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This paper focuses on the demand for money in the United States in the context of two
globally flexible functional forms—the Fourier and the asymptotically ideal model
(AIM)—estimated subject to full regularity, using methods suggested over 20 years ago.
We provide a comparison in terms of violations of the regularity conditions for consumer
maximization and in terms of output in the form of a full set of elasticities. We also
provide a policy perspective, using (for the first time) parameter estimates that are
consistent with global regularity, in that a very strong case can be made for abandoning
the simple-sum approach to monetary aggregation, on the basis of the low elasticities of
substitution among the components of the popular M2 aggregate of money.
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1. INTRODUCTION

For many years the literature on monetary asset demand systems employed glob-
ally regular generating functions such as the Cobb-Douglas or the constant elasti-
city of substitution (CES) utility functions [see, e.g., Chetty (1969)]. These forms
had the advantage of conforming to the neoclassical conditions for constrained
consumer maximization. However, when Uzawa (1962) proved that one cannot
simultaneously obtain arbitrary estimates of elasticities of substitution and have a
CES specification, the approach ran into a dead end.

To overcome that problem, flexible functional forms that provide local approx-
imations to the demand functions were then used. Specifically, a popular local ap-
proximation to the indirect utility function was achieved by a translog specification.
In this way, duality theory would provide access to all the implications of aggregate
integrability at least at a point. On the demand for money, Offenbacher (1979)
was the first to employ a flexible functional form (the translog) in this manner.
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As noted, these models can attain arbitrary elasticities at a single point and,
according to Barnett et al. (1991), do so at a high degree; as a consequence, they
have revolutionized microeconometrics by providing access to all of neoclassical
microeconomic theory in econometric applications.

However, although locally flexible functional forms provide arbitrary elasticity
estimates at the point of approximation, they gain this precision at the expense of
giving up global regularity. There is also evidence that these models fail to meet the
regularity conditions for consumer maximization in large regions. Barnett (1983,
1985), Barnett and Lee (1985), and Barnett et al. (1985, 1987) provided a partial
solution to this problem by proposing the minflex Laurent model that is locally
flexible and regular over a large region but is still not globally regular. However,
the problem persisted that the flexibility was achieved only at a single point. An
innovation in this respect are the semi-nonparametric flexible functional forms
that possess global flexibility and in which asymptotic inferences are, potentially,
free from any specification error.

Semi-nonparametric functions can provide an asymptotically global approxima-
tion to complex economic relationships. These functions provide global approx-
imations to the true data generating process and its partial derivatives. By global
approximation, we mean that the flexible functional form is capable, in the limit,
of approximating the unknown underlying generating function at all points and
thus of producing arbitrarily accurate elasticities at all data points. Two such semi-
nonparametric functions are the Fourier flexible functional form, introduced by
Gallant (1981), and the asymptotically ideal model (AIM), introduced by Barnett
and Jonas (1983) and employed and explained by Barnett and Yue (1988); see also
Fleissig and Swofford (1996, 1997), Fisher and Fleissig (1997), Fisher, Fleissig,
and Serletis (2001), Fleissig and Serletis (2002), and Drake et al. (2003) for some
interesting applications.

This paper focuses on the demand for money in the United States in the context
of these two globally flexible functional forms—the Fourier and the asymptotically
ideal model. We compare these two models in terms of violations of the regularity
conditions for consumer maximization and also provide a policy perspective, using
(for the first time) parameter estimates that are consistent with global regularity,
in that a very strong case can be made for abandoning the simple-sum approach
to monetary aggregation, on the basis of the low elasticities of substitution among
the components of the popular M2 aggregate of money. We believe that much of
the older literature that investigates the substitutability/complementarity relation
between monetary assets in the context of demand systems does not impose full
regularity (as we do in this paper) and hence has to be disregarded.

The paper is organized as follows: Section 2 briefly sketches out the neo-
classical monetary problem while Section 3 discusses monetary aggregation and
measurement matters and uses the Divisia index to aggregate monetary assets.
In Sections 5–9, we estimate the models, assess the results in terms of their
consistency with optimizing behavior, and explore the economic significance of
the results. The final section concludes the paper.
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TABLE 1. Monetary assets/components

1 Currency + Travelers’ checks
2 Demand deposits
3 Other checkable deposits at commercial banks including Super Now accounts
4 Other checkable deposits at thrift institutions including Super Now accounts
5 Savings deposits at commercial banks including money market deposit accounts
6 Savings deposits at thrift institutions including money market deposit accounts
7 Small denomination time deposits at commercial banks
8 Small denomination time deposits at thrift institutions

Source: Anderson et al. (1997, p. 61).

2. DEMAND FOR MONETARY SERVICES

We assume a weakly separable monetary utility function, so that the representative
money holder faces the following problem:

max
x

f (x) subject to p′x = m,

where x = (x1, x2, . . . , x8) is the vector of monetary asset quantities described in
Table 1; p = (p1, p2, . . . , p8) is the corresponding vector of monetary asset user
costs; and m is the expenditure on the services of monetary assets.

Because the economic agent involved in this study is the household, it is im-
portant to work with data that reflect this composite agent’s selection of monetary
services. In practice, the assets in the official M2 definition of money are appropri-
ate, but we have excluded the rapidly growing retail money market mutual funds,
as does much of the empirical literature, mainly because satisfactory monetary ag-
gregates cannot be obtained using this asset most probably because the household
employs this particular asset for its savings properties and not for its monetary
services.

Moreover, because the flexible functional forms are parameter intensive we
rationalize the estimation to a small set of monetary asset demand equations by
imposing the following separable structure of preferences:

f (x) = f (f1(x1, x2, x3, x4), f2(x5, x6), f3(x7, x8)),

where the subaggregator functions fi (i = 1, 2, 3) provide subaggregate measures
of monetary services. Here the subaggregates will be thought of as Divisia quantity
indexes that can allow for less than perfect substitutability among the relevant
monetary components.

As already noted, the main reason for employing subaggregates, rather than
studying all eight items, is that our models are very parameter intensive. We have
separated the group of assets into three collections based on empirical pretesting.
The pretesting, for which there is a large literature [see Barnett et al. (1992)] is
based on the NONPAR GARP procedure of Varian (1982, 1983). The specific
collection used here is very much like that reported in the literature.
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3. THE DATA

The Federal Reserve Bank of St. Louis, in its Monetary Services Index project,
provides monetary quantities as well as user costs, for the eight items listed in
Table 1 (and many others, up through the L definition of money in the Federal
Reserve’s lexicon). For our empirical work, we require per capita real data, and
to that end, we have divided each measure of monetary services by the U.S. CPI
(for all items) and total U.S. population. Those data are quarterly from 1970:1
to 2003:2 (a total of 134 observations). The calculation of the user costs, which
are the appropriate prices for monetary services, is explained in several online
publications of the Federal Reserve Bank of St. Louis or in Barnett et al. (1992),
Barnett and Serletis (2000), and Serletis (2001).

To provide the three subaggregates shown in Table 1, we employ a Divisia
quantity index, defined (in discrete time) as

log Mt − log Mt−1 =
n∑

j=1

s∗
j t (log xjt − log xj,t−1),

according to which the growth rate of the subaggregate is the weighted average
of the growth rates of the component quantities, with the Divisia weights being
defined as the expenditure shares averaged over the two periods of the change,
s∗
j t = (1/2)(sjt + sj,t−1) for j = 1, . . . , n, where sjt = πjtxjt /

∑
πktxkt is the ex-

penditure share of asset j during period t , and πjt is the user cost of asset j .
What this does, up to a third-order remainder term, is preserve the microeconomic
characteristics of the underlying monetary assets.

The collection of assets, then, are as follows: Subaggregate A is composed of
currency, travelers’ checks, and other checkable deposits including Super NOW
accounts issued by commercial banks and thrifts (series 1 to 4 in Table 1). Sub-
aggregate B is composed of savings deposits issued by commercial banks and
thrifts (series 5 and 6), and subaggregate C is composed of small time deposits
issued by commercial banks and thrifts (series 7 and 8). Finally, Divisia user
cost indexes are calculated by applying Fisher’s (1922) weak factor reversal
test.

4. FOURIER AND AIM MODELS

Our objective is to estimate a system of demand equations derived from an indirect
utility function. The most important advantage of using the indirect utility approach
is that prices enter as exogenous variables in the estimation process and the demand
system is easily derived by applying Roy’s identity.

In this section, we briefly present the basic properties of two models that we
plan to use in our empirical work. As we have already indicated, the models
are the Fourier and the AIM. Although there is some comparison implied in our
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presentation in this section, our purpose is basically to make clear the properties
of the models with which we will work.

4.1. The Fourier

We follow the procedure explained by Gallant (1981) for expanding the indirect
utility function using the Fourier series

h(v) = u0 + b′v + 1

2
v′Cv

+
A∑

α=1


u0α + 2

J∑
j=1

[ujα cos(jk′
αv) − wjα sin(jk′

αv)]


 (1)

in which

C = −
A∑

α=1

u0αkαk′
α,

where v denotes income-normalized prices (= p/m), kα is a multi-index—an n-
vector with integer components—and u0, {b}, {u}, and {w} are parameters to
be estimated. As Gallant (1981) shows, the length of a multi-index, denoted as
|kα|∗ = ∑n

i=1 |kiα|, reduces the complexity of the notation required to denote
high-order partial differentiation and multivariate Fourier series expansions.1 The
parameters A (the number of terms) and J (the degree of the approximation)
determine the degree of the Fourier polynomials.2

By applying Roy’s modified identity,

si(v) = vi[∂h(v)/∂vi]

v′[∂h(v)/∂vi]
, (2)

to (1), we obtain the Fourier demand system

si =
vibi −

A∑
α=1


u0αv′kα + 2

J∑
j=1

j [ujα sin(jk′
αv) + wjα cos(jk′

αv)]


 kiαvi

b′v −
A∑

α=1


u0αv′kα + 2

J∑
j=1

j [ujα sin(jk′
αv) + wjα cos(jk′

αv)]


 k′

αv

,

(3)

for i = 1, 2, 3 monetary assets; the time subscript t has been suppressed.
Eastwood and Gallant (1991) show that Fourier functions produce consistent

and asymptotically normal parameter estimates when the number of parameters
to be estimated equals the number of effective observations raised to the power of
2/3. This result follows from Huber (1981) and is similar to optimal bandwidth
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TABLE 2. Elementary multi-indexes {k}13
α=1

α

1 2 3 4 5 6 7 8 9 10 11 12 13

v1 1 0 0 1 1 0 1 0 0 1 1 2 2
v2 0 1 0 1 0 1 1 1 2 2 0 1 0
v3 0 0 1 0 1 1 1 2 1 0 2 0 1
|kα|∗ 1 1 1 2 2 2 3 3 3 3 3 3 3

results in many nonparametric models. In our case, with n= 3 and T = 134, the
number of effective observations is 268 (=2 × 134)—since we estimate (n− 1)

share equations—and we should therefore estimate (approximately) 41 (=2682/3)

parameters. As we impose the normalization bn = ∑n−1
i=1 bi , the Fourier demand

system has (n− 1) b, Au0α , AJujα , and AJwjα parameters to be estimated, for
a total of (n− 1)+ A(1 + 2J ) free parameters. By setting (n− 1) + A(1 + 2J )

equal to 41, in this application we choose the values of A and J to be 13 and 1,
respectively. This also determines the elementary multi-indexes used in this paper,
as shown in Table 2.

Because a Fourier series is a periodic function in its arguments but the indirect
utility function is not, the scaling of the data is also important. In empirical
applications, to avoid having the approximation diverge from the true indirect
utility function, the data should be rescaled so that the income-normalized prices
lie on 0 ≤ vi ≤ 2π . The income-normalized prices vi (i = 1, . . . , n) typically are
rescaled as follows: vi × [(2π − ε)/ max{vi : i = 1, . . . , n}], with (2π − ε) set
equal to 6, as in Gallant (1982). In our case, however, the income-normalized
prices vi (i = 1, . . . , n) are already between 0 and 2π , so we performed no such
rescaling.

4.2. The AIM

Following Barnett and Yue (1988), the reciprocal indirect utility function for the
asymptotically ideal model of first-order approximation for n= 3 (our problem in
hand) is

h(v) = a0 +
K∑

k=1

3∑
i=1

aikv
λ(k)
i +

K∑
k=1

K∑
m=1


 3∑

i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j




+
K∑

k=1

K∑
m=1

K∑
g=1


 3∑

i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)

h


 , (4)

where λ(z)= 2−z for z ={k,m, g} is the exponent set and aik , aijkm, and aijhkmg , for
all i, j, h= 1, 2, 3, are the parameters to be estimated. The number of parameters
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is reduced by deleting the diagonal elements of the parameter arrays so that i �= j ,
j �= h, and i �= h. This does not alter the span of the model’s approximation.

To avoid the extensive multiple subscripting in the coefficients aijhkmg , we
follow Barnett and Yue (1988), and reparameterize by stacking the coefficients as
they appear in (4) into a single vector of parameters, b = (b0, . . . , b26)

′ containing
the 27 coefficients in (4), as follows:

h(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2 + b6v

1/4
3

+ b7v
1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2 + b11v

1/2
1 v

1/2
3

+ b12v
1/2
1 v

1/4
3 + b13v

1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
3 + b15v

1/2
2 v

1/2
3 + b16v

1/2
2 v

1/4
3

+ b17v
1/4
2 v

1/2
3 + b18v

1/4
2 v

1/4
3 + b19v

1/2
1 v

1/2
2 v

1/2
3 + b20v

1/4
1 v

1/2
2 v

1/2
3

+ b21v
1/2
1 v

1/4
2 v

1/2
3 + b22v

1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3 + b24v

1/4
1 v

1/2
2 v

1/4
3

+ b25v
1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3 . (5)

Applying the modified version of Roy’s identity, (2), to (5), we obtain the AIM
demand system

s1 =
(

2b1v
1
2
1 + b4v

1
4
1 + 2b7v

1
2
1 v

1
2
2 + 2b8v

1
2
1 v

1
4
2 + b9v

1
4
1 v

1
2
2 + b10v

1
4
1 v

1
4
2

+ 2b11v
1
2
1 v

1
2
3 + 2b12v

1
2
1 v

1
4
3 + b13v

1
4
1 v

1
2
3 + b14v

1
4
1 v

1
4
3 + 2b19v

1
2
1 v

1
2
2 v

1
2
3

+ b20v
1
4
1 v

1
2
2 v

1
2
3 + 2b21v

1
2
1 v

1
4
2 v

1
2
3 + 2b22v

1
2
1 v

1
2
2 v

1
4
3 + 2b23v

1
2
1 v

1
4
2 v

1
4
3 + b24v

1
4
1 v

1
2
2 v

1
4
3

+ b25v
1
4
1 v

1
4
2 v

1
2
3 + b26v

1
4
1 v

1
4
2 v

1
4
3

)/
D, (6)

s2 =
(

2b2v
1
2
2 + b5v

1
4
2 + 2b7v

1
2
1 v

1
2
2 + b8v

1
2
1 v

1
4
2 + 2b9v

1
4
1 v

1
2
2 + b10v

1
4
1 v

1
4
2

+ 2b15v
1
2
2 v

1
2
3 + 2b16v

1
2
2 v

1
4
3 + b17v

1
4
2 v

1
2
3 + b18v

1
4
2 v

1
4
3 + 2b19v

1
2
1 v

1
2
2 v

1
2
3

+ 2b20v
1
4
1 v

1
2
2 v

1
2
3 + b21v

1
2
1 v

1
4
2 v

1
2
3 + 2b22v

1
2
1 v

1
2
2 v

1
4
3 + b23v

1
2
1 v

1
4
2 v

1
4
3

+ 2b24v
1
4
1 v

1
2
2 v

1
4
3 + b25v

1
4
1 v

1
4
2 v

1
2
3 + b26v

1
4
1 v

1
4
2 v

1
4
3

)/
D, (7)

s3 =
(

2b3v
1
2
3 + b6v

1
4
3 + 2b11v

1
2
1 v

1
2
3 + b12v

1
2
1 v

1
4
3 + 2b13v

1
4
1 v

1
2
3 + b14v

1
4
1 v

1
4
3

+ 2b15v
1
2
1 v

1
2
3 + b16v

1
2
1 v

1
4
3 + 2b17v

1
4
2 v

1
2
3 + b18v

1
4
2 v

1
4
3 + 2b19v

1
2
1 v

1
2
2 v

1
2
3

+ 2b20v
1
4
1 v

1
2
2 v

1
2
3 + 2b21v

1
2
1 v

1
4
2 v

1
2
3 + b22v

1
2
1 v

1
2
2 v

1
4
3 + b23v

1
2
1 v

1
4
2 v

1
4
3 + b24v

1
4
1 v

1
2
2 v

1
4
3

+ 2b25v
1
4
1 v

1
4
2 v

1
2
3 + b26v

1
4
1 v

1
4
2 v

1
4
3

)/
D, (8)

where D is the sum of the numerators in equations (6), (7), and (8).
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5. COMPUTATIONAL CONSIDERATIONS

Demand systems (3) and (6)–(8) can be written as

st = ψ(vt ,θ) + εt (9)

with an error term appended. In (9), s = (s1, . . . , sn)
′, ψ(v,θ)= [ψ1(v,θ), . . . ,

ψn(v,θ)]′, and ψi(v,θ) is given by the right-hand side of each of (3) and (6)–(8).
As Gallant and Golub (1984, p. 298) put it,

all statistical estimation procedures that are commonly used in econometric research
can be formulated as an optimization problem of the following type [Burguete et al.
(1982)]:

θ̂ minimizes ϕ(θ) over �

with ϕ(θ) twice continuously differentiable in θ.

In this paper, we follow Gallant and Golub (1984) and use Zellner’s (1962)
seemingly unrelated regression method to estimate θ. Hence, ϕ(θ) has the form

ϕ(θ) = 1

T
ε′

tεt = 1

T

T∑
t=1

[st − ψ(vt ,θ)]′Σ̂
−1

[st − ψ(vt ,θ)], (10)

where T is the number of observations and Σ̂ is an estimate of the variance-
covariance matrix of (9). In minimizing (10), we use the TOMLAB/NPSOL tool
box with MATLAB see http://tomlab.biz/products/npsol. NPSOL uses a sequen-
tial quadratic programming algorithm and is suitable for both unconstrained and
constrained optimization of smooth (i.e., at least twice continuously differentiable)
nonlinear functions.

Because results in nonlinear optimization are sensitive to the initial parameter
values, to achieve global convergence, we randomly generated 500 sets of initial
parameter values and chose the starting θ that led to the lowest value of the
objective function. The parameter estimates that minimize the objective function
are reported in the first column of Tables 3 and 4 for the Fourier and AIM,
respectively. As in Gallant (1981) and Barnett and Yue (1988) we do not have
access to asymptotic standard errors that can be supported by statistical theory.
We also report the number of positivity, monotonicity, and curvature violations,
since the usefulness of flexible functional forms depends on whether they satisfy
these theoretical regularity conditions. The regularity conditions are checked as
follows:

• Positivity is checked by direct computation of the values of the estimated
budget shares, ŝt . It is satisfied if ŝt ≥ 0, for all t .

• Monotonicity is checked by choosing a normalization on the indirect
utility function so as to make h(p,m) decreasing in its arguments and by
direct computation of the values of the first gradient vector of the estimated
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TABLE 3. Fourier parameter estimatesa

Curvature constrained estimates
Unconstrained

Parameter estimates at 1970:3 at every data point

b1 9.8827 8.5167 16.9159
b2 −9.9711 −4.0648 −1.0983
u01 −0.0696 2.2966 −1.4401
u02 −5.6783 9.9527 1.1614
u03 −9.9572 −9.1946 7.1087
u04 −1.5888 −3.8524 −3.9854
u05 −5.0808 4.1590 0.1090
u06 3.2362 −7.3311 15.0890
u07 7.1422 6.0079 −11.5471
u08 −9.9668 −9.4677 −4.5413
u09 0.5889 −0.4065 −8.8838
u010 1.0631 −7.6313 −7.4249
u011 3.2555 1.4469 12.2196
u012 −3.5331 6.1231 −11.7106
u013 9.9695 −4.1753 −4.1391
u1 6.4092 −6.7076 5.6165
u2 −9.9992 8.0034 −1.3177
u3 −9.9190 −9.9272 3.5608
u4 6.9514 9.9793 −3.5899
u5 3.8301 6.0373 5.1845
u6 8.9304 7.5087 −1.7951
u7 −9.5384 −4.1124 −5.5275
u8 −1.4891 2.9607 −3.9751
u9 1.8537 −0.1595 1.3432
u10 −0.8674 −1.4024 −2.4942
u11 3.2000 0.2988 −3.9673
u12 0.5853 −0.3216 −1.6734
u13 −4.2998 −0.7962 3.6057
w1 −9.8585 −0.9393 12.6244
w2 −0.7191 −1.6648 2.3662
w3 4.7892 3.9253 −2.4496
w4 −0.6886 −5.3475 31.6423
w5 2.4978 2.2708 27.2746
w6 −1.0254 1.9781 12.2804
w7 4.7737 4.9621 44.9271
w8 −1.6789 −4.7961 13.3554
w9 −1.7263 −0.5501 −3.9293
w10 1.5112 2.0612 5.1504
w11 −6.7651 −3.1831 −9.4060
w12 −3.4348 −0.5506 −4.4091
w13 9.7170 2.2052 −7.4667

S(θ̂) 0.1453 0.1497 0.2255
Positivity violations 0 0 0
Monotonicity violations 0 0 0
Curvature violations 108 107 0

a Sample period, quarterly data 1970:1–2003:2 (T = 134).
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TABLE 4. AIM(2) Parameter estimatesa

Curvature constrained estimates
Unconstrained

Parameter estimates at 1970:3 at every data point

b1 29.5875 11.1562 −6.9260
b2 −9.2315 −13.5795 −1.9350
b4 41.7477 48.3525 −2.9772
b5 −23.1435 −4.2921 −14.1856
b6 24.1658 19.6995 −4.4322
b7 −24.4985 9.8734 −3.3260
b8 −47.7210 −44.9723 −11.1158
b9 48.0046 47.4123 14.8184
b10 20.6273 −19.9689 2.4160
b11 47.7143 −7.6556 −12.3775
b12 −43.9928 −4.9000 12.8131
b13 −49.9942 −45.2815 −10.8964
b14 13.4080 25.4421 4.4255
b15 1.6750 15.8453 3.5688
b16 −49.8608 −23.2905 −13.1646
b17 49.9930 5.1945 −4.1361
b18 49.3032 26.7168 5.0354
b19 2.2844 15.6453 −7.4257
b20 −38.7443 −44.4347 2.6264
b21 2.8921 44.4650 13.9129
b22 30.3519 −10.1999 −0.7214
b23 −18.8956 −32.9601 1.9801
b24 39.0944 6.1177 5.7279
b25 −4.9706 0.6263 −7.0509
b26 −29.1445 14.0451 5.6272

S(θ̂) 0.1905 0.1977 0.2360
Positivity violations 0 0 0
Monotonicity violations 0 0 0
Curvature violations 134 109 0

a Sample period, quarterly data 1970:1–2003:2 (T = 134).

indirect utility function. It is satisfied if ĥp(p,m)< 0 and ĥm(p,m)> 0 or,
equivalently, if ∇ĥ(v)< 0, where ∇ĥ(v)= (∂/∂v)ĥ(v).

• Curvature requires that the Slutsky matrix be negative semidefinite and is
checked by performing a Cholesky factorization of that matrix and check-
ing whether the Cholesky values are nonpositive [since a matrix is nega-
tive semidefinite if its Cholesky factors are nonpositive—see Lau (1978,
Theorem 3.2)]. Curvature can also be checked by examining the Allen
elasticities of substitution matrix, provided that the monotonicity condition
holds. It requires that this matrix be negative semidefinite.
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The results of the regularity tests for each model are presented in the last three
rows of each of Tables 3 and 4. The numbers in the tables represent the number
of times the regularity conditions are violated. For both models, the positivity and
monotonicity conditions are satisfied at every data point, whereas the curvature
condition is violated at 108 data points with the Fourier and at every data point
with the AIM. As Barnett (2002, p. 199) put it in his Journal of Econometrics
Fellow’s opinion article, without satisfaction of all three theoretical regularity
conditions

the second-order conditions for optimizing behavior fail, and duality theory fails.
The resulting first-order conditions, demand functions, and supply functions become
invalid.

6. IMPOSING CURVATURE RESTRICTIONS

The indirect utility function should be a quasi-convex function in income-
normalized prices, vi (i = 1, . . . , n)—as already noted, this is the curvature con-
dition. Gallant and Golub (1984), following Diewert et al. (1977), argue that a
necessary and sufficient condition for quasi-convexity of h(v,θ) is

g(v,θ) = min
z

{z′∇2h(v,θ)z : z′∇h(v,θ) = 0, z′z = 1}, (11)

where ∇h(v,θ) = (∂/∂v)h(v,θ) and ∇2h(v,θ) = (∂2/∂v∂v′)h(v,θ), and g(v,θ)

is nonnegative (i.e., zero or positive) when the quasi-convexity (curvature) con-
straint is satisfied and negative when it is violated; g(v,θ) is referred to as the
“constraint indicator.” Hence, as in Gallant and Golub (1984), we impose quasi
convexity by modifying the optimization problem as follows:

minimize ϕ(θ) subject to min
v∈


g(v,θ) ≥ 0,

where 
 is a finite set with the finite number of elements vi (i = 1, . . . , n).
Curvature can be imposed at some representative point in the data (i.e., locally),
over a region of data points, or at every data point in the sample (i.e., globally).

Let us briefly describe in more detail the Gallant and Golub (1984) method
for imposing curvature restrictions on flexible functional forms. Define a real
symmetric n× n matrix A = ∇2h(v,θ) [note that this is the Hessian matrix of
the indirect utility function, h(v,θ)] and an n× 1 vector α = ∇h(v,θ) as the
gradient vector of h(v,θ). The curvature condition (11) can be written as

g(v,θ) = min
z

{z′Az : z′α = 0, z′z = 1}.

The next step is to partition α as α = (α1,α
′
(2))

′, where α1 is the first element of
α and α(2) is an (n − 1)× 1 vector of the remaining elements of α, and construct
an n× 1 vector u,

u =
(

α1 − ‖α‖
α(2)

)
,
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where ‖α‖ is the norm of α, defined as ‖α‖ = (
∑n

i=1 α2
i )

1/2. With this notation,
we define the following:

γ = −1

2
u′u,

ω = −γ −1Au,

� = (γ −2u′Au),

φ = (�/2)u − ω,

where γ is a scalar, � is an n× n matrix, and ω and φ are n× 1 vectors. The next
and final step is to form an n × n matrix K as follows:

K = A + uφ′ + φu′.

Let’s delete the first row and column of K and rename the (n− 1) × (n− 1)

thereby obtained matrix as K22. A necessary and sufficient condition for curvature
[or, equivalently, for the indicator function (11) to be nonnegative] is that K22

should be a positive semidefinite matrix. In this paper, we use the ‘chol’ command
in MATLAB to perform a Cholesky factorization of the K22 matrix and construct
an indicator of whether K22 is positive semidefinite (this indicator is zero when
K22 is positive semidefinite and a positive integer otherwise). Hence, we run a
constrained optimization subject to the constraint that K22 is positive semidefinite
(in which case curvature is satisfied). As already noted, we can evaluate K22 at a
single data point, over a region of data points, or at every data point in the sample.

Using NPSOL, we performed the computations and report the results in the
second and third columns of Tables 3 and 4, where the second column shows the
results when the quasi-convexity constraint is imposed locally (in 1970:3) and
the third column shows the results when the constraint is imposed at every data
point in the sample. Clearly, the effect of imposing the quasi-convexity constraint
locally is negligible, as the number of curvature violations drops from 108 to 107
with the Fourier and from 134 to 109 with the AIM. Note also that the imposition
of local curvature does not induce violations of monotonicity for both the Fourier
and AIM that satisfy monotonicity (at all observations) when the local curvature
condition is not imposed.

However, imposing the constraint at every data point (again using NPSOL),
we obtain the results reported in the last column of each of Tables 3 and 4.
Imposition of the quasi-convexity constraint globally has a significant impact on
both models, as we obtain parameter estimates that are consistent with all three
theoretical regularity restrictions (positivity, monotonicity, and curvature) at every
data point in the sample. In this regard, Barnett and Pasupathy (2003, p. 151) argue
that

imposing curvature without monotonicity, while perhaps to be preferred to the prior
common practice of imposing neither, is not adequate without at least reporting data
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points at which violations of monotonicity occur. Monotonicity is too important to
be ignored.

In our case, the imposition of curvature globally does not produce spurious
violations of monotonicity, thereby assuring true theoretical regularity. Hence, in
what follows we discuss the income and price elasticities as well as the elasticities
of substitution based on the Fourier and AIM models that (with our data set)
satisfy both the neoclassical monotonicity and curvature conditions. We believe
that much of the older literature in this area does not impose full regularity—that
is, both monotonicity and curvature—and hence has to be disregarded.

7. INCOME AND PRICE ELASTICITIES

In the demand systems approach to estimation of economic relationships, the
primary interest, especially in policy analysis, is in how the arguments of the
underlying functions affect the quantities demanded. This is conventionally and
completely expressed in terms of income and price elasticities and in elasticities
of substitution. These elasticities can be calculated directly from the estimated
budget share equations by writing the left-hand side as

xi = sim

pi

, i = 1, . . . , n.

In particular, the income elasticities, ηim, can be calculated as

ηim = m

si

∂si

∂m
+ 1, i = 1, . . . , n,

and the uncompensated (Cournot) price elasticities, ηij , as

ηij = pj

si

∂si

∂pj

− δij , i, j = 1, . . . , n,

where δij = 0 for i �= j and 1 otherwise. If ηij > 0, the assets are gross substitutes;
if ηij < 0, they are gross complements; and if ηij = 0, they are independent.

We begin by presenting the income elasticities in Part A of Table 5, evaluated
at the mean of the data, for the three subaggregates and the two models.3 The
elasticities ηAm, ηBm, and ηCm are all positive (suggesting that assets A, B, and C

are all normal goods), which is consistent with economic theory. However, there
are differences between the models. For example, time deposits have an income
elasticity greater than 1 in the Fourier model but an income elasticity of 0.115 in
the AIM model. In Table 5, we also show the own- and cross-price elasticities
for the three assets. The own-price elasticities are all negative (as predicted by
the theory) except for ηCC , which is positive with the Fourier. For the cross-price
elasticities, economic theory does not predict any signs, but we note that most of
the off-diagonal terms are negative, indicating that the assets taken as a whole are
gross complements.
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TABLE 5. Income and price elasticities at the meana

Subaggregate i

(A) Income
elasticities (B) Price elasticities

Asset Model ηim ηiA ηiB ηiC

A Fourier 0.999 −0.490 −0.338 −0.197
AIM 0.988 −0.551 −0.225 −0.211

B Fourier 0.998 −0.860 −0.686 0.454
AIM 1.821 −0.750 −0.751 −0.322

C Fourier 1.004 0.173 0.153 0.245
AIM 0.115 0.025 0.130 −0.270

a Sample period, quarterly data 1970:1–2003:2 (T = 134).

8. ELASTICITIES OF SUBSTITUTION

From the point of view of monetary policy, the measurement of the elasticities
of substitution among the three monetary assets is of prime importance. As we
have already pointed out, the currently popular simple-sum approach to monetary
aggregation requires, in effect, that the elasticities of substitution be very high
especially among the components of the aggregate M2. By “very high” we mean
infinite, of course, but since the policy literature has not addressed the question of
how high such an estimate should be to warrant a simple-sum calculation from a
practical standpoint, all we can do is report our results.

There are currently two methods employed for calculating the partial elasticity
of substitution between two variables, the Allen and the Morishima. Following
Serletis (2001), the Allen partial elasticity of substitution between two liquid assets
i and j , σa

ij , can be calculated as

σa
ij = ηim + ηij

sj

.

The Allen elasticity of substitution is the traditional measure and has been em-
ployed to measure substitution behavior and structural instability in a variety of
contexts. However, when there are more than two goods, the Allen elasticity may
be uninformative. For two assets the relationship is unambiguous: The assets must
be substitutes. When there are more than two assets, the relationship becomes
complex and depends on things such as the direction taken toward the point of
approximation. In that case the Morishima elasticity of substitution is the correct
measure of substitution elasticity:

σm
ij = si

(
σa

ji − σa
ii

)
,
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TABLE 6. Allen and Morishima elasticities of substitution at the meana

Subaggregate i

(A) Allen elasticities (B) Morishima elasticities

Asset Model σiA σiB σiC σm
iA σm

iB σm
iC

A Fourier −0.196 −0.122 0.315 0.030 0.209
AIM −0.212 0.190 0.170 0.185 0.176

B Fourier −1.278 −0.574 0.348 −0.218
AIM −0.833 0.575 0.289 0.427

C Fourier −0.150 0.047 0.203
AIM −0.934 0.285 0.363

a Sample period, quarterly data 1970:1–2003:2 (T = 134).

where si is the share of asset i in the consumer’s budget. Notice that the Morishima
elasticity looks at the impact on the ratio of two goods (xi/xj ). Assets will be
Morishima complements (substitutes) if an increase in the price of j causes xi/xj

to decrease (increase).
Table 6 shows estimates of both the Allen and Morishima elasticities, evaluated

at the means of the data. For Part A, we expect the three diagonal terms, represent-
ing the Allen own-elasticities of substitution for the three assets to be negative. This
expectation is clearly achieved. However, because the Allen elasticity of substitu-
tion produces ambiguous results off-diagonal, we use the Morishima elasticity of
substitution to investigate the substitutability/complementarity relation between
assets. Based on the asymmetrical Morishima elasticities of substitution—the
correct measures of substitution—as documented in Part B of Table 6, the assets
are Morishima substitutes with only one of these elasticities being negative. More-
over, all Morishima elasticities of substitution are less than unity, irrespective of
the model used.

This clearly indicates difficulties for a simple-sum-based monetary policy and
helps explain why recent attempts to target and control the money supply (simple
sum M2) have been abandoned in favor of interest-rate procedures.

9. CONFIDENCE INTERVALS FOR THE ELASTICITY ESTIMATORS

The elasticities are parametric functions, σ(θ), and a parametric bootstrap could
be used, as in Gallant and Golub (1984), to compute standard errors or con-
fidence intervals for the estimates reported in Tables 5 and 6. This involves
the use of Monte Carlo methods to obtain a reliable estimate of the sampling
distribution of σ(θ) by generating a large enough sample from the distribution
of the constrained estimator; see also Anderson and Thursby (1986) for similar
Monte Carlo experiments in the case of translog demand models. At each Monte
Carlo trial, however, we need to search over a wide range of starting values
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of θ , using TOMLAB/NPSOL (as discussed in Section 5), to achieve global
convergence.

In particular, as already mentioned in Section 5, for each Monte Carlo trial
we need to randomly generate 500 sets of initial parameter values and choose
the starting θ that leads to the lowest value of the objective function. In terms of
cost, with 134 observations and the models used in this paper, it takes on average
2.5 minutes of CPU time on a Pentium-4 PC per random draw of initial parameter
values. This amounts to over 20 hours of CPU time for each Monte Carlo trial.
If we were to use 250 Monte Carlo trials, as in Gallant and Golub (1984), it will
take over 5,000 hours of CPU time to obtain bootstrap standard errors! This is not
affordable at present, unless we use a smaller number of sets of initial parameter
values at each Monte Carlo trial. We are against such an approach, however,
because it will likely lead to the non-optimization of the objective function in
some (if not all) of the Monte Carlo trials and consequently to extremely wide
confidence intervals.

10. CONCLUSIONS

We have investigated the demand for money in the United States in the context of
two semi-nonparametric flexible functional forms—the Fourier and the AIM. We
have argued that inferences based on flexible functional forms are virtually worth-
less unless all three theoretical regularity conditions (of positivity, monotonicity,
and curvature) are satisfied, since violations of regularity violate the maintained
hypothesis and invalidate the duality theory that produces the estimated model.
We have also argued that unless regularity is attained by luck, flexible functional
forms should always be estimated subject to regularity.

As Barnett and Pasupathy (2003, p. 136) put it

an earlier practice with “flexible functional forms” was to impose neither monotonic-
ity nor curvature, but check those conditions at each data point ex post. Experience in
that tradition has suggested that when violations of regularity occur, they are much
more likely to occur through violations of curvature conditions than through viola-
tions of monotonicity conditions. Based on those results, the more recent approach
of imposing curvature alone seems constructive and reasonable. But once curvature
is imposed without the imposition of monotonicity, the earlier observation may no
longer apply.

We have shown that (with our data set) imposition of global curvature in the
Fourier and AIM models, using methods suggested over 20 years ago by Gallant
and Golub (1984), does not produce spurious violations of monotonicity, thereby
assuring true regularity, that is, both monotonicity and curvature.

We have also indicated throughout this paper that a primary concern was to show
how our results affect the formulation of monetary policy. As we have noted,
considerable research has indicated that the simple-sum approach to monetary
aggregation, in the face of cyclically fluctuating incomes and interest rates (and
hence user costs), cannot be the best that can be achieved. Our study corroborates
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the existence of these phenomena and hence concurs with the general preference
for the use of chain-linked monetary aggregates based on, for example, the Divisia
index. A second consideration that favors such an approach, again corroborated
in our study, is that the elasticities of substitution among the monetary assets
(in the popular M2 aggregate) are consistently and believably below unity. The
simple-sum approach is invalid in such a case, because the method requires that
the monetary components of the aggregates be perfect substitutes. The Divisia
method of aggregation again solves this problem.

NOTES

1. For example, with n = 3 in (1), the multi-index λ′ = (5, 2, 7), generates the 14th-order partial
derivative, as follows:

Dλh(v) = ∂ |λ|∗

∂v
λ1
1 ∂v

λ2
2 ∂v

λ3
3

h(v) = ∂14

∂v5
1∂v2

2∂v7
3

h(v);

see Gallant (1981) for more details.
2. The Fourier flexible functional form has the ability to achieve close approximation in Sobolev

norm, which confers nonparametric properties on the functional form. This is the reason the Fourier
flexible form is considered to be a semi-nonparametric functional form.

3. All elasticities in this paper have been acquired using numerical differentiation to produce the
values of ∂si/∂m and ∂si/∂pj for i, j = 1, 2, 3.

REFERENCES

Anderson, Richard G. & Jerry G. Thursby (1986) Confidence intervals for elasticity estimators in
translog models. Review of Economics and Statistics 68, 647–656.

Anderson, Richard G., Barry E. Jones & Travis D. Nesmith (1997) Building new monetary services
indexes: Concepts, data, and methods. Federal Reserve Bank of St. Louis Review 79, 53–82.

Barnett, William A. (1983) New indices of money supply and the flexible Laurent demand system.
Journal of Business and Economic Statistics 1, 7–23.

Barnett, William A. (1985) The minflex Laurent translog functional form. Journal of Econometrics
30, 33–44.

Barnett, William A. (2002) Tastes and technology: Curvature is not sufficient for regularity. Journal
of Econometrics 108, 199–202.

Barnett, William A. & A. Jonas (1983) The Muntz-Szatz demand system: an application of a globally
well-behaved series expansion. Economics Letters 11, 337–342.

Barnett, William A. & Y.W. Lee (1985) The global properties of the minflex Laurent, generalized
Leontief, and translog flexible functional forms. Econometrica 53, 1421–1437.

Barnett, William A. & Meenakshi Pasupathy (2003) Regularity of the generalized quadratic production
model: a Counterexample. Econometric Reviews 22, 135–154.

Barnett, William A. & Apostolos Serletis (2000) The Theory of Monetary Aggregation. Contributions
to Economic Analysis 245, Amsterdam: North-Holland.

Barnett, William A., Y.W. Lee & M.D. Wolfe (1985) The three-dimensional global properties of the
minflex Laurent, generalized Leontief, and translog flexible functional forms. Journal of Economet-
rics 30, 3–31.

https://doi.org/10.1017/S1365100505040307 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040307


DEMAND FOR MONEY IN THE UNITED STATES 559

Barnett, William A., Y.W. Lee & M.D. Wolfe (1987) The global properties of the two minflex Laurent
flexible functional forms. Journal of Econometrics 36, 281–298.

Barnett, William A. & P. Yue (1988) Semi-nonparametric estimation of the asymptotically ideal model:
the AIM demand system. In G. Rhodes and T.B. Fomby (eds.), Advances in Econometrics, vol VII,
Greenwich, CT: JAI Press.

Barnett, William A., J. Geweke & M. Wolfe (1991) Semi-nonparametric Bayesian estimation of the
asymptotically ideal production model. Journal of Econometrics 49, 5–50.

Barnett, William A., Douglas Fisher & Apostolos Serletis (1992) Consumer theory and the demand
for money. Journal of Economic Literature 30, 2086–2119.

Burguete, Jose F., A. Ronald Gallant & Geraldo Souza (1982) On unification of the asymptotic theory
of nonlinear econometric models. Econometric Reviews 1, 151–190.

Chetty, V. Karuppan (1969) On measuring the nearness of near-moneys. American Economic Review
59, 270–281.

Diewert, W. Erwin, M. Avriel & I. Zang (1977) Nine kinds of quasiconcavity and concavity. Journal
of Economic Theory 25, 397–420.

Drake, Leigh M., Adrian R. Fleissig & James L. Swofford (2003) A semi-nonparametric approach to
the demand for U.K. monetary assets. Economica 70, 99–120.

Eastwood, Brian J. & A. Ronald Gallant (1991) Adaptive rules for semi-nonparametric estimators that
achieve asymptotic normality. Econometric Theory 7, 307–340.

Fisher, I. (1922) The Making of Index Numbers: A Study of Their Varieties, Tests, and Reliability.
Boston: Houghton Mifflin.

Fisher, Douglas & Adrian R. Fleissig (1997) Monetary aggregation and the demand for assets. Journal
of Money, Credit and Banking 29, 458–475.

Fleissig, Adrian R. & Apostolos Serletis (2002) Semi-nonparametric estimates of substitution for
Canadian monetary assets. Canadian Journal of Economics 35, 78–91.

Fleissig, Adrian R. & James L. Swofford (1996) A dynamic asymptotically ideal model of money
demand. Journal of Monetary Economics 37, 371–380.

Fleissig, Adrian R. & James L. Swofford (1997) Dynamic asymptotically ideal models and finite
approximation. Journal of Business and Economic Statistics 15, 482–492.

Fisher, Douglas, Adrian R. Fleissig & Apostolos Serletis (2001) An empirical comparison of flexible
demand system functional forms. Journal of Applied Econometrics 16, 59–80.

Gallant, A. Ronald (1981) On the bias in flexible functcional forms and an essentially unbiased form:
The Fourier flexible form. Journal of Econometrics 15, 211–245.

Gallant, A. Ronald (1982) Unbiased determination of production technologies. Journal of Economet-
rics 20, 285–323.

Gallant, A. Ronald & Gene H. Golub (1984) Imposing curvature restrictions on flexible functional
forms. Journal of Econometrics 26, 295–321.

Huber, Peter J. (1981) Robust Statistics. New York: Wiley.
Lau, L.J. (1978) Testing and imposing monotonicity, convexity, and quasi-convexity constraints. In

M. Fuss and D. McFadden (eds.), Production Economics: A Dual Approach to Theory and Appli-
cations, vol. 1, Amsterdam: North-Holland (1978), pp. 409–453.

Offenbacher, E.K. (1979) The Substitution of Monetary Assets. Ph.D. Dissertation, University of
Chicago.

Serletis, Apostolos (2001) The Demand for Money: Theoretical and Empirical Approaches.
Amsterdam: Kluwer Academic.

Uzawa, H. (1962) Production functions with constant elasticities of substitution. Review of Economic
Studies 29, 291–299.

Varian, Hal R. (1982) The nonparametric approach to demand analysis. Econometrica 50, 945–973.
Varian, Hal R. (1983) Nonparametric tests of consumer behaviour. Review of Economic Studies 50,

99–110.
Zellner, A. (1962) An efficient method of estimating seemingly unrelated regressions and tests for

aggregation bias. Journal of the American Statistical Association 57, 348–368.

https://doi.org/10.1017/S1365100505040307 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040307

