
TLP 7 (6): 633–695, 2007. C© 2007 Cambridge University Press

doi:10.1017/S1471068406002985 Printed in the United Kingdom

633

PALS: Efficient Or-Parallel execution of
Prolog on Beowulf clusters

ENRICO PONTELLI, KAREN VILLAVERDE

Department of Computer Science, New Mexico State University, NM, USA

(e-mail: epontell | kvillave@cs.nmsu.edu)

HAI-FENG GUO

Department of Computer Science, University of Nebraska at Omaha, NE, USA

(e-mail: haifengguo@mail.unomaha.edu)

GOPAL GUPTA

Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA

(e-mail: gupta@utdallas.edu)

submitted 19 April 2005; revised 21 October 2005; accepted 3 July 2006

Abstract

This paper describes the development of the PALS system, an implementation of Prolog

capable of efficiently exploiting or-parallelism on distributed-memory platforms—specifically

Beowulf clusters. PALS makes use of a novel technique, called incremental stack-splitting. The

technique proposed builds on the stack-splitting approach, previously described by the authors

and experimentally validated on shared-memory systems, which in turn is an evolution of

the stack-copying method used in a variety of parallel logic and constraint systems—e.g.,

MUSE, YAP, and Penny. The PALS system is the first distributed or-parallel implementation

of Prolog based on the stack-splitting method ever realized. The results presented confirm

the superiority of this method as a simple yet effective technique to transition from shared-

memory to distributed-memory systems. PALS extends stack-splitting by combining it with

incremental copying; the paper provides a description of the implementation of PALS,

including details of how distributed scheduling is handled. We also investigate methodologies

to effectively support order-sensitive predicates (e.g., side-effects) in the context of the stack-

splitting scheme. Experimental results obtained from running PALS on both Shared Memory

and Beowulf systems are presented and analyzed.

KEYWORDS: Or-Parallelism, Beowulf clusters, order-sensitive predicates

1 Introduction

The literature on parallel logic programming (see Chassin de Kergommeaux and

Codognet (1994) and Gupta et al. (1999) for a general discussion of parallel logic

programming) underscores the potential for achieving excellent speedups and per-

formance improvements from execution of logic programs on parallel architectures,

with little or no programmer intervention. Particular attention has been devoted

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

634 E. Pontelli et al.

over the years to the design of technology for supporting or-parallel execution of

Prolog programs on shared-memory architectures.

Or-parallelism (OP) arises from the non-determinism implicit in the process

of reducing a given subgoal using different clauses of the program. The non-

determinism arising during the execution of a logic program is commonly depicted

in the form of a search tree (a.k.a. or-tree). Each internal node represents a choice-

point, i.e., an execution point where multiple clauses are available to reduce the

selected subgoal. Leaves of the tree represent either failure points (i.e., resolvents

where the selected subgoal does not have a matching clause) or success points (i.e.,

solutions to the initial goal). A sequential computation boils down to traversal of

this search tree according to some predefined search strategy—e.g., Prolog adopts a

fixed strategy based on a left-to-right, depth-first traversal of the search tree.

While in a sequential execution the multiple clauses that match a subgoal are

explored one at a time via backtracking, in or-parallel execution we allow different

instances of Prolog engines (computing agents)—executing as separate processes—to

concurrently explore these alternative clauses. Different agents concurrently operate

on different branches of the or-tree, each attempting to derive a solution to the

original goal using a different sequence of derivation steps. In this work we will

focus on or-parallel systems derived from the multi-sequential model originally

proposed by Warren (Warren 1987). In this model, the multiple agents traverse the

or-tree looking for unexplored branches. If an unexplored branch (i.e., an untried

clause to resolve a selected subgoal) is found, the agent picks it up and begins

execution. This agent will stop either if it fails (reaches a failing leaf), or if it finds a

solution. In case of failure, or if the solution found is not acceptable to the user, the

agent will backtrack, i.e., move back up in the tree, looking for other choice-points

with untried alternatives to explore. The agents need to synchronize if they access

the same node in the tree—to avoid repetition of computations. In the rest of this

work we will call parallel choice-points those choice-points from which we allow

exploitation of parallelism.

Intuitively, or-parallelism allows concurrent search for solution(s) to the original

goal. The importance of the research on efficient techniques for handling or-

parallelism arises from the generality of the problem—technology originally de-

veloped for parallel execution of Prolog programs has found application in contexts

such as constraint programming (Schulte 2000; Perron 1999) and non-monotonic

reasoning (Finkel et al. 2001; Pontelli and El-Kathib 2001). Efficient implementation

of or-parallelism has also been extensively investigated in the context of AI systems

(Kumar and Kanal 1979; Lai and Sahni 1984).

In sequential implementations of search-based AI systems or Prolog, typically

one branch of the tree resides on the inference engine’s stacks at any given

time. This simplifies implementation quite significantly. However, in case of parallel

systems, multiple branches of the tree co-exist at the same time, making parallel

implementation quite complex. Efficient management of these co-existing branches

is quite a difficult problem, and it is referred to as the environment management

problem (Gupta and Jayaraman 1993).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 635

Most research in or-parallel execution of Prolog so far has focused on techniques

aimed at shared-memory multiprocessors (SMPs). Relatively fewer efforts (Foong

1995; Araujo and Ruz 1998; Castro et al. 1999; Briat et al. 1992; Benjumea and Troya

1993; Silva and Watson 2000) have been devoted to implementing Prolog systems on

distributed-memory platforms (DMPs). Out of these efforts only a small number have

been implemented as working prototypes, and even fewer have produced acceptable

speedups. Existing techniques developed for SMPs are inadequate for the needs of

DMP platforms. In fact, most implementation methods require sharing of data and

control stacks in a SMP context to allow for synchronization between agents with

minimal communication. Even in those models, such as stack copying (Ali 1990),

where the different agents maintain independent copies of the various stacks (i.e.,

they do not physically share them), the requirement of sharing part of the control

structure is still present. For example, in the MUSE implementation of stack copying,

parts of each choice-point are maintained in a shared data structure, to ensure that

the agents reproduce the same observable behavior as in a sequential execution (e.g.,

they do not duplicate computations already performed by another agent). In the case

of recomputation-based methods (Clocksin and Alshawi 1988; Alshawi and Moran

1990), the sharing appears in the form of the use of a centralized controller (as in the

Delphi model) to handle the communication of the different branches of the tree to

the computation agents. The presence of these forms of sharing are believed to lead

to degradation of performance of these schemes on a distributed memory platform,

as the lack of shared memory imposes the need for explicit communication between

agents.

Experimental (Ali 1990) and theoretical studies (Ranjan et al. 1999) have demon-

strated that stack-copying, and in particular incremental stack-copying, is one of

the most effective implementation techniques devised for exploiting or-parallelism.

Stack-copying allows sharing of work between parallel agents by copying the state

of one agent (which owns unexploited tasks) to another agent (which is currently

idle). The idea of incremental stack-copying is to only copy the difference between

the state of two agents, instead of copying the entire state each time. Incremental

stack-copying has been used to implement or-parallel Prolog efficiently in a variety

of systems (e.g., MUSE (Ali 1990), YAP (Rocha et al. 1999) and Penny (Montelius

and Ali 1996)), as well as to exploit parallelism from non-monotonic reasoning

systems (Pontelli and El-Kathib 2001; Finkel et al. 2001).

In order to improve the performance of stack-copying and allow its efficient

implementation on DMPs, we propose a new technique, called stack-splitting (Gupta

and Pontelli 1999; Villaverde et al. 2001). Stack-splitting is a variation of stack-

copying, aimed at solving the environment management problem and improving

stack-copying by reducing the need for communication between agents during the

execution of work. This is accomplished by making use of strategies that distribute

the work available in a branch of the search tree between two processors during

each scheduling operation. In this paper, we describe stack-splitting in detail, and

provide results from the first ever concrete implementation of stack-splitting on both

shared-memory multiprocessors (SMPs) and distributed-memory multiprocessors

(DMPs)—specifically, a Pentium-based Beowulf—along with a novel scheme to

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

636 E. Pontelli et al.

combine incremental copying with stack-splitting on DMPs. The incremental stack-

splitting scheme is based on a procedure which labels parallel choice-points and then

compares the labels to determine the fragments of data and control areas that need to

be exchanged between agents. We also describe scheduling schemes suitable for our

incremental stack-splitting scheme and variations of stack-splitting providing efficient

handling of order-sensitive predicates (e.g., side-effects). Both the incremental stack-

splitting and the scheduling schemes described have been implemented in the PALS

system, a message-passing or-parallel implementation of Prolog. In this paper we

present performance results obtained from this implementation. To our knowledge,

PALS is the first ever or-parallel implementation of Prolog realized on a Beowulf

architecture (built from off-the-shelf components). The techniques have already been

embraced by other developers of parallel Prolog systems (Rocha et al. 1999). The

techniques we propose are also immediately applicable to other systems based on

similar underlying models, e.g., non-monotonic reasoning (Pontelli and El-Kathib

2001) systems. Indeed, a distributed implementation of answer set programming

based on incremental stack splitting has been reported in (Balduccini et al. 2003)—

note that the execution model of answer set programming relies on a search-tree

exploration (built using Davis-Putnam’s procedure) and is not a straightforward

Prolog implementation.

The contributions of this paper can be summarized as follows:

• design of a novel methodology—stack splitting—to efficiently support or-

parallelism on distributed memory systems;
• enhancement of the methodology to support incremental copying behavior;
• investigation of different splitting modalities, in particular, to facilitate the

handling of side-effects;
• implementation of these methodologies in an industrial-strength Prolog system

(ALS Prolog) and evaluation of its performance.

In the rest of this work we will focus on the execution of Prolog programs

(unless explicitly stated otherwise); this means that we will assume that programs

are executed according to the computation and selection rules of Prolog. We will

also frequently use the term observable semantics to indicate the overall observable

behavior of an execution—i.e., the order in which all visible activities of a program

execution take place (order of input/output, order in which solutions are obtained,

etc.). If a parallel computation respects the observable Prolog semantics, then this

means that the user does not see any difference between such computation and a

sequential Prolog execution of the same program—except for improved performance.

Our goal in this work is to develop parallel execution models that properly reproduce

Prolog’s observable semantics and are still able to guarantee improved performance.

1.1 Related work

A rich body of research has been developed to investigate methodologies for the

exploitation of or-parallelism from Prolog executions on SMPs. Comprehensive

surveys describing and comparing these methodologies have appeared (Gupta 1994;

Gupta et al. 1999; Chassin de Kergommeaux and Codognet 1994).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 637

A theoretical analysis of the properties of different methodologies has been pre-

sented (Ranjan et al. 1999; Pontelli et al. 2002). These works provide an abstraction

of the environment representation problem as a data structure problem on dynamic

trees. These studies identify the presence of unavoidable overheads in the dynamic

management of environments in a parallel setting, and recognize methods with

constant-time environment creation and access as optimal methods for environ-

ment representation. Methods such as stack-copying (Ali 1990), binding arrays (Lusk

et al. 1990), and recomputation (Clocksin and Alshawi 1988) meet such requirements.

Distributed implementations of Prolog have been proposed by several researchers

(Foong 1995; Araujo and Ruz 1998; Castro et al. 1999). However, none of these

systems are very effective in producing speedups over a wide range of benchmarks.

Foong’s system (Foong 1995) and Castro et al.’s system (Castro et al. 1999) are

based directly on stack-copying and generate communication overhead due to the

shared choice-points (no real implementation exist for the two of them). Araujo’s

system uses recomputation (Clocksin and Alshawi 1988) rather than stack-copying.

Using recomputation for maintaining multiple environments is inherently inferior

to stack-copying. The stack frames that are copied in the stack-copying technique

capture the effect of a computation. In the recomputation technique these stack-

frames are reproduced by re-running the computation. A computation may run for

hours and yet produce only a single stack frame (e.g., a tail-recursive computation).

Distributed implementations of Prolog have been developed on Transputer systems

(The Opera System (Briat et al. 1992) and the system of Benjumea and Troya

(Benjumea and Troya 1993)). Of these, Benjumea’s system has produced quite good

results. However, both the Opera system and the Benjumea’s system have been

developed on now-obsolete Transputer hardware, and, additionally, both rely on a

stack-copying mechanism which will produce poor performance in programs where

the task-granularity is small. A different approach has been suggested by Silva

and Watson with their DORPP model (Silva and Watson 2000), which extends

the binding array scheme Lusk et al. (1990) to a distributed setting, relying on the

European Declarative System (EDS) platform to support distributed computation

(EDS provides a limited form of distributed shared memory); good results have

been presented running DORPP on an EDS simulator.

Finally, the idea of stack-splitting bears some similarities with some of the loop

transformation techniques which are commonly adopted for parallelization of im-

perative programming languages, such as loop fission, loop tiling, and index set

splitting (Warren 1996).

1.2 Paper organization

The rest of the paper is organized as follows. Section 2 provides an overview

of the main issues related to or-parallel execution of Prolog. Section 3 describes

the stack-splitting scheme, while Section 4 describes its implementation. Section 5

analyzes the problem of guaranteeing efficient distribution of work between idle

agents. Section 6 describes how stack-splitting can be adapted to provide efficient

handling of order-sensitive predicates of Prolog (e.g., control constructs, side-effects).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

638 E. Pontelli et al.

Section 7 analyzes the result obtained from the prototype implementation in the

PALS system. Section 8 offers a general discussion about possible optimizations of

the implementation of stack-splitting. Finally, Section 9 provides conclusions and

directions for future research.

The reader is assumed to be familiar with the basic notions of logic programming,

Prolog, and its execution model (e.g., a basic understanding of the Warren Abstract

Machine) (Lloyd 1987; Apt 1990; Kaci 1991).

2 Or-Parallelism

In this section, we survey the main issues related to the exploitation of or-parallelism

from Prolog programs, and we discuss the main ideas behind the stack-copying

method.

2.1 Foundations of Or-Parallelism

Parallelization of logic programs can be seen as a direct consequence of Kowalski’s

principle (Kowalski 1979)

Algorithm = Logic + Control

Program development separates the control component from the logical specification

of the problem, thus making the two orthogonal. The lack (or, at least, the limited

presence) of knowledge about control in the program allows the run-time systems

to adopt different execution strategies without affecting the declarative meaning

of the program (i.e., the set of logical consequences of the program). The same is

true of search-based systems, where the order of exploration of the branches of

the search-tree is flexible (within the limits imposed by the semantics of the search

strategy, e.g., search heuristics).

Apart from the separation between logic and control, from a programming

languages perspective, logic programming offers two key features which make

exploitation of parallelism more practical than in traditional imperative languages:

1. From an operational perspective, logic programming languages are single-

assignment languages; variables are mathematical entities which can be assigned

a value at most once during each derivation (i.e., along each branch of

the or-tree)—this relieves a parallel system from having to keep track of

complex flow dependencies such as those needed in parallelization of traditional

programming languages (Zima and Chapman 1991).

2. The operational semantics of logic programming, unlike imperative languages,

makes substantial use of non-determinism—i.e., the operational semantics relies

on the automatic exploration of a search tree. The alternative possible choices

performed during such exploration (points of non-determinism) can be easily

converted into parallelism without radically modifying the overall operational

semantics. Furthermore, control in most logic programming languages is largely

implicit, thus limiting programmers’ influence on the development of the flow

of execution.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 639

while (Query ≠ ∅) do
begin

 selectliteral B from Query;

 repeat

 selectclause (H :- Body) from Program;

 until (unify(H , B) or (no clauses left);

 if (no clauses left) then
 FAIL;
 else
 begin

σ = mgu(H ,B);
 Query = (Query \ { B } ∪ { Body })σ
 end
end.

And-Parallelism

Or-Parallelism

Unification Parallelism

Fig. 1. Operational semantics and non-determinism.

The second point is of particular importance: the ability to convert existing non-

determinism (and other “choices” performed during execution, such as the choice

of the subgoal to resolve) into parallelism leads to the possibility of extracting

parallelism directly from the execution model, without requiring the programmer

to perform any modifications of the original program and without requiring the

introduction of ad-hoc parallelization constructs in the source language (implicit

parallelization). The typical strategy adopted in the development of parallel logic

programming systems has been based on the translation of one (or more) of the

choices present in the operational semantics (see Figure 1) into parallel computations.

This leads to the three “classical” forms of parallelism (Conery and Kibler 1981):

• And-Parallelism, which originates from parallelizing the selection of the next

literal to be solved—thus allowing multiple literals to be solved concurrently.

This can be visualized by imagining the operation selectliteral to return

multiple literals that are concurrently processed by the rest of the algorithm.

• Or-Parallelism, which originates from parallelizing the selection of the clause

to be used in the computation of the resolvent—thus allowing multiple clauses

to be tried in parallel. This can be visualized by having the selectclause
operation to select multiple clauses that are concurrently processed by the rest

of the algorithm

• Unification Parallelism, which arises from the parallelization of the unification

process.1

Or-Parallelism originates from the parallelization of the selectclause phase in

Figure 1. Thus, or-parallelism arises when more than one rule defines a relation and

a subgoal unifies with more than one rule head—the corresponding bodies can then

be executed in parallel with each other, giving rise to or-parallelism. Or-parallelism

is thus a way of efficiently searching for solutions to the query, by exploring in

1 By mgu(a , b), in the Figure, we denote the most general unifier of a and b.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

640 E. Pontelli et al.

parallel the search space generated by the presence of multiple clauses applicable

at each resolution step. Observe that each parallel computation is attempting to

compute a distinct solution to the original goal.

For example, consider the following simple logic program:

f :- t(X, three), p(Y), q(Y).

p(L) :- s(L, M), t(M, L).

p(K) :- r(K).

q(one).

q(two).

r(one).

r(three).

s(two, three).

s(four, five).

t(three, three).

t(three, two).

and the query ?- f. The calls to p, s, and r are non-deterministic and lead to

the creation of choice-points—while the calls to t, f, and q are deterministic. The

multiple alternatives in these choice-points can be executed in parallel.

A convenient way to visualize or-parallelism is through the or-tree. Informally, an

or-tree (sometimes referred to also as search tree) for a query Q and logic program

LP is a tree of nodes, each with an associated goal-list, such that:

1. The root node of the tree has Q as its associated goal-list;

2. Each internal node n is created as a result of successful unification of the first

goal in (the goal-list of) n ’s parent node with the head of a clause in LP ,

H :-B1,B2, . . . ,Bn

The goal-list of node n is (B1,B2, . . . ,Bn ,L2, . . . ,Lm)θ, if the goal-list of the

parent of n is L1,L2, . . . ,Lm and θ = mgu(H ,L1).

Figure 2 shows the or-tree for the simple program presented above. For the sake

of readability, we have also annotated the tree with the variables created and

the description of the bindings performed.2 We have also introduced different

notations (empty nodes and filled nodes) to distinguish deterministic reductions

versus non-deterministic reductions. The boxes represent environments created for

a clause; the dotted lines are used to associate the segment of each branch to

the corresponding resolvent existing during that part of the computation; variable

bindings are indicated next to the node where the binding is computed.

Note that, since we are considering execution of Prolog programs, the construction

of the or-tree will follow the operational semantics of Prolog—at each node we will

consider clauses applicable to the first subgoal, and the children of a node will be

considered ordered from left to right according to the order of the corresponding

2 This figure is for illustration purposes only; e.g., in a real implementation, the order of variable bindings
could be different.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 641

?- f.

?- t(X,three),p(Y),q(Y).

f:-t(X,three),p(Y),q(Y). s(two,three).
p(L):-s(L,M),t(M,L). s(four,five).
p(K):-r(K). t(three,three).
q(one). t(three,two).
q(two). r(one).
 r(three).
?-f.

X:
Y:

[X<-three]

?- p(Y),q(Y).

K:

[Y<-&L] [Y<-&K]

[L<-two,M<-three] [L<-four,M<-five]

success

fail

?-t(three,two),q(two).
?-t(five,four),
 q(four).

[K<-one] [K<-three]

success fail

?-q(one). ?-q(three).

?-q(two).

?-r(K),q(Y).
L:
M:

?-s(L,M),t(M,L),q(Y).

Fig. 2. An Or-Tree.

clauses in the program. I.e., during sequential execution the or-tree of Figure 2 is

built and explored in a left-to-right depth-first manner. However, if multiple agents

are available, then multiple branches of the tree can be constructed and explored

simultaneously—although, as mentioned later, we will aim at still constructing the

same tree, i.e., reproduce the same observable semantics as sequential Prolog. Observe

also that, if a fragment of a branch of the or-tree contains multiple choice-points, and

this is explored by a single agent, then the agent will employ traditional backtracking

to search the various alternatives.

Or-parallelism frequently arises in applications that explore a large search space

via backtracking. This is the typical case in application areas such as expert

systems, scheduling and optimization problems, and natural language processing.

Or-parallelism also arises during parallel execution of deductive database systems

(Ganguly et al. 1990; Wolfson and Silberschatz 1988).

2.2 The environment representation problem

Despite the theoretical simplicity and results, in practice implementation of or-

parallelism is difficult because keeping the run-time and parallelism-related overheads

small is non-trivial due to the practical complications which emerge from the sharing

of nodes in the or-tree. That is, given two nodes in two different branches of the

or-tree, all nodes above (and including) the least common ancestor node of these

two nodes are shared between the two branches. A variable created in one of

these ancestor nodes might be bound differently in the two branches. Thus, the

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

642 E. Pontelli et al.

environments of the two branches have to be organized in such a fashion that, in

spite of the ancestor nodes being shared, the correct bindings applicable to each of

the two branches are easily discernible.

Let us start by introducing some terminology. Whenever a new clause is applied

to resolve a selected subgoal, an environment is created. The environment plays a

role analogous to that of the activation record in the implementation of imperative

languages—it stores information to handle the execution of the clause (e.g., return

address) and it provides storage for the local variables introduced by the clause. The

boxes containing variables shown in Figure 2 can be thought as representing a part

of the environment of the clause.

During Prolog execution, variables might receive bindings. If a variable is created

before a choice-point but bound after the choice-point (e.g., variable L in Figure 2)—

such a variable is refereed to as a conditional variable in the literature—then

the variable might be bound differently in each branch of the choice-point. In

a sequential execution, conditional variables are handled using trailing: whenever

the conditional variable is bound, the address of the variable is pushed on a

special stack (the trail stack). During backtracking, the content of the trail stack is

used to determine which bindings should be removed, thus clearing up (untrailing)

conditional variables and preparing them for the new bindings they might receive

in the alternative branches explored. This mechanism allows the use of a single

memory location to store the value of the variable (since the location can be reused

across different branches of the or-tree, by repeatedly clearing it via untrailing).

More generally, consider a variable V in node n1, whose binding b has been created

in node n2. If there are no choice-points between n1 and n2, then the variable V

will have the binding b in every branch that is created below n2. Such a binding

can be stored in-place in V—i.e., it can be directly stored in the memory location

allocated to V in n1. However, if there are choice-points between n1 and n2, then

the binding b cannot be stored in-place, since other branches created between nodes

n1 and n2 may impart different bindings to V. The binding b is applicable to only

those nodes that are below n2. Such a binding to a conditional variable is known as

a conditional binding. For example, variable Y in Figure 2 is a conditional variable.

A binding that is not conditional, i.e., one that has no intervening choice-points

between the node where this binding was generated and the node containing the

corresponding variable, is termed unconditional. The corresponding variable is called

an unconditional variable (for example, variable X in Figure 2).

If the different branches are searched in or-parallel, then the conditional variables

(e.g., variable L) receive different bindings in different branches of the tree, all of

which will be active at the same time. Storing and later accessing these bindings

efficiently is a problem. In sequential execution the binding of a variable is stored

in the memory location allotted to that variable. Since branches are explored one

at a time, and bindings are untrailed during backtracking, no problems arise. In

parallel execution, multiple bindings exist at the same time, hence they cannot be

stored in a single memory location allotted to the variable. This problem, known as

the multiple environment representation problem in the literature, is a major problem

in implementing or-parallelism (Ranjan et al. 1999; Gupta et al. 1999).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 643

The main problem in implementing or-parallelism is the efficient representation of

the multiple environments that co-exist simultaneously in the or-tree corresponding

to a program’s execution—i.e., the development of an efficient way of associating

the correct set of bindings to each branch of the or-tree. Note that the main

problem in management of multiple environments is that of efficiently representing

and accessing the conditional bindings; the unconditional bindings can be treated

as in normal sequential execution of logic programs (i.e., they can be stored in-

place). The naive approach of keeping a complete separate copy of the answer

substitution for each separate branch is highly inefficient, since it requires the

creation of complete copies of the substitution (which can be arbitrarily large) every

time a choice-point is created (Gupta et al. 1999; Ranjan et al. 1999). A large

number of different methodologies have been proposed to address the environment

representation problem in OP (Gupta et al. 1999).

Variations of the same problem arise in many classes of search problems and

paradigms relying on non-determinism. For example, in the context of non-monotonic

reasoning under stable models semantics (Gelfond and Lifschitz 1988; Pontelli and

El-Kathib 2001), the computation needs to determine the possible belief sets of a

logical theory; these are determined by guessing the truth values of selected logical

atoms, and deriving the consequences of such guesses. In this case, the dynamic

environment is represented by the truth values of the various atoms along each

branch of the tree.

A more abstract view of the problem has been presented in (Ranjan et al.

1999; Pontelli et al. 2002), where its theoretical properties have been investigated.

The theoretical results show that methodologies like stack copying and stack

recomputation are theoretically superior than other schemes—i.e., in the formal

abstraction of the environment representation problem, these methods have a

computational complexity that is better than that of other proposed schemes.

2.3 Stack-copying for maintaining multiple environments

Stack-copying (Ali 1990) is a successful approach for environment representation

in OP. In this approach, the environment representation problem is simply resolved

by allowing each agent to have its own copy of all the environments present in the

branch of the or-tree currently explored—this provides each agent with its own copy

of each conditional variable.

In this approach (originally developed in BC-machine (Ali 1988) and successfully

implemented in systems like MUSE (Ali 1990; Beaumont and Warren 1993) and

YAP (Rocha et al. 1999)), agents maintain a separate but identical address space—

i.e., each agent is a process with its own address space, but separate agents maintain

exactly the same organization of the data structures within their address space (i.e.,

they all locate data structures at the same logical addresses). Whenever an agent A
becomes idle (idle-agent), it will start looking for unexplored alternatives generated

by another agent B (active-agent). Once a choice-point p is detected in the tree TB
generated by B, A will create a local copy of TB and restart the computation

by backtracking over p. Since all or-agents maintain an identical logical address

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

644 E. Pontelli et al.

Shared
Part
of

the Tree

Root

a

b

P1

P2

CP Env Heap Trail CP Env Heap Trail

LOCAL SPACE OF P1 LOCAL SPACE OF P2

GLOBAL SPACE
Root

a

b

SHARED MEMORY

Fig. 3. Stack-copying based Or-parallelism.

space,3 the creation of a local copy of TB is reduced to a simple memory copying

(Figure 3)—without the need for any explicit pointer relocation. Since each or-agent

owns a separate copy of the environments, the environment representation problem

is readily solved—each or-agent will store the locally produced bindings in the local

copy of the environments. Additionally, each or-agent performs Prolog execution

on a private copy of its tree branch, thus relieving the need for sharing memory.

For this reason, stack-copying has been considered highly suitable for execution

on DMPs, where stack-copying can be simply implemented using message passing

between agents.

In practice, the stack-copying operation is more involved than simple memory

copying, as it is desirable to maintain a single copy of each choice-point, stored

in a specialized area accessible to all agents. This is important because the set of

untried alternatives is now shared between the two agents. If this set is not accessed

in mutual exclusion, then two agents may execute the same alternative, leading to

duplication of work. In addition, the duplicate execution of the same alternative

will lead to an observable behavior which is different from that of a sequential

Prolog execution (e.g., if the duplicated alternative contains a side-effect, this will be

seen repeated by the user). Thus, after copying, parts of each choice-point in TB
(specifically, the parts related to the set of available alternatives) will be transferred

to a shared area—these will be called shared frames. Both active and idle agents will

replace their choice-points with pointers to the corresponding shared frames. Shared

frames are accessed in mutual exclusion. This whole operation of obtaining work

3 This design choice, adopted in MUSE, simplifies the implementation in an existing Prolog system—
though it potentially limits the use of the model in thread-based implementations.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 645

from another agent is usually termed sharing of or-parallel work. This is illustrated

in Figure 3. Note that CP denotes the choice-point stack and Env the environment

stack in the figure. For illustration purposes we assume that the choice-points and

environments are allocated space in separate stacks even though this is not always

the case; choice-points and environments may be allocated space in a single common

stack.

In Figure 3 the part of the tree labeled as shared has been copied from agent

P1 to agent P2; the choice-points lying in this part of the tree have been also

moved to the shared space to avoid repetition of work. In particular, agent P2

picks an untried alternative from choice-point b, created by P1. To begin execution

along this alternative, P2 first transfers the choice-points between the root node

and b (inclusive) in a global area (accessible by all agents), and then copies P1’s

local stacks from root node up to node b. It untrails the appropriate variables to

restore the computation state that existed when b was first created, and it begins the

execution of the alternative that was picked.

A major reason for the success of MUSE and YAP is that they effectively

implement incremental stack copying with scheduling on bottom-most choice-point.

Each idle agent picks work from the bottom-most choice-point of an or-branch.

During the sharing operation all the choice-points between the bottom-most and

the top-most choice-points are shared between the two agents. This means that, in

each sharing operation, we try to maximize the amount of work shared between the

two agents. The stack segments upwards of this choice-point are copied before the

exploration of this alternative is begun. The copied stack segments may contain other

choice-points with untried alternatives—which are locally available without any

further copying operation and with very limited synchronization between processors,

i.e., they become accessible via simple backtracking (modulo simple use of locks for

mutual exclusion). Thus, a significant amount of work becomes available to the

copying agent every time a sharing operation is performed. The cost of having

to copy potentially larger fragments of the tree becomes relatively insignificant

considering that this technique drastically reduces the number of sharing operations

performed. It is important to observe that each sharing operation requires both

the agents involved to stop the regular computation and cooperate in the sharing.

Furthermore, to reduce the amount of information transferred during the sharing

operation, copying is done incrementally, i.e., only the difference between TA and

TB is actually copied.

2.4 Incremental stack-copying

Traditional stack-copying requires agents which share work to transfer a complete

copy of the data structures representing the status of the computation. In the case

of a Prolog computation, this may include transferring most of the choice-points

along with copies of the other data areas (trail, heap, environments). Since Prolog

computations can make use of large quantities of memory (e.g., generate large

structures on the Heap), this copying operation can become quite expensive. MUSE

introduced a variation of stack-copying, adopted by many other stack-copying

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

646 E. Pontelli et al.

c
o
p
i
e
d

c
h
o
i
c
e

p
o
i
n
t
s

(
i
n
c
r
e
m
e
n
t
a
l

p
a
r
t
)

a1 a1

(ii)

a1 a2

(i)

C
o
m
m
o
n

C
h
o
i
c
e

P
o
i
n
t
s

P1 P2 P1 P2

Fig. 4. Incremental stack-copying.

systems, called Incremental Stack-Copying (Ali 1990), which allows to considerably

reduce the amount of data transferred during a sharing operation. The idea is to

compare the content of the data areas in the two agents involved in a sharing

operation, and transfer only the difference between the state of the two agents. This

is illustrated in Figure 4. In Figure 4(i) we have two agents (P1 and P2) which have

3 choice-points in common (e.g., from a previous sharing operation). P1 owns two

additional choice-points with unexplored alternatives while P2 is out of work. If P2

obtains work from P1, then there is no need of copying again the 3 top choice-points

(Figure 4(ii)).

Incremental stack-copying, in a shared-memory context, is relatively simple to

realize—the shared frames can be used to identify which choice-points are common

and which are not (Ali 1990). This is primarily because all the information needed for

performing incremental copying efficiently can be found in the shared frames—the

use of shared frames is essential to determine the bottom-most common choice-

point between the two agents. The determination of such choice-point is typically

accomplished by analyzing the bitmaps stored in the various shared frames, which

are used to keep track of the agents which currently maintain a copy of the

associated choice-point (each bit is associated to a different agent). An additional

component required by incremental stack-copying is the need for binding installation.

As illustrated in Figure 4, the part of the environment stack corresponding to the

three topmost choice points is not copied. On the other hand, variables present in

such environments might have received bindings during the execution of the bottom

part of the computation; these bindings need to be explicitely installed after copying,

in order to reflect the proper computation state.

3 Choice-point splitting in the stack-copying model

In this section, we discuss the issues related to porting the stack-copying model to

a DMP platform, and we present the basic idea behind the novel stack-splitting

scheme.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 647

3.1 Copying on DMPs

As mentioned earlier, to avoid duplication of work and to guarantee effective

scheduling, during the copying operation part of the content of each copied choice-

point is transferred to a shared memory area; the various agents access each shared

frame in mutual exclusion, thus synchronizing and guaranteeing unique execution

of each alternative. This solution works fine on SMPs—where mutual exclusion is

easily implemented using locks. However, on a DMP this process is a source of

significant overhead—access to the shared area becomes a bottleneck (Babu 1996).

This is because sharing of information in a DMP leads to frequent exchange of

messages and hence considerable overhead. Centralized data structures, such as the

shared frames, are expensive to realize in a distributed setting. On the other hand,

stack copying appears to be more suitable to support OP in a distributed-memory

setting (Castro et al. 1999; Foong 1995; Araujo and Ruz 1998; Briat et al.

1992; Benjumea and Troya 1993), since, although the choice-points are shared,

at least other data-structures representing the computation—such as, in the case

of Prolog, the environment, the trail, and the heap—are not. Other environment

representation schemes, e.g., the popular Binding Arrays scheme (Lusk et al. 1990),

have been specifically designed for SMPs and share most of the computation; the

communication overhead produced by these alternative schemes on DMPs is likely

to be prohibitive.4 To avoid the problem of sharing choice-points in distributed

implementations, many implementors have reverted back to the scheduling on top-

most choice-point strategy (Castro et al. 1999; Foong 1995). The reason is that

untried alternatives of a choice-point created higher up in the or-tree are more likely

to generate large subtrees, and sharing work from the highest choice-point leads to

smaller-sized stacks being copied. However, if the granularity does not turn out to be

large, then another untried alternative has to be picked and a new copying operation

has to be performed. In contrast, in scheduling on bottom-most, more work could

be found via backtracking, since more choice-points are copied during the same

sharing operation. Additionally, scheduling on bottom-most is closer to the depth-

first search strategy used by sequential systems, and facilitates support of Prolog

semantics (e.g., support of order sensitive predicates). Indeed, comparative studies

about scheduling strategies indicate that scheduling on bottom-most is superior to

scheduling on top-most (Beaumont and Warren 1993). This is especially true for the

stack-copying technique because:

1. the number of copying operations is minimized; and,

2. the alternatives in the choice-points copied are “cheap” sources of additional

work, available via backtracking.

However, the fact that these choice-points are shared is a major drawback for a

distributed implementation of copying. The question we consider is: can we avoid

sharing of choice-points while keeping scheduling on bottom-most? The answer is

affirmative, as is discussed next.

4 Researches have also proposed to combine these methods with distributed shared memory schemes
(Silva and Watson 2000).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

648 E. Pontelli et al.

a1
a2 a3 a4

b1
b2 b3 b4

c1
c2 c3 c4

P1 P2 Idle

a1
a2

b1
b2

c1
c2

a1
a3 a4

b1
b3 b4

c3 c4

P1 P2

Fig (i): Processor P1 is busy and P2 is idle Fig (ii): P1’s tree after stack splitting Fig (iii): P2’s tree after stack splitting

LEGEND: choice-point copied split choice-point untried alternative processorPi

Fig. 5. Horizontal stack-splitting based or-parallelism.

3.2 Split choice-point stack copying

In Stack-Copying, the primary reason why a choice-point has to be shared is because

we want to serialize the selection of untried alternatives, so that no two agents can

pick the same alternative. The shared frame is locked while the alternative is selected

to achieve this effect. However, there are other simple ways of ensuring the same

property: the untried alternatives of a choice-point can be split between the two copies

of the choice-point stack. We call this operation choice-point stack-splitting or simply

stack-splitting. This will ensure that no two agents pick the same alternative.

We can envision different schemes for splitting the set of alternatives between

shared choice-points—e.g., each choice-point receives half of the alternatives, or the

partitioning can be guided by information regarding the unexplored computation,

such as granularity and likelihood of failure. In addition, the need for a shared

frame, as a critical section to protect the alternatives from multiple executions, has

disappeared, as each stack copy has a choice-point with a different set of unexplored

alternatives. All the choice-points can be evenly split in this way during the copying

operation.

The choice-point stack-splitting operation is illustrated in Figure 5. The strategy

adopted in this example is what we call horizontal splitting: the remaining alternatives

in each of the shared choice-points are split between the two agents.

A variation of choice-point stack-splitting relies on splitting the content of the

choice-point stack, instead of splitting the individual choice-points. This means that,

during a sharing operation, the list of available choice-points is partitioned between

the two agents. We will refer to this approach as vertical splitting. In this case, we

can assume the availability of a partition function:

part : CP∗ → CP∗ × CP∗

where CP is the set of all possible choice-points and CP∗ denotes a list of choice-

points. The intuition is that, given the sequence B of choice-points in the branch to

be shared, part(B) will return a partition of B in two subsets 〈Bkeep ,Bgive〉, where

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 649

a1 a2

b1
b2

c1 c2

d1 d2

P1

P2

idle

(i) Processor P1 is busy and P2 is idle

a1

b1
b2

c1

d1 d2

P1

(ii) P1 after vertical splitting

a1 a2

b1

c2

P2

(iii) P2 after vertical splitting

LEGEND:

Pi

choicepoint

untried alternative

processor

copied choicepoint

Fig. 6. Vertical splitting of choice-points (alternate strategy).

Bkeep are the choice-points kept by the active agent and Bgive are the choice-points

given to the idle agent.

In the rest of this work we will consider two main strategies for partitioning the

choice-points:

• alternate(a1a2a3a4 . . .) = 〈a2a4 . . . , a1a3 . . .〉 i.e., the choice-points in the even

positions are kept while those in the odd positions are given away (see

Figure 6).

• block (a1a2 . . . an) = 〈ai . . . an , a1 . . . ai−1〉 i.e., the list of choice-points is cut in

two segments, the first given to the idle agent, while the second is kept by the

active agent (see Figure 7).

Observe that, in practice, all choice-points are copied—as it would be too expensive

to selectively copy only the required ones—and the ones that are not needed are

“cleared” of their alternatives; this is explained in detail in the next section.

The idea of splitting the list of choice-points is particularly useful when the search

tree is binary—which is a frequent situation in several Prolog applications as well

as in other search problems (e.g., non-monotonic reasoning where the choice-points

represent choices of truth values). In these cases the use of horizontal splitting

is rather ineffective. Splitting of alternatives can be resorted to when very few

choice-points with many alternatives are present in the stack.

Different mixes of splitting of the list of choice-points and choice-point splitting

can be tried to achieve a good load balance—as discussed in (Villaverde 2002; Rocha

et al. 1999; Villaverde et al. 2001). Eventually, the user could also be given control

regarding how the splitting is done—e.g., by allowing the user to declare one of a set

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

650 E. Pontelli et al.

P1

(i) Processor P1 is busy and P2 is idle

(ii) P1 after vertical splitting (iii) P2 after vertical splitting

LEGEND:

Pi

choicepoint

untried alternative

processor

a1 a2

b1
b2

c1 c2

d1
d2

P2

idle

e1
e2

P1

a1

b1

c1

d1
d2

e1
e2

a1 a2

b1
b2

c2

P2

copied choicepoint

Fig. 7. Vertical splitting of choice-points (block strategy).

of splitting strategies for given predicates—although our system does not currently

support this option.

The major advantage of stack-splitting is that scheduling on bottom-most can

still be used without incurring huge communication overheads. Essentially, after

splitting the different or-parallel agents become independent of each other, and

hence communication is minimized during execution. This makes the stack-splitting

technique highly suitable for DMPs. The possibility of parameterizing the splitting of

the alternatives based on additional semantic information (granularity, non-failure,

user annotations) can further reduce the likelihood of additional communications

due to scheduling.

4 Towards practical stack-splitting and incremental stack splitting

In the rest of the paper we describe the incremental stack-splitting scheme and

its implementation issues on a message passing platform, analyzing in detail how

the various problems mentioned earlier have been tackled. In addition to the basic

stack-splitting scheme, we also

• analyze how stack-splitting can be extended to incorporate incremental copying,

an optimization which has been deemed essential to achieve speedups in

various classes of applications, and

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 651

• analyze how to handle order-sensitive predicates (e.g., side-effects) in the

presence of stack-splitting.

The solution we describe has been developed in a concrete implementation, realized

by modifying the engine of a commercial Prolog system (ALS Prolog) and making

use of the Message Passing Interface (MPI) as a communication platform. The

ALS Prolog system is based on an implementation of the Warren Abstract Machine

(WAM).

4.1 Data structures for stack-splitting and incremental stack-splitting

The data structures employed by our distributed engine include all the data areas of

a standard Warren Abstract Machine (e.g., stack for the choice-points, stack for the

environments, a heap for the dynamic creation of terms, a trail to support undoing

of variable bindings during backtracking). We assume that the code-area is initially

duplicated between all processors.

During stack-splitting, all WAM areas, except for the code area, are copied from

the agent giving work to the idle one. Next, the parallel choice-points are split

between the two agents. Blindly copying all the stacks every time an agent shares

work with another idle agent can be wasteful, since frequently the two agents

already have parts of the stacks in common due to previous copying. We can take

advantage of this fact to reduce the amount of copying by performing incremental

copying, as discussed earlier. In our stack-splitting scheme, there are no shared frames,

hence performing incremental stack-copying will incur more overhead due to the

communication overhead involved. In order to figure out the incremental part that

only needs to be copied during incremental stack-splitting, parallel choice-points will

be labeled in a certain way. The goal of labeling is to uniquely identify the original

“source” of each choice-point (i.e., which agent created it), to allow unambiguous

detection of copies of common choice-points. Thus, the labels effectively replace the

bitmaps used in the shared memory implementations of stack-copying. The labeling

procedure is described next.

To perform labeling, each agent maintains a counter. Initially, the counter in each

agent is set to 1. The counter is incremented each time the labeling procedure is

performed. When a parallel choice-point is copied for the first time, a label for it is

created. The label is composed of three parts:

1. agent rank,

2. counter, and

3. choice-point address.

The agent rank is the rank (i.e., id) of the agent which created the choice-point.

The counter is the current value of the labeling counter for the agent generating

the labels. The choice-point address is the address of the choice-point which is

being labeled. The labels for the parallel choice-points are recorded in a separate

label stack, in the order they are created—the choice-point address in the label

maintains the connection between the label (stored in the label stack) and the

corresponding choice-point (stored in the choice-point stack). Also, when a parallel

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

652 E. Pontelli et al.

PA cnt=2 PB cnt=1

a

a1

a2

b1

b2

b

PA

PB

idle

A:1

A:1

a3

α

Fig. 8. Agent A labels its two parallel choice-points.

choice-point is removed from the stack, its corresponding label is also removed from

the label stack. Initially, the label stack in each agent is set to empty. The label stack

keeps a record of the labels for the agent’s shared choice-points. Observe that the

choice of maintaining labels in a stack—instead of associating them directly to the

corresponding choice-points—has been dictated by efficiency reasons.

Let us illustrate stack-splitting accompanied by labeling with an example. In the

rest of the discussion we assume the use of vertical splitting strategy. Suppose agent

A has just created two parallel choice-points and agent B is idle.

Agents A and B have their counters set to 1 and their label stacks set to empty.

Then agent B requests work from agent A. Agent A first creates labels for its two

parallel choice-points. These labels have their rank and counter parts as A:1. Agent

A then pushes these labels into its label stack. This is illustrated in Figure 8; for

simplicity, in our figures, we do not show the label stack explicitly but show each

label rank and counter parts inside the parallel choice-point being labeled. Notice

that agent A incremented its counter to 2 after the labeling procedure was over. In

the figure, α denotes the root of the tree.

The next step requires the actual execution of stack-copying. Agent B receives a

message that contains all the parallel choice-points of agent A, along with agent A’s

label stack. At this point, it becomes possible to perform stack-splitting. Agent A

will keep the alternative b2 but not a2 and a3, and agent B will get the alternatives

a2, a3 but not b2. We have designed a new WAM scheduling instruction (schedule)

which is placed in the next alternative field of the choice-point above which there

is no more parallel work. The execution of this instruction forces the agent to enter

scheduling, and it implements the scheduling scheme described in Section 5. Agent

A keeps the alternative b2 of choice-point b, changes the next alternative field of

choice-point a to WAM instruction trust fail to avoid taking the original alternative

of this choice-point, and changes the next alternative field of the choice-point above

a to the new WAM instruction schedule which will take agent A into scheduling.5

The trust fail instruction will simply act as a filler to denote that the choice-point

does not have any further alternatives. Observe that in practice it is possible to

5 This is a common technique used in other modifications of the WAM—e.g., the MUSE WAM (Ali
1990).

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 653

PA cnt=2 PB cnt=1

a1

b1

b

a

A:1

A:1

PA

A:1 schedule

A:1

b

b1

trust fail

PB

b2

a2

a1

a
schedule

αα

trust fail a3

Fig. 9. Agent A gave work to Agent B.

PA cnt=2 PB cnt=2

a1

b1

b

a

A:1

A:1

PA

A:1

trust fail
c

c1

PB

b2

a3

a2

a
schedule

α

c2
d

d1 d2

PC cnt=1

idle

PC

B:1

B:1

α

schedule

Fig. 10. Agent B labels its two new parallel choice-points.

optimize this scheme (e.g., in the example, we could have introduced the schedule

instruction directly in the choice-point a).

In turn, agent B changes the next alternative field of choice-point b to WAM

instruction trust fail, to avoid taking the original alternative of this choice-point,

keeps the alternatives a2, a3 of choice-point a, and changes the next alternative field

of the choice-point above a to the schedule instruction. See Figure 9. Afterwards,

agent B backtracks, removes choice-point b along with its corresponding label in

the label stack, and then takes alternative a2 of choice-point a.

Suppose now that agent B creates two parallel choice-points and agent C is idle.

Agent C, with its counter set to 1 and its label stack set to empty, requests work

from B. Agent B first creates labels for its two new parallel choice-points. These

labels have their rank and counter parts as B:1. Agent B then pushes these labels

into its label stack. See Figure 10. Notice that agent B incremented its counter to 2.

At this point in time, stack-copying takes place. Agent C gets all the parallel

choice-points of agent B along with agent B label stack. The stack-copying phase

is followed by the actual stack-splitting operation: agent B will keep alternatives

d2 and a3 but not c2, and agent C will keep alternative c2 but not d2 nor a3.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

654 E. Pontelli et al.

PA cnt=2 PB cnt=2

a1

b1

b

a

A:1

A:1

PA

A:1

c

c1

PB

b2

a3

a2

a
schedule

α

trust fail
d

d1 d2

PC cnt=1

PC

B:1

B:1

a
A:1

a2

B:1
c1

c2
d

B:1

B:1

d1

c

trust fail

schedule

α α

schedule

trust fail trust fail

Fig. 11. Agent B gives work to Agent C.

Notice that all three parallel choice-points of agent B have been split among B

and C. Agent B keeps the alternative d2 of choice-point d and changes the next

alternative field of choice-point c to WAM instruction trust fail to avoid taking the

original alternative of this choice-point, and keeps the alternative a3 of choice-point

a. Agent C changes the next alternative field of choice-point d to WAM instruction

trust fail to avoid taking the original alternative of this choice-point, keeps the

alternative c2 of choice-point c, changes the next alternative field of choice-point a

to WAM instruction trust fail, and changes the next alternative field of the choice-

point above a to schedule. This is illustrated in Figure 11. Agent C backtracks,

removes choice-point d along with its corresponding label in the label stack, and

then takes alternative c2 of choice-point c.

4.2 Incremental stack-splitting: The procedure

In this section we describe how the label stacks are used to compute the incremental

part to be copied. Let us assume that agent A is giving work to agent B. Agent A

will label all its parallel choice-points which have not been labeled before and will

push them into its label stack. Agent A then increments its counter.

If the label stack of agent B is empty, then stack-copying will need to be performed

followed by stack-splitting. Agent A sends its complete choice-point stack and its

complete label stack to agent B. Then stack-splitting is performed on all the parallel

choice-points of agent A. Agent B then tries its new work via backtracking.

However, if the label stack of agent B is not empty, then agent B will send its

label stack to agent A. The objective is for agent A to locate the topmost label in

common between A and B—and this is realized by comparing the content of the two

stacks until a match is found. Let us denote with ch the most recent choice-point

with a common label between A and B. In this way, agents A and B are guaranteed

to have the same computation above the choice-point ch, while their computations

will be different below such choice-point.

If the choice-point ch does not exist, then (non-incremental) stack-copying will

need to be performed followed by stack-splitting just as described before. However, if

choice-point ch does exist, then agent B backtracks to choice-point ch, and performs

incremental-copying. Agent A sends its choice-point stack starting from choice-point

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 655

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1
i2

j2

trust fail

ch
ch

trust fail

schedule

PC

Fig. 12. Agent A labels its two new parallel choice-points and compares labels with Agent C.

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7 schedule

α

A:8

A:8

i

j

i1

j1

j2

trust fail

trust fail

i
A:8

i1

A:8
j

j1

trust fail

i2trust fail

schedule

PC

Fig. 13. Agent A gave work to Agent C.

ch to the top of its choice-point stack. Agent A also sends its label stack starting

from the label corresponding to choice-point ch to the top of its label stack. Stack-

splitting is then performed on all the parallel choice-points of agent A. Afterwards,

agent B tries its new work via backtracking.

We illustrate the above procedure by the following example. Suppose agent A

has three parallel choice-points and agent C requests work from A. Agent A first

labels its last two parallel choice-points which have not been labeled before and

then increments its counter. Afterwards, agent C sends its label stack to agent A.

Agent A compares its label stack against the label stack of agent C and finds the

last choice-point ch with a common label. Above choice-point ch, the Prolog trees

of agents A and C are equal. Below choice-point ch, the Prolog trees of agents A

and C differ. See Figure 12.

Now, agent C backtracks to choice-point ch. Incremental stack-copying can then

take place. Agent A sends its choice-point stack starting from choice-point ch to

the top of its choice-point stack. Agent A also sends its label stack starting from

the label corresponding to choice-point ch to the top of its label stack. Then, stack-

splitting takes place on the three parallel choice-points of agent A. See Figure 13.

Agent C backtracks to choice-point i and takes alternative i2.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

656 E. Pontelli et al.

4.3 Incremental stack-splitting: Challenges

Four issues that were not discussed above and which are fundamental for the correct

implementation of the incremental stack-splitting scheme presented are discussed

below.

4.3.1 Sequential choice-points

The first issue is related to the management of sequential choice-points. Typically,

only a subset of the choice-points present during the execution are suitable to

provide work that can be effectively parallelized. These choice-points are traditionally

called parallel choice-points, to distinguish them from sequential choice-points, whose

alternatives are meant to be explored by a single agent. Systems like PALS, MUSE,

and Aurora allow the user to explicitly declare predicates as parallel (while, by

default, the others are treated as sequential).

The problem arises when sequential choice-points are located among the parallel

choice-points that will be split between two agents. If the alternatives of these

choice-points are kept in both agents, we may have repeated, useless or wrong

computations. Hence, the alternatives of these choice-points should only be kept in

one agent—e.g., the agent that is giving work. In our current approach, we keep the

alternatives of sequential choice-points in the agent giving work; as a consequence,

the agent that is receiving work should change the next alternative field of all

these choice-points to the WAM instruction trust fail to avoid taking the original

alternatives of these choice-points.

4.3.2 Installation process

The second issue has to do with the bindings of conditional variables (i.e., variables

that may be bound differently in different or-parallel branches) which need to be

copied too as part of the incremental stack-splitting process.

For example, suppose that in our last example, before agent A gives work to

agent C, agent A created the variable X before choice-point ch was created, and the

variable X was instantiated after the creation of ch. This is shown in Figure 14. We

can see that the binding for X was not copied during incremental stack-splitting.

This is because X is a conditional variable which was created before choice-point ch,

and the incremental part of the heap or environment stack that was copied did not

contain its binding. This means that the receiving agent does not see X becoming

automatically instantiated thanks to the copying of the heap or environment

stack.

To solve the problem, we need to ensure that, during the sharing operation,

also the bindings of the conditional variables created in the common part of the

branch are transferred from the agent giving work to the idle agent. In the current

implementation, we have tackled this problem by modifying the trail structure of

the ALS WAM engine. The trail is a stack, maintained by the WAM, which records

which conditional variables have been bound along the current branch of execution.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 657

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7
schedule

α

A:8

A:8

i

j

i1

j1

j2

trust fail

trust fail

i
A:8

i1

A:8
j

j1

trust fail

i2trust fail

schedule

X is created

X is
instantiated

Ch

Ch

PC

Fig. 14. The binding of conditional variable X needs to be copied.

The trail is used by the WAM to support removal of bindings during backtracking.

In our system, the trail has been modified to a value trail (Lusk et al. 1990), thus

maintaining with each bound conditional variable also a reference to its value. The

value trail is employed by agent giving work to build a special message containing

the values of the bound conditional variables, sent to the idle agent during the

sharing operation. The idle agent will make use of this message and install the

appropriate bindings for the conditional variables existing in the common segment

of the search tree branch.

Observe that a similar problem appears also in shared-memory implementations

of stack-copying (Ali 1990)—though they do not need to rely on value-trails, since

each agent can directly retrieve the values of the bindings from the other agent’s

environments (which are in shared memory).

4.3.3 Garbage collection

The third issue arises when garbage collection takes place. In the current imple-

mentation of the ALS system (the underlying WAM we modified for this project),

garbage collection occurs also on the choice-point stack, leading to possible shifting

of choice-points. When this situation occurs, the labels in our label stack may

no longer label the correct parallel choice-points—since labels are connected to

choice-points by storing the address of the corresponding choice-points inside the

label. Therefore, we need to modify our labeling procedure so that when garbage

collection on an agent takes place, the label stack of this agent is invalidated. This

has been realized by just setting its label stack to empty. The next time this agent

gives work, full stack-copying will have to take place. This solution is analogous to

the one adopted in the MUSE system (Ali 1990) to address the similar problem in

stack-copying. Alternative solutions—e.g., use of indirect labels—would introduce

costs in each step of sharing, instead of an occasional additional cost during garbage

collection, and have not been used in our system.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

658 E. Pontelli et al.

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1
i2

j2

trust fail

ch
ch

schedule

first cp

g2

PC

Fig. 15. Copy the Next clause fields between first cp and ch.

PA cnt=9 PC cnt=7

g1

h1

h

g

B:7

C:5

PA

C:5

h

h1

h2

g1

g

α

B:7

schedule

α

A:8

A:8

i

j

i1

j1

j2

trust fail

trust fail

i
A:8

i1

A:8
j

j1

trust fail

i2trust fail

schedule

g2

PC

Fig. 16. Agent C received the Next clause fields.

4.3.4 Next clause fields

The fourth issue arises when the next clause fields of the parallel choice-points

between the first parallel choice-point first cp and the last choice-point ch with a

common label in the agent giving work are not the same compared to the ones in

the agent receiving work. This situation occurs after several copying and splitting

operations—that caused the next clause field of some choice-points to be changed

to trust fail, while other agents still have active alternatives in such choice-points.

In this case, it is not correct to just copy the part of the choice-point stack between

choice-point ch and the top of the stack and then perform the splitting. This is

because the splitting will not be performed correctly.

For example, suppose that in our previous example (see Figure 14), when agent

C requests work from agent A, we have this situation, as illustrated in Figure 15.

Let us assume that the scheduler decides to transfer the choice-point g to agent C.

But agent C does not have the right next clause field for this choice-point. Hence,

we need to modify our procedure once again. This can be done by having the agent

giving work send all the next clause fields between its first parallel choice-point first

cp and choice-point ch to the agent receiving work. Then the splitting of all parallel

choice-points can take place correctly. See Figure 16.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 659

5 Scheduling

Scheduling is an important aspect of any parallel system. The scheduling strategy

adopted largely determines the level of speedup obtained for a particular parallel

execution. The main objective of a scheduling strategy is to balance the amount

of parallel work done by different agents. Additionally, work distribution among

agents should be done with a minimum of communication overhead. These two

goals are somewhat at odds with each other, since achieving perfect balance may

result in a very complex scheduling strategy with considerable communication

overhead, while a simple scheduling strategy which re-distributes work less often

may incur a lower communication overhead but lead to a poorer balancing of work.

Therefore, it is obvious that there is an intrinsic contradiction between distributing

parallel work as evenly as possible and minimizing the distribution overhead. Thus

our main goal is to find a trade-off point that results in a reasonable scheduling

strategy.

We adopt a simple and fair distributed algorithm to implement a scheduling

strategy in the PALS system. A new data structure—the load vector—is introduced

to provide an approximated view of the work-loads of different agents. The work-

load of an agent is approximated by the number of parallel choice-points with

unexplored alternatives present in its local computation tree. This is analogous

to the approach originally used by MUSE, and it can be efficiently implemented

within ALS; furthermore, the majority of examples we encountered offer parallel

choice-points with a small number of alternatives (often just two), thus making our

approximated notion of work-load essentially equivalent to more refined versions.

Each agent keeps a work-load vector V in its local memory, and the value of

V[i] represents the estimated work-load of the agent with rank i. Based on the

work-load vector, an idle agent can request parallel work from other agent with

the greatest work-load, so that parallel work can be fairly distributed. The load

vector is updated at runtime. When stack-splitting is performed, a Send LoadInfo

message with updated load information will be broadcasted to all the agents so

that each agent has the latest information of work-load distribution. Additionally,

load information is attached with each incoming message. For example: when a

Request Work message is received from agent P1, the value of P1’s work-load, 0,

can be inferred.

Based on its work-load each agent can be in one of two states: scheduling state

or running state. When an agent has some work to do, it is in a running state,

otherwise, it is in a scheduling state. An agent that is running, occasionally checks

whether there are incoming messages. Two possible types of messages are checked

by the running agent: one is Request Work message sent by an idle agent, and the

other is Send LoadInfo message, which is sent when stack-splitting occurs. The idle

agent in scheduling state is also called a scheduling agent. An idle agent wants to

get work as soon as possible from another agent, preferably the one that has the

largest amount of work. The scheduling agent searches through its local load vector

for the agent with the greatest work-load, and then sends a Request Work message

to that agent asking for work. If all the other agents are idle (in scheduling state),

then the execution of the current query is finished and the agent halts. When a

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

660 E. Pontelli et al.

running agent receives a Request Work message, stack-splitting will be performed

if the running agent’s work-load is greater than a predefined threshold (the splitting

threshold), otherwise, a Reply Without Work message with a positive work-load

value will be sent as a reply. If a scheduling agent receives a Request Work

message, a Reply Without Work message with work-load 0 will be sent as a

reply.
The distributed scheduling algorithm mainly consists of two parts: one is for

the scheduling agent, and the other is for the running agent. The running agent’s
algorithm can be briefly described as follows:

1: while (any incoming message) {

2: get an incoming message;

3: switch (message type) {

4: case Send_LoadInfo:

5: update the corresponding agents’ work-load;

6: break;

7: case Request_Work:

8: if (local work-load > Splitting Threshold) {

9: reply a message of type Reply_With_Work and perform

stack-splitting;

10: broadcast the updated work-load to all the agents;

11: }

12: else {

13: reply a message of type Reply_Without_Work

14: and the value of its own work-load;

15: set work-load of the message source to 0;

16: }

17: break;

18: }

19: }

At fixed time intervals (which can be selected at initialization of the system) the

agent examines the content of its message queue for eventual pending messages.

Send LoadInfo messages are quickly processed (lines 4-6) to update the local view

of the overall load in the system. Messages of the type Request Work are handled

as described above (lines 7-17). If stack-splitting is realized (line 9), then the agent

will also notify the whole system of the new work-loads (line 10).

We should remark that the implementation concretely checks for the presence of

the two types of messages with different frequency—i.e., request for work messages

are considered less frequently than requests for load update. All messages are handled

asynchronously; Send LoadInfo messages are given higher priority by the receiving

agents (i.e., they are processed before any other types of messages), to ensure that

the work-load vector remains as much up-to-date as possible. The reason of keeping

work-load vector up-to-date as much as possible for each agent is that when a

scheduling agent is looking for work, it is able to obtain work from the agent

with the highest work-load immediately. We have observed worse performance by

giving higher priority to other types of messages. This is because if work-loads are

not up-to-date, an agent thought to have the highest work-load may turn out to

have work-load lower than others, reducing the granularity of work obtained and

increasing the number of splitting operations performed.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 661

The scheduling agent’s algorithm can be briefly described as follows:

1: while (1) {

2: D = the rank of the agent with the greatest work-load;

3: if (D’s work-load == 0) and termination detection returns true

then halt; /* The whole work is done */

4: send a Request_Work message to D;

5: matched = false;

6: while (!matched) {

7: get an incoming message;

8: switch (message type) {

9: case Reply_With_Work:

10: stack-splitting with the agent which sent the message;

11: update the corresponding work-load;

12: simulate failure and go to execute the split work;

13: return;

14: case Reply_Without_Work:

15: if (source of message is D) matched = true;

16: V[message sender Id] = work-load of agent which sent

the message;

17: break;

18: case Request_Work:

19: reply a message of type Reply_Without_Work and

20: its work-load 0 to the source of incoming message;

21: V[message sender Id] = 0;

22: break;

23: case Send_LoadInfo:

24: update the corresponding agents’ work-load;

25: break;

26: }

27: }

Observe:

• a Request Work message is sent to the agent with the greatest work-load

according to the local load vector (lines 2 and 4); an optimization to avoid

some communication overhead is that if the greatest work-load is below the

splitting threshold value, the Request Work message can be delayed until

there exists some agent that has work-load higher than the threshold; in other

words, if all the other agents have low work-load, no stack-splitting takes

place in our strategy;

• the loop 6-27 is repeated until a reply is received from the agent contacted in

line 4;

• if a reply is positive, then the scheduling phase is left and execution restarted; if

the reply is negative, then another iteration of the outermost loop is performed;

• during scheduling, requests for work from other agents are denied (and this

is used to update to zero the work-load of the requesting agent), as shown in

lines 18-22;

• messages containing new work-load information are used to update the work-

load vector (lines 23-25);

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

662 E. Pontelli et al.

• if the work-load vector contains only zeros (line 3), then the scheduler initiates

a procedure to verify global termination. The global termination process is

based on a fairly standard black-white token ring scheme (Misra 1983).

Let us point out that the scheduling procedure bears some similarities with the

Argonne scheduler used by Aurora (Butler et al. 1988). In our experiments on both

shared-memory as well as distributed-memory platforms we did not perceive the

problems noticed in other similar schedulers (Beaumont and Warren 1993) with this

approach (e.g., the “honey-pot” problem, where every worker tries to grab the same

piece of work).

6 Supporting Prolog’s sequential semantics

In this section, we discuss how the stack-splitting scheme can be adapted to support

the correct semantics during parallel execution of programs containing side-effects

and other order-sensitive predicates.

6.1 Order sensitive predicates

A parallel Prolog system that maintains Prolog semantics reproduces the behavior

of a sequential system (same solutions, in the same order, and with the same

termination properties). Sequential Prolog systems include features that allow the

programmer to introduce a component of sequentiality in the execution. These may

be in the form of facilities to express side-effects (e.g., I/O) or constructs to control

the order of construction of the computation (e.g., pruning operations, user-defined

search strategies). In a parallel system, such Order Sensitive Components (OSC)—

i.e., built-in predicates whose semantics is tied to the sequential operational semantics

of Prolog—need to be performed in the same order as in a sequential execution; if

this requirement is not met, the parallel computation may lead to an observable

semantics different from the one indicated by the programmer (Gupta et al. 1999).

In the context of Prolog, there are three different classes of OSC: side-effects

predicates (e.g., I/O), meta-logical predicates (e.g., test the instantiation state of

variables), and control predicates (e.g., for pruning branches of the search tree). In

the context of or-parallelism only certain classes of OSC require sequentialization

across parallel computations—only side-effects and control predicates. The presence

of OSC does not require a sequentialization of the whole execution involved, only

the OSC themselves need to be sequentialized. If the OSC are infrequent and

spaced apart, good speedups can be obtained, even in a DMP. The correct order

of execution of OSC corresponds to an in-order traversal of the computation

tree. A specific OSC α can be executed only if all the OSC that precede α in

the traversal have been completed (this assumes also that we do not have infinite

branches in the computation tree). Detecting when all the OSC to the left have

been executed is an undecidable problem,6 thus requiring the use of approximations.

6 It is a fairly simple exercise to show that the ability to detect precedence of side effects can be used to
decide termination of computations—a known undecidable problem.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 663

The most commonly used approximation is to execute an OSC only when the

branch containing it becomes the left-most branch in the tree (Hausman et al.

1988). Thus, we approximate the termination of the preceding OSC by verifying

the termination of the branches that contain them. Most of the schemes proposed

(Ranjan et al. 2000; Gupta et al. 1999) rely on traversals of the tree, where the

computation attempting an OSC walks up its branch verifying the termination of

all the branches to its left. These approaches can be realized (Hausman et al. 1988;

Ali 1990; Szeredi 1991) in presence of a shared representation of the computation

tree—required to check the status of other executions without communication.

These solutions do not scale to the case of DMP, where a shared representation

of the computation tree is not available. Simulation of a shared representation is

infeasible, as it leads to unacceptable bottlenecks (Villaverde 2002). Some attempts

to generalize mechanisms to handle OSC to DMPs have been made (Araujo 1990),

but only at the cost of sub-optimal scheduling mechanisms. It is unavoidable to

introduce a communication component to handle OSC in a distributed setting. We

demonstrate that stack-splitting can be modified to solve this problem with minimal

communication (Villaverde et al. 2001). The modification is inspired by the optimal

algorithms for OSC studied elsewhere (Ranjan et al. 2000). In particular, in the

context of this work we focus on side-effect predicates; we believe these results can

provide the foundations to handle also cut and pruning operators, but their effective

management requires more significant changes, e.g., to the scheduling strategies, and

they are not addressed in the scope of this work.

6.2 Optimal algorithms for order-sensitive executions

The problem of efficiently handling OSC during parallel executions has been

pragmatically tackled in a variety of proposals (Gupta et al. 1999). Nevertheless, only

recently the problem has been formally studied, deriving solid theoretical foundations

regarding the inherent complexity of testing for leftmostness in a dynamically

changing tree (Ranjan et al. 2000). Let T = 〈N ,E 〉 be the computational tree

(where N are its nodes and E the current edges). The computation tree is dynamic;

the modifications to the tree can be described by two operations: expand which adds

a (bounded) number of children to a leaf, and delete which removes a leaf from

the tree. Whenever a branch encounters a side-effect, it must check if it can execute

it. This check boils down to verifying that the branch containing the side-effect is

currently the leftmost active computation in the tree. If n is the current leaf of the

branch where the side-effect is encountered, its computation is allowed to continue

only if µ(n) = root, where µ(n) indicates the highest node m in the tree (i.e., closest

to the root) such that n is in the leftmost branch of the subtree rooted at m . µ(n) is

also known in the parallel logic programming community as the subroot node of n

(Hausman et al. 1988). Thus, checking if a side-effect can be executed requires the

ability of performing the operation find subroot(n) which, given a leaf n , computes

the node µ(n).

The work presented earlier (Ranjan et al. 2000) studies the data structure problem

leading to the following result: any sequence of expand, delete, and find subroot

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

664 E. Pontelli et al.

Fig. 17. Data structure for order-sensitive computations.

operations can be performed in O(1) time per operation on pure pointer machines—

i.e., without the need of complex arithmetic (i.e., the solution does not rely on the

use of “large” labels). The data structure used to support this optimal solution is

based on maintaining a dynamic list—i.e., a list which allows arbitrary insertions

and deletions to be performed at run-time—which represents the frontier of the

tree (the solid arrows in Figure 17). The dynamic list can be updated in O(1)

time each time leaves are added or removed (i.e., when expanding a branch and

performing backtracking). Subroot nodes can be efficiently maintained for each

leaf (these are depicted by dotted lines in the Figure)—in particular, each delete

operation affects the subroot node of at most one other leaf. Identification of the

computations an OSC α depends on can be simply accomplished by traversing the

list of leaves right-to-left from α. Executability (i.e., leftmostness) can be verified in

constant time by simply checking whether the subroot of the leaf points to the root

of the tree (Ranjan et al. 2000). Although the use of an explicit list to maintain

the frontier of the computation tree has been suggested in other works (e.g., in the

Dharma scheduler (Sindaha 1992)), the data structure which allows its management

in constant-time was proposed for the first time elsewhere (Ranjan et al. 2000). The

reader is referred there (Ranjan et al. 2000) for more details.

This solution is feasible in a shared memory context but requires adjustment in a

distributed-memory context. In the rest of this section we show how stack-splitting

can incorporate a good solution to the problem, following the spirit of this optimal

scheme.

6.3 Stack-splitting and order-sensitive computations

Determining the executability of an OSC α in a distributed-memory setting requires

two coordinated activities: (a) determining what are the computations to the left of

α in the computation tree—i.e., which agents have acquired work in branches to the

left of α; (b) determining what is the status of the computations to the left of α. On

DMPs, both steps require exchange of messages between agents. The main difficulty

is represented by step (a)—without the help of a shared data structure, discovering

the position of the different agents requires arbitrary localization messages exchanged

between the agent in charge of α and all the other agents. What we propose is a

shift in perspective, directed from the ideas presented in Section 6.2: through a

simple modification in the strategy for stack-splitting, we can guarantee that agents

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 665

are aware of the position of their subroot nodes.7 Thus, instead of having to locate

the subroot nodes whenever an OSC occurs, these are implicitly located (without

added communication) whenever a sharing operation is performed (a very infrequent

operation, compared to the frequency of OSC steps). Knowledge of the position of

the subroot nodes allows agents to maintain an approximation of the ordering of

the leaves of the tree, which in turn can be used to support the execution of step

(b) above.

In the original stack-splitting procedure—using vertical splitting (Section 3.2)—

during a sharing operation the parallel choice-points are alternatively split between

two agents. The agent that is giving the work keeps the bottom-most choice-point,

the third bottom-most choice-point, the fifth bottom-most choice-point, etc. The

agent that receives the work keeps the second bottom-most choice-point, the fourth

bottom-most choice-point, etc. In our previous work (Gupta and Pontelli 1999;

Villaverde et al. 2001) we have demonstrated that this splitting strategy is effective

and leads to good speedups for large classes of representative benchmarks. The

alternation in the distribution of choice-points is aimed at reducing the danger of

focusing a particular agent on a set of fine-grained computations.

This strategy for splitting a computation branch between two agents has a signific-

ant drawback w.r.t. execution of OSC, since the two agents, through backtracking,

may arbitrarily move left or right of each other. This makes it impossible to know

a-priori whether one agent affects the position of the subroot node of other agents,

preventing the detection of the position of agents in the frontier of the tree. From

Section 6.2 we learn that an agent operating on a leaf of the computation tree can

affect other agents’ subroot nodes only in a limited fashion. The idea can be easily

generalized: if an agent limits its activities to the bottom part of a branch, then the

number of leaves affected by the agent is limited and well-defined. This observation

leads to a modified splitting strategy, where the agent giving work keeps the lower

segment of its branch as private, while the agent receiving work obtains the upper

segment of the branch. This modification guarantees that the agent receiving work

will be always to the right of the agent giving the work. Since the result of a sharing

operation is always broadcasted to all the agents—to allow agents to maintain an

approximate view of the distribution of work—this method also allows each agent

to have an approximate view of the composition of the frontier of the computation

tree.

Observe that this modification to the splitting strategy leads to a scheduling

strategy different from the traditional bottom-most scheduling mentioned earlier.

Nevertheless, as discussed in the experimental evaluation section, this modification

does not harm parallel performance in applications with presence of OSC, and it

does not relevantly degrade performance in absence of OSC.

The next sections show how this new splitting strategy can be made effective to

support OSC without losing parallel performance.

7 Note that it is practically infeasible to have all processors know the location of all shared nodes.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

666 E. Pontelli et al.

6.3.1 Implementation

Data Structures: In order to support the new splitting strategy and use it to support

OSC steps, each agent will require only two additional data structures: (1) the

Linear Vector and (2) the Waiting Queue. Each agent keeps and updates a linear

vector which consists of an array of agent Ids that represents the linear ordering

of the agents in the search tree—i.e., the respective position of the agents within

the frontier of the computation tree (section 6.2). The idea behind this linear vector

is that whenever an agent wants to execute an OSC, it first waits until there are

no agents Ids to its left on the linear vector. Such a status indicates that all the

agents that were operating to the left have completed their tasks and moved to

the right side of the computation tree, and the subroot node has been pushed all

the way to the root of the tree. Once this happens, the agent can safely execute

the OSC, being left-most in the search tree. Initially, the linear vector of all agents

contains only the Id of the first running agent. In the original bottom-most scheduler

developed for stack-splitting (Section 4), every time a sharing operation is performed,

a Send LoadInfo message is broadcast to all agents; this is used to inform all agents

of the change in the workload and of the agents involved in the sharing. For every

Send LoadInfo message, each agent updates its linear vector by moving the Id of

the agent that received work immediately to the right of the Id of the agent giving

work. Each agent also maintains a waiting queue of Ids, representing all the agents

that are waiting to execute an OSC but are located to the right of this agent.

Whenever an agent enters the scheduling state to ask for work, it informs all agents

in its waiting queue that they no longer need to wait on it to execute their OSC.

The Procedure: In stack-splitting (Section 4), an agent can only be in one of two

states: running state or scheduling state. In order to handle OSC, we need another

state: the order-sensitive state. All agents wanting to execute an OSC will enter

this state until it is safe for them to execute their OSC. The transition between

the states requires the introduction of three types of messages: (1) Request OSC, (2)

OSC Acknowledgment, and (3) Reply In OSC. Their detailed explanations are shown

in the following scheduling algorithms.

We update the distributed scheduling algorithms as follows to support handling

OSC. Only those parts related to handling OSC are presented in the algorithms.

The ignored parts (denoted by) can be found from the previous algorithms

presented in Section 5. The scheduling algorithm for an agent in an order-sensitive

state is described as follows:

send a Request_OSC message to all the agents whose Ids

are on the left of its own Id in the linear vector;

while (its own Id is not on the leftmost in the linear vector) {

get an incoming message;

switch (message type) {

case Request_OSC:

update the requesting agent’s work-load;

consult the linear vector;

if (the requesting agent Id is on the right of its own Id)

enqueue the requesting agent Id in the waiting queue;

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 667

else

reply a message of type OSC_Acknowledgment;

break;

case OSC_Acknowledgment:

update the sending agent’s work-load;

remove the message sender Id from the linear vector;

break;

case Send_LoadInfo:

update the splitting agents’ work-load;

update the linear vector by placing the Id of the agent

who receives work to the right of the agent Id giving work;

if (the agent Id who receives work is on the left of its own ID)

send a Request_OSC message to the agent;

break;

case Request_Work:

remove the requester Id from the linear vector;

reply a message of type Reply_In_OSC;

V[the requester ID] = 0;

break;

}

}

change to the running state to perform the OSC;

send a Send_LoadInfo message to all other agents;

Once an agent arrives to the order-sensitive state, it first sends a Request OSC to

all the agents to its left in its linear vector. It then waits for OSC Acknowledgment

messages from each of them. An OSC Acknowledgment is sent by an agent when it is

no longer to the left of the agent wanting to execute the OSC. When this message is

received, the Id of the agent sending it will be removed from the linear vector. The

position of the sending agent will be re-acquired when such agent acquires more

work in the successive scheduling phase. Notice that when the agent is waiting for

these messages, it may receive Send LoadInfo messages. If this happens, the agent

has to update its linear vector. In particular, if due to this sharing operation an

agent moves to its left, a Request OSC message needs to be sent to this agent as

well. Once the agent receives OSC Acknowledgment messages from all these agents,

it can safely perform the OSC. And, finally, after the OSC is successfully performed,

a Send LoadInfo message will be broadcasted to all other agents with the precise

work-load information.

In addition, an agent in an order-sensitive state is not allowed to share work;

requests to share work are denied with the Reply In OSC message. Its linear vector

can be easily updated by removing the Id of the agent requesting work. Just as

we attach load information to messages in the traditional stack-splitting scheduling

algorithm, we also attach updated load information to these three new messages.

The updated scheduling algorithm for a running agent is described as follows:

while (any incoming message) {

get an incoming message;

switch (message type) {

case Send_LoadInfo:

update the linear vector by placing the Id of the agent

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

668 E. Pontelli et al.

who receives work to the right of the agent Id giving work;

... ...

case Request_Work:

if (local work-load > Splitting Threshold) {

update the linear vector by placing the requesting

agent Id to the right of its own Id;

... ... % stack-splitting

}

else { % no stack-splitting

remove the requester Id from the linear vector;

... ...

}

break;

case Request_OSC:

consult the linear vector;

if (the requesting agent Id is on the right of its own Id)

enqueue the requesting agent Id in the waiting queue;

else

reply a message of type OSC_Acknowledgment;

break;

}

}

When an agent is in running state and receives a Request OSC message, it consults

its linear vector and reacts in the following way. If the Id of the agent wanting to

execute an OSC is to its right in the linear vector, the Id of the requesting agent is

inserted in the waiting queue. When the running agent runs out of work and moves

to the scheduling state, an OSC Acknowledgment message will be sent back to the

agent wanting to execute the OSC. If the Id of the agent wanting to execute the

OSC is to its left, an OSC Acknowledgment message is immediately sent back to the

agent wanting to execute the OSC. This means that the running agent is no longer

to the left of the agent wanting to execute the OSC.

The updated scheduling agent’s algorithm can be briefly described as follows:

dequeue all the agent Ids from the waiting queue and

send an OSC_Acknowledgment to all of them;

while (1) {

... ...

while (!matched) {

get an incoming message;

switch (message type) {

case Reply_With_Work:

update the linear vector by placing the own Id

to the right of the message sender Id;

... ...

case Reply_Without_Work:

if (the work-load of the message sender is 0)

remove the message sender Id from the linear vector;

... ...

case Request_Work:

remove the requester Id from the linear vector;

... ...

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 669

case Send_LoadInfo:

update the linear vector by placing the Id of

the agent who receives work to the right of the

agent Id giving work;

... ...

case Reply_In_OSC:

update the work-load of the message sender to 1;

break;

case Request_OSC:

update the work-load of the message sender;

reply a message of type OSC_Acknowledgment;

break;

}

}

When an agent enters the scheduling state, it dequeues all the Ids from its waiting

queue and sends an OSC Acknowledgment to all these agents, informing them that it

is no longer to their left. When a scheduling agent receives a Reply In OSC, which

means the current agent with the highest work-load is in an order-sensitive state, it

then updates the work-load of that agent to 1 so that in the next round the agent

will choose another agent with high work-load to request work from. The precise

work-load will be updated later after the agent in the order-sensitive state becomes

a running-state agent.

6.3.2 Implementation details

Partitioning Ratios: The stack-splitting modification divides the stack of parallel

choice-points into two contiguous partitions, where the bottom partition is kept by

the agent giving work and the upper partition is given away. This stack-splitting

modification guarantees that the agent that receives work will be to the immediate

right of the other agent. The question is what is the partitioning ratio that will

produce the best results? We first tried using a partition where the agent that is

giving work keeps the bottom half of the branch and only gives away the top half.

After experimenting with lots of different partition ratios, we found out that with a

partition ratio of 3/4 − 1/4 where the agent that is giving work keeps the bottom

3/4 of the parallel choice-points and gives away the top 1/4 of the parallel choice-

points, our benchmarks without side-effects obtain excellent speedups—similar to our

original alternating splitting (Villaverde et al. 2001). When we run our benchmarks

with side-effects, the partition ratio of 3/4 − 1/4 performed superior to the partition

ratio of 1/2. One of the reasons is that it is common to have more side-effects

towards the bottom part of the computation tree; thus, using the proposed partition

we assign smaller chunks of work, but with a greater probability of not encountering

side-effects. Additionally, keeping larger numbers of side-effects locally reduces the

number of interactions.

Messages Out of Order: Send LoadInfo messages may arrive out of order and

then the linear vectors may be outdated. E.g., agent 2 receives from agent 0 a

Request Work message but decides not to share work. Since agent 0 is requesting

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

670 E. Pontelli et al.

Agent 0 Agent 1 Agent 2

linear
vector 0 0

Time

Request_Work

0

Request_Work

Agent 3

0

0

Reply_with_Work

0 00 11

Send_Load_Info

0 00 11 1

Request_Work
Reply_with_Work

0 00 11 13 3

Send_Load_Info

0 00 11 13 3? ? ? ?

Fig. 18. Example of messages out of order.

work, agent 2 removes 0 from its linear vector. Later on, agent 0 gets work from agent

1, and agent 1 broadcasts a Send LoadInfo message. Afterwards, agent 0 gives work

to agent 3 and also broadcasts a Send LoadInfo message. Now, suppose that agent

2 receives the second Send LoadInfo message first and the first Send LoadInfo

next. When agent 2 tries to insert 3 to the immediate right of 0 in the linear vector,

0 is not located and therefore 3 cannot be inserted (see Figure 18). MPI (used in

our system for agent communication) does not guarantee that two messages sent

from different agents at different times will arrive in the order that they were sent.

The scenario presented above can be avoided if, in every sharing operation, both

involved agents broadcast a Send LoadInfo message to all the other agents. In this

case every agent will be informed that a sharing operation occurred either by the

giver or by the receiver of work. Agent 2 in the above scenario will first know

that agent 0 obtained work from agent 1, and then will know that agent 0 gave

work to agent 3. Duplication of Send LoadInfo messages is handled through the

use of two dimensional arrays send1 and send2 of size N 2, where N is the total

number of agents; send1[i][j] (send2[i][j]) is incremented when a sharing message

from i to j is received from agent i (j). Thus, send1[i][j] and send2[i][j] keep

track of how many times i and j have shared work; send1 records how many times

i notified of a sharing with j and send2 records how many times j notified of a

sharing with i . The linear vector will be updated only if send1[i][j] > send2[i][j]

(send2[i][j] > send1[i][j]) and the message comes from agent i (j).

7 Performance results

In this section, we present experimental results and their evaluations obtained

from two implementations of the proposed methodologies—one developed on a

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 671

Table 1. Incremental stack-splitting on shared memory (time in seconds and

speedups)

Benchmark # Agents

1 2 4 8 14

9-Costas 715.369 368.298 (1.94) 184.141 (3.88) 92.165 (7.76) 53.453 (13.38)

Stable 653.705 368.943 (1.77) 185.474 (3.52) 92.811 (7.04) 53.860 (12.13)

Knight 275.737 141.213 (1.95) 70.528 (3.9) 35.539 (7.75) 22.403 (12.3)

Send More 115.183 65.271 (1.76) 31.447 (3.66) 16.496 (6.98) 9.686 (11.89)

8-Costas 66.392 34.281 (1.93) 17.192 (3.86) 8.680 (7.64) 5.202 (12.76)

8-Puzzle 52.945 29.601 (1.78) 15.026 (3.52) 7.845 (6.74) 4.754 (11.13)

Bart 25.562 15.411 (1.65) 6.868 (3.72) 3.577 (7.14) 2.144 (11.93)

Solitaire 12.912 7.598 (1.69) 3.813 (3.38) 2.029 (6.36) 1.335 (9.67)

10-Queens 7.575 3.922 (1.93) 2.087 (3.62) 1.378 (5.49) 1.141 (6.63)

Hamilton 6.895 3.879 (1.77) 1.940 (3.55) 1.151 (5.99) 0.761 (9.06)

Map Coloring 2.036 1.298 (1.56) 0.696 (2.92) 0.479 (4.25) 0.430 (4.73)

8-Queens 0.306 0.198 (1.54) 0.143 (2.13) 0.157 (1.94) 0.149 (2.05)

shared-memory platform and one on a Beowulf platform. All the timings proposed

have been obtained as an average over 10 consecutive runs (excluding the lowest

and highest times), executed on lightly loaded machines.

7.1 Shared memory implementation

The stack-splitting procedure has been implemented on top of the commercial ALS

Prolog system using the MPI library for message passing—specifically, the MPI-1

library natively provided by Solaris 5.9 (HPC 4.0). The whole system runs on a Sun

Enterprise 4500 with fourteen processors (Sparc 400Mhz with 4GB of memory).

While the Sun Enterprise is a SMP, it should be noted that all communication—

during scheduling, copying, splitting, etc.— is done using messages. This has enabled

an easy migration of the system to a Beowulf machine. The timing results in seconds

from our incremental stack-splitting system on the 14 processor Sun enterprise are

presented in Table 1. This system is based on the scheduling strategy described in

Section 5.

The benchmarks that we have used to test our system are the following. The 9

Costas and 8 Costas benchmarks compute the Costas sequences8 of length 9 and

8 respectively. The Knight benchmark consists of finding a path of knight-moves

on a chess-board of size 5, starting at (1,1) and finishing at (1,5), and visiting

every square on the board just once. The Stable benchmark is a simple engine to

compute the models of a logic program with negation. The Send More benchmark

consists of solving the classical crypto-arithmetic puzzle. The 8 Puzzle benchmark is

a solution to the puzzle involving a 3-by-3 board with 8 numbered tiles. The Bart

benchmark is a simulator used to test the safety of the controller for a train. The

8 Costas sequences are special numeric series used in signal processing.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

672 E. Pontelli et al.

Solitaire benchmark is a solution to the standard game involving a triangular board

with pegs and one empty hole. The 10 Queens and 8 Queens benchmarks consist

of placing a number of queens on a chessboard so that no two queens attack each

other. The Hamilton benchmark consists of finding a closed path through a graph

such that all the nodes of the graph are visited once. The Map Coloring benchmark

consists of coloring a planar map.

The 9 Costas,8 Costas, Knight, Stable, 10 Queens, 8 Queens, Hamilton, and Map

Coloring benchmarks compute all the possible solutions. The Send More, 8 Puzzle,

Bart, and Solitaire benchmarks stop at the first solution (observe that Bart actually

has a unique solution).9 The 9 Costas, 8 Costas, and Bart benchmarks are fairly large

programs, while the rest are simpler. However, all benchmarks provide sufficiently

different program structures to extensively test the behavior of the parallel engine.

We observe that for benchmarks with substantial running time (large benchmarks),

i.e., 9-Costas, 8-Costas, Knight, and Stable, the speedups are very good. We also

observe that for benchmarks with not so substantial but also not very small running

time (medium benchmarks), i.e., Send More, 8-Puzzle, Bart, Solitaire, and Hamilton, the

speedups are still quite good. See Figure 19 under the label Incremental. Nevertheless,

our system is reasonably efficient, given that even for small benchmarks it can

produce reasonable speedups.

In order to compare our incremental stack-splitting system we have also imple-

mented two other techniques using non-incremental stack-copying: we copy the entire

WAM data areas when sharing work instead of copying them incrementally as

described above. One of these techniques is based on stack-splitting, and the other

is based on scheduling on top-most choice-point: this methodology transfers between

agents only the highest (i.e., closer to the root) choice-point in the computation tree

which contains unexplored alternatives. Observe that we employed non-incremental

copying with top-most scheduling since our previous experiments did not indicate a

significant impact of incremental copying in presence of top-most scheduling. The

timing results in seconds from these other systems are presented in Tables 2 and 3.

These two systems also used the scheduling strategy described above. The speedups

for these systems are shown in Figure 19 under the labels Complete and Top.

Most benchmarks show that the incremental stack-splitting system obtains higher

speedups than the non-incremental systems. Between the non-incremental systems,

the stack-splitting system performs better in most of the benchmarks than the

scheduling on top-most choice-point system. This is particularly evident in the case

of the Hamilton benchmark (Figure 19). Some of the benchmarks (9-Costas, 8-Costas,

and Knight) show almost no difference in performance among the three systems.

One of the reasons why this is happening is that during the execution of these

benchmarks there are only very few parallel choice-points which are given away or

split per sharing; in particular, by analyzing the source code for these benchmarks,

we can see that in the three benchmarks just one parallel choice-point contains all

the parallel work.

9 An ad-hoc pruning mechanism is used to cut at the first solution.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 673

Table 2. Complete stack-splitting on shared memory (time in seconds and speedups)

Benchmark # Agents

1 2 4 8 14

9-Costas 715.963 366.385 (1.95) 182.654 (3.91) 93.602 (7.64) 52.901 (13.53)

Stable 614.582 374.259 (1.64) 184.404 (3.33) 93.884 (6.54) 54.022 (11.37)

Knight 276.849 141.118 (1.96) 70.568 (3.92) 35.741 (7.74) 20.958 (13.2)

Send More 116.518 65.936 (1.76) 31.892 (3.65) 16.882 (6.9) 10.364 (11.24)

8-Costas 66.221 34.053 (1.94) 17.126 (3.86) 8.656 (7.65) 5.202 (12.72)

8-Puzzle 52.909 29.615 (1.78) 15.148 (3.49) 8.206 (6.44) 5.654 (9.35)

Bart 25.734 13.898 (1.85) 6.863 (3.74) 3.704 (6.94) 2.382 (10.8)

Solitaire 12.676 7.552 (1.67) 3.910 (3.24) 2.177 (5.82) 1.606 (7.89)

10-Queens 7.557 3.935 (1.92) 2.116 (3.57) 1.483 (5.09) 1.535 (4.92)

Hamilton 6.908 3.910 (1.76) 1.963 (3.51) 1.284 (5.38) 0.991 (6.97)

Map Coloring 2.009 1.332 (1.5) 0.721 (2.78) 0.476 (4.22) 0.675 (2.97)

8-Queens 0.308 0.194 (1.58) 0.158 (1.94) 0.161 (1.91) 0.138 (2.23)

Table 3. Top-most scheduling on shared Memory (time in seconds and speedups)

Benchmark # Agents

1 2 4 8 14

9-Costas 756.785 385.251 (1.96) 192.157 (3.93) 96.560 (7.83) 55.602 (13.61)

Stable 644.989 384.961 (1.67) 192.991 (3.34) 99.071 (6.51) 55.764 (11.56)

Knight 270.672 139.307 (1.94) 69.951 (3.86) 35.338 (7.65) 22.504 (12.02)

Send More 111.345 64.650 (1.72) 32.562 (3.41) 16.504 (6.74) 9.806 (11.35)

8-Costas 70.362 35.899 (1.95) 19.383 (3.63) 9.197 (7.65) 5.441 (12.93)

8-Puzzle 53.843 48.754 (1.1) 15.490 (3.47) 12.731 (4.22) 8.111 (6.63)

Bart 26.419 14.378 (1.83) 7.513 (3.51) 3.870 (6.82) 2.540 (10.4)

Solitaire 11.883 7.187 (1.65) 3.664 (3.24) 1.955 (6.07) 1.363 (8.71)

10-Queens 7.595 3.857 (1.96) 2.117 (3.58) 1.330 (5.71) 1.160 (6.54)

Hamilton 6.964 4.061 (1.71) 2.246 (3.1) 1.941 (3.58) 1.606 (4.33)

Map Coloring 2.207 1.389 (1.58) 0.816 (2.7) 0.595 (3.7) 0.469 (4.7)

8-Queens 0.304 0.194 (1.56) 0.181 (1.67) 0.155 (1.96) 0.177 (1.71)

Finally, the incremental stack-splitting system introduces a reasonably small

overhead with respect to the original sequential ALS Prolog system. Our PALS

system, on a single agent, is on average 5% slower than the sequential ALS system.

7.2 Beowulf implementation

7.2.1 Stack-Splitting

The stack-splitting procedure has been implemented by modifying the commercial

ALS Prolog system, using the MPI library for message passing—i.e., the mpich

MPI-1 installation natively supported by Myrinet (an instance of mpich 1.2.5). The

whole system runs on a distributed-memory machine (a network of Xeon 1.7GHz

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

674 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 1011 12 14
0

2.5

5

7.5

10

12.5

15

9 Costas

Incremental

Complete

Top

Numberof processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

2.5

5

7.5

10

12.5

15

8 Costas

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 1214
0

2.5

5

7.5

10

12.5

15

Knight

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

2

4

6

8

10

12

14

Stable

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

2

4

6

8

10

12

Send More

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

2

4

6

8

10

12

8 Puzzle

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

2

4

6

8

10

12

Bart

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

1

2

3

4

5

6

7

8

9

10

Solitaire

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

1

2

3

4

5

6

7

8

9

10

Hamilton

Incremental

Complete

Top

Number of processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

1

2

3

4

5

6

7

10 Queens

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

1

2

3

4

5

Map Coloring

Incremental

Complete

Top

Number of processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 14
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

8 Queens

Incremental

Complete

Top

Number of processors

S
pe

ed
up

s

Fig. 19. Comparison of speedups using complete copying, incremental copying, and top

most scheduling (shared memory).

nodes connected by Myrinet-2000 Switches). All communication—during scheduling,

copying, splitting, etc.—is done using explicit message passing via MPI.

The timing results in seconds from our incremental stack-splitting system are

presented in Table 4. The modifications made to the ALS WAM are very localized

and reduced to the minimum necessary. This has allowed us to keep a very clean

design—that, we hope, can be easily ported to other WAM-based implementations—

and to keep under control the parallel overhead—our engine (in its incremental

stack-splitting version) running on a single processor is on average only 10% slower

than the ALS WAM.10 The corresponding speedups are presented in Figure 20.

under the label incremental.

10 The overhead in the non-incremental stack-splitting engine are slightly lower.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 675

Table 4. Timings for incremental stack-splitting (time in sec.)

Benchmark # Agents

1 2 8 16 32

9 Costas 412.579 210.228 (1.96) 52.686 (7.83) 26.547 (15.54) 14.075 (29.31)

Knight 159.950 81.615 (1.95) 20.754 (7.7) 10.939 (14.62) 8.248 (19.39)

Stable 62.638 35.299 (1.77) 9.117 (6.87) 4.844 (12.93) 3.315 (18.89)

Send More 61.817 32.953 (1.87) 8.931 (6.92) 4.923 (12.55) 3.916 (15.78)

8 Costas 38.681 19.746 (1.95) 5.052 (7.65) 2.733 (14.15) 1.753 (22.06)

8 Puzzle 27.810 15.387 (1.8) 10.522 (2.64) 3.128 (8.89) 5.940 (4.68))

Bart 13.619 7.958 (1.71) 2.031 (6.7) 1.600 (8.51) 0.811 (16.79)

Solitaire 5.909 3.538 (1.67) 1.003 (5.89) 0.628 (9.4) 0.535 (11.04)

10 Queens 4.572 2.418 (1.89) 0.821 (5.56) 1.043 (4.38) 0.905 (5.05)

Hamilton 3.175 1.807 (1.75) 0.610 (5.2) 0.458 (6.93) 0.486 (6.53)

Map Coloring 1.113 0.702 (1.58) 0.319 (3.48) 0.318 (3.5) 0.348 (3.19)

8 Queens 0.185 0.162 (1.14) 0.208 (0.88) 0.169 (1.09) 0.180 (1.02)

We observe that for large benchmarks (9-Costas, Knight, 8-Costas, Stable, and Send

More) the speedups are very good. We also observe that for medium benchmarks (Bart,

Solitaire, 8-Puzzle, and Hamilton) the speedups are still quite good. Note that for the

benchmarks with small running time (10-Queens, Map Coloring and 8-Queens) the

speedups deteriorate. This is consistent with our belief that DMP implementations

should be used for parallelizing programs with coarse-grained parallelism. For

programs with small-running times, there is not enough work to offset the cost

of exploiting parallelism using a distributed communication model. Nevertheless,

our system is reasonably efficient, given that even for small benchmarks it can

produce some speedups. It is also interesting to observe that in no cases we have

observed slow-downs due to parallel execution—thanks to the simple granularity

control mechanisms embedded in the scheduler (i.e., the use of splitting thresholds,

as mentioned in Section 5).

Note that the 8-Puzzle benchmark shows a very irregular behavior; we believe this

is due to the small number of parallel choice-points created, and to the patterns of

communication that arise in presence of different number of processors (for certain

patterns, a successful distribution of work takes places, for others it does not).

One of the objectives of the experiments performed is to validate the effectiveness

of incremental stack-splitting as a methodology for efficient exploitation of paral-

lelism on DMPs. In particular, there are two aspects that we were interested in

exploring: (i) verifying the effectiveness of stack-splitting versus a more “direct”

implementation of the stack-copying method as implemented in MUSE (Ali 1990)

(i.e., keeping single copies of choice-points around the system); (ii) verifying the

impact of incremental splitting.

Validity of stack-splitting vs. stack-copying can be inferred from the experiments

described in Section 7.2.2: a direct implementation of stack-copying (where we sim-

ulate shared frames by keeping “ownership” of choice-points to specific processors)

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

676 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

9 Costas

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 1011 121314 151617 1819 202122 232425 2627 282930 3132

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

8 Costas

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

Stable

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 1011 121314 151617 1819 202122 232425 2627 282930 3132

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

Bart

Incremental

Non incremental

Number of Processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 17 18 1920 21 22 2324 25 26 2728 29 30 3132

0

2

4

6

8

10

12

Solitaire

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 1011 12 1314 15 16 1718 19 2021 22 2324 25 26 2728 29 3031 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

10 Queens

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 1112 13 1415 1617 1819 20 2122 2324 25 2627 2829 3031 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Non incremental

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 1011 121314 151617 1819 202122 232425 2627 282930 3132

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Incremental

Non incremental

Number of Processors

S
pe

ed
up

Fig. 20. Incremental stack-splitting vs. non-incremental stack-splitting.

would produce an amount of communication that is at least as high as in the case

of centralized scheduling described in Section 7.2.2.

In order to evaluate the impact of incrementality, we have measured the perform-

ance of the system without the use of incremental splitting—i.e., each time a sharing

operation takes place, a complete copy of the WAM data areas is performed. The

results obtained from this experiment are reported in Figure 20: the figure compares

the speedups observed with and without incremental splitting. We can observe

that our incremental stack-splitting system obtains higher speedups than the non-

incremental stack-copying system. As expected, the difference is more significant in

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 677

those benchmarks where a large number of parallel choice-points is generated, as

there is an increased possibility of applying incremental splitting. It is also important

to observe that in the majority of the cases the incremental behavior has lead to an

improvement in performance w.r.t. non-incremental splitting.

7.2.2 Scheduling

One of the major reasons to adopt stack-splitting, as described earlier, is the ability to

perform scheduling on the bottom-most choice-point. Other DMP implementations

of or-parallelism have reversed to the use of scheduling on the top-most choice-point

(e.g., (Araujo and Ruz 1998; Briat et al. 1992; Silva and Watson 2000), where during

a sharing operation only the oldest choice-point with unexplored alternatives is

exchanged between agents. Top-most scheduling will share only one choice-point

at the time, thus relieving the engine from the need of controlling access to shared

choice-points.

To validate the effectiveness of our claim, we have developed a top-most scheduler

for our incremental stack-splitting system, and compared its performance with that of

the incremental stack-splitting with bottom-most scheduling.11 Figure 21 compares

the speedups observed using the two different schedulers. As we can observe from

Figure 21, in most benchmarks bottom-most scheduling provides a sustained speedup

considerably higher than top-most scheduling. For example, in Hamilton we have a

large number of choice-points (which can be easily and quickly found), each with

relatively small alternatives; the top-most scheduling forces an excessive number of

interactions between agents—since agents quickly run out of work and they require

additional sharing operations. This situation derives from the reduced number of

calls to the scheduler performed during the execution—agents are busy for a longer

period of time than using top-most scheduling. In the remaining benchmarks, top-

most and bottom-most scheduling provide similar results, as a small number of

choice-points are created and only one at a time is shared between agents.

Another aspect of our implementation that we are interested in validating is the

performance of the distributed scheduler. As mentioned in Section 5, our scheduler

is based on keeping in each agent an “approximated” view of the load in each

other agent. The risk that this method may encounter is that an agent may have

out-of-date information concerning the load in other agents, and as a consequence it

may try to request work from idle agents or ignore agents that may have unexplored

alternatives. Figure 22 provides some information concerning the number of attempts

that an agent needs to perform before receiving work. The figure on the left measures

the average number of requests that an agent has to send (experiments performed

using an 8-agent run); as we can see, the number is very small (in most cases

1 to 3 requests are sufficient) and such number is generally better if we adopt

bottom-most scheduling. The figure on the right shows the maximum number of

requests observed; these numbers tend to grow towards the end of the computation

11 The top-most scheduler used here is a different implementation than the one described in the previous
section, though based on the same principles.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

678 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

9 Costas

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

8 Costas

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Stable

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

Bart

Bottom Most

Top Most

Number of Processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

10 Queens

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Bottom Most

Top Most

Number of Processors

S
pe

ed
up

Fig. 21. Bottom most vs. top most scheduling.

Knight Send More 8 Puzzle Solitaire 10 Queens Hamilton Map coloring 8 Queens

0

2.5

5

7.5

10

12.5

15

17.5

20

Number of Requests Before Getting Work

Bottom Most

Top Most

A
ve

ra
ge

N
um

be
r

of
 R

eq
ue

st
s

Knight Send More 8 Puzzle Solitaire 10 Queens Hamilton Map coloring 8 Queens

0

20

40

60

80

100

120

Number of Requests Before Getting Work

Top Most

M
ax

im
um

N
um

be
ro

f R
eq

ue
st

s

Bottom Most

Fig. 22. Average and maximum number of tries to acquire work.

(when less work is available)—nevertheless, typically only one or two agents achieve

these maximum values, while the majority of the agents remain close to the average

number of attempts.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 679

To further validate our scheduling approach, we have compared it with an

alternative scheduling scheme developed in PALS. This alternative scheme is an im-

plementation of a centralized scheduling algorithm, designed following the guidelines

of the scheduler used in the Opera system (Briat et al. 1992). In the centralized

scheduler approach, one agent, called central, does not perform actual computation,

but it is only in charge of keeping track of the load information. Idle agents send their

requests for work directly to the central agent. In turn, the central agent is in charge

of implementing a matchmaking algorithm between idle and busy agents. The central

agent matches requests from idle agents with busy agents with highest load. The

central agent is also in charge of detecting termination. When stack-splitting occurs,

only the central agent is informed about the load information update. Figure 23

compares the speedups achieved using centralized scheduling with the speedups

observed using the distributed scheduling approach.12 As evident from the figure,

in many benchmarks (mostly those with medium and small size computations) the

speedups observed in centralized scheduling are almost negligible—this is due to

the inability of the scheduling method to promptly respond to the requests for new

work. Also, the use of a reasonably fast interconnection network (Myrinet) leads to

the creation of a severe bottleneck at the level of the centralized scheduler. From our

experiments we can observe that the centralized scheduler is a feasible solution only

if very few coarse-grained tasks are generated. For benchmarks such as Hamilton,

where a fairly large number of choice-points is generated, the centralized scheduler

leads to a considerable loss of performance.

The results presented in Warren (Beaumont and Warren 1993) suggest that

random selection of work may provide a simple and effective alternative when

searching for or-parallel work. We have experimented with this idea, by modifying

the scheduler to select any busy agent for scheduling instead of the one with the

highest load. The idea is to avoid bottleneck situations where multiple idle agents

are concentrating their requests for work towards the same busy agent. We have

named this new version of the scheduler Random Scheduler. In this version, an

idle agent searches its load vector for the next agent with load greater than a

given small threshold (effectively performing a round-robin management). Figure 24

compares the speedups observed in the Random scheduler with those from the

standard bottom-most scheduling with selection of agent with highest load. The

results indicate that the Random scheduler is less effective. This suggests that

selecting work from the agent with highest load is not a severe bottleneck and

sending requests to possibly lightly loaded agents may increase the number of calls

to the scheduler.

7.2.3 Tuning the system

The implementation of stack-splitting depends on a number of parameters, such

as (1) the frequency at which each agent checks for incoming requests, and (2)

12 We had to limit the experiments to a smaller number of CPUs due to unavailability of half of the
machine at that time.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

680 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

9 Costas

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

8 Costas

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

Stable

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

Bart

Incremental

Centralized

Number of Processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

10 Queens

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Centralized

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Incremental

Centralized

Number of Processors

S
pe

ed
up

Fig. 23. Distributed vs. centralized scheduling.

the frequency of propagation of load information. We have performed a number of

experiments to study the impact of these parameters on the overall performance.

Regarding the first parameter, the previously presented results make use of a

frequency of one test every 200 procedure calls. Figures 25–27 show that this choice

was the best, although in some benchmarks only minimal differences can be observed

for different frequency values.

Regarding the second parameter, we are currently propagating load information

only in presence of a sharing operation. We tried to increase the frequency of

propagation of load information, hoping to provide agents with a more accurate

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 681

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

9 Costas

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

8 Costas

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Stable

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

2.5

5

7.5

10

12.5

15

17.5

Bart

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

10 Queens

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

Incremental

Random

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Incremental

Random

Number of Processors

S
pe

ed
up

Fig. 24. Load-based vs. random scheduling.

view of the load in the system. The results from this experiment are reported in

Figure 28. As we can see, with the exception of Hamilton, in all other cases increasing

the frequency leads only to a higher message traffic without any apparent advantage.

In particular, the higher the frequency, the lower is the resulting speedup.

The last optimization that we tried concerns the check for termination of the

computation. In our incremental stack-splitting system, once an agent finds that

there is no one to ask for work, it goes into a dead-end loop just waiting for the halt

signal. Therefore, we modified our system to let an idle agent in this situation get out

of this dead-end loop once it finds that its load vector has been updated so that it

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

682 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

5

10

15

20

25

Send More

1000

500

400

300

200

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

5

10

15

20

25

Knight

1000

500

400

300

200

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

Hamilton

1000

500

400

300

200

Number of Processes

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

1000

500

400

300

200

Number of Processors

S
pe

ed
U

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

8 Puzzle

1000

500

400

300

200

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

10 Queens

1000

500

400

300

200

Number of Processors

S
pe

ed
up

Fig. 25. Incremental stack-splitting message checking frequencies (1).

can go back to life and ask for work. We call this version delay termination. However,

we still observed (see Figure 2913) that our incremental stack-splitting system obtains

higher speedups than using the delay termination version. This is probably due to

the reason that, in most of these benchmarks, bringing the agents back leads to

additional traffic of sharing requests, while actual work does not become available

13 Observe that some of the experiments have been limited to smaller number of processors due to the
previously mentioned hardware problems.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 683

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

14

Solitaire

1000

500

400

300

200

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

1000

500

400

300

200

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Knight

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

Hamilton

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

1000

500

400

300

200

Number of Processors

S
pe

ed
U

p

Fig. 26. Incremental stack-splitting message checking frequencies (2).

for sharing. However, in general, we believe that the delay termination version ought

to work better because it results in more agents participating in the computation.

7.3 Order-sensitive Computations

We implemented the techniques to handle OSC described in Section 6 in our

PALS Prolog system and tested it with the Stable, Knight, 9 Costas, Hamilton, 10

Queens, and Map Coloring benchmarks. These benchmarks compute all solutions and

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

684 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

10 Queens

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

Solitaire

200

150

100

50

25

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

200

150

100

50

25

Number of Processors

S
pe

ed
up

Fig. 27. Incremental stack-splitting message checking frequencies (3).

Table 5. Benchmarks (time in sec.)

Benchmark Timings Number of solutions

9 Costas 412.579 760

Knight 159.950 60

Stable 62.638 2

10 Queens 4.572 724

Hamilton 3.175 80

Map Coloring 1.113 2594

execute side-effect predicates, e.g., write to describe the computations. The number

of solutions for each benchmark are reported in Table 5.

Figure 30 shows the speedups obtained by this technique under the label side-effect.

The figures also show the speedups obtained when running these benchmarks without

treating the write predicate as a side-effect but using the stack splitting approach

described in Section 6.3. Two main observations arise from these experiments. First

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 685

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Knight

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

10 Queens

SS

Every 100

Every 200

Every 300

Number of Processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

Map Coloring

SS

Every 100

Every 200

Every 300

Number of Processors

S
pe

ed
up

Fig. 28. Incremental stack-splitting vs. propagation of load information.

of all, the speedups obtained using the modified scheduling scheme are not that

different from those observed in our previous experiments (Villaverde 2002); this

means that the novel splitting strategy does not deteriorate the parallel performance

of the system. For benchmarks with substantial running time and with the fewest

number of printed solutions (Knight, Stable) the speedups are very good and close to

the speedups obtained without handling OSC. We also observe that for benchmarks

with smaller running time but larger number of side-effects (Hamilton) the speedups

are still good but less close to the speedups obtained without side-effects. Note

that for benchmarks with small running time and the greatest number of printed

solutions (Map Coloring, 10 Queens), the speedups deteriorate significantly and may

be less than 1. This is not surprising; the presence of large numbers of side-

effects (proportional to the number of solutions) implies the introduction of a large

sequential component in the computation, leading to reduced speedups. 9 Costas

has the largest number of solutions, but its speedups are good.

The results obtained are consistent with our belief that DMP implementations

should be used for programs with coarse-grained parallelism and a modest number

of OSC. Coarse-grained computations are even more important if we want to handle

large numbers of side-effects where it is necessary that the OSC be spaced far apart.

For programs with small-running times there is not enough work to offset the cost of

exploiting parallelism and even less for handling OSC. Nevertheless, our system is

reasonably efficient given that it produces good speedups for large and medium size

benchmarks with even a considerable number of OSC, and produces no slow downs

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

686 E. Pontelli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2.5

5

7.5

10

12.5

15

17.5

20

Send More

Incremental

Delay

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

5

10

15

20

25

30

Knight

Incremental

Delay

Number of Processors

D
el

ay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

Hamilton

Incremental

Delay

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.25

0.5

0.75

1

1.25

1.5

8 Queens

Incremental

Delay

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8

9

10

8 Puzzle

Incremental

Delay

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

10 Queens

Incremental

Delay

Number of Processors
S

pe
ed

up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

2

4

6

8

10

12

Solitaire

Incremental

Delay

Number of Processors

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Map Coloring

Incremental

Delay

Number of Processors

S
pe

ed
up

Fig. 29. Incremental stack-splitting vs. delay termination.

except for benchmarks with huge numbers of side-effects and small running times.

Even in presence of OSC, the parallel overhead observed is substantially low—on

average 5 · 5% and seldomly over 10% (it is slightly higher than what described in

the previous sections, due to some additional tests required for checking presence

of messages related to OSC). Figure 31 compares with the speedups for some

benchmarks obtained using a variant of the MUSE system (Ali 1990) on SMP

(i.e., a highly optimized stack-copying system on shared-memory platform).14 The

results highlight the fact that, for benchmarks with significant running time, our

methodology is capable of approximating the best behavior on SMPs.

8 Optimizations and discussion

In this section we discuss some limitations of the current stack-splitting scheme and

some possible optimizations.

14 This is the original version of MUSE with bottom-most scheduling and no suspensions, modified
from version 14.07 of MUSE.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 687

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2.5

5

7.5

10

12.5

15

Stable

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2.5

5

7.5

10

12.5

Knight

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2.5

5

7.5

10

12.5

15

17.5

9 Costas

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

Hamilton

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

10 Queens

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

Map Coloring

No side effect

Side effect

Number of Processors

S
pe

ed
up

s

Fig. 30. No side-effects vs. side-effects.

0 6 8
No. Processors

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
 u

p

10 Queens (SMP)
10 Queens (PALS)
Hamilton (SMP)
Hamilton (PALS)

0 8
No. Processors

0

2

4

6

8

S
pe

ed
up

9 Costas (SMP)
9 Costas (PALS)
Stable (SMP)
Stable (PALS)

2 4 6

2 4

Fig. 31. Comparison with MUSE.

8.1 Shared frames and distributed computations

The adoption of stack-splitting releases the system from the need of keeping shared

frames to support sharing of work. The shared frame used in the stack-copying

technique on shared-memory platforms is also where global information related to

scheduling is kept. The shared frames provide a globally accessible description of the

or-tree, and each shared frame keeps information regarding which agent is working

in which part of the tree. This last piece of information is needed to support the kind

of scheduling typically used in stack-copying systems—work is taken from the agent

that is “closer” in the computation tree, thus reducing the amount of information to

be copied—since the difference between the stacks is minimized. The shared nature

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

688 E. Pontelli et al.

of the frames ensures accessibility of this information to all agents, providing a

consistent picture of the computation.

However, under stack-splitting the shared frames no longer exist; scheduling and

work-load information has to be maintained in some other way. While we have

already described how to maintain work-load information in a distributed setting,

through the use of work-load vectors, we did not discuss how to provide agents

with knowledge of their relative positions in the computation tree. This type of

information could be kept in a global shared area similar to the case of SMPs—

e.g., by building a centralized representation of the or-tree—or distributed over

multiple agents and accessed by message passing in case of DMPs. The maintenance

of global scheduling information represents a problem which is orthogonal to the

environment representation. This means that scheduling management in a DMP will

anyway require communication between agents.

Shared frames are also employed in MUSE (Ali 1990) to detect the Prolog

order of choice-points, needed to execute order-sensitive predicates (e.g., side-effects,

extra-logical predicates) in the correct order. As in the case of scheduling, some

information regarding global ordering of choice-points needs to be maintained to

execute order-sensitive predicates in the correct order—see Section 6. Thus, stack-

splitting does not completely remove the need of a shared description of the or-tree.

The use of stack-splitting can mitigate the impact of accessing shared resources—

e.g., stack-splitting allows scheduling on bottom-most which, in general, leads to a

reduction of the number of calls to the scheduler.

8.2 The cost of stack-splitting

The stack-copying operation in Stack-Splitting is slightly more involved than in

stack-copying on shared-memory platforms. In MUSE, the original choice-point

stack is traversed and the choice-points transferred to the shared area. This operation

involves only those choice-points that have never been shared before—shared choice-

points already reside in the global shared area. For this reason the actual sharing of

the choice-points is performed by the active-agent (i.e., the agent that is providing

work to the idle agent)—which is forced to interrupt its regular computation to

assist the sharing process. The actual copying of the stack takes place only after the

choice-points have been copied to the shared memory area.

In the stack-splitting technique, once the copying is completed, the actual sharing

(i.e., transferring of choice-points to a shared area) is replaced by a phase of splitting,

performed by both agents, where they traverse the copied choice-points, completing

the splitting of the untried alternatives. In the case of SMP implementations, this

operation is expected to be considerably cheaper than transferring the choice-points

to the shared area—and indeed our experimental studies have highlighted this by

denoting improved performance of stack-copying on SMPs. The actual splitting can

be represented by a simple pair of indices that refer to the list of alternatives—

which, in a SMP system like MUSE, is static and shared by all the agents. In the

case of DMP implementations, the situation is similar: since each agent maintains

a local copy of the code, the splitting can be performed by communicating to the

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 689

P1

Choicepoint Tree

a1

a2 a3 a4 a5

LEGEND:

P1

Choicepoint

nodes of choicepoint
tree

pointer to untried
alternatives

processor

Fig. 32. Amortizing splitting overhead.

copying agent which alternatives it can execute for each choice-point (e.g., a pair of

pointers to the list of alternatives). It is simple to encode such information within

the choice-point itself during copying.

In both cases we expect the sharing operation to have comparable complexity;

a slight delay may occur in stack-splitting, due to the traversal of the choice-

point stack performed by each agent. On the other hand, in stack-splitting the two

traversals—one in the idle-agent and one in the active-agent—can be overlapped.

However, if the stack being copied, So , is itself a copy of some other stack, then

unlike regular stack-copying (where once a choice-point is shared—i.e., moved to

a shared area—it will not have to be shared again), we may still need to traverse

both the source and target stacks and split the choice-points (even those that have

been acquired through previous sharing operations). The presence of this additional

step depends on the policy adopted for the partitioning of the alternatives between

agents. It is, for example, required if we adopt a policy which assigns half of the

alternatives to each of the agents. In such cases, the cost of sharing will be slightly

more than the cost of regular stack-copying.

Once an agent selects new work, it will look for work again only after it finishes

the exploration of all alternatives acquired via stack-splitting.

8.3 From vertical to horizontal splitting

As we mentioned earlier, different splitting modalities can be envisioned, e.g.,

horizontal vs. vertical splitting. Horizontal splitting, which is useful for programs

having choice-points with many alternatives, incurs a linear cost due to the need

of traversing a linear list of alternatives (provided by the WAM representation

of procedures) to perform the partition. The cost incurred in splitting the untried

alternatives between the copied stack and the stack from which the copy is made,

can be eliminated by amortizing it over the operation of picking untried alternatives.

Let us assume that the untried alternatives are evenly split using horizontal splitting

(as in Figure 5).

In the modified approach, no traversal and modification of the choice-points is

done during copying. The untried alternatives are organized as a binary tree (see

Figure 32). The binary alternatives can be efficiently maintained in an array, using

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

690 E. Pontelli et al.

standard techniques found in any data-structure textbook. In addition, each choice-

point maintains the “copying distance” from the very first original choice-point as

a bit string. This number is initially 0 when the computation begins. When stack-

splitting takes place and a choice-point whose bit string is n is copied from, then

the new choice-point’s bit string is n1 (1 appended to the bit string n), while the

old choice-point’s bit string is changed to n0 (0 tagged to bit string n). When an

agent backtracks to a choice-point, it will use its bit string to navigate in the tree of

untried alternatives, and find the alternatives that it is responsible for. For example,

if the bit-string of an agent is 10, then all the alternatives in the left subtree of the

right subtree of the or-tree are to be executed by that agent. This scheme (originally

proposed in (Gupta and Pontelli 1999)) has been introduced as part of the YapDss

implementation (Rocha et al. 1999).

However, it is not very clear which of the two strategies—incurring cost of splitting

at copying time vs amortizing the cost over the selection of untried alternatives—

would be more efficient. In case of amortization, the cost of picking an alternative

from a choice-point is now slightly higher, as the binary tree of choice-points needs

to be traversed to find the right alternative.

Stack-splitting essentially performs semi-dynamic work distribution, as the untried

alternatives are split at the time of picking work. If the choice-points that are split

are balanced, then we can expect good performance. Thus, we should expect to see

good performance when the choice-points generated by the computation that are

parallelized contain a large number of alternatives. This is the case for applications

which fetch data from databases and for most generate & test type of applications.

For choice-points with a small number of alternatives, stack-splitting is more

susceptible to problems created by the semi-dynamic work distribution strategy that

implicitly results from it: for example, in cases where OP is extracted from choice-

points with only two alternatives. Such choice-points arise quite frequently, from the

use of predicates like member and select:

member(X,[X|]).

member(X,[|Y]) :- member(X,Y).

select(X,[X|Y],Y).

select(X,[Y|Z],[Y|R]) :- select(X,Z,R).

Both these predicates generate choice-points with only two alternatives—thus, at

the time of sharing, a single alternative is available in each choice-point. The different

alternatives are spread across different choice-points. Stack-splitting would assign

all the alternatives to the copying agent, thus leaving the original agent without

local work. However, the problems raised by such situations can be solved using a

number of techniques:

• Use knowledge about the inputs and partial evaluation, or automatic optim-

izations (e.g., Last Alternative Optimization (LAO) (Gupta and Pontelli 1996))

to collapse the different choice-points into a single one.

• Use more complex splitting strategies, e.g., if a choice-point has odd number

of untried alternatives remaining (2n + 1), then one agent will be assigned n

alternatives and the other n + 1. The agent which gets n and the agent which

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 691

gets n + 1 can be alternated for the different choice-points encountered in the

stack, thus ensuring that no processor is left completely without work.

• Perform a vertical splitting of the choice-points;

Additionally, observe that the splitting strategy adopted (e.g., horizontal splitting,

vertical splitting) can be changed depending on the specific structure of the

computation. For example, along these lines Rocha et al. (Rocha et al. 1999) have

recently proposed a splitting strategy—diagonal splitting—that combines vertical

and horizontal splitting and performs well for certain classes of benchmarks.

9 Conclusion

In this paper, we presented a technique called stack-splitting for implementing OP

and discussed its advantages and disadvantages. We showed how stack-splitting

can be extended to incremental stack-splitting which incrementally copies the

difference of two stacks. Implementations on both a shared memory multiprocessor

and a distributed-memory multiprocessor were realized and reported. Our DMP

implementation is the first ever implementation of a Prolog system on a Beowulf

architecture.

Stack-splitting is an extension of stack-copying. Its main advantage, compared

to other techniques for implementing OP, is that it allows large grain-sized work

to be picked up by idle agents and executed efficiently without incurring excessive

communication overhead. The technique bears some similarity to the Delphi model

(Clocksin and Alshawi 1988) used in parallel execution of Prolog (the Delphi

model was not the inspiration for our stack-splitting technique), where computation

leading to a goal with multiple alternatives is replicated in multiple agents, and

each agent chooses a different alternative when that goal is reached. Instead of

recomputing we use stack-copying, which, we believe, is more efficient—and the

existing literature has indicated this is the case for shared-memory implementations

of Prolog (Gupta et al. 1999). In a separate work (Balduccini et al. 2005), we also

showed how stack-splitting can be used for implementing non-monotonic reasoning

systems under stable models semantics—by exploiting or-parallelism from a careful

implementation of the Davis-Putnam procedure and using stack-splitting to transfer

atom-split operations between processors. Also in this case, copying with stack-

splitting provides a superior performance than recomputation.

The current implementation of stack-splitting in the PALS system is stable, and

work is in progress to evaluate its performance on larger applications. A number

of issues are still open, and they will be addressed as future work. First of all, it is

clear from our experience that the giving the ability to the programmer to supply

information about the program can greatly affect parallel performance; we are

currently working in developing tools to analyze parallel executions of PALS (e.g.,

through visualization of the parallel computation) and support user-annotations to

guide exploitation of parallelism. Work is also in progress in supporting order-

sensitive control predicates (e.g., pruning predicates) in PALS, and developing

adaptive scheduling heuristics, which take advantage of knowledge of the structure

of the computation to improve distribution of work.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

692 E. Pontelli et al.

Acknowledgments

Thanks to C. Geyer, L. Castro, V. Santos Costa, F. Silva, M. Carro, and M.

Hermenegildo for discussions on implementation of distributed LP systems.

The authors wish to thank the anonymous referees for their thorough reviews and

their insightful comments.

Pontelli and Villaverde have been been supported by NSF grants CNS-0220590,

CNS-0454066, and HRD-0420407, Guo by NSF Nebraska EPSCoR grant, and

Gupta by NSF grant CNS-0130847 and grants from the US Environmental Protec-

tion Agency.

References

Kaci, H. A. 1991. Warren’s Abstract Machine: a Tutorial Reconstruction. MIT Press.

Ali, K. A. M. 1988. Or-parallel Execution of Prolog on BC-machine. Proceedings of the

International Conference and Symposium on Logic Programming, MIT Press, pp. 1531–

1545.

Ali, K. A. M. and Karlsson, R. (1990. The MUSE Approach to Or-Parallel Prolog. Int. J.

Parallel Programming, 19(2): 129–162.

Alshawi, D. B. and Moran, D. N. 1988. The Delphi Model and Some Preliminary

Experiments. Fifth International Conference and Symposium on Logic Programming, MIT

Press, pp. 1578–1589.

Apt, A. R. 1997. From Logic Programming to Prolog. Prentice Hall, 1997.

Araujo, L. 1997. Full Prolog on a Distributed Architecture. IEuro-Par, pp. 1173–1180.

Springer Verlag.

Araujo, L. and Ruz, J. 1998. A Parallel Prolog System for Distributed Memory. J. Logic

Program., 33(1): 49–79.

Babu, H. 1996. Porting muse on ipsc860. Master’s thesis, New Mexico State University.

Balduccini, M., Pontelli, E. and Bermudez, F. 2003. Non-monotonic Reasoning on Beowulf

Platforms. Proceedings of the Symposium on Practicals Aspects of Declarative Languages,

Springer Verlag, pp. 37–57.

Balduccini, M., Pontelli, E., Elkhatib, O. and Le, H. 2005. Issues in Parallel Execution of

Non-monotonic Reasoning Systems. Parallel Computing, 31(6): 608–647.

Beaumont, A. J. and Warren, D. H. D. 1993. Scheduling Speculative Work in Or-Parallel

Prolog Systems. In: D. S. Warren, editor, Proceedings of the International Conference on

Logic Programming, pp. 135–149, Cambridge, MA.

Benjumea, V. and Troya, J. M 1993. An OR Parallel Prolog Model for Distributed

Memory Systems. In: M. Bruynooghe and J. Penjam, editors, International Symposium on

Programming Languages Implementations and Logic Programming, pp. 291–301, Heidelberg.

Springer Verlag.

Briat, J., Favre, M., Geyer, C. and Chassin de Kergommeaux, J. 1992. OPERA: Or-

Parallel Prolog System on Supernode. In: P. Kacsuk and M. Wise, editors, Implementations

of Distributed Prolog, pp. 45–64. J. Wiley & Sons.

Butler, R., Disz, T., Lusk, E., Olson, R., Overbeek, R. and Stevens, R. 1988. Scheduling

Or-Parallelism: An Argonne Perspective. Proceedings of the International Conference and

Symposium on Logic Programming, MIT Press, pp. 1565–1577.

Castro, L. F., Santos Costa, V., Geyer, C. F. R., Silva, F., Vargas, P. K. and Correia,

M. E. 1999. DAOS: Scalable And-Or Parallelism. In D. Pritchard and J. Reeve, editors,

Proceedings of EuroPar, pages 899–908, Heidelberg, 1999. Springer Verlag.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 693

Chassin de Kergommeaux, J. and Codognet, P. 1994. Parallel Logic Programming Systems.

ACM Computing Surveys, 26(3): 295–336.

Clocksin, W. F. and Alshawi, H. 1988. A Method for Efficiently Executing Horn Clause

Programs Using Multiple Processors. New Generation Computing, 5: 361–376.

Conery, J. S. 1987. Binding Environments for Parallel Logic Programs in Nonshared

Memory Multiprocessors. International Symposium on Logic Programming, pp. 457–467.

San Francisco, IEEE Computer Society.

Conery, J. S. and Kibler, D. F. 1981. Parallel Interpretation of Logic Programs. Proc. of the

ACM Conference on Functional Programming Languages and Computer Architecture, ACM

Press, pp. 163–170.

Finkel, R., Marek, V., Moore, N. and Truszczyński, M. 2001. Computing stable models in

parallel. In: A. Provetti and S. C. Tran, editors, Proceedings of the AAAI Spring Symposium

on Answer Set Programming, pp. 72–75, Cambridge, MA. AAAI/MIT Press.

Foong, W.-K. 1995. Combining and- and or-parallelism in Logic Programs: a distributed

approach. PhD thesis, University of Melbourne.

Ganguly, S., Silberschatz, A. and Tsur, S. 1990. A Framework for the Parallel Processing

of Datalog Queries. In: H. Garcia-Molina and H. Jagadish, editors, Proceedings of ACM

SIGMOD Conference on Management of Data, New York. ACM Press.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Programs.

International Symposium on Logic Programming, pp. 1070–1080. MIT Press.

Gupta, G. 1994. Multiprocessor Execution of Logic Programs. Kluwer.

Gupta, G. and Jayaraman, B. 1993. Analysis of Or-parallel Execution Models. ACM Trans.

Program. Lang. Syst. 15(4): 659–680.

Gupta, G. and Pontelli, E. 1996. Last Alternative Optimization for Or-parallel Logic

Programming Systems. Eight International Symposium on Parallel and Distributed Processing.

IEEE Computer Society.

Gupta, G. and Pontelli, E. 1997. Optimization Schemas for Parallel Implementation of

Nondeterministic Languages and Systems. International Parallel Processing Symposium, Los

Alamitos, CA. IEEE Computer Society.

Gupta, G. and Pontelli, E. 1999. Stack-splitting: A Simple Technique for Implementing

Or-parallelism and And-parallelism on Distributed Machines. International Conference on

Logic Programming, pp. 290–304. MIT Press.

Gupta, G., Pontelli, E., Carlsson, M., Hermenegildo, M. and Ali, K. M. 1999.

Parallel Execution of Prolog Programs: a Survey. ACM Trans. Program. Lang. Syst. 23(4):

472–602.

Hausman, B., Ciepielewski, A. and Calderwood, A. 1988. Cut and Side-Effects in

Or-Parallel Prolog. In: ICOT Staff, editor, International Conference on Fifth Generation

Computer Systems, pp. 831–840, Tokyo, Japan. Springer Verlag.

Kowalski, R. A. 1979. Logic for Problem Solving. Elsevier.

Kumar, V. and Kanal, L. N. 1979. Parallel Depth-First Search on Multiprocessors. Int. J.

Parallel Program. 16(6): 479–499.

Lai, T.-H. and Sahni, S. 1984. Anomalies in Parallel Branch-and-Bound Algorithms. Comm.

ACM, 27(6): 594–602.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer Verlag.

Lusk, E., Butler, R., Disz, T. et al. 1990. The Aurora Or-parallel Prolog System. New

Generation Computing, 7(2/3): 243–271.

Misra, J. 1983. Detecting Termination of Distributed Computations using Markers. ACM

Symposium on Principles of Distributed Computing, ACM Press, pp. 290–294.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

694 E. Pontelli et al.

Montelius, J. and Ali, K. 1996. A Parallel Implementation of AKL. New Generation

Computing, 14(1): 31–52.

Perron, L. 1999. Search Procedures and Parallelism in Constraint Programming. In: J. Jaffar,

editor, Proceedings of the International Conference on Principles and Practice of Constraint

Programming, volume 1713 of LNCS, pp. 346–360, Heidelberg. Springer-Verlag.

Pontelli, E. and El-Kathib, O. 2001. Construction and Optimization of a Parallel Engine for

Answer Set Programming. In: I. V. Ramakrishnan, editor, Practical Aspects of Declarative

Languages, volume 1990 of LNCS, pp. 288–303, Heidelberg. Springer Verlag.

Pontelli, E., Ranjan, D. and Dal Palu, A. 2002. An Optimal Data Structure to Handle

Dynamic Environments in Non-Deterministic Computations. Computer Languages, 28(2):

181–201.

Ranjan, D., Pontelli, E. and Gupta, G. 1999. On the Complexity of Or-Parallelism. New

Generation Computing, 17(3): 285–308.

Ranjan, D., Pontelli, E. and Gupta, G. 2000. Data Structures for Order-Sensitive Predicates

in Parallel Nondetermistic Systems. ACTA Informatica, 37(1): 21–43.

Rocha, R., Silva, F. and Santos Costa, V. 1999. YapOr: an Or-Parallel Prolog System

based on Environment Copying. LNAI 1695, Proceedings of EPIA’99: The 9th Portuguese

Conference on Artificial Intelligence, pp. 178–192. Springer-Verlag LNAI Series.

Rocha, R., Silva, S. and Martins, R. 1999. YapDss: an Or-Parallel Prolog System for

Scalable Beowulf Clusters. Proceedings of the Portuguese Conference on Artificial Intelligence

(EPIA), Springer-Verlag, pp. 136–150.

Schulte, C. 1999. Compairing Trailing and Copying for Constraint Programming.

International Conference on Logic Programming, pp. 275–289. MIT Press.

Schulte, C. 2000. Parallel Search Made Simple. In: N. Beldiceanu et al., editor, Proceedings

of Techniques for Implementing Constraint Programming Systems, Post-conference workshop

of CP 2000, number TRA9/00, pp. 41–57, University of Singapore.

Silva, F. and Watson, P. 2000. Or-Parallel Prolog on a Distributed Memory Architecture. J.

Logic Program. 43(2): 173–186.

Sindaha, R. 1992. The Dharma Scheduler — Definitive Scheduling in Aurora on

Multiprocessor Architecture. Proceedings of the Symposium on Parallel and Distributed

Processing. IEEE Computer Society, pp. 296–303.

Szeredi, P. 1991. Using dynamic predicates in an or-parallel prolog system. In: V. Saraswat

and K. Ueda, editors, Proceedings of the International Logic Programming Symposium, pp.

355–371, Cambridge, MA. MIT Press.

Villaverde, K. 2002 An Efficient Methodology to Exploit Or-parallelism on Distributed Memory

Systems. PhD thesis, New Mexico State University.

Villaverde, K., Pontelli, E., Gupta, G. and Guo, H. 2001. Incremental Stack Splitting

Mechanisms for Efficient Parallel Implementation of Search-based Systems. International

Conference on Parallel Processing. IEEE Computer Society.

Villaverde, K., Pontelli, E., Gupta, G. and Guo, H. 2001. PALS: An Or-parallel

Implementation of Prolog on Bewoulf Architectures. Procs. International Conference on

Logic Programming. Springer Verlag.

Villaverde, K., Pontelli, E., Gupta, G. and Guo, H. 2001. K. Villaverde, E. Pontelli,

G. Gupta, and H. Guo. A Methodology for Order-sensitive Execution of Non-deterministic

Languages on Beowulf Platforms. Euro-Par.

Warren, D. H. D. 1987. The SRI Model for OR-Parallel Execution of Prolog—Abstract

Design and Implementation. Proceedings of the Symposium on Logic Programming, IEEE

Computer Society, pp. 92–102.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

PALS: Efficient Or-Parallelism on Beowulf clusters 695

Warren, D. H. D. and Haridi, S. 1988. The Data Diffusion Machine – a Scalable Shared

Virtual Memory Multiprocessor. Fifth Generation Computer Systems, pp. 943–952.

Wolfe, M. 1996. High Performance Compiler for Parallel Computing. Addison Wesley.

Wolfson, G. and Silberschatz, A. 1988. Distributed Processing of Logic Programs. In:

H. Boral and P. Larson, editors, Proceedings of the SIGMOD International Conference on

Management of Data, pp. 329–336, New York. ACM Press.

Zima, H. and Chapman, B. 1991. Supercompilers for Parallel and Vector Computers. ACM

Press.

https://doi.org/10.1017/S1471068406002985 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002985

