
studies have reported that OMZs support benthic fauna that
differ fundamentally from those in well-oxygenated environ-
ments (Levin et al., 2001; Levin, 2003; Hughes et al., 2009;
Ingole et al., 2009). This is because there are oxygen thresholds
below which most taxa are excluded through physiological
intolerance to hypoxia, and above which selected taxa are
able to take advantage of an abundant food supply (Levin
et al., 2009). The macrobenthos in OMZs typically shows
reduced diversity and high dominance, in comparison with
non-OMZ environments (Levin et al., 2001). In the present
study, Prionospio pinnata and P. cirrifera (family Spionidae),
Paraonis gracilis gracilis and Aricidea fauveli (family
Paraonidae), Cirriformia sp. 1 and Cirratulus dasylophius
(family Cirratulidae) were found to dominate in the OMZ.
Families such as Spionidae, Cirratulidae and Paraonidae
were reported as the dominant species of OMZs in the
Pakistan Margin (Hughes et al., 2009), Oman Margin (Levin
et al., 2000) and central west coast of India (Ingole et al.,
2009). Macrobenthic composition data from other low
oxygen systems, for example, Southern California borderland
basins and Scandinavian fjords, suggest that polychaetes, par-
ticularly spionids are the predominant taxa when oxygen
values fall between 0.1 and 0.5 ml l21 (Arntz et al., 1991;
Levin et al., 1991; Diaz & Rosenberg, 1995; Levin & Gage,
1998). Although latitudinal variation in fauna was not a pro-
minent feature in this study, OM variation occurs at 30 and

Table 2. Eigenvalues and correlation coefficients for the first two axes.

Species Genus Family

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2

Eigenvalue 0.24 0.12 0.17 0.1 0.15 0.05
Correlation coefficient
Depth 0.985 20.057 0.964 0.135 0.832 0.512
DO 20.939 0.266 20.910 0.133 20.892 20.314
Temperature 20.827 20.117 20.695 20.308 20.505 20.830
OM 20.103 20.958 0.134 20.887 0.416 20.238

DO, dissolved oxygen; OM, organic matter.

Fig. 6. Canonical correspondence analysis triplots showing scores of sites, the most abundant polychaete species/family and explanatory variables. DO, dissolved
oxygen; OM, organic matter. Full taxa names are given in Table 3. A, species level; B, genus level; C, family level.
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100 m depths between latitudinal zones. The CCA plots
revealed an OM effect on polychaetes in a similar way at the
three taxonomic resolutions.

C O N C L U S I O N

Depth-related multivariate community patterns in poly-
chaetes in the western Indian continental shelf are conserved
at family level taxonomic resolution. The family level data
were also sufficient to illustrate the effect of OMZ on poly-
chaete communities. Hence, we propose the use of TS in
macrobenthic studies in the western shelf waters of India.
The type of transformation did not affect the multivariate pat-
terns of species, genus or family level data, which is attributed
to the low dominance and lower number of rare species in the
study area.
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Table 3. Dominant polychaete species, genus and family in each depth zone with its percentage abundance. Abbreviation used in the canonical corre-
spondence analysis plots (Figure 6) is given within parentheses.

Species Genus Family

30 m
Magelona cincta (Mag cin)—33.4% Magelona (Mage)—33.4% Magelonidae (Magel)—33.4%
Sternaspis scutata (Ste scu)—10.6% Prionospio (Prio)—15.7% Spionidae (Spion)—16.3%
Prionospio pinnata (P.pin)—9.4% Sternaspis (Ster)—10.6% Sternaspidae (Stern)—10.6%
Ancystrosyllis parva (Anc par)—9.1% Ancystrosyllis (Ancy)—9.8% Pilargidae (Pilar)—9.8%
Prionospio spp. (P.spp.)—5.2% Lumbrineris (Lumb)—5.5% Eunicidae (Eunici)—7.7%
Lumbrineris latreilli (Lum lat)—4.3% Puliella (Pulie)—3.2% Cossuridae (Cossu)—3%
Puliella armata (Pul arm)—3.2% Cossura (Coss)—3%
Cossura coasta (Cos coa)—3%
Cirrophorus sp. (Cir sp.)—2.1%
50 m
Magelona cincta (Mag cin)—43% Magelona (Mage)—46.9% Magelonidae (Magel)—46.9%
Cossura coasta (Cos coa)—13% Cossura (Coss)—14.1% Cossuridae (Cossu)—14.1%
Prionospio pinnata (P.pin)—6% Ancystrosyllis (Ancy)—6.8% Pilargidae (Pilar)—6.8%
Cirratulus sp.1 (Cir sp1)—4% Prionospio (Prio)—4.9% Cirratulidae (Cirral)—5.3%
Ancystrosyllis parva (Anc par)—4% Cirratulus (Cirr)—4.6% Spionidae (Spion)—5.3%
Lumbrineris latreilli (Lum lat)—2% Nephthys (Neph)—2.9% Eunicidae (Eunici)—4.3%
Prionospio spp. (P. spp.)—2%
Nephtys dibranchis (N. dib)—2%
A. spp. (A.spp.)—2%
Maldanids (Mald) —2%
100 m
Prionospio pinnata (P.pin)—15% Prionospio (Prio)—35.7% Spionidae (Spion)—38.7%
Prionsopio spp. (P. spp.)—10% Glycera (Glyc)—3.8% Eunicidae (Eunici)—7.9%
Magelona cincta (Mag cin)—4% Lumbrineris (Lumb)—3.7% Paraonidae (Parao) —5.2%
Lumbrineris latreilli (Lum lat)—4% Magelona (Mage)—3.4% Glyceridae (Glyce)—5.2%
Cossura coasta (Cos coa)—3% Nephthys (Neph)—2.8% Cirratulidae (Cirral)—4.8%
Paraonis gracilis gracilis (Par gra)—2% Cirratulus (Cirr)—2.6% Magelonidae (Magel)—3.4%
Maldanids (Mald)—2% Ancystrosyllis (Ancy)—2.4% Nephtyidae (Nepht)—2.9%
Prionospio cirrobranchiata (P. cirb)—2% Paraonis (Para)—2.1% Pilargidae (Pilar)—2.5%
Prionospio cirrifera (P. cir)–2% Cossura (Coss)—2%
Ancystrosyllis parva (Anc par)—2%
Cirratulus sp.1 (Cir sp1)—2%
Cirrophorus sp. (Cir sp.)—2%
200 m
Prionospio pinnata (P.pin)—41.8% Prionospio (Prio)—49.4% Spionidae (Spion)—48%
Paraonis gracilis gracilis (Par gra)—9.2% Paraonis (Para)—9.2% Paraonidae (Parao) —16.2%
Prionospio cirrifera (P. cir)—7.6% Cirriformia (Cirrf)—5.7% Cirratulidae (Cirral)—9.7%
Cirriformia sp.1 (Cirf sp1)—5.7% Cirratulus (Cirr)—4.4% Magelonidae (Magel)—3.3%
Aricidea fauveli (Ari fau)–5.4% Magelona (Mage)—3.5% Eunicidae (Eunici)—1.7%
Magelona cincta (Mag cin)–3.5% Cirrophorus (Cirrp)—2% Cossuridae (Cossu)—1.1%
Cirrophorus sp. (Cir sp.)–2% Cossura (Coss)—1.2%
Cossura coasta (Cos coa)—1.2%
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