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Identification of marine invertebrate larvae using morphological characters is laborious and complicated by phenotypic plas-
ticity. Balanus amphitrite is a dominant barnacle, important in the context of intertidal ecology and biofouling of manmade
structures. Morphological identification of barnacle larval forms in a mixed population is difficult because of their intricacy
and similarity in size, shape and developmental stages. We report the development and application of a nucleic acid-based
Polymerase Chain Reaction (PCR) method for the specific identification of the barnacle, B. amphitrite, from the heteroge-
neous zooplankton sample. This method is reliable and accurate thereby overcoming taxonomic ambiguity. Sequence align-
ment of the 18S rRNA gene region of selected species of barnacles allowed the design of B. amphitrite-specific PCR primers.
Assay specificity was evaluated by screening DNA obtained from selected species of barnacles. The oligonucleotide primers
used in the study flanked a 1600 bp region within the 18S rRNA gene. The primer is specific and can detect as few as 10 indi-
viduals of B. amphitrite larvae spiked in a background of �186 mg of zooplankton. This technique facilitates accurate iden-
tification and the primer can be used as a marker for enumeration of B. amphitrite larvae in the plankton.
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I N T R O D U C T I O N

Larval ecology studies help in understanding the population
dynamics, community patterns, ecosystem structure and bio-
diversity of native and invasive species (Webb et al., 2006).
Identification of marine invertebrate larvae is a tedious,
labour intensive task by expert taxonomists. Traditionally,
planktonic larval identification is difficult because of larval
intricacy and similarity in size, shape and developmental
stages (Chanley & Andrews, 1971; Branscomb & Vedder,
1982; Shanks, 1986; Nichols & Black, 1994). Due to their
small size, shape and similar developmental stages, it is diffi-
cult to identify these larvae morphologically, although they
play a pivotal role in taxonomic identification (Levin, 1990).
Sometimes larval identification becomes extremely difficult
due to phenotypic plasticity (Hebert, 2002).

Molecular techniques have the potential to accurately iden-
tify the organism to its species level, thereby overcoming taxo-
nomic ambiguity. Identification and quantification of marine
invertebrate larvae is far easier using molecular techniques
(Baldwin et al., 1996; Bilodeau et al., 1999; Makinster et al.,
1999; Morgan & Rogers, 2001; Deagle et al., 2003; Larsen
et al., 2005; Vadopalas et al., 2006; Jones et al., 2008; Chen
et al., 2013). Polymerase Chain Reaction (PCR) along with
sequencing has led to accurate identification of any organism
to its species level. Appropriate use of specific primers can

facilitate rapid, sensitive and accurate detection of any individ-
ual species in a population. Some molecular techniques which
assist in identification or characterization of organisms are
DNA barcoding (Hebert et al., 2003a, b); Random amplified
polymorphic DNA (Coffroth & Mulawka, 1995); multiplex
PCR (Hare et al., 2000); Middle repetitive sequence analysis
(MaKinster et al., 1999); Amplified fragment length poly-
morphism (Bucklin, 2000; Rogers, 2001); Restriction fragment
length polymorphism and Single strand conformation poly-
morphism analysis (Hillis et al., 1996). Oligonucleotide
probes used for specific detection of individual larvae in a
mixed population are either concise to family level (Bell &
Grassle, 1998), genus level (Frischer et al., 2000) or species
level (Frischer et al., 2000; Hare et al., 2000). Molecular
tools with respect to PCR-based approaches are more reliable
and frequently used in larval identification (Hare et al., 2000;
Wood et al., 2003; Webb et al., 2006; Chen et al., 2013).

Barnacles are of major concern in biofouling studies
around the world. They have drawn the attention of many
investigators in marine plankton ecology owing to their easy
accessibility on the rocky intertidal regions and also because
some species are dominant in marine fouling (Strathmann
et al., 1981; Crisp, 1984; Connell, 1985; Holm, 1990;
Sutherland, 1990; Bertness et al., 1991; Raimondi, 1991;
Thiyagarajan et al., 1997a, b). Barnacles possess both a plank-
totrophic and a lecithotropic larval stage, which settle and
metamorphose on hard substratum resulting in macrofouling.
Morphological identification of barnacle larval forms in a
population is difficult because of their intricacy and similarity
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in size, shape and developmental stages, and requires exten-
sive microscopy and taxonomic expertise.

Balanus amphitrite, an acorn barnacle, has wide distribu-
tion, can be easily maintained in the laboratory, and possesses
six planktonic naupliar stages followed by a pre-settlement
cypris stage. This species has been extensively used in different
studies related to larval development, metamorphosis, influ-
ence of different chemical cues and antifouling assays
(Rittschof et al., 1984; Maki et al., 1988; Clare et al., 1994;
Anil et al., 1995; Khandeparker et al., 2003, 2006;
Khandeparker & Anil, 2011). Since B. amphitrite larvae are
the primary target of investigations related to biofouling and
plankton ecology, their fast enumeration and identification
is crucial. In the present study, a PCR-based approach was
used for detection of a dominant fouling barnacle, B. amphi-
trite (syn. Amphibalanus amphitrite; Pitombo, 2004) larvae
from the mixed population.

Mitochondrial DNA and nuclear DNA have been the
major targets for species identification due to their high con-
servation and high copy numbers per cell (Stach & Tubeville,
2002). Application of mtDNA (12S and 16S) has been useful
for species identification, because sequences from various
kinds of species have been deposited in the database.
Identification of barnacles, based on analysis of 12S and 16S
rRNA genes, has been reported by Begum et al. (2004) and
Simon-Blecher et al. (2007). Recently, a species-specific
primer for quantitative real-time PCR (qPCR) was evaluated
for specific detection and quantification of B. amphitrite
using the 12S rRNA gene (Endo et al., 2010). Nucleic acid-
based sandwich hybridization assays using an rRNA target
probe was used for barnacle detection of the group (order
Thoracica) and species (Balanus glandula) which could
detect even a single barnacle larva in a water column
(Goffredi et al., 2006). Designing of species-specific primers
within the 18S rRNA gene region helps in detecting individual
species, since 18S rRNA gene regions have slowly evolved
among different orders and families, including invertebrates
(Winnepenninckx et al., 1995; Bleidorn et al., 2003;
Pradillon et al., 2007). In the present study an attempt was
made to develop species-specific primers within the 18S
rRNA gene region which has not been attempted earlier for
B. amphitrite and this provides an additional dimension to
this field, especially with reference to identification of B.
amphitrite larvae in a mixed zooplankton sample. The
primers were designed by comparing the 18S rRNA sequences
of closely related Balanus sp. and evaluating the conserved
region within the 18S rRNA gene sequence. This approach
for planktonic larval detection is less time-consuming com-
pared with morphological microscopic examination and less
expensive than other DNA-based approaches.

M A T E R I A L S A N D M E T H O D S

Sample collection
Adult B. amphitrite were collected from the intertidal region
of Goa, West Coast of India. Adults obtained from field
samples were brought to the laboratory and exposed to air
for 1–2 h and then immersed in filtered seawater, which trig-
gered the release of larvae. The Instar II nauplius larvae
obtained from the adults were used as a positive control and
for internal spiking in the present investigation. Horizontal

hauls were taken for collection of zooplankton using a
100 mm mesh Heron-Tranter (HT) zooplankton net with a
calibrated flow meter attached to it in the viscinity of Dona
Paula Bay (15827.5′N 73848′E), west coast of India. The plank-
ton samples were either preserved in 95% ethanol or directly
processed for DNA isolation and PCR analysis. The preserved
samples were quantified for the presence of cirripede larvae.
The number of larvae present in different samples varied
from 50 to 4000 ind m23. Four other barnacle species
(Chthamalus malayensis, Megabalanus tintinnabulum, Lepas
sp. and Ibla sp.) were also collected from the study area.
The adult barnacles were identified based on previously
described morphological features (Karande, 1967; Wagh &
Bal, 1970; Henry & McLaughlin, 1975; Flowerdew, 1985;
Pitombo, 2004; Fernando, 2006). They were collected for
extraction of genomic DNA and verification of primer
specificity.

Extraction of genomic DNA
The adults of B. amphitrite were starved overnight prior to
DNA extraction. Genomic DNA was extracted from adult bar-
nacles namely B. amphitrite, Chthamalus malayensis,
Megabalanus tintinnabulum, Lepas sp. and Ibla sp. Whole
adult muscle tissue was used for genomic DNA isolation.
DNA extracted from newly hatched Artemia sp. nauplii was
used as control. The zooplankton samples were weighed and
then subjected to DNA extraction using DNA Extraction solu-
tion (GeneI, India). The extracted DNA was visualized on a
0.8% Agarose gel stained with ethidium bromide and observed
under UV illumination.

Designing of B. amphitrite-specific primers
18S rRNA gene sequences of barnacles (Table 1) were
obtained from the NCBI GenBank (http://www.ncbi.nim.
nih.gov/) and compiled. These 18S rRNA gene sequences
were aligned using Clustal X 1.8 (Thompson et al., 1997).
Since the sequence of B. amphitrite 18S rRNA gene was not
available in any of the databases, primers were designed by
selecting a short highly conserved region within the 5′ end
region between barnacles with few mismatches in the last
five nucleotides in the 3′ region of the primer (Table 1).
Target primers were designed in the gene region where
there were mismatch pairs in relation to other barnacle
species. Primers were manually designed using BioEdit, with
standard priming conditions such as primer length, self
annealing, possible loops, GC content and melting tempera-
ture (Tm), which were evaluated every time during each
primer design. During our analysis, some of the 3′ end nucleo-
tides of the forward primer were changed in order to eliminate
strong loop, self annealing or primer dimer formation.

Polymerase chain reaction
DNA isolated from the adult samples was used for PCR amp-
lification of the 18S rRNA gene. DNA amplification of the 18S
rRNA gene region was performed using primers which
annealed only with the B. amphitrite species. 5 ml of extracted
DNA was used for PCR amplification using a PTC 200
Thermal cycler (MJ Research). PCR reaction was carried out
with a 50 ml reaction mixture containing 10 mM of each
dNTPs, 20 pmoles of each primer, 1 U of Taq polymerase,
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1× PCR reaction buffer containing 10 mM MgCl2.
Amplification of the 18S rRNA gene region was carried out
using B. amphitrite specific primers (Table 2). The thermal
cycler was programmed using a touchdown PCR protocol.
One cycle of 94 8C for 2 min, followed by 35 cycles of 1 min
at 94 8C, 45 s at 58 8C, 1 min at 72 8C and final cycle of
10 min at 72 8C. The resulting fragments were resolved elec-
trophoretically on 1% agarose gel for 1 h at 90 V. The resulting
amplicons were compared with a commercial 1 Kb DNA
ladder (Genetix, India). Amplification was carried out in repli-
cates and batches, to determine the specificity, sensitivity and
reproducibility of the designed primers.

Verification of primer’s specificity
Primer specificity was evaluated by PCR amplification of the
18S rRNA gene region using extracted genomic DNA from
four other barnacle species (Chthamalus malayensis,
Megabalanus tintinnabulum, Lepas sp. and Ibla sp.). The
designed primers amplified �1600 bp amplicons only from
the B. amphitrite (Figure 1). However, other species of barna-
cles did not show amplification with similar primer and PCR
conditions. PCR amplification using gDNA from Artemia sp.
also showed no amplicon, resulting as negative control for the
designed primers.

Evaluation of primers for B. amphitrite
specificity
DNA isolated from mixed zooplankton samples were sub-
jected to PCR amplification using the above protocol. The
zooplankton samples were screened under a microscope and
all cirripede larvae were eliminated which were used as
control, in order to check the specificity of our designed
primers. In order to check the presence or absence of any
PCR inhibitors in extracted DNA, the zooplankton samples
without cirripede larvae were spiked with 10 and 100 larvae
(Instar II) of B. amphitrite. Owing to small size and low
DNA content in the case of Instar II barnacle nauplii one

larva could not be amplified. DNA isolated from Artemia
sp. was used as control.

R E S U L T S A N D D I S C U S S I O N

Alignment of the 18S rRNA gene sequences of barnacles
(Table 1) obtained from GenBank were evaluated using
Clustal X. Sequences of all individuals revealed a high rate
of conservation within the 18S rRNA gene region. Very low
mismatch regions were present within the 18S rRNA gene
region of Balanus sp. The forward primer was designed in
this region because it had a conserved 5′ end with few mis-
matches at the 3′ region and the reverse primer was designed
in a conserved region compared with other barnacles
(Table 1). The designed primers amplified �1600 bp ampli-
cons only from the B. amphitrite species (Figure 1).

DNA extracted from the mixed planktonic population
showed a positive result when amplified with the B. amphitrite
specific primer, indicating the presence of B. amphitrite larvae
in the mixed sample. The zooplankton samples without cirre-
pede larvae spiked with 10 and 100 B. amphitrite larvae pro-
duced �1600 bp fragment stating the sensitivity of the
designed primer for the specific detection of B. amphitrite
and also eliminating the presence of any PCR inhibitors
(Figure 2). In the present study a simple and inexpensive
methodology was adopted for the specific detection of B.
amphitrite larvae in a mixed population. 18S rRNA genes
contain regions which are either highly conserved or variable,
and specific primers can be targeted to these characteristic
sites for families, genus or species (Amann et al., 1990).
Mostly these ribosomal regions are best suited for probe
designing (Peplies et al., 2004). In the present study we used
this information for designing species-specific primers.
However, 28S and the mitochondrial rRNA (12S and 16S
rRNA) gene regions can also be used for such studies if
there is no single mismatch in the 18S rRNA gene, within
the species level. Identification of organisms using a 12S
rRNA gene sequence has also been attempted in detection
and quantification of barnacle larvae in plankton samples

Table 1. Balanus amphitrite specific primers aligned with the corresponding sequence from other available barnacles.

Species Forward primer sequence Reverse primer sequence

B. amphitrite CATGCAACCGAGCCCCAGTCCAG CCTAGACTGGCAGCTGGCTTCGGC
B. perforatus . . . . . . . . . . . . . . . . . . GT. C . . . . . . . . . . . . T . . . . . . . . . . . .
B. crenatus . . . . . . . . . . . . . . . . . . . GTCT . . . . . . . . . . . C . . . . . . . . . . . .
B. nubilus . . . . . . . . . . . . . . . . . . . G . G . . . . . . . . C . . AC . . . . . . . . . . . .
B. glandula . . . . . . . . . . . . . . . . . . . GTCT . . . . . . . . . . . T . . . . . . . . . . . .
Megabalanus tintinnabulum . . . . . . . . . . . . . . . . . . . GTC . . . . . . . . . . . . C . . . . . . . . . . . .
Chthamalus sp. . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . .
Lepas sp. . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . . . . . C . . . . . . . . . . . .
Ibla sp. . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . . . . . C . . . . . . . . . . . .

A dot represents similar nucleotides within the primer sequence.

Table 2. Sequences of oligonucleotide primers used for species-specific detection of Balanus amphitrite.

Primer name Oligonucleotide sequence Treatment Source

BAF127 5′-CATGCAACCGAGCCCCAGTCCAG-3′ Amplification Present study
BAR1735 5′-CCTAGACTGGCAGCTGGCTTCGGC-3′ Amplification Present study
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using qPCR (Endo et al., 2010). It has a high inter-specific
variability along with low intra-specific variability (Hebert
et al., 2003a, b). In an environmental sample where a mixed
population of species is present, a nested PCR approach has
also been used to resolve the individual species (Patil et al.,
2005b). That study developed species-specific PCR assays
for the detection of single species of a dinoflagellate,
Gymnodinium catenatum in both environmental samples
and in ballast water. The specificity of the primer showed
that up to five cysts of G. catenatum can be detected in
mixed populations. Similar results were achieved in detecting
larval forms in Pacific oysters Crassostrea gigas (Patil et al.,
2005a), Tropical oyster C. belchiri (Klinbunga et al., 2000)
and in the sea star Asterias sp. (Deagle et al., 2003) using a
PCR-based approach.

In the present study, efficiency of the PCR assay was
enhanced by increasing the number of target species. Primer
sensitivity was cross-checked with all available barnacle
species in the study location. Balanus amphitrite specific
primers did not amplify the other barnacle species, indicating
that the primers were specific only to B. amphitrite. The pres-
ence of PCR inhibitors in the zooplankton sample was ruled
out by conducting a PCR with zooplankton spiked with
known numbers of B. amphitrite larvae. The resulting ampli-
cons in these samples resulted in PCR success, ruling out the
presence of any PCR inhibitors.

We demonstrate that the B. amphitrite larvae can be
detected with extreme sensitivity by PCR amplification using
the 18S species-specific primers designed in this study.
Application of this method for detection of the B. amphitrite
larvae in a mixed population can facilitate accurate screening
of large numbers of samples and solve significant problems
associated with larval ecology. This approach also can be
used to differentiate B. amphitrite larvae from that of the
closely related groups of barnacles within the mixed commu-
nity of barnacles. Real-time PCR (qPCR) is recognized as an
effective device for detection and quantification of different
planktonic organisms in a mixed population. In future this
tool can be adopted using the B. amphitrite specific primers
designed in the present study for quantification of B. amphi-
trite in the plankton.
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