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Abstract. No natural principle is currently known to be strictly between the arithmetic comprehension
axiom (ACA0) and Ramsey’s theorem for pairs (RT22) in reverse mathematics. The tree theorem for pairs
(TT22) is however a good candidate. The tree theorem states that for every finite coloring over tuples of
comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. The
principle TT22 is known to lie between ACA0 and RT

2
2 over RCA0, but its exact strength remains open. In

this paper, we prove that RT22 together with weak König’s lemma (WKL0) does not imply TT
2
2, thereby

answering a question of Montálban. This separation is a case in point of the method of Lerman, Solomon
and Towsner for designing a computability-theoretic property which discriminates between two statements
in reverse mathematics. We therefore put the emphasis on the different steps leading to this separation in
order to serve as a tutorial for separating principles in reverse mathematics.

§1. Introduction. “Every sufficiently large collection of objects has an arbitrarily
large sub-collection whose objects satisfy some structural properties.” This general
statement reflects the main idea of Ramsey’s theory. This theory has connections
withmany areas ofmathematics, namely, combinatorics, model theory or set theory.
One of the most well-known statements is Ramsey’s theorem, stating that for every
coloring of the k-tuples of integers in finitely many colors, there is an infinite
monochromatic subset. In this paper, we are interested in the tree theorem for pairs,
a strengthening of Ramsey’s theorem for pairs stating that for every finite coloring
over pairs of comparable nodes in the full binary tree, there is a monochromatic
subtree isomorphic to the full tree. Our main theorem states that the tree theorem
for pairs is strictly stronger than Ramsey’s theorem for pairs in the sense of reverse
mathematics.
Reverse mathematics is a mathematical program whose goal is to classify the-
orems in terms of their provability strength. It uses the framework of subsystems
of second-order arithmetic, with the base theory RCA0 (recursive comprehension
axiom). RCA0 is composed of the basic first-order Peano axioms, together with Δ01-
comprehension and Σ01-induction schemes. RCA0 is usually thought of as capturing
computational mathematics. This program led to two important observations: First,
most “ordinary” (i.e., non set-theoreric) theorems require only very weak set exis-
tence axioms. Second, many of those theorems are actually equivalent to one of five
main subsystems over RCA0, known as the “Big Five.”
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Ramsey’s theory, among others, provides a large class of theorems escaping this
phenomenon. Indeed, consequences of Ramsey’s theorem for pairs usually belong
to their own subsystem and their study is still an active research subject within
reverse mathematics. This article focuses on Ramseyan principles below ACA0,
the arithmetic comprehension axiom. See [14] for a good introduction to reverse
mathematics.

1.1. Ramsey’s theorem. The strength of Ramsey-type statements is notoriously
hard to tackle in the setting of reverse mathematics. The separation of Ramsey’s
theorem for pairs (RT22) from the arithmetic comprehension axiom (ACA0) was a
long-standing open problem, until Seetapun solved it [27] using the notion of cone
avoidance.

Definition 1.1 (Ramsey’s theorem). A subset H of � is homogeneous for a
coloring f : [�]k → n (or f-homogeneous) if each k-tuples over H are given the
same color by f. RTkn is the statement “Every coloring f : [�]

k → n has an infinite
f-homogeneous set.”

Simpson [29, Theorem III.7.6] proved that whenever k ≥ 3 and n ≥ 2,
RCA0 � RTkn ↔ ACA0. Ramsey’s theorem for pairs is probably the most famous
example of statement escaping the Big Five. Seetapun [27] proved that RT22 is
strictly weaker than ACA0 over RCA0. Because of the complexity of the related
separations, RT22 received a particular attention from the reverse mathematics com-
munity [2, 16, 27]. Cholak, Jockusch and Slaman [2] and Liu [18] proved that RT22
is incomparable with weak König’s lemma. Dorais, Dzhafarov, Hirst, Mileti and
Shafer [6], Dzhafarov [7], Hirschfeldt and Jockusch [15] and the author [25] studied
the computational strength of Ramsey’s theorem according to the number of colors,
when fixing the number of applications of the principle.

1.2. The tree theorem. There is no natural principle currently known to be strictly
betweenACA0 andRT

2
2. The tree theorem for pairs is however a good candidate. The

tree theorem is a strengthening of Ramsey’s theorem in which we do not consider
colorings over tuples of integers, but colorings over tuples of nodes over a binary
tree. Ramsey’s theorem can be recovered from the tree theorem by identifying all
nodes at every given level of the tree.
Given a set of binary strings S ⊆ 2<�, we denote by [S]n the collection of linearly
ordered subsets of S of size n, that is, n-sets of strings {�0, . . . , �n−1} ⊆ S such
that �i ≺ �i+1 for each i < n − 1.
Definition 1.2 (Tree theorem). A subtree S ⊆ 2<� is order isomorphic to 2<�
(written S ∼= 2<�) if there is a bijection g : 2<� → S such that for all �, � ∈ 2<� ,
� 
 � if and only if g(�) 
 g(�). Given a coloring f : [2<�]n → k, a tree S is
f-homogeneous if S ∼= 2<� and f�[S]n is monochromatic. TTnk is the statement
“Every coloring f : [2<�]n → k has an f-homogeneous tree.”
Note that if S ∼= 2<�, witnessed by the bijection g : 2<� → S, then S is g-
computable. Therefore we can consider thatTTn states the existence of the bijection
g instead of the pair 〈S, g〉. The tree theorem was first analyzed by McNicholl [19]
and by Chubb, Hirst, and McNicholl [4]. They proved that TT22 lies between ACA0

https://doi.org/10.1017/jsl.2015.80 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.80


THE STRENGTHOF THE TREE THEOREMFOR PAIRS 1483

and RT22 over RCA0, and left open whether any of the implications is strict. Fur-
ther work was done by Corduan, Groszek, and Mileti [5]. Dzhafarov, Hirst and
Lakins [8] studied stability notions for the tree theorem and introduced a polarized
variant. Montálban [21] asked whether RT22 implies TT

2
2 over RCA0. We give a

negative answer by proving the following stronger theorem, whereWKL0 stands for
weak König’s lemma.
Theorem 1.3 (Main result). RT22 ∧WKL0 does not imply TT22 over RCA0.
The separation builds on the forcing method introduced by Lerman, Solomon
and Towsner [17], and enhanced by the author [23], for designing a computability-
theoretic property which discriminates between two statements in reverse mathe-
matics. The construction being quite complex, we present the proof step by step,
hoping that our exposition can serve as a tutorial for separating principles in reverse
mathematics.

1.3. Separating principles in reverse mathematics. An �-structure is a structure
M = (�,S,+, ·, <) where � is the set of standard integers, +, ·, and < are the
standard operations over integers and S is a set of reals such that M satisfies
the axioms of RCA0. Friedman [12] characterized the second-order parts S of �-
structures as those forming a Turing ideal, that is, a set of reals closed under Turing
join and downward-closed under the Turing reduction. Given two principles P
and Q, proving that P does not imply Q over RCA0 usually consists in constructing
a Turing ideal I in which P holds, but not Q.
Many theorems in reverse mathematics are Π12 statements, i.e., of the form
(∀X )(∃Y )Φ(X,Y ) where Φ is an arithmetic formula. They can be considered as
problemswhich usually come with a natural class of instances. Given an instanceX ,
a set Y such that Φ(X,Y ) holds is called a solution to X . For example, an instance
of RT22 is a coloring f : [�]

2 → 2, and a solution tof is an infinitef-homogeneous
set. In this setting, the construction of an �-model of P which is not a model of Q
consists in creating a Turing ideal I together with a fixed Q-instance I ∈ I, such
that every P-instance J ∈ I has a solution in I, whereas I contains no solution
in I. Building a Turing ideal is usually achieved via the following technique.
1. Choose a particular Q-instance I admitting no I -computable solution.
2. Start with the Turing ideal I0 = {Z : Z ≤T I }.
3. Given aTuring ideal In containing no solution to I , take anyP-instance J ∈ In
having no solution in In and add a solution Y to J . The closure by Turing
reducibility and join gives In+1.

4. Repeat step 3 to obtain a Turing ideal I = ⋃
n In such that every P-instance

in I admits a solution in I.
The difficulty of such a construction is to avoid adding a solution to the instance
I in In+1 during step 3. One needs to ensure that every P-instance in In admits a
solution Y such that Y ⊕ C avoids computing a solution to I for each C ∈ In .
Assuming that In does not contain a solution to I is sometimes not sufficient to
ensure the existence of a solutionY to the nextP-instance such that the ideal closure
of In ∪ {Y} does not contain such a solution as well. A core step of the separation
of P from Q consists in designing the computability-theoretic property that we will
propagate from In to In+1 and which will ensure in particular that I has no solution
in In+1. This property strongly depends on the nature of the principles P and Q.
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Lerman, Solomon, and Towsner [17] introduced a general technique for design-
ing such a property. Their framework has been successfuly reused to separate
various principles in reverse mathematics [11, 22, 24]. Recently, the author [23]
refined their technique to make it more lightweight and modular. Once sim-
plified, a separation between two statements P and Q using the framework of
Lerman, Solomon and Towsner yields a computability-theoretic property called
fairness property. This property is closed downward under the Turing reduction
and is preserved by the statement P, that is, for every fair set X and every X -
computable P-instance I , there is a solution Y to I such that X ⊕ Y is fair.
This property is designed so that it is not preserved by Q, which enables one
to build an �-model of P in which Q does not hold. Note that “fairness prop-
erty” is a generic appelation for the computability-theoretic property yielded by
the construction of Lerman, Solomon, and Towsner. Different statements give dif-
ferent fairness properties, such as hyperimmunity [23], CAC-fairness [26], or again
TT-fairness [13].
In this paper, we shall take the case of the separation of Ramsey’s theorem for
pairs from the tree theorem for pairs to make explicit the different steps leading to
the separation of two principles. In particular, we shall focus on the design of the
discriminating property.

1.4. Definitions and notation. String, sequence. Fix an integer k ∈ �. A string
(over k) of length n is an ordered tuple of integers a0, . . . , an−1 (such that ai < k
for every i < n). The empty string is written ε. A sequence (over k) is an infinite
listing of integers a0, a1, . . . (such that ai < k for every i ∈ �). Given s ∈ �, ks
is the set of strings of length s over k and k<s is the set of strings of length < s
over k. Similarly, k<� is the set of finite strings over k and k� is the set of sequences
(i.e., infinite strings) over k. Given a string � ∈ k<�, we denote by |�| its length.
Given two strings �, � ∈ k<�, � is a prefix of � (written � 
 �) if there exists a
string � ∈ k<� such that �� = �. Given a sequence X , we write � ≺ X if � = X �n
for some n ∈ �, where X �n denotes the restriction of X to its first n elements. A
binary string (resp. binary sequence) is a string (resp. sequence) over 2. We may
identify a binary sequence with a set of integers by considering that the sequence is
its characteristic function.
Tree, path. A tree T ⊆ k<� is a set downward-closed under the prefix relation.
A binary tree is a tree T ⊆ 2<�. A sequence P ∈ �� is a path though T if for
every � ≺ P, � ∈ T . A string � ∈ k<� is a stem of a tree T if every � ∈ T is
comparable with �. Given a tree T and a string � ∈ T , we denote by T [�] the
subtree {� ∈ T : � 
 � ∨ � � �}.
Sets, partitions. Given two sets A and B, we denote by A < B the formula
(∀x ∈ A)(∀y ∈ B)[x < y] and by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B],
meaning that A is included in B up to finitely many elements. Given a set X and
some integerk, ak-cover ofX is ak-upleA0, . . . , Ak−1 such thatA0∪· · ·∪Ak−1 = X .
We may simply say k-cover when the set X is unambiguous. A k-partition is a k-
cover whose sets are pairwise disjoint. AMathias condition is a pair (F,X ) where F
is a finite set, X is an infinite set and F < X . A condition (F1, X1) extends (F,X )
(written (F1, X1) ≤ (F,X )) if F ⊆ F1, X1 ⊆ X and F1 � F ⊂ X . A set G satisfies a
Mathias condition (F,X ) if F ⊂ G and G � F ⊆ X .
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§2. Partitioning trees and strong reducibility. In order to get progressively into
the framework used to separate Ramsey’s theorem for pairs from the tree theorem
for pairs, we shall first study the singleton version of the considered principles. The
fairness property that we shall design during the next section is directly obtained by
abstracting and generalizing the diagonalization argument of this section. Ramsey’s
theorem for singletons is simply the infinite pigeonhole principle, stating that for
every finite partition of an infinite set, one of its parts has an infinite subset. Both
RT1k andTT

1
k are computably true and provable overRCA0.We shall therefore study

non-computable instances of RT1k and TT
1
k to see how their combinatorics differ.

As explained in Subsection 1.3, a proof of implication from P to Q over RCA0

may involve multiple applications of P. Therefore, if we want to prove that P
does not imply Q over RCA0, we need to create an instance of Q diagonalizing
against successive applications of P. In order to simplify our argument, we shall
first describe a one-step diagonalization between a Δ02 instance of TT

1
2 and arbitrary

instances of RT1k , that is, with no effectiveness restriction. This is the notion of
strong computable non-reducibility.

Definition 2.1 (Computable reducibility). Fix two Π12 statements P and Q. P
is strongly computably reducible to a Q (written P ≤sc Q) if every P-instance I
computes a Q-instance J such that every solution to J computes a solution to I .

The remainder of this section will be dedicated to proving that TT12 �≤sc RT12.
More precisely, we shall prove the following stronger theorem.
Theorem 2.2. There exists a Δ02 TT

1
2-instance A0 ∪ A1 = 2<� such that for every

(non-necessarily computable) RT12-instance B0 ∪ B1 = �, there is an infinite set
homogeneous for the B’s which does not compute a TT12-solution to the A’s.
In section 4, we will prove a theorem which implies Theorem 2.2. Therefore we
shall focus on the key ideas of the construction rather than on the technical details.
Requirements. Let us first assume that we have constructed ourTT12 instanceA0∪
A1 = 2<�. Fix some 2-partition B0 ∪ B1 = �. We will construct by forcing an
infinite setG such that bothG ∩B0 andG ∩B1 are infinite. EitherG ∩B0, orG ∩B1
will be taken as our solution to the RT12-instance B0 ∪ B1 = �. We only need one
solution to the RT12-instance. However, we will be only able to ensure that either
G ∩B0, or G ∩B1 will not compute a solution to the TT12-instance A0 ∪A1 = 2<� .
Therefore, among G ∩ B0 and G ∩ B1, only the one which does not compute a
solution to the TT12-instance will be the desired solution to our RT

1
2-instance. Here,

by “solution to the TT12-instance,” we mean an infinite subtree isomorphic to 2
<�

which is included in A0 or A1.
Let Φ0,Φ1, . . . be an enumeration of all partial tree functionals isomorphic to
2<� , that is, if ΦX (n) halts, then ΦX (n) outputs 2n pairwise incomparable strings
representing the nth level of the tree. We ensure that the following requirements
hold for every pair of indices e0, e1.

Qe0,e1 : RG∩B0e0
∨ RG∩B1e1

,

whereRHe is the statement
Either ΦHe is partial, or Φ

H
e (n) is a set D of 2

n incomparable strings intersecting
both A0 and A1 for some n.
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We call anyQe0,e1 aQ-requirement and for a givenH (being eitherG∩B0, orG∩B1),
we call anyRHe anR-requirement forH . If everyQ-requirement is satisfied, then by
the usual pairing argument, either every R-requirement is satisfied for G ∩ B0, or
everyR-requirement is satisfied forG ∩B1. CallH a set amongG ∩B0 andG ∩B1
for which every R-requirement is satisfied. We claim that H does not compute a
solution to the TT12-instance A0 ∪A1 = 2<� . Suppose for the sake of contradiction
thatH computes a tree S ∼= 2<� using some procedure Φe . By the requirementRHe ,
S intersects both A0 and A1, and therefore S is not a TT

1
2-solution to the A’s.

Forcing. The forcing conditions are Mathias conditions, that is, an ordered
pair (F,X ), where F is a finite set of integers, X is an infinite set belonging to
some fixed Scott set S, and such that max(F ) < min(X ). A Scott set Turing
ideal satisfying weak König’s lemma. By Simpson [29, Theorem VIII.2.17], we
can choose S so that S = {Xi : C =

⊕
i Xi} for some low set C . This preci-

sion will be useful during the construction of the TT12-instance. We furthermore
assume that C does not compute a TT12-solution to the A’s, and therefore that
there is no C -computable infinite set homogeneous for the B’s, otherwise we are
done.
The following lemma ensures that we can force both G ∩ B0 and G ∩ B1 to be
infinite, assuming that the B’s have no infinite C -computable homogeneous set.

Lemma 2.3. Given a condition c = (F,X ) and some side i < 2, there is an
extension d = (E,Y ) such that |E ∩ Bi | > |F ∩ Bi |.
Proof. If X ∩Bi = ∅ thenX is an infinite C -computable subset of B1−i , contra-
dicting our assumption. So there is some x ∈ X ∩Bi . Take d = (F ∪{x}, X�[0, x])
as the desired extension. �
The next step consists in forcing theQ-requirements to be satisfied. A condition c
forces a requirement Qe0,e1 if Qe0,e1 holds for every set G satisfying c. Of course,
we cannot force the Q-requirements for any TT12-instance A0 ∪ A1 = 2<� since
some of them admit computable solutions. We must therefore choose our TT12-
instance carefully. For now, simply assume that wemanaged to build aTT12-instance
A0 ∪A1 = 2<� satisfying the following property (P). We will detail its construction
later.

(P) Given a condition c = (F,X ) and some indices e0, e1, there is an extension d
of c forcing Qe0,e1 .
Assuming that the property (P) holds, we now show how to build our infinite
set G from it. After that, we will construct a TT12-instance A0 ∪ A1 = 2<� so that
the property (P) is satisfied.

Construction. Thanks to Lemma 2.3 and the property (P), we can define an
infinite, decreasing sequence of conditions (∅, �) ≥ c0 ≥ c1 ≥ · · · such that for
each s ∈ �
(i) |Fs ∩ B0| ≥ s and |Fs ∩ B1| ≥ s ,
(ii) cs forces Qe0,e1 if s = 〈e0, e1〉,
where cs = (Fs ,Xs). The set G =

⋃
s Fs is such that both G ∩ B0 and G ∩ B1

are infinite by (i), and either G ∩ B0 or G ∩ B1 does not compute a TT12-solution
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to the A’s by (ii). The set among G ∩ B0 and G ∩ B1 which does not compute a
TT12-solution to the A’s is our desired RT12-solution to the B’s. We now need to
satisfy the property (P).
Satisfying the property (P). Given a condition, the extension stated in the prop-
erty (P) cannot be ensured for an arbitrary TT12-instance A0 ∪ A1 = 2<� . We
must design the A’s so that the property (P) holds. To do so, we will apply the
ideas devoloped by Lerman, Solomon, and Towsner [17]. We can see the con-
struction of the set G as a game. The opponent is the TT12-instance which will try
everything, not to be diagonalized against. However, the opponent is fair, in the
sense that if we have infinitely many occasions to diagonalize against him, then
he will let us do it. More precisely, if given a condition c = (F,X ) and some
indices e0, e1, we can find extensions which makes both ΦG∩B0e0

and ΦG∩B1e1
pro-

duce arbitrarily large initial segments of the output, then one of those outputs will
intersect both A0 and A1. In this case, we will have succeeded to satisfy (P) for
the condition c by producing an extension d forcing ΦG∩Biei to intersect both A0
and A1 for some i < 2, and therefore forcing Qe0,e1 . In the other case, we will also
have vacuously succeeded since we will not be able to find extensions making both
ΦG∩B0e0

and ΦG∩B1e1
produce arbitrarily large initial segments of the output tree, and

therefore c is already a condition forcing one ΦG∩B0e0 and ΦG∩B1e1 to be partial, so
forcing Qe0,e1 .
We now describe how to construct a fair TT12-instance. The construction of
the A’s will be Δ0,C2 , hence Δ

0
2 since C is low. The access to the oracle C enables

us to code the conditions c = (F,X ) into finite objects, namely, pairs (F, i) so
thatC =

⊕
i Xi andX = Xi , and to enumerate themC -computably.Moreprecisely,

we will enumerate all 6-tuples 〈F, i, E0, E1, e0, e1〉, where (F,Xi) is a preconditions,
that is, a condition where we drop the constraint that Xi is infinite since it requires
too much computational power to know it, E0 � E1 = F represents a guess of the
sets F ∩ B0 and F ∩ B1, and e0, e1 denote the Qe0,e1 we want to force. In particular,
among those 6-tuples enumerated, we will enumerate 〈F, i, F ∩ B0, F ∩ B1, e0, e1〉
for all the true conditions (F,Xi).
The construction of the A’s is done by stages. At stage s , we have constructed
two sets A0,s ∪ A1,s = 2<q for some q ∈ �. We want to satisfy the property (P)
given a 6-tuple 〈F, i, E0, E1, e0, e1〉, that is, given a precondition c = (F,X ), a guess
of F ∩ B0 and F ∩ B1, and a pair of indices e0, e1. If any of ΦE0e0 (2) and ΦE1e1 (2) is
not defined, do nothing and go to the next stage. We can restrict ourselves without
loss of generality to preconditions such that both ΦE0e0 (2) and Φ

E1
e1
(2) are defined.

Indeed, if in the property (P), the condition c has no such extension, then c already
forces either ΦG∩B0e0 or ΦG∩B1e1 to be partial and therefore vacuously forces Qe0,e1 .
The choice of “2” as input seems arbitrary. It has not been picked randomly and
this choice will be justified in the next paragraph.
Let D0 and D1 be the 4-sets of pairwise incomparable strings output by ΦE0e0 (2)
and ΦE1e1 (2), respectively. Although the strings are pairwise incomparable within
D0 or D1, there may be two comparable strings in D0 ∪ D1. However, by a simple
combinatorial argument, wemay always find two strings �0, �0 ∈ D0 and �1, �1 ∈ D1
such that �0, �0, �1, and �1 are pairwise incomparable (see Lemma 3.2). Here, we
use the fact that on input 2, the sets have cardinality 4, which is enough to apply
Lemma 3.2. We are now ready to ask the main question.
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“Is it true that for every 2-partition Z0 ∪ Z1 = X , there is some side i < 2 and
some set G ⊆ Zi such that ΦEi∪Gei (q) halts?”
Note that the question looks Π1,X2 , but is in fact Σ

0,X
1 by a compactness argument.

It is therefore C ′-decidable since X ∈ S and so can be uniformly decided during
the construction. We have two cases.
Case 1: The answer is negative. In this case, the Π0,X1 class C of all sets Z0 ⊕ Z1
such that Z0 ∪ Z1 = X and for every i < 2 and every set G ⊆ Zi , ΦEi∪Gei (q) ↑ is
non-empty. In this case, we do nothing and claim that the property (P) holds for c.
Indeed, since S is a Scott set containing X , there is some Z0⊕Z1 ∈ C ∩S such that
Z0∪Z1 = X . AsX is infinite, there is some i < 2 such thatZi is infinite. In this case,
ifE0 = F ∩B0 andE1 = F ∩B1, d = (F,Zi ) is an extension forcingΦ(G∩Bi )ei (q) ↑ and
therefore forcing Qe0,e1 . Note that this extension cannot be found C ′-computably
since it requires to decide which of Z0 and Z1 is infinite. However, we do not need
to uniformly provide this extension. The property (P) simply states the existence of
such an extension.
Case 2:The answer is positive.Given a string � ∈ 2<� , letS� = {� � �}. Since the
Φ’s are tree functionals and ΦEi∪Gei (2) outputs (among others) the strings �i and �i ,
whenever ΦEi∪Gei (q) halts, it outputs a finite set D of size 2q intersecting both S�i
and S�i . Therefore, by compactness, there are finite sets U0 ⊆ S�0 , V0 ⊆ S�0 ,
U1 ⊆ S�1 , and V1 ⊆ S�1 such that for every 2-partition Z0 ∪ Z1 = X , there is some
side i < 2 and some set G ⊆ Zi such that ΦEi∪Gei (q) intersects both Ui and Vi . In
particular, whenever E0 = F ∩ G0, E1 = F ∩ B1, Z0 = X ∩ B0, and Z1 = X ∩ B1,
there is some i < 2 and some finite setG ⊆ X ∩Bi such that Φ(F∩Bi )∪Gei (q) intersects
both Ui and Vi . Notice that all the strings in Ui and Vi have length at least q and
therefore are not yet colored by the A’s. Put the U ’s in A0,s+1 and the V ’s in A1,s+1
and complete the coloring so that A0,s+1 ∪A1,s+1 = 2<r for some r ≥ q. Then go to
the next step. We claim that the property (P) holds for c. Indeed, let G ⊆ X ∩ Bi
be the finite set witnessing Φ(F∩Bi )∪Gei (q) ∩Ui �= ∅ and Φ(F∩Bi )∪Gei (q) ∩Vi �= ∅. The
condition d = (F ∪G,X � [0, max(E)]) is an extension forcingQe0,e1 by its ith side.
This finishes the construction of the TT12-instance and the proof of Theorem 2.2.

§3. The fairness property. In this section, we analyse the one-step separation
proof of Section 2 in order to extract the core of the argument. Then, we use the
framework of Lerman, Solomon, andTowsner to design the computability-theoretic
property which will enable us to discriminate RT22 from TT22.

The multiple-step case. We have seen how to diagonalize against one application
of RT12. The strength of TT

1
2 comes from the fact that when we build a solution S

to some TT12-instance A0 ∪ A1 = 2<� , we must provide finite subtrees Sn ∼= 2<n
for arbitrarily large n. However, as soon as we have output Sn, we commit to
provide arbitrarily large extensions to each leaf of Sn . Since the leaves in Sn are
pairwise incomparable, the sets of their extensions are mutually disjoint. During the
construction of the TT12-instance, we can pick any pair �, � of incomparable leaves
in Sn, and put the extensions of � in A0 and the extensions of � in A1 since they are
disjoint.
In the proof ofTT12 �≤sc RT12, whenwe create a solution to someRT12-instanceB0∪
B1 = �, we build two candidate solutions G ∩ B0 and G ∩ B1 at the same time.
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For each pair of tree functionals Φe0 and Φe1 , we must prevent one of Φ
G∩B0
e0

and ΦG∩B1e1
from being a TT12-solution to the A’s. However, the finite subtrees S0

and S1 output respectively by the left side and the right side may have comparable
leaves. We cannot take any 2 leaves of S0 and 2 leaves of S1 to obtain 4 pairwise
incomparable strings. Thankfully, if S0 and S1 contain enough leaves (4 is enough),
we can find such strings.
If we try to diagonalize against two applications of RT12, below each side G ∩ B0
and G ∩B1 of the first RT12-instance, we will have again two sides corresponding to
the second RT12-instance. We will have then to diagonalize against four candidate
subtrees S0, S1, S2, and S3. We need therefore to wait until the subtrees have
enough leaves, so that we can find 8 pairwise incomparable leaves �0, �0, . . . , �3, �3
such that �i , �i ∈ Si for each i < 4.
In the general case, we will then have to diagonalize against an arbitrarily large
number of subtrees, and want to ensure that if they contain enough leaves, we can
find two leaves in each, such that they form a set of pairwise incomparable strings.
This leads to the notion of disjoint matrix.

Definition 3.1 (Disjoint matrix). An m-by-n matrix M is a rectangular array
of strings �i,j ∈ 2<� such that i < m and j < n. The ith rowM (i) of the matrixM
is the n-tuple of strings �i,0, . . . , �i,n−1. An m-by-n matrixM is disjoint if for each
row i < m, the strings �i,0, . . . , �i,n−1 are pairwise incomparable.

The following combinatorial lemma gives an explicit bound on the number
of leaves we require on each subtree to obtain our desired sequence of pairwise
incomparable strings.

Lemma 3.2. For everym-by-2m disjoint matrixM , there are pairwise incomparable
strings �0, �0, . . . , �m−1, �m−1 such that �i , �i ∈M (i) for every i < m.
Proof. Consider the following greedy algorithm. At each stage, we maintain a
set P of pending rows which is initially the whole matrix M . Among those rows,
some strings are flagged as invalid. Initially, all the strings are valid. Pick a string
� of maximal length among all the valid strings of all the pending rows. LetM (i)
be a pending row to which � belongs. If we have already chosen the value of �i , set
�i = � and removeM (i) from the pending rows. Otherwise, set �i = �. In any case,
flag every prefix of � from any row ofM as invalid, and go to the next step.
Notice that at any step, we flag as invalid at most one string from each row ofM
since the strings in each row are pairwise incomparable. Moreover, since we want to
construct a sequence of 2m pairwise incomparable strings, and at each step we add
one string to this sequence, there are at most 2m steps. The algorithm gets stuck
at some points only if all pending rows contain only invalid strings, which cannot
happen since each row contains at least 2m strings.
We claim that the chosen strings are pairwise incomparable. Indeed, when at some
stage, we pick a string �, it is of shorter length than any string we have picked so
far, and cannot be a prefix of any of them since each time we pick a string, we flag
all its prefixes as invalid in the matrix. �
Abstracting the requirements. The first feature of the framework of Lerman,
SolomonandTowsner thatwe already exploited is the “fairness” of theTT12-instance
which allows each RT12-instance to diagonalize it as soon as the RT

1
2-instance gives
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him enough occasions to do it. We will now use the second aspect of this framework
which consists in getting rid of the complexity of the requirements by replacing
them with arbitrary computable predicates (or blackboxes).
Indeed, consider the case of two successive applications of RT12. Say that the first
instance is B0 ∪ B1 = �, and the second C0 ∪ C1 = �. We need to design the
TT12-instance A0 ∪ A1 = 2<� so that there is an infinite set G ∩ Bi for some i < 2
and an infinite set H ∩ Bj for some j < 2 such that (G ∩ Bi )⊕ (H ∩ Bj) does not
compute a solution to the A’s. While constructing the A’s, we enumerate two levels
of conditions. We first enumerate the conditions c = (F,X ) used for constructing
the setG , but we also enumerate the conditions c0 = (F0, X0) and c1 = (F1, X1) such
that ci is used to construct a solution H to the second RT

1
2-instance C0 ∪ C1 = �

below G ∩ Bi . The question that the TT12-instance asks during its construction
becomes

“For every 2-partitionZ0∪Z1 = X , is there some side i < 2 and some setG ⊆ Zi
such that for every 2-partitionW0 ∪W1 = Xi , there is some side j < 2 and some
set H ⊆Wj such that Φ((F∩Bi )∪G)⊕((Fi∩Cj )∪H )ei,j (q) halts?”

While stayingΣ01 (with parameters), the question becomes arbitrarily complicated
to formulate. Moreover, looking at the shape of the question, we see that the
first iteration can box any Σ01 question asked about the second iteration. We can
therefore abstract the question and make the fairness property independent of the
specificities of the forcing notion used to solve the RT12-instances. See [23] for
detailed explanations about this abstraction process.

Definition 3.3 (Formula, valuation). An m-by-n formula is a formula ϕ with
distinguished set variables Ui,j for each i < m and j < n. Given an m-by-n matrix
M = {�i,j : i < m, j < n}, an M -valuation V is a tuple of finite sets Ai,j ⊆
{� ∈ 2<� : � � �i,j} for each i < m and j < n. The valuation V satisfies ϕ if
ϕ(Ai,j : i < m, j < n) holds. We write ϕ(V ) for ϕ(Ai,j : i < m, j < n).

Given some valuation V = (Ai,j : i < m, j < n) and some integer s , we write
V > s to say that for every � ∈ Ai,j , |�| > s . Moreover, we denote by V (i) the
n-tuple Ai,0, . . . , Ai,n−1. Following the terminology of [17], we define the notion of
essentiality for a formula (an abstract requirement), which corresponds to the idea
that there is room for diagonalization since the formula is satisfied for arbitrarily
far valuations.

Definition 3.4 (Essential formula). An m-by-n formula ϕ is essential in an m-
by-n matrixM if for every s ∈ �, there is anM -valuation V > s such that ϕ(V )
holds.

The notion of fairness is defined accordingly. If some formula is essential, that is,
gives enough room for diagonalization, then there is an actual valuation which will
diagonalize against the TT12-instance.

Definition 3.5 (Fairness). Fix two sets A0, A1 ⊆ 2<� . Given anm-by-n disjoint
matrixM , anM -valuation V diagonalizes against A0, A1 ⊆ 2<� if for every i < m,
there is someL,R ∈ V (i) such thatL ⊆ A0 andR ⊆ A1. A setX is n-fair forA0, A1
if for everym and every Σ0,X1 m-by-2nm formula ϕ essential in some disjoint matrix
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M , there is anM -valuation V diagonalizing against A0, A1 such that ϕ(V ) holds.
A set X is fair for A0, A1 if it is n-fair for A0, A1 for some n ≥ 1.
Of course, if Y ≤T X , then every Σ0,Y1 formula is Σ0,X1 . As an immediate con-
sequence, if X is n-fair for some A0, A1 and Y ≤T X , then Y is n-fair for A0, A1.
Moreover, ifX is n-fair forA0, A1 andp > n,X is also p-fair forA0, A1 as witnessed
by cropping the rows.

Definition 3.6 (Fairness preservation). Fix a Π12 statement P.

1. P admits fairness (resp. n-fairness) preservation if for all sets A0, A1 ⊆ 2<� ,
every set C which is fair (resp. n-fair) for A0, A1 and every C -computable
P-instance X , there is a solution Y to X such that Y ⊕ C is fair (resp. n-fair)
for A0, A1.

2. P admits strong fairness (resp. n-fairness) preservation if for all sets A0, A1 ⊆
2<�, every set C which is fair (resp. n-fair) forA0, A1 and every P-instance X ,
there is a solution Y to X such that Y ⊕ C is fair (resp. n-fair) for A0, A1.

Note that a principle P may admit fairness preservation without preserving
n-fairness for any fixed n, as this is the case with RT22 (see Theorem 4.11 and
Theorem 4.13). On the other hand, if P admits n-fairness preservation for every n,
then it admits fairness preservation. The notion of fairness preservation has been
designed so that it is closed under the implication over RCA0.

Lemma 3.7. If P admits fairness preservation but not Q, then P does not imply Q
over RCA0.

Proof. Since Q does not admit fairness preservation, there is a set C which is
n-fair for some A0, A1 ⊆ 2<� and a C -computable Q-instance J such that for every
solution Y to J , C ⊕ Y is not fair for A0, A1. We build an infinite sequence of sets
X0, X1, . . . starting with X0 = C and such that for every s ∈ �,
(i) Xs+1 is a solution to the P-instance I X0⊕···⊕Xs

s ,
(ii) X0 ⊕ · · · ⊕ Xs+1 is fair for A0, A1,
where I0, I1, . . . is a (non-computable) enumeration of all P-instance functionals.
LetM be the �-model whose second-order part is the Turing ideal

I = {Z : (∃s)[Z ≤T X0 ⊕ · · · ⊕ Xs ]}.
By Friedman [12], M |= RCA0 since I is a Turing ideal. By (i), M |= P. As
J ≤T C = X0, J ∈ I. However, for every Z ∈ I, Z ⊕ C is fair for A0, A1 by
downward closure of fairness under the Turing reducibility, so Z is not a solution
to the Q-instance J . ThereforeM �|= Q. �
Now we have introduced the necessary terminology, we create a Δ02 instance
of TT12 which will serve as a bootstrap for fairness preservation.

Lemma 3.8. There exists a Δ02 partition A0 ∪ A1 = 2<� such that ∅ is 1-fair
for A0, A1.

Proof. The proof is done by a no-injury priority construction. Let ϕ0, ϕ1, . . .
be a computable enumeration of all m-by-2m Σ01 formulas and M0,M1, . . . be an
enumeration of all m-by-2m disjoint matrices for every m. We want to satisfy the
following requirements for each pair of integers e, k.
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Re,k : If ϕe is essential in Mk , then ϕe(V ) holds for some Mk-valuation V
diagonalizing against A0, A1.

The requirements are ordered via the standard pairing function 〈·, ·〉. The sets
A0 and A1 are constructed by a ∅′-computable list of finite approximations Ai,0 ⊆
Ai,1 ⊆ · · · such that all elements added to Ai,s+1 from Ai,s are strictly greater than
the maximum of Ai,s for each i < 2. We then let Ai =

⋃
s Ai,s which will be a Δ

0
2

set. At stage 0, set A0,0 = A1,0 = ∅. Suppose that at stage s , we have defined two
disjoint finite sets A0,s and A1,s such that

(i) A0,s ∪ A1,s = 2<b for some integer b ≥ s ,
(ii) Re′ ,k′ is satisfied for every 〈e′, k′〉 < s .
Let Re,k be the requirement such that 〈e, k〉 = s . Decide ∅′-computably whether
there is someMk-valuation V > b such that ϕe(V ) holds. If so, computably fetch
such a V and let d be an upper bound on the length of the strings in V . By
Lemma 3.2, there are pairwise incomparable strings �0, �0, . . . , �m−1, �m−1 such
that �i , �i ∈ M (i) for every i < m. For each i < m, let Ai,l and Ai,r be the
sets in V corresponding to �i and �i , respectively. Set A0,s+1 = A0,s

⋃
i<m Ai,l and

A1,s+1 = 2<d � A0,s+1. This way, A0,s+1 ∪ A1,s+1 = 2<d . Since the �’s and �’s are
pairwise incomparable, the sets Ai,l and Ai,r are disjoint, so

⋃
i<m Ai,r ⊆ 2<d �

A0,s+1 and the requirement Re,i is satisfied. If no such Mk-valuation is found, the
requirement Re,k is vacuously satisfied. Set A0,s+1 = A0,s ∪ 2b and A1,s+1 = A1,s .
This way, A0,s+1 ∪ A1,s+1 = 2<(b+1). In any case, go to the next stage. This finishes
the construction. �
Theorem 3.9. TT22 does not admit fairness preservation.

Proof. Let A0 ∪ A1 = 2<� be the Δ02 partition constructed in Lemma 3.8. By
Schoenfield’s limit lemma [28], there is a computable function h : 2<�×� → 2 such
that for each � ∈ 2<� , lims h(�, s) exists and � ∈ Alims h(�,s). Let f : [2<�]2 → 2
be the computable coloring defined by f(�, �) = h(�, |�|) for each � ≺ � ∈ 2<� .
Let S ∼= 2<� be a TT22-solution to f with witness isomorphism g : 2<� → S and
witness color c < 2. Note that S ⊆ Ac .
Fix any n ≥ 1. We claim that S is not n-fair for A0, A1. For this, we construct a
1-by-2n Σ0,S1 formula and a 1-by-2

n disjoint matrixM such that ϕ is essential inM ,
but such that everyM -valuation V satisfying ϕ is included in Ac .
Let ϕ(Uj : j < 2n) be the 1-by-2n Σ0,S1 formula which holds if for each j < 2

n,
Uj is a non-empty subset of S. Let M = (�j : j < 2n) be the 1-by-2n disjoint
matrix defined for each j < 2n by �j = g(�j) where �j is the jth string of length n.
In other words, �j is the jth node at level n in S. For every s , let Vs be the M -
valuation defined by Bj = {g(�)} such that � is the least string of lengthmax(n, s)
extending �j . Notice that Vs > s and ϕ(Vs ) holds. Therefore, the formula ϕ is
essential in M . For every M -valuation V = (Bj : j < 2n) such that ϕ(V ) holds,
there is no j < 2n such thatBj ⊆ A1−c . Indeed, sinceϕ(V ) holds,Bj is a non-empty
subset of S, which is itself a subset of Ac . Therefore S is not n-fair for A0, A1. �
Notice thatwe actually proved a stronger statement.Dzhafarov,Hirst, andLakins
defined in [8] various notions of stability for the tree theorem for pairs.A coloringf :
[2<�]2 → r is 1-stable if for every � ∈ 2<� , there is some threshold t and some
color c < r such that f(�, �) = c for every � � � such that |�| ≥ t. In the
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proof of Theorem 3.9, we showed in fact that TT22 restricted to 1-stable colorings
does not admit fairness preservation. In the same paper, Dzhafarov et al. studied
an increasing polarized version of the tree theorem for pairs, and proved that its
1-stable restriction coincides with the 1-stable tree theorem for pairs over RCA0.
Therefore the increasing polarized tree theorem for pairs does not admit fairness
preservation.

§4. Separating principles in reversemathematics. In this section,weprove fairness
preservation for various principles in reverse mathematics, namely, weak König’s
lemma, cohesiveness and RT22. We prove independently that they admit fairness
preservation, and then use the compositional nature of the notion of preservation
to deduce that the conjunction of these principles do not imply TT22 over RCA0.

Definition 4.1 (Weak König’s lemma). WKL0 is the statement “Every infinite
binary tree has an infinite path.”

Weak König’s lemma is one of the “Big Five.” It can be thought of as capturing
compactness arguments. The question of its relation with RT22 has been a long
standing open problem, until Cholak, Jockusch, and Slaman [2] and Liu [18] proved
thatRT22 is incomparable with weakKönig’s lemma. Although the abovementioned
results show that compactness is not really necessary in the proof of RT22, WKL0
preserves many computability-theoretic notions and is therefore involved in many
effective constructions related toRT22. Flood [10] introduced recently aRamsey-type
version of König’s lemma (RWKL). This strict weakening of WKL0 is sufficient in
most applications of WKL0 involved in proofs of RT

2
2. The statement RWKL has

been later studied byBienvenu, Patey, andShafer [1] and byFlood andTowsner [11].

Theorem 4.2. For every n ≥ 1,WKL0 admits n-fairness preservation.

Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<�, and let T ⊆ 2<� be a
C -computable infinite binary tree. We construct an infinite decreasing sequence of
computable subtrees T = T0 ⊇ T1 ⊇ · · · such that for every path P through⋂s Ts ,
P ⊕ C is n-fair for A0, A1. Note that the intersection

⋂
s Ts is non-empty since the

T ’s are infinite trees. More precisely, if we interpret s as a tuple 〈m,ϕ,M 〉 where
ϕ(G,U ) is an m-by-2nm Σ0,C1 formula ϕ(G,U ) and M is an m-by-2nm disjoint
matrixM , we want to satisfy the following requirement.

Rs : For every path P through Ts+1, either ϕ(P,U ) is not essential in M ,
or ϕ(P,V ) holds for someM -valuation V diagonalizing against A0, A1.

Given two M -valuations V0 = (Bi,j : i < m, j < 2nm) and V1 = (Di,j : i <
m, j < 2nm), we write V0 ⊆ V1 to denote the pointwise subset relation, that is, for
every i < m and every j < 2nm, Bi,j ⊆ Di,j . At stage s = 〈m,ϕ,M 〉, given some
infinite, computable binary tree Ts , define them-by-2nm Σ0,C1 formula

�(U ) = (∃n)(∀� ∈ Ts ∩ 2n)(∃Ṽ ⊆ U )ϕ(�, Ṽ ).
We have two cases. In the first case, �(U ) is not essential inM with some witness t.
By compactness, the following set is an infinite C -computable subtree of Ts :

Ts+1 = {� ∈ Ts : (for everyM -valuation V > t)¬ϕ(�, V )}.

https://doi.org/10.1017/jsl.2015.80 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.80


1494 LUDOVIC PATEY

The tree Ts+1 has been defined so that ϕ(P,U ) is not essential inM for every P ∈
[Ts+1].
In the second case, �(U ) is essential in M . By n-fairness of C for A0, A1, there
is anM -valuation V diagonalizing against A0, A1 such that �(V ) holds. We claim
that for every path P ∈ [Ts ], ϕ(P, Ṽ ) holds for someM -valuation Ṽ diagonalizing
against A0, A1. Fix some path P ∈ [Ts ]. Unfolding the definition of �(V ), there
is some n such that ϕ(P�n, Ṽ ) holds for some M -valuation Ṽ ⊆ V . Since V is
diagonalizing against A0, A1, for every i < m, there is some L,R ∈ V (i) such that
L ⊆ A0 andR ⊆ A1. Let L̃, R̃ ∈ Ṽ (i) be such that L̃ ⊆ L and R̃ ⊆ R. In particular,
L̃ ⊆ A0 and R̃ ⊆ A1 so Ṽ diagonalizes against A0, A1. Take Ts+1 = Ts and go to
the next stage. This finishes the proof of Theorem 4.2. �
As previously noted, preserving n-fairness for every n implies preserving fairness.
However, we really need the fact thatWKL0 admits n-fairness preservation and not
only fairness preservation in the proof of Theorem 4.8.

Corollary 4.3. WKL0 admits fairness preservation.

Cholak, Jockusch, and Slaman [2] studied extensively Ramsey’s theorem for pairs
in reverse mathematics, and introduced their cohesive and stable variants.

Definition 4.4 (Cohesiveness). An infinite set C is 	R-cohesive for a sequence
of sets R0, R1, . . . if for each i ∈ �, C ⊆∗ Ri or C ⊆∗ Ri . COH is the statement
“Every uniform sequence of sets 	R has an 	R-cohesive set.”

A coloring f : [�]k+1 → n is stable if for every k-tuple � ∈ [�]k , lims f(�, s)
exists. SRTkn is the restriction of RT

k
n to stable colorings. Mileti [20] and Jockusch

& Lempp [unpublished] proved that RT22 is equivalent to SRT
2
2 +COH over RCA0.

Recently, Chong et al. [3] proved that SRT22 is strictly weaker than RT
2
2 over RCA0.

However they used non-standardmodels to separate the statements and thequestion
whether SRT22 and RT

2
2 coincide over �-models remains open.

Cohesiveness can be seen as a sequential version of RT12 with finite errors. There
is a natural decomposition of RT22 between COH and Δ

0
2 instances of RT

1
2. Indeed,

given a computable instance f : [�]2 → 2 of RT22, COH states the existence of an
infinite set H such that f : [H ]2 → 2 is stable. By Schoenfield’s limit lemma [28],
the stable coloring f : [H ]2 → 2 can be seen as the Δ02 approximation of a ∅′-
computable instance f̃ : H → 2 of RT12. Moreover, we can H -compute an infinite
f-homogeneous set from any f̃-homogeneous set. We shall therefore prove inde-
pendently fairness preservation of COH and strong fairness preservation of RT12 to
deduce that RT22 admits fairness preservation.

Theorem 4.5. For every n ≥ 1, COH admits n-fairness preservation.
Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<�, and let R0, R1, . . . be
a C -computable sequence of sets. We will construct an 	R-cohesive set G such that
G ⊕ C is n-fair for A0, A1. The construction is done by a Mathias forcing, whose
conditions are pairs (F,X ), where X is a C -computable set. The result is a direct
consequence of the following lemma.

Lemma 4.6. For every condition (F,X ), every m-by-2nm Σ0,C1 formula ϕ(G,U )
and every m-by-2nm disjoint matrix M , there exists an extension d = (E,Y ) such
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that either ϕ(G,U ) is not essential for every set G satisfying d , or ϕ(E,V ) holds for
someM -valuation V diagonalizing againstA0, A1.

Proof. Define the m-by-2nm Σ0,C1 formula �(U ) = (∃G ⊇ F )[(G ⊆ F ∪ X ) ∧
ϕ(G,U )]. By n-fairness ofC forA0, A1, either �(U ) is not essential inM , or �(V )
holds for someM -valuationV diagonalizing againstA0, A1. In the former case, the
condition (F,X ) already satisfies the desired property. In the latter case, by the finite
use property, there exists a finite set E satisfying (F,X ) such that ϕ(E,V ) holds.
Let Y = X � [0, max(E)]. The condition (E,Y ) is a valid extension. �
Using Lemma 4.6, define an infinite descending sequence of conditions c0 =
(∅, �) ≥ c1 ≥ · · · such that for each s ∈ �
(i) |Fs | ≥ s ,
(ii) Xs+1 ⊆ Rs or Xs+1 ⊆ Rs ,
(iii) ϕ(G,U ) is not essential inM for every set G satisfying cs+1, or ϕ(Fs+1, V )

holds for someM -valuation V diagonalizing against A0, A1 if s = 〈ϕ,M 〉,
where cs = (Fs,Xs ). The set G =

⋃
s Fs is infinite by (i), 	R-cohesive by (ii) and

G ⊕ C is n-fair for A0, A1 by (iii). This finishes the proof of Theorem 4.5. �
Corollary 4.7. COH admits fairness preservation.

The next theorem is the reason why we use the notion of fairness instead of n-
fairness in our separation of RT22 from TT22. Indeed, given an instance of RT

1
2 and

a set C which is n-fair for some sets A0, A1, the proof constructs a solutionH such
thatH ⊕ C is (n + 1)-fair for A0, A1. We shall see in Corollary 4.14 that the proof
is optimal, in the sense that RT12 does not admit strong n-fairness preservation.

Theorem 4.8. RT12 admits strong fairness preservation.

Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<� , and let B0 ∪ B1 = � be
a (non-necessarily computable) 2-partition of �. Suppose that there is no infinite
setH ⊆ B0 orH ⊆ B1 such thatH ⊕C is n-fair for A0, A1, since otherwise we are
done. We construct a set G such that both G ∩ B0 and G ∩ B1 are infinite. We need
therefore to satisfy the following requirements for each p ∈ �.

Np : (∃q0 > p)[q0 ∈ G ∩ B0] ∧ (∃q1 > p)[q1 ∈ G ∩ B1].
Furthermore, we want to ensure that one of (G ∩B0)⊕C and (G ∩B1)⊕C is fair
for A0, A1. To do this, we will satisfy the following requirements for every integer
m, everym-by-2n+1m Σ0,C1 formulas ϕ0(H,U ) and ϕ1(H,U ) and everym-by-2

n+1m
disjoint matricesM0 andM1.

Qϕ0,M0,ϕ1,M1 : RG∩B0ϕ0,M0
∨ RG∩B1ϕ1,M1

,

where RHϕ,M holds if ϕ(H,U ) is not essential inM or ϕ(H,V ) holds for someM -
valuationV diagonalizing againstA0, A1.Wefirst justify that if everyQ-requirement
is satisfied, then either (G ∩ B0) ⊕ C or (G ∩ B1) ⊕ C is (n + 1)-fair for A0, A1.
By the usual pairing argument, for every m, there is some side i < 2 such that the
following property holds:

(P) For every m-by-2n+1m Σ0,C1 formula ϕ(G ∩ Bi ,U ) and every m-by-2n+1m
disjoint matrix M , either ϕ(G ∩ Bi ,U ) is not essential in M , or ϕ(G ∩ Bi , V )
holds for someM -valuation V diagonalizing against A0, A1.
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By the infinite pigeonhole principle, there is some side i < 2 such that (P) holds for
infinitely manym. By a cropping argument, if (P) holds for m and q < m, then (P)
holds for q. Therefore (P) holds for everym on side i . In other words, (G ∩Bi )⊕C
is (n + 1)-fair for A0, A1.
We construct our setG by forcing. Our conditions areMathias conditions (F,X ),
such thatX ⊕C is n-fair forA0, A1. We now prove the progress lemma, stating that
we can force both G ∩ B0 and G ∩ B1 to be infinite.
Lemma 4.9. For every condition c = (F,X ), every i < 2 and every p ∈ � there is
some extension d = (E,Y ) such that E ∩ Bi ∩ (p,+∞) �= ∅.
Proof. Fix c, i , and p. If X ∩ Bi ∩ (p,+∞) = ∅, then X ∩ (p,+∞) is an
infinite subset of B1−i . Moreover, X ∩ (p,+∞) is n-fair for A0, A1, contradicting
our hypothesis. Thus, there is some q > p such that q ∈ X ∩ Bi ∩ (p,+∞). Take
d = (F ∪ {q}, X � [0, q]) as the desired extension. �
Next, we prove the core lemma stating that we can satisfy each Q-requirement.
A condition c forces a requirement Q ifQ is holds for every set G satisfying c. This
is the place where we really need the fact thatWKL0 admits n-fairness preservation
and not only fairness preservation.

Lemma 4.10. For every condition c = (F,X ), every integer m, every m-by-2n+1m
Σ0,C1 formulas ϕ0(H,U ) and ϕ1(H,U ) and every m-by-2n+1m disjoint matrices M0
andM1, there is an extension d = (E,Y ) forcing Qϕ0,M0,ϕ1,M1 .
Proof. Let �(U0, U1) be the 2m-by-2n+1m Σ0,X⊕C1 formula which holds if for
every 2-partition Z0 ∪ Z1 = X , there is some i < 2, some finite set E ⊆ Zi and
an m-by-2n+1m Mi -valuation V ⊆ Ui such that ϕi ((F ∩ Bi) ∪ E,V ) holds. By
n-fairness of X ⊕ C , we have two cases.
In the first case, �(U0, U1) is not essential in M0,M1, with some witness t. By
compactness, the Π0,X⊕C1 class C of sets Z0 ⊕ Z1 such that Z0 ∪ Z1 = � and for
every i < 2 and every finite set E ⊆ Zi , there is no Mi -valuation V > t such
that ϕi((F ∩ Bi ) ∪ E,V ) holds is non-empty. By n-fairness preservation of WKL0
(Theorem 4.2), there is a 2-partition Z0 ⊕ Z1 ∈ C such that Z0 ⊕ Z1 ⊕ C is n-fair
forA0, A1. Since Z0∪Z1 = X , there is some i < 2 such thatZi is infinite. Take such
an i . The condition d = (F,Zi) is an extension forcing Qϕ0,M0,ϕ1,M1 by the ith side.
In the second case, �(V0, V1) holds for some (M0,M1)-valuation (V0, V1) diago-
nalizing against A0, A1. Let Z0 = X ∩B0 and Z1 = X ∩B1. By hypothesis, there is
some i < 2, some finite set E ⊆ Zi = X ∩ Bi and someMi -valuation V ⊆ Vi such
that ϕi ((F ∩ Bi) ∪ E,V ) holds. Since V ⊆ Vi , the Mi -valuation V diagonalizes
againstA0, A1. The condition d = (F ∪E,X � [0, max(E)]) is an extension forcing
Qϕ0,M0,ϕ1,M1 by the ith side. �
Using Lemmas 4.9 and 4.10, define an infinite descending sequence of condi-
tions c0 = (∅, �) ≥ c1 ≥ · · · such that for each s ∈ �
(i) |Fs ∩ B0| ≥ s and |Fs ∩ B1| ≥ s ,
(ii) cs+1 forces Qϕ0,M0,ϕ1,M1 if s = 〈ϕ0,M0, ϕ1,M1〉,
where cs = (Fs,Xs ). Let G =

⋃
s Fs . The sets G ∩ B0 and G ∩ B1 are both infinite

by (i) and one ofG ∩B0 andG ∩B1 is fair forA0, A1 by (ii). This finishes the proof
of Theorem 4.8. �
Theorem 4.11. RT22 admits fairness preservation.
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Proof. Fix any set C fair for some sets A0, A1 ⊆ 2<� and any C -computable
coloring f : [�]2 → 2. Consider the uniformly C -computable sequence of sets 	R
defined for each x ∈ � by

Rx = {s ∈ � : f(x, s) = 1}.
AsCOH admits fairness preservation, there is some 	R-cohesive setG such thatG⊕C
is fair for A0, A1. The set G induces a (G ⊕ C )′-computable coloring f̃ : � → 2
defined by:

(∀x ∈ �)f̃(x) = lim
s∈G
f(x, s).

As RT12 admits strong fairness preservation, there is an infinite f̃-homogeneous
set H such that H ⊕ G ⊕ C is fair for A0, A1. The set H ⊕ G ⊕ C computes an
infinite f-homogeneous set. �
Corollary 4.12. RT22 ∧WKL0 does not imply TT22 over RCA0.

Proof. ByTheorem4.11 andCorollary 4.3,RT22 andWKL0 admit fairness preser-
vation. By Theorem 3.9, TT22 does not admit fairness preservation. We conclude by
Lemma 3.7. �
Wenow prove the optimality of Theorems 4.8 and 4.11 by showing that n-fairness
cannot be preserved.

Theorem 4.13. SRT22 does not admit n-fairness preservation for any n ≥ 1.
Proof. Let A0 ∪ A1 = 2<� be the Δ02 partition constructed in Lemma 3.8. By
Schoenfield’s limit lemma [28], there is a stable computable function f : [�]2 → 2
such that x ∈ Alims f(x,s) for every x. Fix some n ≥ 1. For each � ∈ 2n+1, apply
SRT22 to the coloring f restricted to the set S� = {� � �} to obtain an infinite
f-homogeneous set H� for some color c� < 2. By definition of f, H� ⊆ Ac� . By
the finite pigeonhole principle, there is a color c < 2 and a set M ⊆ 2n+1 of size
2n such that c� = c for every � ∈ M . We can see M as a 1-by-2n disjoint matrix.
Let H =

⊕
�∈M H� and let ϕ(U� : � ∈ M ) be the 1-by-2n Σ0,H1 formula which

holds if for every � ∈ M , U� is a non-empty subset of H� . Note that H� ⊆ Ac
for every � ∈ M . The formula ϕ(U ) is essential inM but there is noM -valuation
V = (V� : � ∈ M ) such that ϕ(V ) holds and V� ⊆ A1−c for some � ∈ M .
ThereforeH is not n-fair for A0, A1. �
Corollary 4.14. RT12 does not admit n-fairness preservation for every n ≥ 1.
Proof. Fix some n ≥ 2. By Theorem 4.13, there is some set C n-fair someA0, A1
and a stable C -computable function f : [�]2 → 2 such that for every infinite f-
homogeneous set H , H ⊕ C is not n-fair for A0, A1. Let f̃ : � → 2 be defined by
f̃(x) = lims f(x, s). Every infinite f̃-homogeneous set H C -computes an infinite
f-homogeneous setH1 such thatH1⊕C is not n-fair for A0, A1. ThereforeH ⊕C
is not n-fair for A0, A1. �

§5. Questions. In this last section, we state some remaining open questions.
The tree theorem for pairs is known to lie between ACA0 and RT

2
2 over RCA0. By

Corollary 4.12,TT22 is strictly stronger thanRT
2
2 overRCA0. However, it is unknown

whether TT22 is strictly weaker than ACA0 over RCA0.

Question 5.1. Does TT22 imply ACA0 over RCA0?
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From a computability-theoretic point of view, Seetapun [27] proved that for every
non-computable setC , every computable instance of RT22 has a solution which does
not compute C . This is the notion of cone avoidance.

Question 5.2. Does TT22 admit cone avoidance?

Dzhafarov and Jockusch [9] simplified Seetapun’s argument and proved that for
every non-computable set C , every arbitrary, that is, non-necessarily computable,
instance of RT12 has a solution which does not compute C . This strengthening is
called strong cone avoidance and is usually joined with the cone avoidance of the
cohesive version of the principle to obtain cone avoidance for the principle over
pairs.

Question 5.3. Does TT12 admit strong cone avoidance?
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