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This paper considers the diapycnal transport of passive tracers during a Kelvin–Helmholtz
mixing event. Numerical simulations of a traditional Kelvin–Helmholtz (KH)
configuration of a stratified shear flow are extended to include layers of passive tracer
at different locations relative to the shear layer. The evolution of the tracers during
the simulation is followed and is analysed using different theoretical approaches. One
is to consider the evolution via the distribution in density–tracer space which clearly
reveals how the tracers are redistributed across isopycnals by the mixing driven by the
growing and saturating KH billow. The shape of the distribution places constraints on the
redistribution of the tracer and, for this problem of symmetrically stratified shear, it is
shown that the distribution typically tends to a compact form, with significant regions that
are nearly linear. The redistribution across isopycnals is also considered via a diffusion
equation for the tracer relative to coordinates based on the geometry of density surfaces.
The equation is a generalisation of an equation previously derived for transport of density
in these coordinates and includes an extra eddy term that arises because there is variation
of the tracer along density surfaces. Under certain circumstances and at later stages of the
flow, the eddy term can be neglected, and the evolution of the mean tracer profile can be
adequately represented using a simple diffusion equation where diffusivity is defined as
the effective diffusivity of density, scaled by the molecular diffusion of the tracer.

Key words: stratified turbulence

1. Introduction

On the large scale, both the atmosphere and ocean have stable density stratifications,
and processes by which fluid properties are mixed in the vertical direction are crucial
to both the circulation and to the distribution of chemical and biological species. Shear
between interacting masses of fluid is an integral component of the transfer of energy
from the largest scales of flow down to the smallest dissipation and mixing scales through
the formation of instabilities and turbulence. Away from boundaries vertical mixing is
likely to occur through intermittent events triggered by dynamical shear instabilities, such
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as Kelvin–Helmholtz (KH) instabilities (e.g. Smyth & Moum 2012). The evolution of
the flow in simple configurations of KH instabilities has been studied in detail, both in
the laboratory (Thorpe 1973; Caulfield, Yoshida & Peltier 1996; Patterson et al. 2006)
and through numerical simulation (Klaassen & Peltier 1985, 1989; Caulfield & Peltier
1994; Scinocca 1995; Alexakis 2009; Carpenter, Balmforth & Lawrence 2010; Mashayek
& Peltier 2012a,b, 2013). Shear instabilities have also been observed and recorded in
nature. For example, in the atmosphere, clear air turbulence represents a specific hazard
for aircraft, and is thought to be largely driven by shear instabilities (Browning & Watkins
1970; Fritts & Rastogi 1985), while ‘roll-up patterns’ in clouds are known to be caused
by KH instabilities (Fritts & Rastogi (1985) and the references therein). Measurements
indicative of KH instabilities have been recorded near regions of shear along oceanic
thermoclines (Woods 1968; Marmorino 1987), during the downwelling tidal phase near
seamounts (van Haren & Gostiaux 2010) and the surface mixed layer has been observed
to deepen due to shear instabilities along its base (Lincoln, Rippeth & Simpson 2016). KH
instabilities have also been observed along interfaces in estuaries (Geyer & Smith 1987;
Geyer et al. 2010), which can be chemically and nutritionally rich due to material in the
river outflows.

Density is a dynamically active tracer in the sense it plays an active role in driving
the flow. However, processes such as KH instabilities are important in the vertical mixing
of passive tracers, which have no direct effect on the flow, as is the case with certain
low concentration or neutrally buoyant species (Warhaft 2000; Canuto, Cheng & Howard
2011), but which are important for other reasons. These include, in the ocean, nutrients and
microscopic biological species (e.g. Vaquer-Sunyer & Duarte 2008; Brierley & Kingsford
2009) and, in the atmosphere, chemical species that are radiatively active or affect human
health (e.g. Seinfeld & Pandis 1998; Yang et al. 2015). In the ocean, studies of the effect
of KH instabilities have been motivated by the likely importance of mixing processes
on the overall density stratification and hence the large-scale circulation (e.g. Wunsch
& Ferrari 2004), and by analogy they are also potentially important to the large-scale
distributions of biological species. In the atmosphere, the importance of turbulent mixing
on the vertical transport of density and chemical species across isentropic surfaces is
uncertain because such transport may also occur through radiative heating and cooling
(e.g. Sparling et al. 1997). Nonetheless, the intermittent turbulence is likely to control the
rate of mixing between air masses of different origin and hence the horizontal and vertical
scales of variation of chemical species, particularly in regions such as near the tropopause
and in the midlatitude ‘surf zone’ of the winter stratosphere where there is strong chemical
inhomogeneity. Given the likely importance of intermittent turbulence mixing events on
the large-scale distribution of atmospheric and oceanic tracers, understanding the details
of these events and their effect on tracers is thus of major importance. This motivates the
investigation, via numerical simulation, of the mixing of passive tracers in KH instability
reported in this paper.

In most atmospheric and oceanic models, the details of intermittent diapycnal mixing
events are not simulated directly. Such mixing is typically regarded as a subgrid-scale
process that must be parameterised, often through a turbulent or eddy diffusivity (see,
for example, Seinfeld & Pandis (1998, chap. 18) for a summary of functional forms of
eddy diffusivities in atmospheric models, or Griffies (2004, chap. 7) for a discussion
of parameterised phenomena in ocean models). The magnitude of the required eddy
diffusivity has been estimated in various ways, for example, with ocean tracer release
experiments to estimate diffusivity based on spreading across isopycnals (e.g. Ledwell,
Watson & Law 1993), and extracting estimates from atmospheric radar data (e.g. Fukao
et al. 1994). Parameterisations have been drastically improved and are able to reproduce
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the dynamics of the mixed layer from high frequency to seasonal time scales. However, in
most developments and existing parameterisations, turbulent diffusivities of passive and
active tracers are assumed for simplicity to be equal (or proportional). Whether or not
this assumption is justified is not yet clear. One aspect of this uncertainty is the effect
of different molecular diffusivities between passive and active species or indeed between
different passive species. This certainly needs to be taken into account when considering
turbulent mixing in the ocean, where diffusivities of heat and salt, both of which may
contribute to density, differ by a factor of approximately 100. The effect of differing
molecular diffusivities on vertical transport in KH mixing events has been considered
by Smyth, Nash & Moum (2005), who, for practical reasons, set the diffusivity of heat to
be approximately 7 times that of salt. In addition, even if the molecular diffusivities of the
passive tracer and the density are the same, the assumption of equal turbulent diffusivities
may be an oversimplification if they have different large-scale sources and sinks. The
geometry of the two may then be different at small scales and the resulting differences
in molecular diffusive transport may potentially lead to differences in turbulent diapycnal
transport at macroscales. There has been some investigation of this topic using numerical
simulation (Nagata & Komori 2001) and some discussion of the potential importance in
the atmospheric boundary layer (Li, Bou-Zeid & De Bruin 2012). Further work is needed
to evaluate under which circumstances turbulent diffusivities are equal or similar for all
tracers, and to assess the implications for representation of diapycnal fluxes of different
tracers in oceanic and atmospheric models.

The research reported in this paper examines the vertical mixing of passive tracers by
KH instabilities, focusing in particular on whether the extent to which what is known
regarding the mixing of density can also be applied to passive tracers, and what other
factors need to be taken into account. Numerical simulations of KH instabilities in
a standard flow configuration, including a set of passive tracers, are presented (§§ 2
and 3), and analysed using various techniques (§§ 4 and 5). One technique is to use
a density–tracer scatter plots to examine the relative distribution of density and tracer
and to relate this to the mixing. The shape of the scatter plot places constraints on the
redistribution of the tracer and, in particular, it is shown that, for the flow configuration
considered, the relationship between the density and the tracer is often in part piecewise
linear or close to piecewise linear in the end state. Another technique used in previous
studies is to exploit a tracer-based coordinate system in which the effect of mixing can be
represented completely by an effective diffusivity. The question addressed here is whether
the effective diffusivity for density also usefully represents the mixing of other tracers,
which is tested by varying the initial distribution of tracer (§ 7).

2. Numerical model and flow configuration

2.1. Governing equations and numerical model
The governing equations are non-dimensionalised using typical scales for the study of KH
instabilities, with tildes denoting the dimensional forms of distance x = (x, y, z), time, t,
velocity, u = (u, v,w), density, ρ, tracer concentration, φ, and pressure, p,

x = x̃/h, y = ỹ/h, z = (z̃ − z0) /h, t = t̃U0/h, u = ũ/U0,

ρ = (ρ̃ − ρ0) /Δρ, φ = φ̃/Δφ, p = p̃/ρ0U2
0 .

The dimensional parameters used here are the value defining the width of the pycnocline
and the shear layer, h, the midpoint of the stratification and shear layer, z0, half of the
change in velocity across the two layers, U0, the density at the midpoint of the density
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distribution, ρ0, half of the change in density across the two layers, Δρ, and the maximum
initial tracer concentration, Δφ. Using these dimensionless variables, the continuity
equation and equations of conservation of momentum, density and passive tracer can be
written in their incompressible and Boussinesq forms as

∇ · u = 0, (2.1a)

∂u/∂t + u · ∇u = −∇p − Ri0ρk̂ + Re−1
0 ∇2u, (2.1b)

∂ρ/∂t + u · ∇ρ = (Re0Pr)−1∇2ρ, (2.1c)

∂φ/∂t + u · ∇φ = (Re0Sc)−1∇2φ, (2.1d)

with k̂ denoting the unit vector of the vertical axis. The dimensionless parameters included
in these equations are the initial Reynolds number, Re0 = U0 h/ν, the Prandtl number,
Pr = ν/κρ , and the Schmidt number, Sc = ν/κφ , where ν is the kinematic viscosity, and κρ
and κφ are the prescribed molecular diffusivity constants for density and the passive tracer,
respectively. Ri0 is the minimum initial Richardson number, which follows the standard
definition for the gradient Richardson number,

Ri = − g
ρ0

∂ρ̃

∂ z̃(
∂ ũ
∂ z̃

)2 , (2.2)

and can be expressed as

Ri0 ≈ gΔρh
ρ0U2

0
, (2.3)

based on the initial conditions presented in the following section. The configuration
parameters are chosen so that the necessary criterion for stratified shear instability,
Ri0 < 1/4, is satisfied. For the sake of completeness, relevant dimensional parameters
prescribed in the simulations presented in this paper are given in table 2 in appendix A.

The numerical simulations presented in this paper were performed using the
non-hydrostatic, non-Boussinesq version of the Coastal and Regional Ocean Community
model (CROCO). This model was adapted from the Regional Ocean Modeling System
(ROMS, Shchepetkin & McWilliams 2005) to include non-hydrostatic and compressible
effects (Auclair et al. 2018). While numerical simulations of KH instabilities are often
considered in a periodic domain with free-slip rigid lid conditions for the upper and
lower boundaries (e.g. Mashayek & Peltier 2012b, 2013), the implementation presented
here utilises a free-surface upper boundary, and a flat, solid, bottom boundary, with
periodic lateral boundary conditions in the x- and y-directions (streamwise and spanwise
directions, respectively). The existence of a free surface and compressibility adds two
dynamical processes (surface and acoustic waves) compared to more traditional studies
of KH instabilities in incompressible, unbounded or rigid lid flows. It has been verified
that, with the chosen configurations where the instability develops far from the vertical
boundaries, the impact of these additional processes on the results is negligible when
compared to the traditional configuration (see appendix A for further details regarding
the implementation of CROCO and the discussion in the concluding section). However,
in certain circumstances, surface and acoustic waves may play a role in modifying the
turbulent cascade (see, for example, Shete & Guha 2018).
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2.2. Initial conditions
The initial conditions (ICs) for the simulations presented in this paper follow those from
previous numerical studies of Kelvin–Helmholtz instabilities (e.g. Salehipour, Peltier
& Mashayek 2015). In their dimensionless forms, the extents of the domain in the
streamwise, spanwise and vertical directions are given by Lx , Ly and Lz, respectively. Both
two-dimensional (2-D) and three-dimensional (3-D) configurations are examined, with
periodic boundary conditions in the horizontal directions, a flat, free-slip, rigid bottom
and a free surface in the vertical direction. The initial density distribution is defined as two
constant-density layers separated by a strongly stratified pycnocline, with a weak stable
background stratification superimposed,

ρ (x, 0) = −βz − tanh(z). (2.4)

The linear background term βz is a minor modification to the standard configuration for
the purpose of defining the scatter plots in density–tracer space discussed in § 4.1 over
the entire vertical domain in physical space (i.e. each density value initially corresponds
to a unique value of height). Note that the definition of the initial Richardson number
(2.3) ignores the weak linear background term of the initial density profile, since it
was confirmed to have a negligible influence on the development of the instability
when compared to the initial stratification without the weak linear background (β ≈
3.5 × 10−3 � 1 in this study).

The initial velocity field is given by

u (x, t = 0) = U (z)+ u′(x),
v (x, t = 0) = v′(x),
w (x, t = 0) = w′(x).

⎫⎬
⎭ (2.5)

Here, U(z) is the initial background flow providing the shear and is defined by a hyperbolic
tangent profile, with the upper layer moving leftward, and the lower layer moving
rightward,

U(z) = − tanh (z) . (2.6)

and u′, v′ and w′ are small amplitude perturbations, required to kickstart the instability,
defined as

u′(x, y, z) = εf ′(z) sin
(

2πnx

Lx
x

)(
1 + ε3-D sin

(
2πny

Ly
y

))
,

v′(x, y, z) = 0,

w′(x, y, z) = −εf (z)
2πnx

Lx
cos

(
2πnx

Lx
x

)(
1 + ε3-D sin

(
2πny

Ly
y

))
. (2.7)

This choice of functional form for the perturbation ensures that the initial velocity field
is non-divergent, which is important in the context of this numerical implementation. The
function

f (z) = 1 − tanh2
( z
α

)
, (2.8)

ensures that the initial perturbation is localised within the region of the shear, with α =
4.29; ε = 0.01 is a dimensionless parameter that sets the magnitude of the perturbation in
the streamwise direction, while nx and ny set the wavelengths of the initial perturbation in
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FIGURE 1. (Left to right) Initial vertical profiles of the velocity, density, and passive tracer
fields for the described simulations with relevant dimensional parameters.

the x- and y-directions, respectively; ε3D sets the magnitude of the spanwise perturbations,
and for 3-D configurations, ε3D = 0.2. For 2-D configurations, both ny = 0 and ε3D = 0.

In addition to the dynamical fields, passive tracer fields are defined by an initial profile
of the form

φ (x, 0) = asech2 (az − b) , (2.9)

where a is a dimensionless parameter that determines the width of the tracer distribution,
while ensuring the total amount of tracer remains constant between simulations, and b
indicates the offset of the tracer from the pycnocline. The tracer is thus initially distributed
in a layer, with its maximum initial value located at z = b/a. Both the vertical position
and the width of the tracer layer will be varied in simulations presented later in this paper,
but for the different dynamical configurations discussed first in § 2.3, the tracer layer is
collocated with the midpoints of the stratification and the shear (b = 0), and the maximum
initial tracer value is 1 (a = 1). Sketches of the initial vertical profiles of the shear, density
and passive tracer fields are depicted in figure 1, with associated dimensional parameters.

2.3. Description of dynamical configurations
The primary experiment presented in this section compares simulations of three
different dynamical configurations, all with identical initial background fields and
prescribed parameters. The relevant dimensionless parameters used in all simulations
are Ri0 = 0.1158, Re = 2000, Pr = 1 and Sc = 1. The non-dimensional wavelength of
the fastest-growing mode as predicted by the Taylor–Goldstein equations for these given
initial background velocity and density profiles is λKH ≈ 14.3. As such, the length of the
domain is the streamwise direction was chosen as Lx = λKH , so that a single KH billow
develops, or Lx = 2 λKH , so that two KH billows develop, possibly leading to pairing in
2-D configurations. The parameters Nx , Ny and Nz are the number of grid points in the
streamwise, spanwise and vertical directions, respectively. Combined with the length of
the domain in each direction, this leads to a consistent dimensionless grid spacing in the
x-, y- and z-directions of Δx = Δy = Δz = 0.0559. Δt is the dimensionless barotropic
time step. Table 1 presents the parameters that vary between each dynamical configuration.
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Configuration Lx Ly Lz nx ny Nx Ny Nz Δt

I 14.3 — 28.6 1 0 256 — 512 3.125 × 10−4

II 28.6 — 28.6 2 0 512 — 512 3.125 × 10−4

III 14.3 5.3625 28.6 1 4 256 96 512 1 × 10−3

TABLE 1. Relevant computational parameters of the three dynamical configurations presented
in this paper.

Additional parameters relevant to the non-Boussinesq components of the model are listed
in appendix A. The three dynamical configurations are defined as follows:

(i) Configuration I is 2-D, with Lx = λKH and nx = 1, ny = 0 (so that v = 0 at all
times). The initial perturbation corresponds to the most unstable wavelength and
only one billow develops in this simulation.

(ii) Configuration II is also 2-D, except that Lx = 2 λKH = Lz and nx = 2. The length
of the domain and wavelength of the perturbation allow for the formation of two
billows, which eventually give way to pairing and additional mixing.

(iii) Configuration III is 3-D, with spanwise parameters Ly = 0.375 λKH , ny = 4, while
the streamwise and vertical parameters are the same as configuration I (Lx = λKH ,
nx = 1). This allows for mixing by spanwise secondary instabilities that lead to the
breakdown of the primary KH billow.

Due to the inclusion of the third dimension and resulting spanwise instabilities,
configuration III provides a more realistic simulation than the other two cases.
Configurations I and II, while less physically realistic, provide additional pathways to
turbulence and mixing, despite showing nearly identical initial behaviour. Comparing
the three configurations therefore permits the evaluation of the impact of the route to
turbulence on tracer mixing.

3. Diapycnal mixing of a passive tracer by Kelvin–Helmholtz billows: comparison of
dynamical configurations

This section presents 2-D and 3-D numerical simulations of stratified turbulence
developing from shear-induced Kelvin–Helmholtz billows. Each simulation undergoes the
same initial 2-D growth as predicted by linear theory, with later stages leading to different
forms of turbulence and mixing.

3.1. Evolution of the different dynamical configurations
In order to follow the time evolution of the three dynamical configurations, the mean
background and perturbation kinetic energy (KE) are defined in the standard way (e.g.
Mashayek & Peltier 2013). This requires definitions for the mean background and
perturbation velocity fields. The mean background velocity field is a function of z only,
and is given as

u(z) = 1
Lx Ly

∫∫
u dx dy. (3.1)
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The 2-D velocity perturbation is a function of x and z, defined as

u2-D = 1
Ly

∫
(u − u (z)) dy. (3.2)

Finally, the 3-D velocity perturbation can be expressed using the background velocity and
the 2-D velocity perturbation,

u3-D = u − u2-D − u (z) . (3.3)

Following these definitions, the background KE, KE due to 2-D perturbations, and KE due
to the 3-D perturbations are defined as

K = 1
Lz

∫
u2

2
dz, (3.4)

K2-D = 1
Lx Lz

∫∫
u2

2-D

2
dx dz, (3.5)

K3-D = 1
Lx LyLz

∫∫∫
u2

3-D

2
dx dy dz, (3.6)

respectively, noting that the mean KE can be expressed as the sum of these three values,

K = 1
V

∫
u2

2
dV = K + K2-D + K3-D. (3.7)

The general evolution of the dynamical configurations is tracked in figure 2, which plots
their mean KE as functions of time. Note that although each of the simulations are
performed on domains with different volumes, the initial mean KE is identical for all
three cases. This provides a straightforward depiction of the divergent behaviour between
the three cases. The 2-D and 3-D perturbation KE will be discussed further in § 4.2 when
discussing tracer mixing.

Figures 3 and 4 present the evolution of the density and passive tracer, respectively, for
the three dynamical configurations. Each row corresponds to a specific time depicted on
the KE time series of figure 2, which indicates an important stage in KH development,
or points at which the development of the configurations diverge. The distinct phases
enumerated in figure 2 are as follows:

(i) The initial period of linear growth, as predicted by inviscid Taylor–Goldstein theory.
This phase is nearly identical for all three simulations, although some weak spanwise
effects are visible in the 3-D simulation. Each simulation exhibits stirring of the low
and high-density regions by 2-D KH billows with a wavelength close to that of the
fastest-growing mode predicted by Taylor–Goldstein theory.

(ii) The branching point between 2-D and 3-D simulations due to the onset of secondary
instabilities. All three configurations exhibit secondary shear instabilities along
the tilted pycnocline, and secondary convective instabilities within the vortices,
while spanwise instabilities begin to emerge in the 3-D configuration. The density
field develops alternating layers of high and low density, while the passive tracer
takes the shape of ellipses with maximum values centred within the billows,
gradually decreasing to no tracer at the billow exterior. A thin strand of low tracer
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FIGURE 2. Time evolution of the mean KE K for configuration I (dashed line), configuration
II (solid line) and configuration III (dotted line). The labelled times correspond to the rows of
cross-sections plotted in figures 3 and 4.

concentration occurs along the braids, while even lower concentrations of tracer are
visible between the horizontal edges of the billows.

(iii) First onset of small-scale features, resulting to greater mixing in all simulations. In
the 2-D configurations, this leads to the density within the billows becoming nearly
uniform. In the 3-D configuration, this leads to a wider pycnocline that is no longer
unstable to shear instabilities. The 2-D cases keep their tracer maxima focused at
the centre of the billows, although some tracer is pulled from the high concentration
regions towards the outsides of the billows. Meanwhile, the density field experiences
greater mixing due to the appearance of the small-scale features, and becomes nearly
homogeneous within the billows. The secondary instabilities in configuration III mix
the high tracer concentration region at the centre of the billow, redistributing the
tracer throughout the rest of the pycnocline.

(iv) The onset of pairing in configuration II, which results in much greater mixing further
into the low- and high-density layers, while mixing the concentrated regions of tracer
within the two billows with the regions external to the billows without tracer. The
single billow of configuration I maintains a nearly constant shape and size.

(v) Second onset of small scales due to enhanced stretching from the pairing in
configuration II. Configuration III has reached an essentially steady state.

(vi) The nearly steady final phase of the 2-D configurations. The single billow of
configuration I continuously rolls and experiences slow diffusion of density at the
edges of the vortex. The pairing of configuration II induces stretching, causing new
small-scale instabilities to develop, and enhancing the homogenisation of tracer
fields within the billows. This leads to formation of a single larger billow that
eventually remains nearly steady.

4. Density–tracer scatter plots

This section examines density–tracer scatter plots as a diagnostic technique to describe
the diapycnal fluxes of a passive tracer.
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FIGURE 3. Evolution of slices of the density field for configurations I (a–f ), II (g–l) and III (in
the streamwise (m–q) and spanwise (r–v) directions) at the times indicated in figure 2. The
dashed lines in the images of the third column indicate the position of the spanwise slices
depicted in the fourth column, while the streamwise slices of the third column correspond to
the right edge of the spanwise slices.
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FIGURE 4. Evolution of slices of the passive tracer field for configurations I (a–f ), II (g–l) and
III (in the streamwise (m–q) and spanwise (r–v) directions) at the times indicated in figure 2.
The dashed lines in the images of the third column indicate the position of the spanwise slices
depicted in the fourth column, while the streamwise slices of the third column correspond to the
right edge of the spanwise slices.
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FIGURE 5. Sketch of the initial scatter plot of tracer as a function of density associated with the
profiles given by (2.4) and (2.9) where the pycnocline and tracer layer are collocated (solid line).
Hypothetical evolution of the scatter plot after a mixing event showing diapycnal fluxes of tracer
(dashed line). In the new profile, mixing has led to a flux of tracer towards lower densities.

4.1. Weighted density–tracer scatter plots
For definiteness, mixing is here defined as an irreversible process during which the density
or tracer concentration of a given fluid parcel is modified. In the equations (2.1c) and
(2.1d), it is allowed by the inclusion of an explicit diffusion term. Following other papers
on this topic, the term diabatic is used to denote an irreversible (and correspondingly
adiabatic to denote a reversible) process applying to density. Stirring is the process
of geometric deformation of fluid elements that leads to diffusive mixing, but before
diffusion acts. It is in principle reversible, because it does not change the density or
tracer concentration within fluid elements. To characterise the diapycnal mixing of tracers
during a dynamical event, scatter plots which show the characteristics of fluid parcels
in terms of their location in a 2-D space in which the coordinates are density (ρ) and
tracer concentration (φ) are employed. In such plots, a fluid parcel will remain at the
same position in density–tracer (ρφ) space whatever its displacement or geometrical
deformation in physical space, provided that there is no irreversible mixing due to the
action of diffusion. Any change in the distribution of fluid parcels in ρφ space is therefore
indicative that irreversible mixing has occurred. Similar diagrams are often used to
characterise mixing in geophysical flows, such as temperature–salinity diagrams used to
qualify the mixing of large water masses in the ocean (e.g. Tomczak 1981; Teramoto
1993); tracer–salinity estuarine mixing curves used to identify whether an estuary may
act as a source or sink of a given tracer (e.g. Loder & Reichard 1981; Officer &
Lynch 1981); or tracer–tracer diagrams used to examine compact relationships between
different atmospheric tracers (e.g. Tilmes et al. 2006; Plumb 2007). Scatter plots are thus
convenient for the purpose of the analysis presented here as they permit the straightforward
identification of diapycnal tracer transport which must be indicated by the generation
of new points in density–tracer space. For example, if the density–tracer distribution is
initially given by the solid black line in figure 5, then the evolution to a distribution given
by the dashed line is indicative of diapycnal tracer flux.

The geometry of density–tracer scatter plots does not by itself uniquely define density
and tracer distributions in physical space. Further information is provided by associating
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each point in density–tracer space with a ‘weight’, which is a discrete formulation of
the density–tracer probability function presented in appendix D of Plumb (2007), which
quantifies the amount of fluid in a given density–tracer bin. The procedure to calculate the
weight is outlined as follows. The density and tracer domains are subdivided into Nρ and
Nφ individual bins, respectively, with sizes

δρ = ρMax − ρMin

Nρ

, (4.1)

δφ = φMax − φMin

Nφ

, (4.2)

where the subscripts Max and Min indicate the maximum and minimum values of the
density and the tracer. The centre of a given bin is defined by the point (ρi, φj), where

ρi = ρMin + 2i − 1
2

δρ, i = 1, 2, . . . ,Nρ, (4.3)

φj = φMin + 2j − 1
2

δφ, j = 1, 2, . . . ,Nφ. (4.4)

The weight corresponding to a given bin with centre (ρi, φj), Wij(t), is calculated as

Wij (t) = W
(
ρi, φj, t

)
= 1

V

∑
Iij(ρ, φ, t)ΔV, (4.5)

where ΔV = Δx × Δy × Δz, and

Iij(ρ, φ, t) =
⎧⎨
⎩1,

(
ρ (x, t)− ρi, φ (x, t)− φj

) ∈
[
−1

2
δρ,

1
2
δρ

)
×
[
−1

2
δφ,

1
2
δφ

)
0, otherwise,

(4.6)

and its value is represented in colour on the scatter plot. Note that the total weight is
conserved (i.e. the total is always 1), and the integral of the weight multiplied by the tracer
concentration or density is also conserved in the absence of sources and sinks.

Since graphical limitations can make it difficult to discern when a scatter plot has
converged to a compact relationship, it is useful to define a diagnostic that acts as a
measure of the scatter,

R (t) =
∫
(φ(x, t)− φ∗(z, t))2 dV∫ (

φ(x, t)− φ
)2

dV
. (4.7)

This value will be referred to as the scatter variance. It relates the total variance of the
tracer from the isopycnal mean φ∗ (as defined by (C 11) in appendix C) to the total
variance of tracer from the mean over the whole domain φ. As such, it presents a time
evolution of the scatter plots, with larger values of R indicating greater relative variance
over a given density bin, and smaller values indicating a convergence towards functional,
compact relationships between ρ and φ.
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4.2. Scatter plot evolution for the different dynamical configurations
Figure 6 provides the evolution of the weighted density–tracer scatter plots for each of the
dynamical configurations, with each of the rows corresponding to those in figures 3 and 4.
The weight of each density–tracer bin is represented by the colours indicated by the colour
bar, with white indicating no fluid occupies that region of density–tracer space. Prior to
t = 25, all scatter plots remain close to their initial shape, reflecting that the evolution
is mostly adiabatic and advective. Most of the fluid remains located at the edges of the
scatter plots (near ρ = ±1), which is indicative of the near-constant high- and low-density
layers below and above the pycnocline, while the rest of the curve indicates the pycnocline
itself, which initially occupies a relatively small region of the domain. Starting around
t = 25 (figure 6a,g,m), the scatter plots begin to spread just below the top of the initial
curve, corresponding to the initial roll-up of the pycnocline and slow diffusion of ρ and
φ near the pycnocline. The greater spreading of the scatter plots at t = 56 relates to the
irreversible mixing of both density and passive tracer which starts when the roll-up of the
billow has significantly stretched the interface between the regions of high and low density.
While the scatter plots of the 2-D configurations appear identical, the slight deviation in
shape of the 3-D configuration scatter plot is due to the effect of the spanwise instabilities.
The development of these secondary instabilities is when the evolutions of the 2-D and
3-D configurations diverge. The spanwise instabilities lead to the rapid breakdown of the
3-D billows, and thus rapid homogenisation of the density and passive tracer. By t = 140,
the scatter plot reduces to an almost piecewise linear tent-like shape with minor spreading
along the edges, and slightly more spreading at the peak around ρ = 0 (figure 6o).
As the density and tracer further homogenise, this tent-like scatter plot becomes more
compact, with the top around ρ = 0 becoming more rounded, and branches on either side
remaining nearly linear, as shown in figure 6(q). The convergence of the scatter plots
towards more compact curves indicates that the range of tracer concentrations for a given
density value has decreased. The 2-D billows continue to rotate uninhibited, which mixes
and homogenises the density within the billow, while trapping local maxima of the passive
tracer within the core of the billows. These tracer maxima localised in regions of relatively
constant density are visible in the scatter plot as narrow vertical protrusions centred at
ρ = 0, as in figure 6(c,i). As the density field homogenises, these vertical protrusions
converge to more compact vertical lines, as in figure 6(d,j), indicating a wide range
of tracer values in a region of nearly constant density. However, while configuration I
equilibrates and maintains this shape, configuration II experiences new instabilities and
undergoes a new turbulent phase associated with billow pairing. This generates large
meanders protruding deep into the upper and lower layers of the fluid, which involves
mixing over a wide density range, indicated by the increased scattering in figure 6(k).
A new single billow is formed that eventually stabilises. The scatter plot evolves to a new
shape where the central branch has vanished.

The scatter variance is plotted with different components of the perturbation KE in
figure 7, in order to compare the scatter to the dynamical evolution of the instabilities.
Note that until t ≈ 50, the evolution of the 2-D KE is essentially identical for all three
configurations, while it remains the same for the 2-D configurations until t ≈ 200. Each
configuration shows an increase in scatter variance that occurs just after the initial increase
in 2-D KE, with both quantities depicting similar rates of increase. The first peak in the
plots of scatter variance correspond to the period during which secondary instabilities have
started to develop. For configuration I, the scatter variance undergoes a rapid decrease as
the scatter plot begins to converge to its three branch shape, with a slight increase around
t = 150. After this, the decrease in scatter variance is quite slow, as is the decrease in 2-D
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FIGURE 6. Weighted density–tracer scatter plots for configurations I (a–f ), II (g–l) and
III (m–q). Blue, yellow and red indicate low, intermediate and high values of the weight,
respectively.
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FIGURE 7. Perturbation KE (black lines), and scatter variance (grey lines) for (a)
configuration I, (b) configuration II and (c) configuration III. Configurations I and II depict only
the 2-D kinetic energy, while configuration III depicts both the 2-D KE (solid line) and 3-D
KE (dotted line). The values for the kinetic energy are depicted on the left-hand axes, while the
values for the scatter variance are depicted on the right-hand axes.

KE, as the flow has reached a stable state. Configuration II observes similar behaviour
in the evolution of its scatter variance, but sees a small rapid increase after the onset of
pairing (depicted by the rapid increase in 2-D KE around t = 300), corresponding to the
spreading of the scatter plot into away from its three branch structure to the filled triangle
structure, as depicted in figure 6( j,k), respectively. The scatter variance then undergoes
a relatively rapid decrease to near zero as the scatter plot reaches its stable compact
shape. The scatter variance of configuration III experiences the same rapid increase as the
other cases after the initial billow roll-up, but rapidly decreases after the organised 3-D
secondary instabilities develop (the 2-D KE sees a rapid decrease during the development
of the spanwise instabilities, which appears to relate to a brief breakdown of the billow).
The rate of decrease of the scatter variance slows from around t = 90 to 130, following a
rapid increase in the 2-D KE (related to a brief reformation of the coherent billow which
occurs prior to the complete breakdown of the primary instability and further development
of turbulence). It quickly reaches zero around t = 150 as the scatter plot begins to reach
its compact tent-like shape.

4.3. Convergence principle for scatter plots
Because density and the passive tracer are both governed by advection–diffusion equations
without sources or sinks, there exists an important constraint on the evolution of the
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FIGURE 8. Diagram illustrating the convex envelope constraint on the evolution of a typical
density–tracer scatter plot as described in § 4.3.

density–tracer scatter plot (see Plumb (2007) and references therein. Lauritzen & Thuburn
(2012) used this constraint to determine if the mixing in numerical models is physical).
In a general sense, scatter plot evolution can be understood as follows. As previously
mentioned, stirring will not modify the scatter plot, but bring fluid parcels from different
regions closer together (for example, the four parcels represented by the green points in
figure 8). Provided the molecular diffusivities of the density and tracer are equal, mixing
will homogenise the density–tracer characteristics of parcels within a cell whose size is
determined by the diffusivity coefficient. The resulting density–tracer characteristics of
this cell are then the averaged values of the initial parcels, weighted by their volumetric
ratio (e.g. the red point in figure 8). This implies that the scatter plot after stirring and
mixing will be contained within the convex envelope of the initial distribution (region
within the red dashed curve in figure 8). Certain properties can be inferred from this
constraint:

(a) Whatever the route to turbulence and mixing, the tracer concentration in a given
density range remains within the interval determined by the initial convex envelope.
This limits the extrema of the tracer concentration in a given density range to the
values set by the initial convex envelope.

(b) During mixing, the scatter plot evolves continuously. Thus, at any given time, a
scatter plot must lie within the convex envelope of every preceding scatter plot. In
addition, extreme values of tracer or density are eroded by mixing. As a result, the
convex envelope reduces with time and may eventually converge to a more compact
scatter plot.

(c) The convex envelope of a straight line is simply the same straight line. If fluid parcels
along a given straight line mix, they will remain confined to that line.

Note that if the density and tracer have different diffusivities then these convex envelope
constraints can be broken, although whether or not this effect is important in practice
remains to be determined.

The scatter plot evolution depicted in figure 6 follows each of the constraints listed
above. The large-scale dynamical mixing due to the KH billows (both the initial billows
and pairing) reduces the overall size of the convex envelopes and thus the scatter plots,
and the maximum possible value of the tracer concentration in specific density ranges.
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After a certain amount of time, the maximum tracer value slowly decreases, showing that
mixing at this point is no longer dynamically active between the layers, but acts at smaller,
localised scales between adjacent points in density–tracer space. This localised mixing
appears responsible for the formation of the nearly linear regions of the converged scatter
plots on either side of ρ = 0 because the previous arguments can be applied to restricted
portions of the scatter plots provided that mixing acts locally in ρφ space or at reduced
scales.

5. Background density and isopycnal mean tracer profile evolution

This section presents the second approach used to describe and quantify the evolution of
the tracer field and contrast it with the evolution of the density. It is based on the evolution
of mean density and tracer profiles obtained by an adiabatic rearrangement of the density
field.

5.1. Background density and effective diffusivity
The traditional approach to representing transport and mixing of tracers in turbulent flows
is via a diffusive formulation, i.e. a turbulent diffusivity is sought that represents the effect
of the turbulent flow on the tracer. One of the fundamental limitations of this approach
is that the diffusive representation of random walks, and by extension, of the effect on
tracers of quasi-random flows, describes evolution that is the result of many small random
steps. This condition cannot be justified for flows that are spatially inhomogeneous, such
as the KH instability considered here, where the typical fluid particle displacement by
a single eddy is comparable to the length scale on which the properties of the flow
change. One way of overcoming this is to a move to a tracer-based coordinate system. This
is the approach in the effective-diffusivity formalism devised by Nakamura (1996) and
Winters & D’Asaro (1996). This formalism applies to systems where tracers are advected
and diffused. Contours (in two dimensions) or surfaces (in three dimensions) of tracer
concentration are used to define coordinate surfaces or contours, but the latter are labelled
not by the value of the tracer concentration but the area (in two dimensions) or volume
(in three dimensions) enclosed by the surface. If the tracer has some kind of geometric
organisation, then the coordinate system and the variation of tracer concentration within
that system represent that organisation. For the KH instability and for other flows in
density-stratified fluids, the natural tracer is the density and the corresponding tracer-based
coordinate, z∗, represents a vertical coordinate. By construction, the density is a function
of one space variable, z∗, and time t alone, written as ρ∗(z∗, t), which may be shown to
satisfy the diffusion equation

∂ρ∗/∂t = ∂/∂z∗
(
Kρ∂ρ∗/∂z∗

)
, (5.1)

where Kρ is the dimensional effective diapycnal diffusivity of density, defined as

Kρ(z∗, t)
κρ

= 〈|∇ρ|2〉
z∗
(∂ρ∗/∂z∗)

−2 , (5.2)

where κρ is the molecular diffusivity of density, and 〈·〉z∗ denotes an appropriately defined
average over a z∗ surface (as defined by (C 11) in appendix C). Note that the rearranged
(or background) density field ρ∗(z∗, t) may be calculated from the 3-D simulation by
rearrangement to construct a monotonic profile. That is, fluid elements, each with a
specified infinitesimal volume, are ordered by their density, giving density as a function
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of cumulative volume (i.e. the volume of fluid with density less than a given value), and
then the volume is converted to a vertical coordinate z∗ by dividing by the horizontal area
of the fluid domain. The coordinate z∗ is then a decreasing function of ρ∗. The value of z∗
for a given ρ∗ is therefore proportional to the integral, down to ρ∗ of the weight defined
previously in § 4.1. (Note that, typically, (5.1) is written in terms of ρ and z∗ (for example,
Smyth et al. 2005), with ∂ρ

∂z∗
implicitly referring to the adiabatic rearrangement of the

density field. For clarity, ρ∗ will be used here for density when it is being regarded as a
function of z∗, and ρ will be used when it is being regarded as a function of the Cartesian
coordinates (x, y, z), such as in the numerator of the right-hand side of (5.2).)

The left-hand column of figure 9 shows the time evolution of the background density
profiles sorted from the simulations of the different dynamical configurations (solid
lines), and the profiles calculated from (5.1), using the effective diffusivity calculated
from those three simulations. The right-hand column plots the final profiles based on
the rearrangement of the simulation results and the diffusion equation. The area around
the pycnocline is magnified to show the area of interest in better detail. As suggested
by the evolution of the cross-sections in figure 3, the profiles of all three simulations
undergo similar evolution until the roll-up of the primary KH billows, at which point the
pycnocline of configuration III undergoes greater spreading than the 2-D configurations
due to the mixing from secondary instabilities. The profiles for the 2-D configurations
continue to evolve identically until the onset of pairing, at which point the pycnocline of
the configuration II profile widens significantly. After mixing, for both 2-D configurations,
the edges of the pycnocline widen slightly until the end of the simulation. The final state
of configuration I is an approximately three-layer profile, with a centre layer near ρ∗ = 0,
and rapid changes to the upper and lower layers. Configuration II has a near constant
ρ∗ = 0 layer of similar width to configuration I, with less steep changes in profile towards
the upper and lower layers. The final profile of configuration III differs by not having
a constant density middle layer, instead showing the density continuously decrease with
height.

Equation (5.1) describes the transport which occurs solely through molecular diffusion
of ρ, and hence ρ∗, across z∗ surfaces (there is no advective component). As discussed by
Nakamura (1996) and Winters & D’Asaro (1996) (and in subsequent papers that exploit
this formalism, such as Smyth et al. (2005), Salehipour & Peltier (2015), Zhou et al.
(2017)), the effective diffusivity Kρ is determined by the geometry of the full 3-D density
field. The dimensionless factor 〈|∇ρ|2〉z∗(∂ρ∗/∂z∗)−2 has minimum value 1 when the ρ
surfaces are planes, and increases as the ρ surfaces become more complex. Thus whilst
there is no advective transport required in (5.1), the indirect effect of advection is to deform
the surfaces of ρ and hence to increase the effective diffusivity.

The approach first followed here is to investigate whether (5.1) provides a quantitatively
useful expression of the effect of transport and mixing on density and whether it can be
extended to other tracers. Whilst (5.1) follows exactly from the partial differential equation
for advection–diffusion, with a specified value of molecular diffusivity κρ without any
approximation, the KH instability simulations rely on a numerical implementation of
this partial differential equation, and it is first important to establish whether or not
this implementation (5.1) remains quantitatively accurate. It is straightforward to solve
the one-dimensional diffusion equation (5.1) numerically by providing the history of
Kρ(z∗, t) calculated using the density field from the numerical simulations, and to compare
this predicted evolution of ρ∗(z∗, t) with that given by the numerical simulation itself.
In appendix B it is shown that applying this approach using the constant value of
κρ specified for the numerical simulation under-predicts the mixing of density in the
evolution of the KH instability. The explanation is that the numerical approximations
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FIGURE 9. Time evolution of the background density profile from the simulations (solid lines)
and as calculated from the diffusion equation (5.1) (dashed lines) for (a) configuration I,
(b) configuration II and (c) configuration III. The corresponding final density profiles are
presented in the right-hand column (d–f ), with the background profile given by the solid black
line, and the profile from the diffusion equation given by the solid red line. The initial profile is
depicted by the blue line. The solid black and dashed red lines overlap almost perfectly.

to each of the derivative terms of the governing equations, which have been designed
with certain properties (for example, controlling spurious oscillations near discontinuities
Shu (1999)), in effect augment the specified molecular diffusivity. An estimate of the
extra diffusivity provided by the numerical schemes is provided by considering the
ratio between the time rate of change of the density variance and the variance of the
density gradient (see (B 3)). It may be concluded that by this measure, in the simulation
depicted (configuration III), the additional time-varying ‘numerical’ diffusivity reaches
up to 100 % of the specified molecular diffusivity during the initial billow roll-up. The
numerical diffusivity deduced on this basis can be added to κρ to give a time-dependent
‘net diffusivity’ κNet

ρ (t), which helps better represent the behaviour of the higher-order
numerical terms in the simulation by a simple advection–diffusion equation. Fortunately,
the derivation of the effective diffusivity formulation in appendix C permits the diffusivity
provided in the advection–diffusion equation to vary with time without modifying the end
result. By adjusting a single quantity, κρ , improved agreement is seen in the predicted ρ∗
as a function of z∗. Figure 9 indicates that both the computed and rearranged profiles are
in very good agreement for the duration of the simulations, especially towards the edges
of the pycnocline. The greatest disparity appears for the ρ∗ = 0 isopycnal (green lines) in
the configuration I (figure 9a), but remains modest. Note that tracer profiles presented in
subsequent sections will also be calculated using net tracer diffusivities.

For reference, the corresponding time evolution of the dimensionless Kρ (i.e. the
right-hand side of (5.2)) for configuration III is presented in figure 10. As has been
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FIGURE 10. Example of dimensionless effective diffusivity (i.e. the right-hand side of (5.2))
computed from the sorted density profile for configuration III. The colour indicates the
dimensionless values of effective diffusivity, while the white lines indicate different values of
the background density profile.

demonstrated in previous papers, and in applications to different flows (e.g. Nakamura
1996; Winters & D’Asaro 1996; Shuckburgh & Haynes 2003), the distortion of ρ-surfaces
leads to a substantial enhancement of Kρ relative to κρ , and in the case shown, a factor
of several hundred at certain stages of the flow evolution. Note also that the difference
between κNet

ρ (t) and κρ is not very significant in this enhancement but, again, that it is
significant in giving precise quantitative agreement between the evolution of ρ∗(z∗, t)
predicted by (5.1) and the evolution according to the full numerical simulation.

5.2. Effective tracer diffusivity
Once ρ∗ is determined, a tracer in the flow can be sorted relative to this density profile by
calculating tracer means over isopycnal surfaces,

φ∗ (z∗, t) = 〈φ (x, t)〉z∗ , (5.3)

as defined by (C 11). Following the process described in appendix C, a complete governing
equation for this isopycnal mean tracer profile can be derived. A preliminary step during
the derivation provides a formulation that holds for any φ and ρ,

(〈φ〉z∗)t = 〈φt〉z∗ + ∂

∂z∗

((〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

) (∂ 〈ρ〉z∗

∂z∗

)−1
)
, (5.4)

provided the time derivatives φt and ρt are supplied via specific evolution equations. The
final step in the derivation supplies these time derivatives via the advection–diffusion
equations (2.1c) and (2.1d) to give

∂φ∗/∂t = ∂/∂z∗

(
κφ

κρ
Kρ∂φ∗/∂z∗

)
+ ∂/∂z∗

(
(∂ρ∗/∂z∗)

−1 〈κφ∇φ′ · ∇ρ − κρφ
′∇2ρ

〉
z∗

)
,

(5.5)

where φ and ρ have diffusivities κφ and κρ , respectively. Here, φ′ = φ − φ∗ represents
the perturbation from the mean value of tracer for a given density. The density at each
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point corresponds to a specific z∗, and thus φ∗(z∗, t), which is subtracted from the value
of the tracer concentration to give φ′. An intermediate formulation could be derived by
supplying ρt via an advection–diffusion equation, but allowing for a more general form of
the equation for φ. This equation, and the special limit cases in which either one or both
tracers are non-diffusive, are discussed in greater detail in appendix C.3.

Focusing on (5.5), the first term on the right-hand side is straightforward – it simply
captures the molecular diffusion of φ∗ taking account of the geometry of the ρ-surfaces.
The second term on the right-hand side takes account of the variation of φ over
ρ-surfaces, represented by the quantity φ′. Estimating this ‘eddy term’ therefore presents
a closure problem, since information about φ′ is not available from φ∗. There are two
distinct contributions to this second term, both requiring non-zero diffusivity. The first,
proportional to κφ∇φ′ · ∇ρ is associated with a diffusive flux of φ across ρ-surfaces. The
second, proportional to −κρφ′∇2ρ, is associated with the motion of ρ-surfaces relative to
the fluid. Rather than considering the closure problem further, the importance of the tracer
eddy term will be investigated by considering a ‘virtual tracer’ φv(z∗, t) which satisfies
(5.5) with the tracer eddy term neglected,

∂φv/∂t = ∂/∂z∗

(
κφ

κρ
Kρ∂φv/∂z∗

)
, (5.6)

where initially φv(z∗, t = 0) = φ∗(z∗, t = 0). Figure 11 shows the time evolution of φ∗
(solid lines) as calculated from the different dynamical configurations using (5.3), and φv
as calculated from (5.6) (dashed lines), for the tracer layer collocated with the pycnocline.
Profiles at specific times corresponding to the cross-sections of figure 4 are presented
in figure 12. During the evolution, there exist strong differences between both profiles
for all three configurations, starting around t = 50, immediately after the first mixing
event. However, with time, both configurations II and III show an increase in agreement.
By the end of these simulations (figure 11e, f ), there are relatively minor differences
towards the centre of the domain and along the edges of the profiles, where the virtual
tracer slightly underestimates and overestimates the tracer concentration, respectively. In
contrast, configuration I continues to show marked disagreement between the isopycnal
mean profiles from simulation and the virtual profiles, with φv being wider than φ∗,
and significantly underestimating the amount of tracer at the centre of the domain. This
does indicate that, provided there are adequate mixing events,φv and φ∗ can eventually
reach good agreement, suggesting that the mean tracer profile resulting from mixing
can be predicted using a simple diffusive equation with diffusivity given by the density
effective diffusivity. This is not a trivial result as it requires that, during the evolution, the
cumulative effect of the eddy term vanishes. The fact that the eddy term vanishes at the
end of the simulation may not be enough.

5.3. Relative contribution of the eddy term
In this section, the eddy term is examined in greater detail to assess its relative importance
in tracer profile evolution. First note that (5.5) can rewritten in a way that omits the
calculation of φ′ or its gradient, facilitating the numerical computation of the eddy term,

∂φ∗/∂t = ∂/∂z∗

(
κφ

κρ
Kρ∂φ∗/∂z∗

)
+ ∂/∂z∗

(
(∂ρ∗/∂z∗)−1(κφ∇φ · ∇ρ〉z∗

− κφ∂φ∗/∂ρ∗〈∇ρ · ∇ρ〉z∗ − κρ〈φ∇2ρ〉z∗ + κρφ∗〈∇2ρ〉z∗

))
. (5.7)
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FIGURE 11. Time evolution of the virtual tracer profiles (dashed lines) and the isopycnal mean
tracer profiles from simulations (solid lines) for (a) configuration I, (b) configuration II and
(c) configuration III. The corresponding final tracer profiles are presented in the right-hand
column (d–f ), with the isopycnal mean profile given by the solid black line, and the virtual
profile given by the solid red line. The initial profile is given by the blue line.

For the simulations presented here, it has been verified that calculating the evolution of φ∗
using (5.7) with an eddy term computed directly from simulation significantly improves
the agreement with the isopycnal mean tracer profile computed from the simulation at all
times. The profiles obtained from (5.7) closely match the mean profiles from the 2-D
or 3-D fields, even for configuration I, where the isopycnal mean tracer profile from
simulation does not converge to a shape similar to the purely diffusive virtual profile.
Figure 13 presents the time evolution of the profiles of the diffusive term, eddy term,
and time derivative of the isopycnal mean tracer, for the 3-D configuration III. Following
the initial roll-up of the billow and the during the development of secondary instabilities
(from about t = 50 to 130), both terms show similar structure of the same magnitude, but
of opposite sign. This shows that the eddy term is non-negligible, and provides closure
for the accurate computation of φ∗. Over this time period, both tend to mostly cancel each
other, with the resulting time derivative approximately an order of magnitude smaller than
either term. This time derivative shows that φ∗ undergoes the most rapid change as the
secondary instabilities and 3-D structure develop (around t = 60 to 80), although there
are still slow changes in φ∗ after t = 130. The slow changes indicated by the blue patches
about z∗ = 0 between t = 130 and 150 are due to contributions from both terms, while the
streaks of red in figure 13(c) between t = 130 and 200 around z∗ = ±2.5 are due entirely
to the diffusive term.

6. Preliminary interpretations of results

For configurations II and III, the reasoning behind the relatively good agreement
between the stable state profiles of φv and φ∗ is not entirely clear. This section presents
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FIGURE 12. Isopycnal mean tracer profiles computed from simulations (solid black lines)
and virtual tracer profiles calculated from (5.6) (dashed red lines) for the three dynamical
configurations (configuration I (a–f ), configuration II (g–l) and configuration III (m–q)).
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FIGURE 13. Time evolution of the profile of (a) the diffusive term, (b) the eddy term and
(c) the time derivative of the isopycnal mean tracer for the 3-D dynamical configuration (III).

possible behaviours and features that may be indicative of a tendency towards good
agreement between φv and φ∗, as well as situations that may yield discrepancies between
the two.

In § 4.2, it is observed that the scatter plots for the fully mixed configurations II and
III (figure 6l,q) tend to compact forms in which there is little to no variation in tracer
concentration for a given value of density. Note that there is a strong relationship between
the eddy term of (5.5) and the scatter plots, in that perfect compactness ensures that
φ′ = 0, and thus the eddy term is null. The behaviour depicted in figure 13 can thus
be interpreted as a tendency for the eddy term to generate small-scale perturbations on
the mean profile φ∗ and for diffusive term to compensate this effect, as long as the eddy
term remains active. After the strong mixing phase, the eddy term diminishes, reflecting
the convergence to a compact relationship. The scatter plots of both configurations tend
to shapes with outer regions in which the density–tracer relationship appears linear (as
suggested in § 4.3), and a central region where the relation lies on a curve. The highest
values of tracer concentration are located in the curved central region, with tracer values
decreasing along the piecewise linear regions towards the edges. Consideration of the
weights in density–tracer space shows that each of these three regions correspond to a
non-negligible volume of the fluid.
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FIGURE 14. Evolution of the virtual tracer profiles (dashed lines) as a function of the
background density for the default tracer field of configuration III. The blue and yellow points
(inside and outside ρ = −1 and 1, respectively) indicate the density–tracer scatter plot at
t = 329, with the solid grey line indicating the isopycnal mean tracer profile as a function of
background density at t = 329. The solid black line indicates the ideal tent shape given by (6.3)
at t = 329.

The density–tracer scatter plot is now compared to the virtual tracer plotted as a
function of density, φv(ρ∗) for configuration III. Figure 14 plots the end time (t = 329)
density–tracer scatter plot (indicated by primarily blue dots between ρ = −1 and 1), which
has converged to a compact relationship that recreates φ∗(ρ∗) (solid grey line overlapping
the scatter plot). This convergence is to be expected, since φ∗ represents the mean value
of the tracer over a given density surface. φv(ρ∗) is plotted at different times as dashed
grey lines, showing that the shape of the virtual tracer curve converges to a shape similar
to the compact scatter plot relationship and φ∗(ρ∗). Both figures 11( f ) and 14 indicate
that although φv(ρ∗) underestimates the amount of tracer at the central region around
ρ∗ = 0, and overestimates the amount of tracer along the two outer regions, φ∗ and φv are
in relatively good agreement.

As is the case for the scatter plots (and thus φ∗(ρ∗)), φv(ρ∗) has tendency towards nearly
piecewise linear relationships. Since φv is a one-dimensional profile, it can be rewritten as

φv(z∗, t) = F(ρ∗, t). (6.1)

Substituting (6.1) into (5.6), a new equation in terms of F can be written as

∂F/∂t − ∂2F
∂ρ2∗

Kρ (∂ρ∗/∂z)2 = 0. (6.2)

This is a type of diffusion equation, under which the curvature of the graph of the function
F might be expected to reduce, and indeed the equation allows a possible steady state with
∂2F/∂ρ2

∗ = 0, i.e. with F a linear function of ρ∗. This suggests that the steady state form
of F might be modelled by a piecewise linear function, which can be used as a framework
in which to compare the final stages of φv(ρ∗) and φ∗(ρ∗).

The mixing event sets the distribution of density weights within a given density range,
say [ρL, ρH], which will be affected by turbulent mixing over the course of the entire event.
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Within this range, the total amount of passive tracer is conserved. Therefore, assuming
symmetric mixing across the mid-density, a unique ideal piecewise linear tent shape can
be entirely determined by the distribution of the density and the total amount of tracer
within this range. It can be defined as

φI(ρ∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ρ∗ − ρL)

(
2φMax

ρH − ρL

)
, ρ∗ ∈ [ρL, ρM] ,

− (ρ∗ − ρH)

(
2φMax

ρH − ρL

)
, ρ∗ ∈ [ρM, ρH] ,

(6.3)

where the maximum tracer concentration value φMax occurs at the mid-density defined as
ρM = (ρL + ρH)/2, and is given by solving

φTot =
∫ ρH

ρL

φI(ρ)W(ρ) dρ, (6.4)

where φTot is the total amount of tracer within the range [ρL, ρH], and W(ρ) is the weight
function of density at the final state, which is determined from the simulation. Figure 14
depicts φI(ρ∗) for configuration III as solid black lines. Though there are important
differences that must be considered, the general shape of φI(ρ∗) is close to that of φ∗(ρ∗).
Primarily, the maximum of the tracer concentration is greater for the ideal tent shape.
Given the conservation of total amount of tracer in the mixing region, this discrepancy
requires that part of the external branches of φ∗(ρ∗) lie above the linear regions of the
ideal tent shape. This indicates that φ∗(ρ∗) has a slightly convex shape in the branch
regions. The piecewise linear profile (6.3), with the constraint on φMax implied by (6.4), is
an idealisation that, as can be seen from figure 14, has some skill in predicting the actual
final relation between tracer and density. However, the prediction is not exact because
there is a central range of values of density where the gradient of the function F(ρ∗) varies
smoothly, rather than changing abruptly as would be required if it were. Thus what happens
in the central region is of particular importance for determining the shape of the late time
profile defined by F(ρ∗) and, in particular, its deviation from a piecewise linear form. Note
also that the symmetry assumed in (6.3) is not exact in the simulations discussed here and
will not be in general.

The lack of convergence between φv(z) and φ∗(z) for configuration I can be explained
by the fact that, in the 2-D simulation, the scatter plot does not tend to a compact
relationship. There is a prominent vertical branch at the mid-density (in the central region)
corresponding to incomplete homogenisation of tracer along that density surface. Such a
feature is impossible to achieve for the virtual profile. However, configuration I seems
anomalous for the dynamical configurations tested here, as configurations II and III (the
most physically relevant case) demonstrate convergence towards similar vertical profiles.
A possible explanation for this is that at intermediate times (for example, configuration
III between t = 50 and 130), the forcing provided by the eddy term creates a positive
difference between φ∗ and φv near the centre, and negative differences along the sides
(e.g. figure 12o). Once the scatter plot reaches a more compact shape, the forcing provided
by the eddy term diminishes, allowing diffusion to redistribute φ∗ faster than φv due to its
structure. A consequence is that the effective diffusivity of density provides an excellent
approximation for the tracer diffusivity in these flows.
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7. Sensitivity to variations in the initial tracer field

The comparison of the three different dynamical configurations only considers a tracer
that is centred along and of similar width to the pycnocline. The tracer is fully distributed
within the density range affected by turbulence and mixing, and its initial gradient is
similar in magnitude and geometry to the density. In order to test whether the effective
diffusivity provides an adequate representation of tracer mixing in configurations where
this is not the case, this section examines the mixing of tracer layers not initially collocated
with or of similar width to the pycnocline in the 3-D dynamical configuration III. The
background shear and density profiles are maintained as before, but the width and vertical
position of the initial tracer profiles are varied by modifying parameters a and b in (2.9),
respectively.

7.1. Sensitivity to the vertical extent of the tracer
In § 6, the ideal piecewise linear structure defined by (6.3) depends only the initial values
of the tracer at ρ = ρL and ρ = ρH (taken here to be 0), and the integral quantity of the
tracer within the density range [ρL, ρH] affected by the dynamics of the flow, φTot. To test
how strongly the details of the initial tracer distribution influence the final profile, the
width and maximum of the initial tracer profile are varied in (2.9) by modifying a, with
b = 0 to keep the tracer collocated with the pycnocline. In the reference configuration for
the tracer (i.e. the configuration presented in previous sections), a = 1. When a > 1, the
width of the tracer layer is narrower than the that of the reference configuration, while
the initial maximum is greater. Therefore, the tracer in these simulations initially resides
entirely within the region subject to mixing. The left-hand column of figure 15 presents
the evolution of the isopycnal mean tracer profiles from simulation (solid lines) and the
virtual profiles (dashed lines) for three passive tracers with initial fields given by (2.9)
with a = 1, 2, and 5 (top to bottom), all subject to the same initial dynamical profiles
as configuration III. The right-hand column depicts the initial and final profiles for the
isopycnal mean (solid blue and black lines, respectively) and final virtual profiles (dashed
red line), while profiles at specific times are depicted in figure 16.

During the development of the fastest-growing instabilities, and prior to the formation
of secondary instabilities around t = 56, the virtual and isopycnal mean profiles agree
almost perfectly for all three tracers. After the onset of the secondary instabilities, the
effective diffusivity overestimates the width of the tracer layers, and the virtual tracer
layer is broader than the isopycnal mean tracer layer for all three tracers. At intermediate
times (e.g. t = 86), the virtual profiles are smoother than the isopycnal mean profiles,
which have slowly changing, low concentration values at the edges, with sharp increases
leading towards flatter maximums towards the middle of the domain. This trend continues
for the duration of the simulation, although the isopycnal mean and virtual profiles show
much better agreement by the end. In each case, the virtual profile tends to underestimate
the tracer concentration at the middle of the domain, and overestimate the amount at the
edges of the layer. Despite the variation in initial profile widths and maximums, the final
profiles for each of the tracers are all of similar magnitudes and shapes.

Figure 17 presents the evolution of density–tracer scatter plots for each tracer layer
with different initial widths. The tracer axis has been normalised by the maximum
value for the wide tracer layer (a = 1) at each time step to better compare scatter plots.
Additionally, scatter plots are magnified in the vertical direction between the depicted
times. During the initial roll-up of the KH billows, as depicted in figure 17(a,g,m), there is
an increase in scattering along φ-space as a increases. By t = 56 at the onset of secondary
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FIGURE 15. (a–c) Evolution of the isopycnal mean tracer profiles from simulation (solid lines)
and virtual tracer profiles (dashed lines) with time: (a) wide (a = 1), (b) medium (a = 2) and
(c) narrow (a = 5). (d–e) Corresponding initial tracer profiles (blue), final isopycnal mean tracer
profiles (black) and final virtual profiles (red).

instabilities, there is significant scattering induced by the turbulent mixing, filling the area
below the initial curves. The maximum concentration of each tracer has been reduced
by approximately 20 %, and there are strong discrepancies between all scatter plots. The
outer edges of the scatter plots collapse to protrusions mostly centred at ρ = 0 (t = 85)
while maintaining similar maximum tracer values to the previous times. By t = 140, the
difference in maximum tracer values of each of the scatter plots has greatly reduced.
The amount of scatter over a given density bin varies, however, increasing as the initial
profile becomes narrower (a increasing). By t = 260, convergence of the scatter plots to
similar shapes becomes apparent, with each displaying similar compact relationships in
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FIGURE 16. Isopycnal mean tracer profiles from simulation (solid black lines) and virtual tracer
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(g–l) medium (a = 2) and (m–r) narrow (a = 5)).
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much closer agreement, with minor differences in tracer maximum and concavity. As per
figure 10, the effects of turbulent mixing have diminished significantly by this point, with
a maximum effective diffusivity of approximately 2.5. Magnifying the scatter plots at
the end of the simulation (t = 342) shows that the differences in tracer maximum and
concavity persist after the turbulent phase has ended, and the tracers are subject only to
diffusive mixing. The similarity between these scatter plots at the end of the simulation
suggests that for an arbitrary initial tracer distribution, provided it is entirely within the
mixing region, and a sufficiently mixed state has been reached, a reasonable estimate
of the final tracer distribution might be obtained using the piecewise linear formulation
suggested in § 6.

The density–tracer scatter plots with the narrow and medium distributions show
important cross-isopycnal fluxes of tracers, with a final distribution extending to a wider
density range. The amount of tracer affecting new density ranges can be calculated from
the knowledge of the density evolution and the total initial tracer amount. Finally, while
all three scatter plots tend to nearly piecewise linear tent shapes, the wide (reference) case
(a = 1) is slightly convex on either side of the tracer maximum, while the scatter plots
for the other two tracers are concave on either side of the maximum, with the narrow
case (a = 5) being more concave than the medium case (a = 3). Additionally, the tracer
concentration maximum increases slightly as a increases. This relationship between scatter
plot concavity and tracer concentration maximum reflects the observations made about
deviations away from the ideal tent shape made in § 6.

7.2. Sensitivity to the vertical position of the tracer
In the results presented in previous sections, all tracer profiles are initially concentrated
within the region subject to turbulent mixing. As a result, the amount of tracer initially for
densities less than ρ = ρL and greater than ρ = ρH is null. In this section, the validity of
the convergence principle is tested for configurations where the tracer structure is offset
above the main turbulent region, so not all the tracer is located within the mixing range.
These initial tracer profiles are defined by (2.9), with a = 1, and b varied to change
the initial vertical position of the tracer. For this simulation, b = 0 sets a layer centred
along the pycnocline (i.e. the reference tracer configuration), b = 2.86 is offset above the
pycnocline by 10 % of the vertical extent of the domain and b = 5.72 is offset above the
pycnocline by 20 % of the vertical extent of the domain. The evolution of tracers subject
to these initial conditions for the 3-D configuration III are presented as cross-sections in
figure 18. From left to right, the tracers are aligned with the midpoint of the pycnocline
(b = 0), slightly offset from the pycnocline (b = 2.86), and completely offset from the
pycnocline (b = 5.72). The corresponding density evolution is unchanged, and is depicted
in the two right-hand columns of figure 3. The slightly offset tracer initially resides on the
edge of the fastest-growing vortex, so that when the KH billow first develops, some of the
tracer is entrained into the pycnocline by the vortex, and the tracer layer is significantly
distorted. With the onset of small-scale features from the secondary instabilities, the
bottom half of this tracer layer is eroded and a thick layer of low tracer concentration
develops, extending to the lower edge of the pycnocline. These secondary instabilities
affect the interior and upper parts of the high concentration region, but do not significantly
mix regions of low and high tracer concentration (e.g. figure 18k), and there remains a layer
of relatively high tracer concentration mostly unaffected by mixing. Along the upper edge
of this layer, molecular diffusion is the primary source of slow mixing, but this mixing is
weak enough to be considered negligible when compared to the strong mixing happening
below. The layer of tracer completely offset from the pycnocline is weakly distorted by the
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FIGURE 17. Density–tracer scatter plots for tracer layers centred along the pycnocline with
varying widths, but identical tracer totals ((a–f ) wide (a = 1), (g–l) medium (a = 2) and (m–r)
narrow (a = 5)). Note that the tracer axis is adjusted after each time step as the scatter plots
collapse.
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FIGURE 18. Cross-sections of the evolution of tracer layers centred at various depths ((a–g)
along the pycnocline (b = 0), (h–n) slight offset (b = 2.86) and (o–u) completely offset (b =
5.72)).
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FIGURE 19. (a–c) Evolution of the isopycnal mean tracer profiles with time, (a) along the
pycnocline (b = 0), (b) slightly offset from the pycnocline (b = 2.86) and (c) completely offset
from the pycnocline (b = 5.72), as computed from the simulation (solid lines) and the virtual
tracer profiles (dashed lines). (d–f ) Corresponding initial tracer profiles (blue), final isopycnal
mean tracer profile (black) and final virtual profile (red).

outer edge of the billow, but experiences almost no mechanical mixing (some strands of
tracer pulled into the secondary instabilities are visible in figure 18t), mostly a spreading of
tracer due to diffusion. The effect of the localised mechanical mixing away from the offset
tracer layers is visible in the isopycnal mean tracer profiles. The complete time evolution
of the isopycnal mean and virtual tracer profiles is presented in the left-hand column of
figure 19, with the initial and final profiles presented in the right-hand column. Profiles at
specific times corresponding to the cross-sections of figure 18 are presented in figure 20.

Compared to the tracers collocated with the pycnocline presented in previous sections,
the offset isopycnal mean tracer profiles typically show greater agreement with the virtual
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FIGURE 20. Isopycnal mean tracer profiles (solid black lines) and virtual tracer profiles (dashed
red lines) for the simulation where the passive tracers are offset from the pycnocline: (a–g) along
the pycnocline (b = 0), (h–n) slightly offset from the pycnocline (b = 2.86) and (o–u) completely
offset from the pycnocline (b = 5.72).
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the pycnocline (b = 0), (h–n) slight offset (b = 2.86) and (o–u) completely offset (b = 5.72).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.483


Diapycnal mixing of passive tracers 900 A26-37

profiles throughout the evolution of the flow. The slightly offset tracer shows some
disparity at the lower edge of the virtual and isopycnal mean profiles after the onset of
the secondary instabilities, and the virtual profile underestimates the maximum value
of the profile towards the midpoint of the simulation (e.g. t = 140). For the completely
offset tracer, the virtual and isopycnal mean profiles appear to agree perfectly for the
duration of the simulation. This can be explained by considering that the tracer is located
mostly outside the region of strong turbulent mixing and is essentially subject only to slow
molecular diffusion. The tracer eddy term is almost null for this tracer distribution, since
both φ′ and the gradient of density are nearly zero over the density levels in that region.
The full equation for φ∗ therefore reduces to the virtual tracer equation in this case.

Figure 21 presents the scatter plots of each of the tracers in figure 18 relative to density.
The first thing to note is the offset tracer scatter plots take different initial forms than
the centred tracer scatter plot. They are asymmetric, and have different convex envelopes,
essentially triangles with corners at the top left, bottom left and bottom right corner of
the graphs. The slightly offset tracer (b = 2.86) experiences most of its scattering above
the concave region of the plot, and tends to a final shape that is nearly piecewise linear,
with lines of two different slopes that intersect near ρ = 0. The tracer maximum occurs
along an isopycnal with a density lower than the mean. The cross-isopycnal flux of tracer
is strong in this case, since at the end of the simulation, a significant quantity of the tracer
is distributed over a much wider density range. For most of the flow, the completely offset
tracer is modestly affected by mixing and does not show much scattering, although some
redistribution of the scatter plot is visible at the lower edge of the tracer layer where it
is more significantly eroded by mixing. This tendency for the completely offset tracer
to maintain a nearly compact relationship is indicative of the fact that the eddy term
remains negligible for the entire simulation. As for the simulations with different tracer
layer widths, the present offset configurations show that mixing can strongly modify tracer
concentration and entrain significant amounts of tracer into new density ranges.

8. Conclusions

This paper uses the classical problem of turbulence arising from Kelvin–Helmholtz
instabilities to investigate the mixing of passive tracers. Three different stratified shear
configurations providing different routes to turbulence are simulated, and the mixing of
different passive tracers layers is examined. Simulations examining the mixing of tracer
layers with different widths and vertical positions are performed. Weighted density–tracer
scatter plots are proposed as a method through which to analyse diapycnal transport of
tracer. When tracer and density diffusivities are equal, a convex envelope constraint can be
placed on the evolving scatter plot, which limits on the maximum tracer values achievable
in specific density ranges. In the initial stage of the KH instability, when the density and
tracer are materially conserved there is no modification of the scatter plots. The stirring
effect of the growing KH disturbance eventually enhances diffusive mixing which yields
irreversible modifications of the density–tracer scatter plot, such that the plotted points
fill a finite area, over the density range affected by the mixing. The area filled then
reduces as the tracer and density then relax towards a different compact relation than
that set by the initial conditions. Note that a peculiarity of the 2-D case is that there may
be a persistent volume of fluid with essentially constant density within which the tracer
varies. This does not occur in the more realistic 3-D case. The formulation for the scatter
variance as introduced by (4.7) and presented in figure 7 provides an additional diagnostic
to compare the evolution of the tracer layer collocated with the pycnocline in each of the
three dynamical configurations. Times at which the diagnostic is near zero can also be
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used to identify if the relationship between the density and tracer has become compact.
This can supplement the information available in the weighted scatter plots, as it can be
difficult to ascertain whether a compact density–tracer relationship has been reached based
only on graphical analysis.

The use of the effective diffusivity derived from the density field as a model for
the mixing of the passive tracer has also been examined. This model does not predict
the details of the mixing as the KH billow develops (e.g. see figure 12c,i,o), but in
configuration II and configuration III (which is the 3-D case and therefore considered to
be the most realistic) does make a good prediction of the cumulative effect of the mixing
(e.g. figures 12(l,q), 15 and 19). Note that the disagreement is most apparent during the
stages of the mixing when a compact density–tracer relationship has not been established.
In the single billow case, configuration I, such a relationship is never established, although
this is considered to be rather unrealistic.

The approach taken in this paper is to investigate, for φ representing the concentration
of a passive tracer, to what extent most of the evolution of φ∗ is captured by (5.5), with
the eddy term ignored. A question beyond the scope of this paper is whether, for cases
where the eddy term cannot be ignored, can it be estimated using a closure assumption
and whether this can be accomplished whilst retaining the advantages that have been
demonstrated for the standard use of a tracer-based coordinate and the corresponding
effective diffusivity. Note that Shuckburgh & Haynes (2003) consider whether particle
transport can be approximated using an effective diffusivity calculated from a tracer
field, i.e. to κφ = 0, corresponding to Example 2 in appendix C. Some success (at least
semi-quantitative) was demonstrated. In terms of the new results given above, this would
be equivalent to

∂

∂z∗

(
− 〈φ′κρ∇2ρ

〉
z∗
(∂z∗/∂ρ)

)

 ∂

∂z∗

(
Kρ

∂ 〈φ〉z∗

∂z∗

)
. (8.1)

It remains to investigate whether the approximate equality above holds (and, if it does,
under what circumstances).

This paper has described tracer transport in KH billows when the diffusivity of the
tracer is equal to the diffusivity of the density, i.e. the diffusivity ratio τ = κφ/κρ is equal
to 1. However, as noted in the introduction, in geophysical cases τ is typically much
smaller than 1. For example, in an oceanic environment where the density is controlled
by temperature and the passive tracer is some dissolved chemical species, τ ∼ O(10−2).
Reducing τ from 1 may change the description of tracer transport in several ways. In
particular it will break the convex envelope constraint placed on the scatter plot. In the
hypothetical limit where only density diffuses and the passive tracer is non-diffusive
(τ = 0), the displacement of the points on the scatter plot would be strictly horizontal,
eventually converging to a vertical line located at the mean density. Similarly, if only the
passive tracer were diffusive and the density is non-diffusive (τ → ∞), the displacement
of points would be entirely vertical, leading to a horizontal line at the tracer mean.
It therefore remains to be determined what constraints can be placed on scatter plots
for tracers with different diffusivities. Reducing τ may also alter how well the virtual
tracer represents the isopycnal mean tracer evolution. Preliminary simulations in which
the tracer density is reduced moderately relative to that for the density (τ ∼ O(10−1))
have shown reasonable agreement between the virtual and isopycnal mean tracer profiles
in the sense that the virtual tracer still provides useful estimate of the cumulative
effect of the mixing event. However, substantial further work would be needed to
determine whether this held at smaller values of τ potentially relevant to oceanic mixing.
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Unfortunately, modelling systems in which two tracers have significantly different
diffusivities can be computationally expensive due to the large number of grid points
required to adequately resolve the lower diffusivity tracer (Penney & Stastna 2016), and is
beyond the scope of the present study.

It also remains to be determined if these scatter plots provide a useful analysis in the
event where the tracer is an active component of the density. For example, if ρ is a function
of φ only, then a ρφ-scatter plot would simply depict the functional form of ρ = ρ(φ).
However, if ρ is a function of two tracers, ρ = ρ(φ1, φ2), it remains to be seen what
information could be derived from ρφ1 or ρφ2 scatter plots. It is also worth considering
a situation in which one is concerned with the mixing of a passive tracer when density is
a function of two different active tracers, such as for double-diffusive flows (for example
in the ocean, where salt and temperature are the active tracers). Because double diffusion
allows for the creation of new density anomalies, this immediately presents the possibility
of breaking the convex envelope constraint presented here.

Diffusion is a major component of the physics discussed in the present paper. It is the
process by which tracer characteristics are eventually modified, although as demonstrated
here, there exist constraints on these modifications that lead to a predictable evolution.
The knowledge and control of diffusive terms in numerical models is thus a major issue.
In this respect, another result of interest discussed in the present study concerns the
evaluation of a net diffusivity to be used in place of the prescribed ‘explicit’ one. Indeed,
discretisation and numerical schemes used in models can involve implicit diffusion,
accounting for which is shown here to be essential when evaluating (5.5)–(5.7). Note
also that implicit diffusivity does not modify the physics of mixing discussed here. For
instance, in addition to the Nx × Nz = 5122 resolution simulation of configuration II
presented in this article, additional tests at resolutions of Nx × Nz = 2562, 3842 and 7682

were performed (not shown). In general, the lower the resolution, the larger the implicit
numerical diffusivity, and thus, the larger the net diffusivities of the density and tracers.
Each of these simulations (including the 7682 resolution simulation for which the implicit
diffusivity is practically negligible), lead to similar convergence of the scatter plots, as
well as the virtual and isopycnal mean tracer profiles. This process is thus controlled
by diffusivity whatever its origin (prescribed or implicit), not by other properties of the
model’s numerical schemes. Finally, it is worth mentioning that in oceanic or atmospheric
circulation models, horizontal and vertical advection terms are often discretised with
different operators involving parameterisations. In these cases, the implicit and explicit
diffusion are no longer isotropic, which may violate the constraints and taint the mixing
physics discussed in the present paper. A detailed study of such numerical effects is worth
investigating.

An important part of the behaviour described here is the evolution towards a compact
density–tracer relation during the final stages of the mixing event. This is rather similar
to the tracer redistribution along streamlines examined from a theoretical perspective for
steady and oscillatory 2-D flows by Rhines & Young (1983). They describe how, from
an arbitrary initial condition, passive tracers will tend to homogenise along streamlines
(hence resulting in a compact relationship between a tracer and streamfunction, or
indeed between any two tracers). This description cannot be easily extended to the
configurations studied here, as density is not a passive tracer, there are strong 3-D effects
(for configuration III), and convergence is achieved during the chaotic mixing phase (see
figure 7) when no clear streamlines can be identified. On the other hand, the density field
clearly plays a similar organisation role on the flow as the steady streamfunction in the
Rhines & Young (1983) case. On general dynamical grounds it is plausible that motion will
be stronger along density surfaces than across them and that passive tracers will therefore
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tend to homogenise along density surfaces. A more complete description of this process
would predict the time evolution for the homogenisation and its relation to the time decay
of the turbulence in the later stages of the KH mixing event.
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Appendix A. Non-Boussinesq, non-hydrostatic system of equations (CROCO model)

The numerical models used in the study of stratified shear generally consider that
volume (rather than mass) is conserved, and that the flow satisfies the Boussinesq
assumption. For non-hydrostatic, incompressible processes such as Kelvin–Helmholtz
instabilities, the system of Boussinesq equations (2.1) accurately represents the flow. From
a numerical point of view, the non-hydrostatic implementation of an incompressible flow
degenerates to an elliptic system of equations (with respect to acoustic waves). A 3-D
Poisson equation must thus be solved to obtain a pressure ‘avatar’ for the resulting flow
and several types of algorithms (based on, for example, pressure projection (e.g. Subich,
Lamb & Stastna 2013) or pressure correction (e.g. Jiang 2019)) can be implemented
to simulate non-hydrostatic flows. When dealing with geophysical flows, whether in
the atmosphere or in the ocean, the re-introduction of acoustic waves can lead to
efficient numerical algorithms for non-hydrostatic flows (see for instance Janjic, Gerrity
& Nickovic (2001) for atmospheric flows and Auclair et al. (2018) for oceanic flows).
Several reasons can explain this at-first-glance paradoxical conclusion: energy transfers are
simulated in a presumably consistent way (Tailleux 2009), and the resulting computations
are ‘local’ and they are thus well adapted to massively parallel implementations. In the
ocean, the re-introduction of acoustic waves additionally provides a convenient way to
simulate non-hydrostatic flows with time-splitting algorithms (Auclair et al. 2018).

The numerical simulations presented in this article were performed using the CROCO
ocean model. CROCO is a free-surface, non-hydrostatic, non-Boussinesq model. It
inherited from ROMS and ROMS-AGRIF (Shchepetkin & McWilliams 2005; Debreu
et al. 2012) their numerically efficient two-mode leapfrog–third-order Adams–Moulton
(LF-AM3) time splitting. The non-hydrostatic implementation of this time splitting
is conveniently obtained by calling into question the Boussinesq assumption and
re-introducing acoustic waves together. The resulting compressible processes are treated
in the LF-AM3 fast mode which cannot remain 2-D (barotropic) and becomes 3-D. The
resulting system of equations is given in dimensional form by

∂ρ

∂t
= −∇ · (ρu) , (A 1a)
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U0 1 m s−1

ρ0 1017 kg m−3

Δρ 1.2 kg m−3

h 10 m
z0 −143 m
ν 5 × 10−3 m2 s−1

κρ 5 × 10−3 m2 s−1

κφ 5 × 10−3 m2 s−1

g 9.81 m s−2

λ 100 m2 s−1

TABLE 2. Prescribed dimensional parameters consistent across all simulations presented in this
paper.

Configuration NΔtFast cs

I 10 500 m s−1

II 10 500 m s−1

III 8 350 m s−1

TABLE 3. Relevant computational parameters of the dynamical configurations presented in this
paper.

∂ρu
∂t

= −∇ · (ρu ⊗ u)− ∇p − ρgk̂ + ρν∇2u + ρλ∇∇ · u, (A 1b)

∂ρh

∂t
= −∇ · (ρhu)+ κρ∇2ρh, (A 1c)

∂ρφ

∂t
= −∇ · (ρφu)+ ρκφ∇2φ, (A 1d)

ρ = ρh + δρ, (A 1e)

where λ is the bulk viscosity. Dimensional parameters used in all simulations presented in
this paper, including those used in non-dimensionalisation, are listed in table 2.

Density components ρh and δρ are respectively the hydrostatic, Boussinesq and the
non-hydrostatic, non-Boussinesq contributions to density. In the current implementation,
the latter compressible density anomaly is linked to the pressure by the first-order relation
δρ = c−2

s δp, with δp = p − ph, where ph is the hydrostatic component of pressure and cs
is the speed of sound. As in the original ROMS-AGRIF hydrostatic time splitting, the
free-surface anomaly is prognosticated in CROCO fast mode. The speed of sound and
number of fast time steps per slow time step, NΔtFast , are given in table 3.

Concerning first the consequences of the explicit modelling of acoustic waves,
sensitivity tests have been carried out in the frame of the present study. The propagation
speed of acoustic waves has been modified, and no significant consequences have
been found on the evolution of KH instabilities. As far as the consequences of
the surface-induced processes are concerned, the studied configurations are based on
deep pycnocline and shear-stress layers, hence minimising the interactions between the
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free-surface and Kelvin–Helmholtz instabilities. Sensitivity studies with a deeper water
column (and a deeper pycnocline and shear layer) have shown that the development
of the instability is not influenced by the free surface. Only a slight influence in the
difference between upper and lower boundary conditions was observed during the pairing
and subsequent mixing in the 2-D case with two billows, as the vertical extent of the final
billow becomes large. This leads to an asymmetry of the mixing at the edge of the billow,
but this effect does not modify the conclusions presented here.

Appendix B. Net diffusivity estimate

Provided the fluid is incompressible, for a tracer governed by an advection–diffusion
equation in the form,

∂ρ/∂t + u∇ · ρ = κρ∇2ρ, (B 1)

one can solve for the diffusivity at a given time by multiplying the equation by the tracer
field, then integrating over the entire domain, giving

κρ = −
∫

V

∂ρ2

∂t
dV

2
∫

V |∇ρ|2 dV
. (B 2)

For an ideal numerical simulation with perfect numerical schemes, the resulting value of
κρ would be constant and equal to the prescribed value at all times. In reality, numerical
schemes are imperfect, and the resulting effects due to extra terms can act as extra diffusion
inherent to the schemes. The resulting ‘net diffusivity’ will vary with time, and depend on
the schemes used, the grid size, the time step and the flow geometry,

κNet
ρ (t) = −

∫
V

∂ρ2

∂t
dV

2
∫

V |∇ρ|2 dV
. (B 3)

As an example, the net diffusivities as calculated by (B 3) and normalised by the prescribed
molecular value (5 × 10−3 m2 s−1) are presented as a function of time in figure 22 for the
density and passive tracer fields with initially different vertical positions (as described in
§ 7.2) of configuration III. The net estimates all begin at the prescribed molecular value,
with the time series for the density and the b = 0 tracer showing similar overall trends:
an initial increase of approximately 100 % corresponding to the stretching of the field
interfaces by the initial billow formation before decreasing to near the prescribed value
as the secondary instabilities collapse the billow. The evolution of the net diffusivity of
the middle tracer (b = 2.86) is similar to that of the density and b = 0 tracer, although
it only sees a maximum increase of approximately 70 %. In contrast, the upper layer of
tracer (b = 5.72) experiences a much smaller increase in net diffusivity of about 10 %
when the billow initially distorts the field. This increase away from the maximum is much
less significant and shorter lived, as there is little meaningful interaction being the upper
tracer and the dynamic mixing process.

For this study, the net diffusivity was calculated in order to account for the effects of
numerical processes when calculating profile evolution. Figure 23 depicts the complete
time evolution (with figure 24 depicting profiles at individual times) of the background
density profile as a calculated from the rearrangement of the density from simulations
(solid lines) versus the profiles calculated from (5.1) using the constant prescribed
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FIGURE 22. Evolution of the estimate of global effective diffusivity for the density (solid line)
and passive tracer (dashed lines) fields for each of the offset tracers described in § 7.2 normalised
by the prescribed molecular diffusivity.

diffusivity value κρ for the simulation (figure 23a), and the time-dependent net diffusivity
κNet
ρ (t) computed from the simulation using (B 3) (figure 23b). Note that the theory used

to derive (5.1) and (5.5) as described in appendix C remains unchanged if the diffusivity
in the advection–diffusion equation is time dependent, and thus the net diffusivity can be
directly applied. As shown in figure 23(a), the isopycnals calculated from the diffusion
equation typically lie within the sorted isopycnals, indicating that the constant diffusivity
leads to the spreading of the pycnocline being underestimated. Using the time-dependent
net diffusivity shows better agreement between the calculated and sorted isopycnals. This
is also apparent in the later times shown in figure 24, which also demonstrates that
the profiles calculated using the prescribed diffusivity underestimate the steepness of
transition at ρ∗ = 0.

Appendix C. Diffusion equation of one tracer relative to another

C.1. Starting point
Consider flow in a 3-D domain with horizontal area Ad and, for definiteness, assume that
the domain is bounded in the vertical coordinate z. The density ρ(x, t) is assumed to
satisfy the advection diffusion equation

∂ρ

∂t
+ u · ∇ρ = κρ∇2ρ, (C 1)

with the velocity field u(x, t) being non-divergent, and the diffusivity κρ being either
constant or a function of time. Note that for convenience, all variables presented in
this appendix are given in their dimensional forms. Following Nakamura (1996) and
Winters & D’Asaro (1996), the density field may be used to define a new vertical
coordinate z∗, as follows. For a specified value ρ∗ of the density, define

z∗(ρ∗, t) = 1
Ad

∫
ρ(x,t)≥ρ∗

dV. (C 2)
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Note that z∗ is a monotonically decreasing function of ρ∗, so the inverse function ρ∗(z∗, t)
is well-defined. Now for any field φ(x, t) define

Φ(ρ∗, t) =
∫
ρ(x,t)≥ρ∗

φ(x, t) dV. (C 3)

Simple vector calculus implies that

∂

∂t
Φ(ρ∗, t) =

∫
ρ(x,t)≥ρ∗

φt dV +
∫

S(ρ∗)
φρt

dA
|∇ρ| , (C 4)

and
∂

∂ρ∗
Φ(ρ∗, t) = −

∫
S(ρ∗)

φ
dA

|∇ρ| , (C 5)
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where the surface S(ρ∗) is the boundary of the volume {x|ρ(x, t) ≥ ρ∗} and dA is the area
element on that surface. Note that it follows from (C 4) and (C 5) with φ = 1/Ad that

∂

∂t
z∗(ρ∗, t) = 1

Ad

∫
S(ρ∗)

ρt
dA

|∇ρ| , (C 6)

and
∂

∂ρ∗
z∗(ρ∗, t) = − 1

Ad

∫
S(ρ∗)

dA
|∇ρ| . (C 7)

The next step is to consider z∗(ρ∗, t), rather than ρ∗, as an independent variable, i.e. to
regard ρ∗ as a function of z∗, and t. Again, using (C 4) and (C 5),

∂

∂t
Φ(ρ(z∗, t), t) = −

(∫
S(ρ∗)

φ
dA

|∇ρ|
)
∂ρ∗
∂t

+
∫
ρ(x,t)≥ρ∗

φt dV +
∫

S(ρ∗)
φρt

dA
|∇ρ| . (C 8)

Now note that the condition on ∂ρ∗/∂t for z∗(ρ∗, t) to remain constant in time is that

−
∫

S(ρ∗)
ρt

dA
|∇ρ| + ∂ρ∗

∂t

(∫
S(ρ∗)

dA
|∇ρ|

)
= 0. (C 9)

Hence using (C 9) to substitute for ∂ρ∗/∂t in (C 8) it follows that, regarding Φ as function
of the two variables z∗ and t,

∂

∂t
Φ(z∗, t) = −

(∫
S(ρ∗)

φ
dA

|∇ρ|
) ∫

S(ρ∗)
ρt dA/|∇ρ|∫

S(ρ∗)
dA/|∇ρ|

+
∫
ρ(x,t)≥ρ∗

φt dV +
∫

S(ρ∗)
φρt

dA
|∇ρ| . (C 10)

A natural definition of the mean value of φ over a z∗-coordinate surface is given by

〈φ(z∗, t)〉z∗ = 1
Ad

∂

∂z∗
Φ(z∗, t) =

∫
S(z∗)

φ dA/|∇ρ|∫
S(z∗)

dA/|∇ρ| = − 1
Ad

∂ρ∗
∂z∗

∫
S(z∗)

φ dA/|∇ρ|, (C 11)

where the final equality follows from (C 7), noting that ∂z∗/∂ρ∗ = {∂ρ∗/∂z∗}−1, where
both partial derivatives are evaluated for constant t. (Defining a mean of one quantity over
isosurfaces of a different quantity, as suggested here, is a technique often employed in
atmospheric sciences (e.g. Butchart & Remsberg 1986; Nakamura 1995).) To reflect the
fact that z∗ is from now on going to be an independent variable, rather than ρ∗, the notation
S(ρ∗) is replaced by S(z∗) (but recall that ρ = ρ∗ on the surface S(z∗)).

Note that this implies that A−1
d

∫
S(ρ∗)

φ dA/|∇ρ| = 〈φ〉z∗ (∂ 〈ρ〉z∗ /∂z∗)−1, so (C 10) is
equivalent to

1
Ad

∂

∂t
Φ(z∗, t) = (〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

)
(∂ 〈ρ〉z∗ /∂z∗)−1 + 1

Ad

∫
ρ(x,t)≥ρ∗

φt dV. (C 12)

Now differentiating with respect to z∗ gives, using (C 11) as an identity that holds for any
field,

(〈φ〉z∗)t = 〈φt〉z∗ + ∂

∂z∗

((〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

) (∂ 〈ρ〉z∗

∂z∗

)−1
)
. (C 13)
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C.2. The standard case: φ = ρ

This is the case considered by Nakamura (1996) and Winters & D’Asaro (1996). Note that
(C 11) implies the identity

〈f (ρ)ψ〉z∗ = f (〈ρ〉z∗) 〈ψ〉z∗ = f (ρ) 〈ψ〉z∗ (C 14)

for any function f (·) and for any quantity ψ . In particular 〈ρt〉z∗ 〈ρ〉z∗ = 〈ρρt〉z∗ and hence
from (C 13)

(〈ρ〉z∗)t = 〈ρt〉z∗ . (C 15)

Because 〈ρ〉z∗ and ρ are the same, and ρ∗ is the notation used for the value of ρ on the
ρ-surface which is labelled by z∗, ρ∗ will be used instead of 〈ρ〉z∗ .

The standard result on effective diffusivity follows if ρ is the solution of an
advection–diffusion equation, with incompressible flow field u(x, t) and diffusivity κρ .
Then from the above results,

∂ρ∗/∂t = 1
Ad

∂

∂z∗

(∫
ρ(x,t)≥ρ∗

(κρ∇2ρ − u · ∇ρ) dV
)

= 1
Ad

∂

∂z∗

(∫
S(z∗)

κρ |∇ρ| dA
)
,

(C 16)
where the last equality follows by first using the divergence theorem to transform the
volume integral to a surface integral. Then, using the fact that for the term including u
the factor ρ is constant on the surface S(z∗) and can be taken outside the integral, the
incompressibility condition can be applied so that the integral vanishes. The final step is
to use (C 7) to introduce a factor ∂ρ∗/∂z∗, giving

(ρ∗)t = ∂

∂z∗

(
1

A2
d

[∫
S(z∗)

κρ |∇ρ| dA
] [∫

S(z∗)

dA
|∇ρ|

]
∂ρ∗
∂z∗

)
= ∂

∂z∗

(
Kρ

∂ρ∗
∂z∗

)
, (C 17)

where the effective diffusivity Kρ is defined by the second equality and hence, via (C 7)
and (C 11), is given by

Kρ = κρ
〈|∇ρ|2〉z∗

(∂z∗/∂ρ∗)2. (C 18)

C.3. The non-standard case: φ /= ρ
The question is how to organise (C 13) in this case. The key difference is that φ varies
on the coordinate surfaces defined by z∗. Therefore define φ′ = φ − 〈φ〉z∗ to capture this
variation. Assume that φ satisfies an advection–diffusion equation, i.e. φt + u · ∇φ =
κφ∇2φ, allowing the diffusivity of φ to be different from κρ , and also either a constant
or a function of time. Consider

〈φt〉z∗ = 1
Ad

∂

∂z∗

(∫
S(z∗)

[κφ∇φ − φu] · dA
)

= 1
Ad

∂

∂z∗

(∫
S(z∗)

[κφ∇φ′ − φ′u] · dA +
∫

S(z∗)
κφ∇ 〈φ〉z∗ · dA

)
. (C 19)

The term inside the brackets on the right-hand side of the first equality comes from writing
the volume integral of κφ∇2φ − u · ∇φ as a surface integral using the divergence theorem.
In the second equality, the term containing u 〈φ〉z∗ is zero by the same reasoning as applied
in the previous section. In the second term in brackets on the right-hand side the quantity
∇ 〈φ〉z∗ can be rewritten as (∂ 〈φ〉z∗ /∂ρ∗)∇ρ and then, again, using the same reasoning as
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in the previous section, the entire term can be written in terms of Kρ . Inserting in (C 13)
implies that

(〈φ〉z∗)t = ∂

∂z∗

(
κφ

κρ
Kρ

∂ 〈φ〉z∗

∂z∗

)
+ ∂

∂z∗

(
− 〈φ′ρt

〉
z∗

∂z∗
∂ρ∗

+ 1
Ad

∫
S(z∗)

[κφ∇φ′ − φ′u] · dA
)
.

(C 20)
Now consider the two quantities in the bracket in the second term on the right-hand side,
which can be combined as a surface integral, using (C 7) and (C 11), plus the fact that
dA = ∇ρ dA/|∇ρ|, to give

− 〈
φ′ρt

〉
z∗

∂z∗
∂ρ∗

+ 1
Ad

∫
S(z∗)

[κφ∇φ′ − φ′u] · dA

= 1
Ad

∫
S(z∗)

−κρφ′∇2ρ + φ′u · ∇ρ + κφ∇φ′ · ∇ρ − φ′u · ∇ρ
|∇ρ| dA

= ∂z∗
∂ρ∗

〈
(κφ∇φ′ · ∇ρ − κρφ

′∇2ρ)
〉
z∗
. (C 21)

Hence, substituting into (C 19),

(〈φ〉z∗)t = ∂

∂z∗

(
κφ

κρ
Kρ

∂ 〈φ〉z∗

∂z∗

)
+ ∂

∂z∗

(
∂z∗
∂ρ∗

〈
(κφ∇φ′ · ∇ρ − κρφ

′∇2ρ)
〉
z∗

)
. (C 22)

This is the governing equation for 〈φ〉z∗ . Some checks on the form of the above equation
are as follows.

Example C.1. When κρ = 0 and κφ = 0 both ρ and φ are materially conserved and
therefore, since ρ-surfaces are material surfaces, there will be no change in the total
amount of φ within each ρ-surface. Furthermore the volume within each ρ-surface
remains constant. Therefore for each z∗, 〈φ〉z∗ is constant in time. Equation (C 22) is
consistent with this.

Example C.2. When κρ /= 0 and κφ = 0 then φ is materially conserved. The rate of change
of the total amount of φ within the volume z∗ is therefore given by

d
dt

∫
z∗
φ dV =

∫
S(z∗)

φ(uS − u) · dA

=
∫

S(z∗)
φ(uS − u) · ∇ρ dA

|∇ρ|
= 〈φ(uS − u) · ∇ρ〉z∗ (∂z∗/∂ρ∗), (C 23)

where uS is the local normal velocity of the surface S(z∗). Since S(z∗) is a surface of
constant ρ (but the value of ρ on the surface varies in time), on S(z∗),

ρt + uS · ∇ρ = κρ∇2ρ + (uS − u) · ∇ρ = α(t), (C 24)

where α(t) is to be determined by the condition that the volume within the surface S(z∗)
stays constant, requiring that∫

S(z∗)
uS · dA =

∫
S(z∗)

uS · ∇ρ dA
|∇ρ| = 〈uS · ∇ρ〉z∗ (∂z∗/∂ρ∗) = 0. (C 25)
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Incompressibility implies (e.g. replace uS by u in the preceding equation) that 〈u · ∇ρ〉z∗ =
0. Therefore applying 〈·〉z∗ to (C 24) implies that

α(t) = 〈
κρ∇2ρ

〉
z∗

(C 26)

and it follows also from (C 24) that (uS − u) · ∇ρ = 〈
κ∇2ρ

〉
z∗

− κ∇2ρ. Additionally
〈(uS − u) · ∇ρ〉z∗ = 0 implies that

〈φ(uS − u) · ∇ρ〉z∗ = 〈
φ′(uS − u) · ∇ρ〉z∗

=
〈
φ′(
〈
κρ∇2ρ

〉
z∗

− κρ∇2ρ)
〉

z∗
= − 〈φ′κρ∇2ρ

〉
z∗
.

(C 27)
It follows from (C 23) that

(〈φ〉z∗)t = ∂

∂z∗

(
− 〈φ′κρ∇2ρ

〉
z∗
(∂z∗/∂ρ∗)

)
, (C 28)

consistent with (C 22) when κφ = 0.

Example C.3. When (formally) κρ = 0 but κφ /= 0, then as in Example 1 ρ-surfaces are
material surfaces, and there is no advective flux of φ across ρ-surfaces. Therefore the rate
of change of the total amount of φ within a ρ-surface is equal to the diffusive flux across
the surface.

d
dt

∫
z∗
φ dV =

∫
S(z∗)

κφ∇φ · dA. (C 29)

Now write φ = 〈φ(ρ)〉z∗ + φ′ and hence ∇φ = (∂ 〈φ〉z∗)/(∂ρ)∇ρ + ∇φ′. It follows that

d
dt

∫
z∗
φ dV = κφ

(
∂ 〈φ〉z∗

∂ρ

∫
S(z∗)

∇ρ · dA +
∫

S(z∗)
∇φ′ · dA

)

= Adκφ

(
∂ 〈φ〉z∗

∂ρ

〈|∇ρ|2〉z∗
+ 〈∇φ′ · ∇ρ〉z∗

)
∂z∗
∂ρ
. (C 30)

Finally, differentiating with respect to z∗, dividing by Ad and rearranging the right-hand
side,

(〈φ〉z∗)t = ∂

∂z∗

(
κφ
〈|∇ρ|2〉z∗

(
∂z∗
∂ρ∗

)2
∂ 〈φ〉z∗

∂z∗
+ 〈∇φ′ · ∇ρ〉z∗

∂z∗
∂ρ∗

)

= ∂

∂z∗

(
κφ

κρ
Kρ

∂ 〈φ〉z∗

∂z∗

)
+ ∂

∂z∗

(
κφ
〈∇φ′ · ∇ρ〉z∗

∂z∗
∂ρ

)
, (C 31)

again consistent with (C 22) in the relevant limit.
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