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If classical quasigeostrophic (QG) flow breaks down at smaller scales, it gives rise
to questions of whether higher-order nonlinear balance can be maintained, to what
scale and for how long. These are naturally followed by asking how this is affected
by stratification and rotation. To address these questions, we perform non-hydrostatic
Boussinesq simulations where the initial data is balanced using the Baer–Tribbia
nonlinear normal mode initialization scheme (NNMI), which is accurate to second
order in the Rossby number, as the next-order improvement to first-order QG theory.
The NNMI procedure yields an ageostrophic contribution to the energy spectrum
that has a very steep slope. However, as time passes, a shallow range emerges in the
ageostrophic spectrum when the Rossby number is large enough for a given Reynolds
number. It is argued that this shallow range is the unbalanced part of the motion that
develops spontaneously in time and eventually dominates the energy at small scales.
If the initial flow is not nonlinearly balanced, the shallow range emerges at even
lower Rossby number and it appears at larger scales. Through numerous simulations
at different rotation and stratification, this study gives a clear picture of how energy
is cascaded in different initially balanced regimes of rotating stratified flow. We find
that at low Rossby number the flow mainly consists of a geostrophic part and a
balanced ageostrophic part with a steep spectrum. As the Rossby number increases,
the unbalanced part of the ageostrophic energy increases at a rate faster than the
balanced part. Hence, the total energy spectrum displays a shallow range above
a transition wavenumber. This wavenumber evolves to smaller values as rotation
weakens.

Key words: atmospheric flows, rotating turbulence, stratified turbulence

1. Introduction
In the study of rotating stratified flow two avenues of research have been

explored. The first focuses on ‘balance dynamics’. In the limit of strong rotation and
stratification, the linearized governing equations describe a distinct separation between
fast and slow time scales. Since atmospheric and oceanic flows vary slowly, balance
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Balance dynamics in rotating stratified turbulence 915

models try to reduce the dynamics to only the slow subset. In order to make the
total nonlinear solution slowly varying, it is necessary to introduce judiciously some
variance in the high-frequency linear modes. This is what we refer to as nonlinear
balance and is described in detail below. We emphasize here that, although there are
high-frequency linear solutions, there is no a priori reason why the total nonlinear
solution has to display wave-like motion. In the second avenue, attempts have been
made to extend turbulence theory by studying the statistics of rotating stratified flow,
mainly the energy and potential-enstrophy transfer and their cascades in different
limits. In this section, we briefly review both groups. Then, we discuss the focus of
this study, which is merging these two avenues by looking at balance dynamics from
a turbulence perspective. In particular, we investigate how an initially balanced flow
evolves into a more general form of turbulence in well-resolved numerical simulations.
Throughout this paper, we consider the regimes of low Rossby number (Ro) and low
Froude number (Fr) defined as

Ro= U
fL
, Fr= U

NH
, (1.1a,b)

where f is the Coriolis parameter, N the Brunt–Väisälä frequency, L the horizontal
length scale, H the vertical length scale and U the horizontal velocity scale.

As a result of computational advances, different aspects of high-Reynolds-number
rotating stratified turbulence have been simulated recently. Bartello (2010) used
quasigeostrophic forcing in the non-hydrostatic Boussinesq equations with different
Rossby numbers to present large-scale quasigeostrophic flow with a small-scale
transition to a more general form of turbulence. Marino et al. (2013) changed the
relative linear frequency of gravity to inertial waves, N/f , and looked at its effect on
the inverse cascade of kinetic energy. Deusebio, Vallgren & Lindborg (2013) studied
the route to dissipation in strongly rotating stratified regimes by looking at the energy
cascades at different rotations. Whitehead & Wingate (2014) numerically analysed
the effect of fast ageostrophic modes on slow modes in three different asymptotic
limits of stratification and rotation. Pouquet & Marino (2013) showed the existence
of a dual cascade in one simulation. Starting from an unbalanced initial condition
and randomly forcing a midrange wavenumber, their simulation showed an inverse
cascade of energy at large scales, with the slope of −3 invariant to Ro. However, at
wavenumbers larger than the forcing, a forward cascade of energy was established as
Ro increased and the slope of the energy spectrum changed from −3 to −5/3.

In all these studies a wide variety of initial conditions or forcings were used,
but none were nonlinearly balanced. However, a number of studies used geostrophic
initial conditions or geostrophic forcing, which can be referred to as linearly balanced.
Starting from an unbalanced initial condition, Bartello (1995) showed the ageostrophic
energy is cascaded to the dissipation range via a catalytic interaction with geostrophic
modes at low Fr and Ro. This can be seen as a form of nonlinear geostrophic
adjustment that takes place by transferring ageostrophic energy to smaller scales
and dissipating it. This transfer of ageostrophic energy was seen in the simulations
of Deusebio et al. (2013) as well. It provides a mechanism to explain the observed
reality of the large-scale atmosphere and ocean, which is a slowly varying balance (or
something rather close to it). These scales can be thought of as synoptic scales in the
atmosphere and mesoscales in the ocean, where there is little energy with frequencies
much higher than planetary motion. Therefore, the fundamental question is whether
balanced or unbalanced initial conditions and/or forcing change the turbulence in a
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916 H. A. Kafiabad and P. Bartello

fundamental way. We address this question and show that, at low Rossby number,
initially balanced flow shows considerably different evolution, at least over several
eddy turnover times. However, Ro can be increased to the point that initially balanced
and unbalanced flows act rather alike. Although this is not surprising, we explore the
limits of these regimes.

In studies of balance dynamics the approach is different. Unlike most studies of
rotating stratified turbulence, many of these start with a nonlinear balanced state and
investigate if it is maintained. Of course, this depends on one’s ability to define such
a state and to project initial data onto it. If so, and it is indeed found that balance is
maintained by the subsequent evolution, then it has been speculated there exists a slow
manifold (Leith 1980; Lorenz 1980), or at least something close to it. It is strictly
defined as an invariant manifold in phase space on which the dynamics are devoid
of any high-frequency variability (Leith 1980; Warn et al. 1995; Ford, McIntyre &
Norton 2000), implying the maintenance or breakdown of balance can be equated to
the degree of invariance of the slow manifold. At the other extreme, in studies where
fast motion is initially present, the issue is whether the state evolves towards the slow
manifold.

Numerous studies have discussed the existence of the slow manifold (Lorenz 1986;
Warn & Menard 1986; Lorenz & Krishnamurthy 1987; Lorenz 1992; Warn 1997; Ford
et al. 2000). They show that the solution does not necessarily stay on it, but remains
close to it in some sense. Equivalently, some high-frequency motion is observed,
but its amplitude remains sufficiently small. Following this, Warn & Menard (1986)
suggested the concept of a fuzzy manifold. They demonstrated that as Rossby number
increases, less information on the fast modes can be deduced from the slowly varying
modes alone, implying they act as independent degrees of freedom. Hence, it is not
a manifold in the strict sense, but rather a ‘thin’ region of the full dimension of
phase space.

A more recent line of research exploring the non-invariance of the slow manifold
is spontaneous wave generation. Ford et al. (2000) showed that unsteady rotating
stratified vortical flows ‘must emit inertia-gravity waves’. Following this, Vanneste &
Yavneh (2004) started from a particular balanced solution and showed the amplitude of
inertia-gravity waves generated from an initially balanced solution grew exponentially
with time as the negative of the inverse Rossby number. By using multi-scale time
expansion and assuming small Ro, Zeitlin, Reznik & Jelloul (2003) showed that time
splitting is valid for t 6 ( fRo)−1 ( f being the Coriolis parameter). Beyond this they
modified the quasigeostrophic (QG) equations to the frontal geostrophic set. Unlike in
QG, they reported that in the frontal geostrophic regime time splitting is incomplete.
Therefore, the vortical component and inertial oscillations evolve with similar time
scales.

As an example of spontaneous wave generation, vortex dipoles have also been
studied. Snyder et al. (2007) showed that quasigeostrophic vortex dipoles generate
inertia-gravity waves that are close to stationary relative to them. They persisted after
a long integration time. Therefore, it was concluded that these were inherent features
of the dipoles. Viúdez (2007, 2008) investigated the characteristics of these waves
further in his numerical simulations. For a comprehensive review on balance and
spontaneous generation, see Vanneste (2013).

Many studies of balance dynamics and the slow manifold are restricted to
low-order dynamical systems. Therefore, their results are difficult to generalize
to the infinite-dimensional system governed by the Boussinesq equations.
For instance, Kreiss & Lorenz (1994) showed the spatially discrete version of their
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Balance dynamics in rotating stratified turbulence 917

system generated an exactly invariant slow manifold, whereas its spatially continuous
counterpart could not. To overcome this shortcoming, at least numerically, we study
the breakdown of balance from a turbulence perspective. Unlike low-order dynamical
systems, the turbulence platform of this study considers a broad distribution of
wavenumbers and their interactions. In our view, a very limited number of modes
can only present a limited number of triadic Rossby and Froude numbers, whereas
in reality these parameters can be considered as a function of scale or wavenumber,
k, ranging over many orders of magnitude in geophysical and astrophysical flows.

Even though most studies of rotating stratified flow examined either turbulence or
balance aspects, there have been some exploring both. A series of papers by Dritschel
and co-workers are highlights of this group. Dritschel & Viúdez (2003) first proposed
a numerical approach based on integration of a balance and two imbalance variables.
They chose potential vorticity as their balance and ageostrophic horizontal vorticity
components as imbalance variables based on geostrophic and hydrostatic balances.
In their subsequent papers, they introduced optimal potential vorticity to render their
balance more precise than geostrophic and hydrostatic balance (Viúdez & Dritschel
2004). Their definition of balance was constructed to minimize inertia-gravity waves.
Using nearly balanced initial conditions in this sense, McKiver & Dritschel (2008)
studied properties of rotating stratified turbulence over a range of Rossby numbers.
They also extracted the balanced part of the flow using optimal potential vorticity
balance to access the degree of imbalance generated in time. In another recent study,
Dritschel & McKiver (2015) thoroughly investigated the generation of imbalance in
initially balanced flows with different frequency ratios N/f . In this series of studies,
the authors found balance to be very robust in the regime of low Rossby numbers
and large frequency ratios, yielding steep spectra characteristic of quasigeostrophic
flow.

Another recent study that looked at balance dynamics in a turbulence context
was carried out by Nadiga (2014). In this paper, the author constructed an initial
condition that was in linear balance. He then investigated its subsequent evolution
in two parallel simulations of the non-hydrostatic Boussinesq and quasigeostrophic
equations. Comparing the two simulations using diagnostics of balance, he examined
how the unbalanced part of the flow developed.

Motivated by previous work we investigate the effect of the following parameters
in limiting the accuracy of balance dynamics (or the degree of approximate invariance
of the slow manifold):

(i) the order of balance;
(ii) time;

(iii) the length scale; and
(iv) the strength of rotation and/or stratification.

In so doing, we first generate a set of geostrophic data using a QG model and
then use a high-order initialization scheme, namely that of Baer & Tribbia (1977), to
produce nonlinearly balanced ageostrophic modes. The Baer–Tribbia scheme yields
initial data that are slowly varying at second order in Ro, at least at t= 0. These sets
of ageostrophic and geostrophic modes provide us with a representation of balance
dynamics suitable as initial conditions in a more general model. Starting with these
initial conditions we run a set of well-resolved non-hydrostatic Boussinesq simulations
to study how and when balance breaks down. The compromise that is made concerns
the flow boundaries. Our simulations are carried out in a triply periodic configuration
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918 H. A. Kafiabad and P. Bartello

that is the only possibility in numerical studies of homogeneous turbulence. We
explain the limitations and advantages of this choice.

Our platform provides several advantages that suit the detailed study of influential
parameters in the breakdown of balance. First, we can see how different orders of
balance affect its breakdown. The Baer–Tribbia initialization scheme that we employ
can be carried out to an order higher than the QG approximation. In a similar study
Bartello (2010) used fully QG initial conditions, which are linearly balanced, and
studied their evolution in a non-hydrostatic Boussinesq model with forcing only in the
geostrophic modes. Linear balance cannot form a complete representation of the slow
manifold, as it sets all ageostrophic modes to zero, thereby rapidly generating high-
frequency oscillations. Higher-order nonlinear balance schemes, on the other hand,
yield sets of ageostrophic modes producing more slow evolution.

The other advantage of a turbulence-theory-based analysis is to look at the
breakdown of balance through the cascade and transfer of energy. Below, we rely on
the energy spectrum of normal modes. Their evolution in time draws a sufficiently
clear picture of the interplay between linear fast and slow modes in a nonlinear
context whose temporal variability can take on any time scale in between.

In light of analysing the breakdown of balance, we also make reference to the
shallow range of the Gage–Nastrom spectrum. Gage & Nastrom (1986) used the
Global Atmospheric Sampling Program (GARP) data to calculate the atmospheric
kinetic and potential energy spectra. These consisted of two distinct ranges; a steep
range of k−3, followed by a more shallow range of k−5/3 at smaller scales, with
a relatively sharp transition between the two. The steep part of the spectrum is
explained by quasigeostrophic turbulence resulting from the injection of eddy energy
at the deformation scale (Charney 1971). However, QG theory does not predict the
existence of the shallow range without invoking other sources or boundaries. To
explain this shallow range, two separate, but not mutually exclusive, paths have
been followed:

(i) The effects of external boundaries such as topography (Vanneste 2013) or internal
boundaries such as the tropopause (Tulloch & Smith 2006) that break down the
balance and create a shallow range.

(ii) The generation of unbalanced motion and more general forms of turbulence that
project on other degrees of freedom (Bartello 1995, 2010; Vallgren, Deusebio &
Lindborg 2011; Nadiga 2014).

Being aware of the important role of boundaries in the breakdown of balance
dynamics, we choose to focus on the second issue. In addition to being more tractable
statistically, it can conceivably describe the energy cascade in the ocean/atmosphere
interior far from boundaries. Moreover, it shows that, even without boundaries, there is
a mechanism that generates unbalanced ageostrophic flow in homogeneous turbulence,
even when starting from balanced large-scale dynamics at low Ro and Fr.

Aside from the idealized simulations cited above, the shallow part of the
Gage–Nastrom spectrum has been studied with Numerical Weather Prediction (NWP)
and Global Climate Models (GCM) recently (Skamarock 2004; Hamilton, Takahashi
& Ohfuchi 2008; Evans et al. 2013). The models used in these studies can simulate
the atmosphere with more realistic geometry, inhomogeneity and physics. Of this
group, Waite & Snyder (2009) is one of the most relevant to the current paper,
since it employed a relatively high vertical resolution with a simple geometry and
started from a linearly balanced initial condition describing a baroclinically unstable
zonal jet. It was then perturbed with the ‘fastest-growing gravest normal mode’.
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This unbalanced perturbation was added to make the unstable jet transition to
turbulence, whose characteristics were then studied. In their simulations the Rossby
number increased with time, which led to the shallowing of the energy spectrum at
certain vertical levels. Using the Advanced Research core of the Weather Research
and Forecast (WRF) model, they examined the energy spectrum at different levels in
the troposphere and lower stratosphere.

It should be noted that the dynamics of NWP/GCM models are generally not
nearly as well resolved as in turbulence simulations in simplified geometry, since
much of the computational effort is devoted to realistic features such as surface
fluxes, convection, radiation, topography and vertical inhomogeneity. Clearly, one of
the weak points of such simulations, when compared with turbulence simulations, is
the relatively coarse vertical grid. In addition, many global models still employ the
hydrostatic approximation. The degree to which it reproduces the true dynamics at
scales where balance breaks down is still an open question.

To have reliable statistics of stratified turbulence it was shown that the buoyancy
scale, U/N, which is around 1 km near the tropopause, should be resolved (Waite
& Bartello 2004, Lindborg 2006, Waite 2011). It has even been argued that it is
necessary to resolve down to the small-scale regime of 3D isotropic turbulence, i.e.
the Ozmidov scale, which is of the order of tens of metres (Brethouwer et al. 2007;
Bartello & Tobias 2013). Knowing that these resolution requirements may not be as
severe with the addition of weak rotation, the authors’ view is that it is best to explore
them using idealized simulations of only the dynamics in the first instance, without
adding all the other complications of meteorology and oceanography.

These scales are not resolved by GCM/NWP models with today’s computers.
For example, Hamilton et al. (2008) used 24 vertical levels from the ground to
approximately 1 hPa, which led to approximately 1.5 km grid spacing in the upper
troposphere. Evans et al. (2013) employed 26 vertical levels with a model top at
2.2 hPa, resulting in an even coarser grid. Given that vertical momentum and thermal
diffusion restrict the fully nonlinear scales to larger than 1.5 km, it is clear these
studies come short of resolving the vertical outer scale, U/N, of stratified turbulence.
However, with their subgrid dissipation schemes these simulations still offer realistic
large-scale dynamics. For this reason, the authors feel their mesoscale transitions
must at this point be interpreted with caution.

In addition to providing higher vertical resolution, our idealized configuration
enables us to study a wider range of parameters compared to NWP/GCM models.
These models are difficult to tune in order to explore the effect of resolution, rotation,
stratification and dissipation. Since we model only the dynamics in as simple a
geometry as possible, we were able to explore objectively their sensitivity to Rossby,
Froude and Reynolds numbers (at much higher effective Reynolds numbers) in order
to advance our understanding of these dynamics. For this reason we feel that studies
such as this are complementary to studies using more realistic models.

The organization of this paper is as follows. Section 2 lays out the governing
equations of motion and briefly describes the normal mode decomposition used in
this paper. The initialization scheme that balances the ageostrophic modes given the
geostrophic modes is explained in § 3. In § 4, we propose a three-step procedure
to study the breakdown of balance dynamics. In § 5, we show how the initially
balanced and unbalanced flow differ in various Rossby number regimes. Our results
demonstrate that the balanced part of the ageostrophic energy has a steep spectrum.
However, by increasing the Rossby number, a shallow unbalanced range emerges. In
fact, it seems reasonable to speculate that such a shallow tail in the ageostrophic
spectrum will emerge at any Ro after a sufficient time if the Reynolds number is
sufficiently large. These ideas are developed in our concluding remarks.
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2. Mathematical formalism and normal modes
2.1. Governing equations

The three-dimensional equations governing the motion of rotating stratified flow under
the Boussinesq approximation are

∂u
∂t
+ u · ∇u+ f ẑ× u=−∇p+ bẑ+Du, (2.1a)

∇ · u= 0, (2.1b)
∂b
∂t
+ u · ∇b=−N2w+Db, (2.1c)

where u = (uh, w) = (u, v, w) is the velocity field; b is the buoyancy perturbation
(which can be defined based on potential temperature as −gθ ′/θ0, or based on density
as −gρ ′/ρ0); p is the pressure perturbation divided by a constant reference density, ρ0.
The operator Dq represents the dissipation of quantity q. We also assume the Coriolis
parameter, f , and Brunt–Väisälä frequency, N, to be constants.

2.2. Normal mode decomposition
To close the problem mathematically one needs a set of boundary and initial
conditions. We will discuss the choice of the initial conditions in the following
sections. As for boundaries, we assume periodicity. This configuration maintains
statistical homogeneity and provides for efficient direct numerical simulation (DNS)
using pseudospectral methods.

Following Leith (1980) and Bartello (1995), we use the eigenvectors of the
linearized equation as our orthonormal basis. To derive these we first take the
Fourier transform of (2.1), then linearize the system around a state of rest. For each
wavenumber k= (kx, ky, kz), one finds the following eigenfrequencies (in dimensional
form)

λ(0)k = 0, λ±k =±σk = ( f 2kz
2 +N2kh

2)1/2

k
, (2.2a,b)

where kh = (k2
x + k2

y)
1/2 and k = (k2

h + k2
z )

1/2. We denote the associated orthonormal
eigenvectors by ξ

(0)
k and ξ

(±)
k . We can group all physical variables (e.g. velocity

components and buoyancy) in a dynamical state vector Xk. Then, the normal modes
can be derived by projecting Xk onto the set of eigenvectors

Gk =Xk · ξ (0)k , Ak =Xk · ξ (±)k , (2.3a,b)

where over-bar denotes the complex conjugate. We refer to the slow modes Gk as
geostrophic (also known as rotational or vortical modes), and the fast modes Ak as
ageostrophic (also known as gravitational or internal wave modes).

By applying the projections in (2.3) to the Fourier-space form of the linear terms
of (2.1) and then non-dimensionalizing it, the evolution equations of the normal mode
amplitudes follow as

∂Gk

∂t
= RoΦk(G, A)+DG, (2.4a)

∂Ak

∂t
+ iσkAk = RoΨk(G, A)+DA. (2.4b)
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In (2.4), we also grouped all quadratic nonlinearities in terms of Φk(G, A) and
Ψk(G, A) for notational economy. They can be expanded as convolution sums. For
instance

Φk(G, A)=
∑

k=p+q

[φGGGpGq + φAGApGq + φAAApAq], (2.5)

where the coefficients, φ, are functions of k, p, q and constant parameters defined in
(1.1). A similar description holds for Ψk(G, A).

Multiplying (2.4) by Gk and Ak, the evolution of geostrophic and ageostrophic
modal energy follows

∂GkGk

∂t
= RoΦkGk +DGGk + c.c., (2.6a)

∂AkAk

∂t
= RoΨkAk +DAAk + c.c., (2.6b)

where c.c. denotes the complex conjugate.
The nonlinear transfers in (2.6) can be summed as below to derive the horizontal

energy fluxes

ΠG(kh)=−
∑

|k′−k′·ẑ|<kh

RoΦk′ ·Gk′ + c.c., (2.7a)

ΠA(kh)=−
∑

|k′−k′·ẑ|<kh

RoΨk′ · Ak′ + c.c. (2.7b)

3. Balance dynamics and nonlinear normal mode initialization
3.1. Time scales

From (2.2) there are two time scales in the flow when Ro→ 0. The time scale of
Gk is L/U, which is determined by the nonlinear terms since λ(0)k = 0. The time scale
of Ak, on the other hand, is derived as the inverse of the linear ageostrophic mode
frequencies, 1/σk. Therefore the ratio of the two is

t∗

T
= ε = 1/σk

L/U
6 Ro, (3.1)

where t∗ and T denote the time scales of Ak and Gk, respectively.
This separation enables us to split the time derivative into two parts

∂( )

∂t
= ∂( )
∂t∗
+ ε ∂( )

∂T
. (3.2)

This two-time-scale method is a foundation of a nonlinear normal mode initialization
(NNMI) scheme proposed by Baer & Tribbia (1977). More details on it can be found
in classic texts on perturbation techniques, such as Cole (1968).

Rewriting (2.4) in terms of fast and slow time derivatives leads to

ε
∂Gk

∂T
= εΦk(G, A)+DG, (3.3a)

∂Ak

∂t∗
+ ε ∂Ak

∂T
+ iσkAk = εΨk(G, A)+DA. (3.3b)
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The fast time derivatives of the geostrophic modes are zero by construction, as they
are slowly varying.

A more advanced time-scale separation method was used by Reznik, Zeitlin & Ben
Jelloul (2001) and Zeitlin et al. (2003) to develop the theory of nonlinear geostrophic
adjustment. In these studies, instead of two time scales, the method of multiple time
scales was used. More specifically, in addition to a fast time scale t∗, they used several
slow time scales such that each one is O(Ro) slower than the next. As will be seen
in the following sections, their analytical results are compatible with the numerical
simulations of the current study.

3.2. The Baer–Tribbia scheme
The essence of the Baer–Tribbia scheme is to ensure evolution on the slow time scale
by forcing ∂Ak/∂t∗|t=0 = 0 in (3.3b). This is done by expanding (3.3) in terms of
ε, and then applying perturbation techniques up to the desired order. It is useful to
introduce a new notation for variable expansion in powers of both T and ε as

X = (X0,0 + X0,1T + X0,2T2)+ (X1,0 + X1,1T + X1,2T2)ε +O(ε2, T3), (3.4)

where X can be any variable in (3.3). In other words, Xi,j refers to terms proportional
to ε i and T j.

After setting ∂Ak/∂t∗|t=0= 0, expanding both sides of (3.3) and equating each order
in ε, one obtains

A0,0
k =O(T), (3.5a)

iσkA1,0
k + iσkA1,1

k T =Ψ 0,0
k +Ψ 0,1

k T +O(T2), (3.5b)

A1,1
k + iσkA2,0

k =Ψ 1,0
k +O(T). (3.5c)

The time derivative of (3.5b) yields one more equation

iσkA1,1
k =Ψ 0,1

k +O(T). (3.6)

By setting T = 0 in (3.5) and (3.6), the initial ageostrophic modes are derived up to
O(ε2)

A0,0
k = 0, (3.7a)

A1,0
k =

Ψ
0,0

k

iσk
, (3.7b)

A2,0
k =

Ψ
1,0

k

iσk
− A1,1

k

iσk
= Ψ

1,0
k

iσk
+ Ψ

0,1
k

σk
2
. (3.7c)

Since our focus is on higher-order balance, it is necessary to keep terms up to O(ε2)

as a minimum requirement since QG theory is only one order lower. Equation (3.7a)
shows that the ageostrophic modes are O(Ro). Therefore, the scaling of ageostrophic
energy goes as O(Ro2). With some algebra, the nonlinear terms in (3.7) can be
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expressed in terms of the geostrophic modes as

Ψ
0,0

k =
∑

k=p+q

ψGGGpGq,

Ψ
1,0

k =
∑

k=p+q

ψGA

iσq
Gp

( ∑
q=m+n

ψGGGmGn

)
,

Ψ
0,1

k = 2
∑

k=p+q

ψGGGp

( ∑
q=m+n

φGGGmGn

)
.


(3.8)

Note that we only expanded the fast modes in terms of ε and kept geostrophic modes
unchanged, as justified by Warn et al. (1995). The direct calculation of convolution
sums in (3.8), especially nested sums, is too costly. To circumvent this problem we
propose a novel algorithm that uses the pseudospectral method to calculate them. It is
briefly described in appendix A. The dissipation terms can be kept in the procedure
above. We performed initialization with and without viscosity and diffusion. The
results were very similar, other than in the very small scales. This is to be expected,
since balance is most apparent at larger scales where viscosity and diffusion are
rather unimportant.

Knowing that the geostrophic spectrum admits a slope of −3, one might try to
analytically derive the slope of the balanced ageostrophic energy spectrum at least
to first order. Thus, A1,0

k · A1,0
k (over-bar denoting the complex conjugate) should be

calculated from (3.7b) and (3.8)

A1,0
k · A1,0

k =
1
σ 2

k
Ψ

0,0
k ·Ψ 0,0

k =
1
σ 2

k

∑
k=p+q

ψGG(k, p, q)GpGq

∑
k=m+n

ψGG(k,m, n)GmGn

=
∑

k=p+q

∑
k=m+n

1
σ 2

k
ψGG(k, p, q)ψGG(k,m, n)GpGqGmGn. (3.9)

Knowing only that the spectrum formed by geostrophic modes scales as k−3 does not
lead to a solution for the inertial range of the ageostrophic energy spectrum unless
one calculates or approximates the coefficient ψGG(k, p, q)ψGG(k,m, n)/σ 2

k , which is
a function of wavenumber, and then performs the summation. We therefore explore
the slope of ageostrophic energy spectrum numerically and discuss it in § 4.2.

4. Balancing procedure and numerical configuration
In this section, we develop a procedure to investigate the effect of initial Baer–

Tribbia balance as well as the role of rotation and stratification in the transition from
balance dynamics to more general smaller-scale turbulence. It is carried out in three
steps: first, generation of the geostrophic data; second, finding balanced ageostrophic
modes using NNMI; and finally, exploring the robustness of balanced initial conditions
in the more general dynamical context of the non-hydrostatic Boussinesq simulations.
Before describing each in more detail, we lay out the numerical configuration of our
simulations.

Our Boussinesq model employs the de-aliased pseudospectral method with second-
order time stepping. The state variables that are integrated in time are 3D vorticity and
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buoyancy. We set the size of our domain to be 2π in the horizontal and 2π× ( f /N)
in the vertical. In this way the aspect ratio, α =H/L, is equal to f /N, which makes
the domain a cube of (2π)3 using Charney (1971) scaling. Throughout this paper we
match stratification to rotation by fixing N/f = L/H. Therefore, the change in Ro is
equivalent to a change in Fr, following classical QG scaling. For the sake of brevity
we usually refer only to changes in rotation (or Ro), but the reader should keep in
mind this implies changes to stratification as well.

In the real atmosphere the ratio of N to f is usually reported as 100, and in
the ocean as 30–50. We also know that at least O(102) grid points are required to
resolve something more than just viscous and diffusional coupling of vertical layers.
This vertical grid, together with high L/H (= N/f ), would require a large horizontal
resolution, as explained in Bartello (2010). To maintain the vertical resolution high
enough while keeping horizontal resolution within our computational resources, we
reduced the ratio N/f to 8. This compromise distances us from exact atmospheric
and oceanic scaling somewhat, but we have varied N/f and are certain that the
features described below are generic, while recognizing the future need to explore
this question with larger computers.

For the physical domain of [0, 2π]2 × [0, 2πf /N], two different grids were
employed:

(i) Grid (1) 1x=1y= (N/f )1z. This grid is more loyal to QG structures since it
is isotropic in Charney stretched coordinates.

(ii) Grid (2) 1x = 1y = 1z. This grid is isotropic in unstretched physical space.
Hence, it is felt to be a better choice to capture the smaller scales where the
dynamics, and hence the aspect ratio, are still unknown.

If Nh and Nz are the number of horizontal and vertical grid points, respectively,
grid (2) requires Nz = ( f /N)Nh vertical points, whereas the Charney grid requires
Nz=Nh, which is far larger. Grid (2) therefore allows for a wider range of horizontal
scales, for given computational resources, in addition to providing unbiased numerics
for dynamics in the small-scale transition range.

We performed most of our simulations using grid (2) as we believe it is a better
choice in analysing the breakdown of balance. Nevertheless, we performed several
simulations using grid (1) and compared them. Table 1 shows a list of all simulation
parameters used in this study.

The other parameters that need to be set in the Boussinesq model are the
viscosity and diffusion. In addition to the Laplacian operator of the Boussinesq
set, an iterated Laplacian (hyperviscosity) was often used. To be consistent with our
cylindrical truncation of Fourier modes, we employed a cylindrical dissipation operator
expressed as

Du =Db = νh(−1)n+1∇2n
h + νz(−1)n+1 ∂

2n

∂z2n
, (4.1)

which provides the same dissipation for buoyancy and velocity. In all our simulations
on grid (2) we keep νh = νz = ν. The Newtonian Laplacian operator is recovered by
setting n = 1. Hyperviscosity, here set to n = 4, restricts dissipation to a narrower
range of scales. For further details on the comparison between the two in rotating
stratified turbulence, see Bartello, Métais & Lesieur (1996). Although the majority
of our simulations used hyperviscosity, we also performed a number of sensitivity
DNS runs in figure 14 below. Although there are quantitative differences, the observed
trends are the same. All the times reported were normalized with the r.m.s. geostrophic
vertical vorticity, τ , which is measured at the end of the preliminary QG runs and can
be found in table 1.
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Run Nh Nz N f Rou Roω Fr τ Du νh νz

QGv18 1536 192 — — — — — 4.35 ∇8 5× 10−18 5× 10−18

QGv19 1536 192 — — — — — 5.28 ∇8 5× 10−19 5× 10−19

QGv20 1536 192 — — — — — 6.45 ∇8 5× 10−20 5× 10−20

QGg1 1024 1024 — — — — — 12.73 ∇8 5× 10−18 1.6× 10−23

QGg2 1024 128 — — — — — 6.23 ∇8 1× 10−18 1× 10−18

B768r005 768 96 861.97 107.75 0.005 0.044 0.015 4.8 ∇8 1× 10−17 1× 10−17

B768r01 768 96 430.98 53.87 0.01 0.089 0.030 4.8 ∇8 1× 10−17 1× 10−17

B768r03 768 96 143.66 17.96 0.03 0.269 0.091 4.8 ∇8 1× 10−17 1× 10−17

B768r05 768 96 86.20 10.77 0.05 0.453 0.160 4.8 ∇8 1× 10−17 1× 10−17

B768r07 768 96 61.57 7.70 0.07 0.646 0.244 4.8 ∇8 1× 10−17 1× 10−17

B768r09 768 96 47.89 5.99 0.09 0.852 0.351 4.8 ∇8 1× 10−17 1× 10−17

B768r11 768 96 39.18 4.90 0.11 1.078 0.491 4.8 ∇8 1× 10−17 1× 10−17

B1536r01lv 1536 192 492.05 61.50 0.01 0.105 0.036 6.4 ∇8 5× 10−20 5× 10−20

B1536r02lv 1536 192 246.02 30.75 0.02 0.211 0.075 6.4 ∇8 5× 10−20 5× 10−20

B1536r03lv 1536 192 164.02 20.50 0.03 0.320 0.118 6.4 ∇8 5× 10−20 5× 10−20

B1536r07lv 1536 192 70.29 8.79 0.07 0.817 0.403 6.4 ∇8 5× 10−20 5× 10−20

B1536r01 1536 192 407.52 50.94 0.01 0.104 0.036 5.3 ∇8 5× 10−19 5× 10−19

B1536r03 1536 192 135.84 16.98 0.03 0.314 0.112 5.3 ∇8 5× 10−19 5× 10−19

B1536r05 1536 192 81.50 10.18 0.05 0.553 0.204 5.3 ∇8 5× 10−19 5× 10−19

B1536r07 1536 192 58.22 7.28 0.07 0.771 0.330 5.3 ∇8 5× 10−19 5× 10−19

B1536r09 1536 192 45.28 5.66 0.09 1.041 0.511 5.3 ∇8 5× 10−19 5× 10−19

B2048r01 2048 256 456.91 57.11 0.01 0.112 0.04 6.4 ∇8 5× 10−21 5× 10−21

B2048r03 2048 256 152.30 19.04 0.03 0.343 0.131 6.4 ∇8 5× 10−21 5× 10−21

B2048r05 2048 256 91.38 11.42 0.05 0.596 0.262 6.4 ∇8 5× 10−21 5× 10−21

B2048r07 2048 256 65.27 8.16 0.07 0.896 0.474 6.4 ∇8 5× 10−21 5× 10−21

B2048r09 2048 256 50.77 6.35 0.09 1.278 0.809 6.4 ∇8 5× 10−21 5× 10−21

B2048r01n 2048 256 276.26 34.53 0.01 0.084 0.024 3.0 ∇2 5× 10−5 5× 10−5

B2048r05n 2048 256 55.25 6.91 0.05 0.425 0.124 3.0 ∇2 5× 10−5 5× 10−5

B2048r09n 2048 256 30.70 3.84 0.09 0.781 0.248 3.0 ∇2 5× 10−5 5× 10−5

B2048r11n 2048 256 25.11 3.14 0.11 0.970 0.327 3.0 ∇2 5× 10−5 5× 10−5

TABLE 1. The runs starting with QG are based on the quasigeostrophic equations and the
rest are based on the non-hydrostatic Boussinesq equations. The values of Rou, Roω, Fr
and τ in the Boussinesq runs are calculated at t= 0.

4.1. Generation of geostrophic data
In this step we run a decaying QG model to produce the geostrophic modes that are
later used in our balancing scheme. Our QG model is obtained from the Boussinesq
model by setting the ageostrophic modes to zero at each time step. Although this is
not efficient, it suffices for the generation of our initial data. As shown in figure 1,
our initial energy distribution peaks at ki= 20 to provide a wavenumber range for the
considerable upscale transfer of energy. Then the model is run until t= 5τ , based on
the initial r.m.s. vorticity. As time evolves, the spectrum fills out quickly. Subsequent
changes to its shape occur much more slowly.

According to Charney (1971), QG flow is mathematically analogous to 2D
isotropic turbulence, where the logarithmic slope of the energy spectrum in the
potential-enstrophy cascade range is predicted to be −3. Our slope, not surprisingly,
is steeper than this, as in previous studies at comparable resolutions, arguably due to
emerging coherent structures (cf. McWilliams, Weiss & Yavneh 1994). To avoid any

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

16
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.164


926 H. A. Kafiabad and P. Bartello

10–2

100 101 102

10–4

10–6

10–8

10–10

10–12

10–14

10–16

FIGURE 1. (Colour online) The spectra of total energy for QG simulations with different
viscosities: runs listed as QGv18, QGv19 and QGv20 in table 1. For QGv20, the spectra
are plotted from t= 0 to 5τ . For the other two simulations only t ∈ [3τ , 5τ ] is plotted.

rapid small-scale adjustment when inputting these QG modes into the non-hydrostatic
Boussinesq model, we decided to perform separate preliminary QG simulations for
all values of (hyper)viscosity used below.

As explained in § 4, two types of grid were employed; grid (1) is isotropic in the
Charney stretched coordinate and grid (2) is isotropic in unstretched real coordinates.
Figure 2 shows the horizontal and vertical spectra of the total energy using grid (1)
with 10243 collocation points (Run QGg1 in table 1) and grid (2) at 10242× 128 (Run
QGg2). The latter had the same hyperviscosity in all directions, whereas in the former
the vertical viscosity was reduced by a factor ( f /N)8 to keep νk8

max the same in each
direction, since we used a ∇8 operator.

Figure 2 shows the horizontal and vertical energy spectra at t= 4τ using 10242 ×
128 points on grid (2) and 10243 points on grid (1). The slope of the horizontal
spectrum is similar at large horizontal wavenumbers. Not surprisingly the spectrum
corresponding to grid (2) is lower, since the vertical dissipation is higher. The vertical
spectra of grid (1) extends to much higher vertical wavenumbers. Nonetheless, they
are reasonably parallel at low kz. Acknowledging that grid (1) resolves QG structures
isotropic in Charney stretched coordinates better, figure 2 shows that the results of
grid (2) are reliable as well for the QG flow, while at the same time not biasing the
small-scale dynamics emerging from the shallow spectra discussed below.

4.2. Generation of balanced ageostrophic modes using NNMI
Once geostrophic data are generated, they can be inserted into the balance scheme
to derive the ageostrophic modes that ensure initial evolution on the slow time scale.
Our high-order scheme and its numerical implementation are described in § 3 and
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FIGURE 2. (Colour online) Horizontal (a) and vertical (b) spectra of total energy for QG
simulations for the two different grids.

appendix A, respectively. The initialized data depend on Ro (and consequently Fr),
since the frequency, σk, in (2.2) depends on f and N. There are different ways to
calculate Ro in fully developed turbulence. Following its definition in (1.1), it can
either be derived based on mean-square vorticity or velocity. The vorticity-based
Rossby number is formulated as

Roω = 〈(∇× u(x, y, z) · ẑ)2〉1/2
f

, (4.2)

whereas the velocity-based Rossby number is given by

Rou = 〈u · u〉
1/2

fL
. (4.3)

In both definitions, 〈 〉 represents a spatial average. In (4.3), L is the characteristic
length scale, plausibly calculated by inverting the wavenumber at which the energy
spectrum peaks.

The vorticity-based Rossby number is more affected by the dynamics at small scales
than its velocity-based counterpart. Since we want to classify different rotating regimes
based on their large-scale QG-like motion, we favour the velocity-based definition and
drop the subscript. As shown below, some of our simulations show a transition to a
more shallow spectrum at larger wavenumbers. While this affects the root mean-square
vorticity, and hence Roω, its influence on Rou is much weaker. In addition, the slope
of this shallow range shows some dependence on model dissipation, which further
justifies our choice of velocity-based Rossby number. Note that, even in the QG model,
the vorticity-based Rossby number is approximately one order of magnitude larger
than Rou.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

16
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.164


928 H. A. Kafiabad and P. Bartello

Rou Roω Romax

0.01 0.10 0.81
0.03 0.31 2.016
0.09 1.04 16.49

TABLE 2. Different Rossby numbers at t= 0 on a grid of 15362 × 192.

A third definition of Rossby number is based on the extremal value of vertical
vorticity in real space, Romax = |∇ × u(x, y, z) · ẑ|max/f . This definition has been used
frequently by Dritschel and co-workers (see for instance Dritschel & Viúdez (2003),
Viúdez & Dritschel (2004) and Dritschel & McKiver (2015)). This maximum Ro is
far greater than Roω since the vertical vorticity at large Reynolds numbers displays
a close-to-exponential distribution. We derived Romax, Roω and Rou after initialization
and compared them in table 2. This considerable difference should be taken into
account when values are compared to Romax and Roω employed in other studies.
It may be argued that values of Romax in excess of unity are unrealistically large.
However, Hakim (2000) and Hoskins & Hodges (2002) have shown this not to be
the case. In fact, the former study shows relative vorticity values in excess of f in
40 % of the 500 hPa weather charts considered.

To investigate the effect of dissipation and rotation separately, we keep Ro constant
for different viscosities. In doing so a slight change of the Coriolis parameter (and
consequently a change of N) is necessary, as the peak of the energy spectra, L, and
the total energy, U2, in the initial data resulting from the QG run are slightly different
for different viscosities.

To describe the initialization we investigate the ageostrophic modal spectrum that
the Baer–Tribbia scheme produces. We begin by taking the slow modes from an
output of a QG simulation. While keeping their complex Fourier phases constant, we
scale their amplitudes to yield geostrophic modal spectra with various slopes. After
implementing the initialization scheme on each set of these data, we produce the
spectrum of the balanced ageostrophic modes. It is, of course, also interesting to see
how the balanced output changes at different Rossby numbers. Figure 3 presents the
slope of the Baer–Tribbia ageostrophic energy (EA) spectrum versus the slope of the
input geostrophic spectrum (EG).

The real quasigeostrophic data, derived from a decaying QG simulation, have a
slope of −4.2, as seen in figure 1, whose value is marked with a large circle. It
is interesting that for the true QG data, all Rossby numbers have almost the same
ageostrophic spectral slope, which is −6.8. As we shall see, in all our simulations
at different Ro, viscosities and resolution, the slope of the balanced ageostrophic
spectrum is between −6.5 and −7, that is, much steeper than the slope of the
geostrophic spectrum. We see similar results at other geostrophic slopes as well since
the entire curve falls below the y = x line, but as we vary the geostrophic spectral
slope further from the circled value, the ageostrophic slope becomes a function of the
Rossby number. Instead of using our QG simulation complex phases, we followed
the same procedure with completely random phases and obtained qualitatively similar
results. The conclusion is simply that balanced turbulence occurs in conjunction
with rather steep energy spectra, as the total energy spectrum follows that of the
less steep geostrophic modal spectrum at small scales. As such, balanced rotating
stratified turbulence cannot explain the shallow −5/3 range in subdeformation scale
atmospheric and oceanic data.
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FIGURE 3. (Colour online) The logarithmic slope of the ageostrophic energy spectrum
after the Baer–Tribbia balancing scheme as a function of the geostrophic slope. The
resolution was 15362 × 192, ν = 5× 10−20.

4.3. Boussinesq simulations
We ran the non-hydrostatic Boussinesq model using the geostrophic modes from the
QG model and the balanced ageostrophic data derived in the NNMI step as an initial
condition in a more general dynamical setting. Our goal is to establish the robustness
of this sort of balance within a non-hydrostatic Boussinesq framework. It is, of course,
well known that this will depend on the Rossby number. We therefore calculated
separate ageostrophic initial conditions for a variety of Ro. The following section
presents the results of these simulations.

5. Results
Our aim is first to examine the effect of balance by comparing initially balanced

simulations with their unbalanced counterparts. The unbalanced initial data were
generated by taking the output ageostrophic modes of the Baer–Tribbia data and
scrambling their Fourier phases. In this way the comparison is fair, since the balanced
and unbalanced ageostrophic modes share the same amplitude. Hence, all simulations
of §§ 5.1–5.3 start with the same EG, and for each Rossby number, initially balanced
and unbalanced simulations have the same EA and indeed the same spectrum. In fact,
the energetics of the two simulations are identical. After generating a set of balanced
and unbalanced data, we examine:

(i) the time series of their spatially averaged quantities such as energy;
(ii) the evolution of their energy spectra in time; and

(iii) the frequency spectrum of a flow variable at a grid point in physical space.

5.1. The time series of initially balanced and unbalanced flow
In figure 4, the total energy, which is the sum of the geostrophic and ageostrophic
energy, is depicted. At low Rossby number the energy stays relatively more constant in
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FIGURE 4. (Colour online) The time series of the total energy. The solid lines are the
initially balanced flow, dashed lines are the initially phase-scrambled flow. The plots
correspond to runs starting with B768 listed in table 1.

time, signalling that the dominant direction of transfer is towards larger scales. As Ro
increases, more forward transfer takes place and more energy is dissipated. Comparing
the initially balanced and unbalanced flows shows that, at strong rotations, both have
similar levels of energy. However, as Ro increases, more energy is dissipated when
initial conditions are unbalanced, implying that most of the forward cascade is due to
the ageostrophic modes.

Figure 5 shows the total geostrophic and ageostrophic energy of the flow as a
function of time. Noting the scale of the vertical axis of both panels, one can conclude
that the decay of ageostrophic energy is much larger than that of geostrophic energy.
This is consistent with an inverse cascade for the geostrophic modes and a forward
cascade for ageostrophic modes, as described for initially unbalanced turbulence by
Bartello (1995).

Comparing the two Rossby numbers in figure 5(a) one finds that EG of the
higher Rossby number decays faster than that of the lower Rossby number. Since
the dominant transfer of geostrophic energy by geostrophic modes alone is towards
larger scales, the faster geostrophic decay at higher Ro is presumably due to stronger
interaction with ageostrophic modes. This is in accordance with the ageostrophic time
series of these Rossby numbers in figure 5(b). The higher Rossby number has higher
EA, and it decays faster.

Both initially phase-scrambled and balanced flows have the same level of
geostrophic and ageostrophic energy at t = 0. This is not visible on the logarithmic
horizontal axis of figure 5. At Ro = 0.01, the geostrophic energies of the initially
balanced and unbalanced flow stay very close to each other during the entire
integration time. The ageostrophic energy of the initially unbalanced flow, however,
is larger at this Ro. This shows that the ageostrophic modes of the unbalanced
flow take more energy from geostrophic modes and dissipate it at small scales. In
spite of this, the total geostrophic energy is not much affected, since EA is several
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FIGURE 5. (Colour online) (a) Geostrophic energy versus time. (b) Ageostrophic energy
versus time. The solid lines are the time series of the initially balanced flow and the
dashed lines are the initially phase-scrambled flow. The simulations correspond to B768r01
and B768r09.

orders smaller than EG at Ro = 0.01. Unlike the low Rossby number, at the higher
Ro = 0.09, geostrophic energies exhibit a clear difference. Compared to Ro = 0.01,
EA is several orders larger at Ro= 0.09, implying the interaction between geostrophic
and ageostrophic modes is much stronger.

Figure 6 illustrates how balance dynamics breaks down with time in different
rotating regimes. In this figure, the total ageostrophic energy is depicted versus the
total geostrophic energy on logarithmic axes. Each solid curve with identical marker
shapes connects different Ro at the time given in the legend. The dashed lines connect
the same Rossby numbers at different times. At t= 0, the curve is a vertical line, as
we started all our simulations with the same amount of geostrophic energy. However,
for different Ro the initial ageostrophic energy produced by the Baer–Tribbia scheme
is different. More specifically, (3.7a) shows that Ak∼O(Ro), since A0,0

k = 0. Therefore,
the ageostrophic energy produced by the Baer–Tribbia scheme scales as Ro2.

As time increases, the dynamics fall into two distinct regimes. First, one which
is balanced and remains as vertical lines. Since rotation is strong in this regime,
the dominant transfer is an inverse cascade. Hence, the geostrophic energy stays
similar for different Ro, but the balanced ageostrophic energy changes. The second
regime occurs at weaker rotation and behaves as horizontal lines. The marked feature
of this regime is that different Rossby numbers seem to approach the same level
of ageostrophic energy, a characteristic we could not infer from other figures. The
geostrophic energies at different Rossby numbers are, as expected, different as Ro
is increased, since more of it is transferred to ageostrophic modes, where it is then
dissipated via a forward cascade. The other notable feature of this figure is that the
transition zone between these two dynamics gets sharper with time.
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FIGURE 6. (Colour online) The total ageostrophic energy versus total geostrophic energy
at different times for different Ro. Solid lines connect different Ro at the same time, while
dashed lines do the reverse. The plots correspond to runs starting with B768 listed in
table 1.

5.2. The energy cascade of initially balanced and unbalanced flows
The energy cascades of fast and slow modes can be the simplest indicator of balance.
In unforced simulations we speculate that the ageostrophic modal spectrum is a power
law whose amplitude decays with time (Bartello 1995). Figure 7 shows the evolution
of initially balanced and unbalanced states at t = 10τ . As explained previously, the
initially unbalanced data is generated by scrambling the phases of the ageostrophic
modes, implying their initial spectra coincide.

The geostrophic spectrum of both balanced and unbalanced flow evolves similarly in
time. However, the ageostrophic part of the energy spectrum is considerably different
for initially balanced and unbalanced data. For Ro= 0.03 (figure 7a), this difference
both in terms of value and slope is drastic, whereas for Ro = 0.09 (figure 7b)
it is much less. In the lower Rossby number case, the slope of the ageostrophic
balanced spectrum is much steeper than its unbalanced counterpart, showing that
the initialization scheme prevented the excitation of wave modes. In the higher Ro
simulation, the growth of balanced ageostrophic modes is more similar to unbalanced
modes. This is expected, as the Baer–Tribbia scheme uses perturbation techniques
based on expansions in terms of Ro. As it increases, convergence is less rapid,
presumably degrading the quality of the balance.

5.3. The frequency spectrum of initially balanced and unbalanced flows
The role of the initial balancing is perhaps more directly observed in the frequencies
of the flow variables. To derive these in the current statistically homogeneous
geometry we simply take the Fourier transform with respect to time of a flow
variable at a point in our physical-space collocation grid. The choice of variable does
not affect the result as long as both geostrophic and ageostrophic modes contribute
to it. Here, we arbitrarily chose the x component of velocity. Figure 8 shows its time
series and frequency spectra for both initially balanced and unbalanced conditions in
the simulation denoted B768r03. High-frequency fluctuations make the evolution of
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FIGURE 7. (Colour online) The upper dashed curve corresponds to the geostrophic
spectrum at t= 0, and the lower dashed curve corresponds to the ageostrophic spectrum
at t= 0. The solid curves represent the spectrum of the initially balanced data at t= 10τ ,
where the geostrophic spectrum is above the ageostrophic curve. The dash-dotted line is
the ageostrophic spectrum of initially phase-scrambled data. The corresponding simulations
are B768r03 and B768r09. (a) Ro= 0.03. (b) Ro= 0.09.

unbalanced initial data clearly different from their balanced counterpart. However, the
slow part of the flow evolves similarly at early times. Later, even the slowly varying
part of the motion displays differences between initially balanced and unbalanced
simulations.

To take the Fourier transform we chose a time interval that satisfies two conditions.
First, the beginning is after t= τ , discarding early non-stationary effects. Second, the
function at its two ends had approximately the same value. The interval is marked by
two thick vertical lines in figure 8(a). Its Fourier transform is portrayed on figure 8(b).

Equation (2.2) shows that the linear frequencies of the ageostrophic modes lie
between the Coriolis parameter, f , and the Brunt–Väisälä frequency, N. These
parameters are shown with vertical lines in figure 8(b). Unsurprisingly, in this range
the amplitude of balanced flow is less than that of the unbalanced flow.

To understand the effect of initial balancing in different rotating regimes better, the
frequency spectra at four different values of Ro are shown in figure 9. Similar to the
those in figure 8, the most significant feature is the difference between the amplitudes
of balanced and unbalanced flows in the band of inertia-gravity frequencies. Here we
see a jump in amplitude of the unbalanced system at low Rossby numbers. The jump
diminishes as the Rossby number increases. Note that the wave band moves to the
left as Ro increases, since we decrease both N and f . However, the logarithmic width
of the band does not change, as we keep N/f constant. Not surprisingly, we see that
reducing the frequency disparity between fast and slow modes reduces the difference
in amplitude between initially balanced and unbalanced simulations, which makes the
interaction between geostrophic and ageostrophic modes stronger.

‘Subinertial’ frequencies (less than f ) correspond to the slow part of the dynamics.
At low Rossby numbers it is almost the same for balanced and unbalanced flow,
indicating they are dominated by the geostrophic modes, which are only weakly
coupled to the ageostrophic modes. As Ro is increased, even the slowly varying part
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FIGURE 8. (Colour online) (a) The time series of u(x0, y0, z0, t) = u0(t). The thicker
smooth line shows the evolution of the balanced condition in time. The thinner fluctuating
line shows the evolution of initially phase-scrambled data. (b) The Fourier transform of
u0(t) with respect to time, for initially unbalanced and balanced conditions. The dashed
vertical line represents the Coriolis parameter, f , and the solid vertical line shows the
Brunt–Väisälä frequency, N.

of the flow shows differences, a fact that was also seen in the time series of figure 8.
This, together with decreasing differences in amplitude of the wave band, makes
fast and slow dynamics less distinct in the high-Ro regime. Although this behaviour
was expected and predicted by previous studies employing two-time-scale approaches,
here we can quantify it.

5.4. The role of wave frequency in the breakdown of balance
After studying the difference between the dynamics of initially balanced and
unbalanced flow, henceforth we focus on initially balanced flow and try to analyse
its breakdown as a function of Ro and Fr, while also exploring sensitivity to the
dissipation.

To investigate the role of rotation, in figure 10 we vary Ro. In each panel the
geostrophic and ageostrophic parts of the energy are portrayed together. Since the
large-scale dynamics are close to QG at low Rossby numbers, EG spectra are well
above EA. However, this difference is reduced as rotation becomes weaker. Even in
the initial condition (dashed lines) the difference between the two spectra tapers off
with increasing Rossby number, which is consistent with the scaling of ageostrophic
energy (EA ∼ Ro2).

For all the plots in figure 10, the slope of EA is steeper than EG at t=0, as expected
from figure 3. As time increases, the slope of EG stays relatively insensitive to Ro
at this resolution. By contrast, the ageostrophic slope changes substantially with Ro
number at later times.

When rotation is as strong as Ro=0.01 in figure 10(a) the slope of the ageostrophic
spectrum remains steeper than the geostrophic slope. This is consistent with the
maintenance of balance, as unbalanced wave modes stay weaker than the higher-order
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FIGURE 9. (Colour online) The time spectrum of u(x0, y0, , z0, t) for four different
Rossby numbers in the runs of B768r005, B768r01, B768r03 and B768r05 (a) Ro= 0.005.
(b) Ro = 0.01. (c) Ro = 0.03. (d) Ro = 0.05. The dashed vertical line represents the
Coriolis parameter, f , and the solid vertical line shows Brunt–Väisälä frequency, N. The
time spectrum of phase-scrambled initial condition is above the balanced initial condition
in Rossby numbers.

corrections to geostrophic flow. As Ro increases, the ageostrophic slope quickly
becomes more shallow. This can lead to a crossing of the two spectra when rotation
is weak enough. This crossover may suggest strong interaction between geostrophic
and ageostrophic modes. For instance, when Ro is increased to 0.07 in figure 10(c),
EA becomes larger than EG above a certain wavenumber. However, these results are
derived using grid (2) defined in § 4; we performed similar simulations on grid (1)
and found that imbalance grew even more quickly. This confirms that the generation
of balance is a real feature of the flow, and is not imposed by our choice of
numerical grid.

The geostrophic energy at a higher resolution (or equivalently higher Re) and
at an earlier time is presented in figure 11. Unlike figure 10(c), the geostrophic
spectrum develops a shallow tail. The geostrophic shallow range, however, always
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FIGURE 10. (Colour online) The geostrophic (top curves) and ageostrophics (lower curves)
contributions to the energy spectrum for different Rossby numbers and at different times.
(a) Ro= 0.01. (b) Ro= 0.03. (c) Ro= 0.07. The dashed lines correspond to t= 0, i.e. after
Baer–Tribbia initialization and before Boussinesq simulation. The solid curves represent
later times, namely t = 5τ , t = 10τ , t = 15τ and t = 20τ . The corresponding runs are
B1536r01lv, B1536r03lv and B1536r07lv.
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FIGURE 11. (Colour online) EG and EA spectra at t = τ for B1536r07 and B2048r07,
whose initial Rossby number was 0.07.

occurs at wavenumbers larger than the onset of the ageostrophic shallow spectrum.
If the resolved wavenumber range is sufficient, we expect both EG and EA to exhibit
parallel slopes of −5/3 at very small scales, as in Bartello (2010). The EA spectrum
in this range is twice as large as EG in amplitude since there are two ageostrophic
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FIGURE 12. (Colour online) (a) Horizontally integrated EG as a function of vertical
wavenumber, for different Ro. (b) Vertically integrated EG as a function of horizontal
wavenumber, for different Ro. All the spectra are derived at t = 10τ . Dashed lines in
both plots have the slope of −3. The plots correspond to B1536r01, B1536r03, B1536r05,
B1536r07 and B1536r09.

modes corresponding to ±σk (cf. (2.2) and (2.3)). At these small scales the turbulence
becomes more 3D and closer to isotropic, with our linear decomposition losing its
meaning. Similar results were reported by Deusebio et al. (2013) in unbalanced
turbulence. Even in the analysis of atmospheric data, Callies, Ferrari & Bühler (2014)
observed that the tail of the geostrophic energy spectrum flattens out at smaller scales.
They expressed that this flattening ‘is likely an artifact, because at these scales the
geostrophic component makes up a small fraction of the observed signal’. It should
also be noted that in our simulations the shallow tails decay in amplitude and are
eventually suppressed as time advances, the turbulence decays, and Ro decreases.

Figure 12 portrays the geostrophic part of the energy spectrum for different
rotations. In figure 12(a) horizontal spectra are shown, while figure 12(b) displays
vertical spectra. It reveals that the geostrophic energy at different Ro displays very
similar spectra over this range. However, it was shown in figure 11 that, at larger
Re and at early times, the geostrophic spectrum can develop a shallow tail. The
slope of the vertical geostrophic spectra is very close to −3, as predicted by the
potential-enstrophy cascade phenomenology, whereas the slope of the horizontal
spectra is somewhat steeper. As discussed in § 4.1, the steeper spectra are often
attributed to coherent vorticity structures.

Unlike EG(kh), EA(kh) is highly affected by the strength of rotation and stratification.
Figure 13 shows this dependence. Figure 13(a) presents EA spectra for different
Rossby numbers. They are scaled by the instantaneous Ro(t)2, as justified by (3.7a).
The utility of this scaling appears in the ageostrophic energy spectra of large scales
in figure 13, where those at different Rossby numbers collapse to the same curve.
Clearly, the balanced curve is the steep envelope, with individual simulations departing
from it at wavenumbers that decrease as Ro increases.

Similar to the observations made of figure 10, in figure 13 the spectral slopes
at this fixed time become shallower as Ro increases. This difference can better be
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FIGURE 13. (Colour online) (a) EA spectrum at different Ro. (b) The slope of EA
corresponding to (a). The same simulations as those of figure 12 were used.

seen in figure 13(b), where the slopes of the ageostrophic spectra are depicted. The
slopes are derived by calculating 1(log(EA))/1(log(kh)) (1 denoting forward Euler
differencing). The flat range in figure 10(b) corresponds to the power-law range of
spectra in figure 10(a), and the local minima portray the kinks in the ageostrophic
spectra.

At the lowest Rossby number, Ro= 0.01, there is a clear power-law range with a
slope between [−7, −6], similar to the results of figure 3. At low Rossby numbers,
there is a well-pronounced local minimum that indicates the kink in the spectrum.
Another distinguishing feature of the Ro= 0.01 simulation is the fluctuation in slopes,
which are greater than simulations at higher Rossby numbers. To understand their
cause we should recall that, in figure 13(a), EA is scaled with Ro2. The unscaled
spectrum of Ro= 0.01 is below those of the higher Rossby numbers and its slope is
steeper. Therefore, the ageostrophic energy is very small at large wavenumbers, where
its value is close to machine round-off error. This is corroborated by the fact that the
slope gets noisier as we go to smaller scales. As Ro is increased the kink moves to
larger scales. This is best explained by the onset of spontaneous imbalance at larger
scales at weaker rotations. When rotation is weak enough, the kink disappears and
the slope asymptotes to a constant that is close to −2. Other simulations with lower
hyperviscosity coefficients have more shallow slopes, approaching −5/3, but whose
dissipation was not judged to be sufficiently well resolved to be presented here.

In the limits of Ro→ 0 and Ro→∞, geostrophic and 3D turbulence are recovered,
respectively. In these regimes, there are inertial ranges with universal slopes. The
appearance of a power-law range in the spectra of figure 10 gives rise to the question
of whether there is a similar universal inertial range. To demonstrate this it would
be necessary to show that its slope is not affected by small-scale dissipation. In
fact, for the resolutions and Ro considered in this study, there is a dependence on
the viscosity and diffusion coefficients, even outside of the dissipation range, and
especially for midrange Rossby numbers. Despite this fact, the general characteristics
of figure 13, such as the flattening of spectra at increased Ro, were observed at four
other hyperviscosity coefficients.
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FIGURE 14. (Colour online) The geostrophic (a) and ageostrophic (b) part of energy
spectrum for simulations with Laplacian viscosity at t = 6τ . The ageostrophic energy
spectra are scaled with Ro2 as in figure 13. The corresponding runs are B2028r01n,
B2028r05n, B2028r09n and B2028r11n.

To verify these results using hyperviscosity we performed several simulations with
Laplacian viscosity and diffusion at the higher resolution of 20482 × 256 (figure 14).
Similar to the geostrophic spectra of figure 12, in figure 14 there is not much
variation in the geostrophic spectra at the different Rossby numbers. Similarities can
also be seen in the ageostrophic spectra of figures 13 and 14 as well. As before,
we see in figure 14 that the spectrum of ageostrophic energy becomes more shallow
as Rossby number is increased. The slope of the ageostrophic modes in the lowest
Rossby number simulation in figure 14 is between −6 and −7, similar to the rapidly
rotating cases using hyperviscosity.

For a better understanding of the dynamics, examining the energy fluxes and
transfers in tandem with the energy spectra is very helpful. Figure 15 depicts the net
transfer from the geostrophic to ageostrophic modes through nonlinear interactions
shown in (2.6). At low Rossby number this transfer is almost zero, showing that the
exchange of energy between geostrophic and ageostrophic modes is very small. As
rotation weakens, the transfer between geostrophic and ageostrophic modes becomes
larger. This exchange is higher at early times and it gets smaller with time. At
the higher Ro, the transfer is dominantly from geostrophic to ageostrophic modes,
which is consistent with the energy plots of figure 5. In figure 5, the level of EA
increases at the beginning. Given there is no forcing, this increase must come from
the geostrophic modal energy.

The total energy flux, which is the sum of ΠG(kh) and ΠA(kh) defined in (2.7), is
plotted in figure 16. At Ro = 0.01 it follows the QG scenario. There is a negative
trough in the large scales, implying an inverse cascade of energy. As the Rossby
number increases, a positive-flux range emerges at scales below the peak in the
spectrum that signals a forward cascade of energy in these flows. It is stronger at
early times and becomes weaker in time as Ro decreases.

To provide more insight on the role of rotation and stratification on the breakdown
of balance, the local Rossby number is portrayed in 3D in figure 17. It is derived
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FIGURE 15. (Colour online) The total energy transferred from the geostrophic to
ageostrophic modes via nonlinear interactions (TG→A) versus time for the runs: B2048r01,
B2048r03 and B2048r07.
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FIGURE 16. (Colour online) The energy flux spectra for B2048r01, B2048r05 and
B2048r07 at different Ro. (a) Ro = 0.01, (b) Ro = 0.05, (c) Ro = 0.07. The dashed
lines (blue online) are the flux spectra averaged over [0, 0.2τ ], the thick solid lines (red
online) averaged over [0.2τ , 0.4τ ] and the thin solid lines (green online) averaged over
[1.6τ , 1.8τ ].

by scaling the vertical vorticity by the Coriolis parameter, i.e. Ro(x, y, z, t) = (∇ ×
u(x, y, z, t) · ẑ)/f . To better show the vertical structure, we scale the vertical axis by
N/f . The transparency curve in the upper left corner of the figure is designed such that
the points with large absolute values are opaque and visible, whereas lower absolute
magnitudes of vorticity are almost transparent. This technique emphasizes the intense
structures of the flow.

The coherent structures of QG flow have been extensively studied in the past,
for example in McWilliams et al. (1994) and McWilliams, Weiss & Yavneh (1999).
The results are similar to the vortex structures visible in figure 17(a,c) (low Ro).
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FIGURE 17. (Colour online) Local Rossby number, Ro(x, y, z)= (∇ × u(x, y, z) · ẑ)/f , in
3D space at t = 5τ (a,b) and t = 20τ (c,d). The initial Ro is set to 0.01 in (a,c) and
0.09 in (b,d). Values are displayed by assigning a colour and a degree of transparency
to them. There are two horizontal bars on the top left corner showing the transparency
(upper curve) and the hue (lower colourbar) of grid values as a function of Ro(x, y, z).

This is quite expected as the strongly rotating flow remains dynamically close to QG,
especially at larger scales, where coherent vortex structures appear. As explained in
a number of previous studies, there are two important mechanisms in the formation
and evolution of vortices in geostrophic flows: the merger of two like-sign vortices
(Melander, Zabusky & McWilliams 1988; Polvani, Zabusky & Flierl 1989) and
vertical alignment (McWilliams 1989; Polvani 1991). Due to the weaker rotation,
these structures are observed less at Ro= 0.09. Figure 17 also manifest the difference
in slope of the energy spectrum at low and high Rossby numbers. At Ro=0.01, where
the energy spectrum is steeper, the vortex structures have distinct boundaries, whereas
at Ro = 0.09 the vortex cores are smaller and more diffuse. There is also stronger
mixing at the higher Ro due to the shallower spectrum. The coherent structures make
the flow more anisotropic at low Rossby numbers. Hence, we see that the slope of
the energy spectrum is steeper than predicted by isotropic theory. However, at the
higher Ro of figure 17, the flow looks more isotropic. Hence, the energy spectra of
weakly rotating flows are closer to the isotropic slope of −5/3.
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FIGURE 18. (Colour online) The balanced and unbalanced part of the ageostrophic energy
spectrum. Geostrophic energy is shown for reference. The initial Ro values are: (a) Ro=
0.01, (b) Ro= 0.02 and (c) Ro= 0.07.

5.5. The persistence of balance
In this section, we try to examine the spontaneous imbalance generated in initially
balanced flow as time grows. To that end we take the output of the Boussinesq
simulation after t= 10τ and implement Baer–Tribbia initialization again to derive the
balanced part of the motion. Then, we subtract the balanced field from the total field
to obtain the unbalanced part of the motion.

Figure 18 shows the balanced and unbalanced, as well as the total ageostrophic
spectrum. For the lowest Ro, the rotation is very strong, and the flow stays in
balance. For this reason the balanced and total spectra lie on top of each other and
the unbalanced spectrum is negligibly small. For the middle Ro, a kink emerges in the
total ageostrophic spectrum. The balanced spectrum retains its steep slope. However,
the shallow unbalanced part grows in amplitude and intersects the balanced spectrum.
Hence, the total ageostrophic spectrum, which is the sum of the two, displays a kink
near their intersection. At the highest Ro, the unbalanced spectrum grows further in
magnitude and the crossover wavenumber moves to larger scales. Since a shallow
range of the total ageostrophic spectrum emerges at larger scales, we can see that the
geostrophic and ageostrophic spectra intersect as well.

To see how the onset of breakdown scales with Ro, we plotted the wavenumber at
which balanced and unbalanced ageostrophic spectra cross (kh,cross) as a function of Ro
in figure 19. This was extracted for a number of Ro and at two different resolutions.
It clearly shows that kh,cross scales with Ro−2, just as the total balanced ageostrophic
energy.

Considering figure 18 along with figure 19, we can elucidate the mechanism
of balance breakdown. The ageostrophic component consists of a balanced and
unbalanced part

Ak = Abalanced
k + Aunbalanced

k . (5.1)

The balanced spectrum has a steep slope (close to −6) while the unbalanced slope
is shallow. We speculate that the unbalanced slope is close to −5/3, given sufficient
resolution, or equivalently high enough Reynolds numbers. As rotation weakens, the
shallow unbalanced part of the spectrum increases in amplitude and hence extends to
larger scales. The kink therefore appears at lower wavenumbers. This shallow part of
the ageostrophic energy spectrum may intersect the steeper geostrophic spectrum and
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FIGURE 19. (Colour online) The wavenumber at which the balanced and unbalanced part
of the ageostrophic energy spectrum cross versus (vorticity-based) Ro.

can hardly be neglected in the dynamics at smaller scales. Therefore, the total energy
consists of a steeper spectrum at large scales, dominated by geostrophic dynamics, and
a shallow spectrum at small scales, dominated by unbalanced ageostrophic dynamics.
This is consistent with atmospheric data (Gage 1979) and the previous unbalanced
simulations of Bartello (2010). Further below this intersection scale, geostrophic
modes also transition to a shallow spectrum as the linear decomposition loses its
meaning.

The scaling of figure 19 can be explained by considering (3.5), where the
ageostrophic modes are expanded in terms of Ro and kept to first order. Hence,
it can be concluded that Abalanced/Aunbalanced = O(Ro−1) in our initialization scheme.
Therefore, the balanced fraction of the ageostrophic energy is O(Ro−2) larger than the
unbalanced part. Hence, the change in the crossover wavenumber is expected to be
proportional to Ro−2 as well. A similar argument can be made for the wavenumber
at which geostrophic and ageostrophic spectra cross. It should be noted that other
definitions of balance (at higher order, for example) produce different scalings for
Abalanced/Aunbalanced at large Ro.

A visualization of total, balanced and unbalanced parts of the vertical vorticity is
displayed in figure 20. The steep spectra of balanced ageostrophic modes and the
shallow spectra of unbalanced modes are reflected in the real-space plots of panels
20(b) and 20(c), respectively. The unbalanced part of the ageostrophic modes appears
as small-scale structures surrounding the larger-scale vortices, whereas the balanced
part embodies smooth vortical cores similar in scale to those of the total flow. These
ageostrophic centres do not necessarily have the same signs as those of the total flow,
which are predominantly geostrophic. Note that in figure 20(c) there are also some
large-scale extrema corresponding to those of the total flow. This could be due to
the shortcoming of our balance model, which is only second order in Ro. It may be
that the vortical cores appearing there are corrections of even higher order to balance.
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FIGURE 20. (Colour online) Horizontal slices of vertical vorticity (ζ =∇× u(x, y, z) · ẑ)
for (a) the total flow, ζtotal, (b) the balanced ageostrophic modes, ζbalanced ageo, and (c) the
unbalanced ageostrophic modes, ζunbalanced ageo. The total flow has the initial Rossby number
of 0.035.

10−1

10−7

10−6

10−5

10−4

10−3

10−2

Unbalanced

Balanced

FIGURE 21. (Colour online) The unbalanced and balanced part of ageostrophic energy as
a function of (vorticity-based) Ro at t= 10τ .

An example of a dipole can be seen in the lower left part of the domain. There is
a strong bundle of waves in the unbalanced panel travelling with this dipole. This
is similar to the slow-moving inertia-gravity wave packets formed along dipoles in
the studies of Snyder et al. (2007) and Viúdez (2007, 2008). Note that these studies
considered isolated dipoles, while we are considering a large distribution of vortices
in homogeneous turbulence.

Figure 21 presents the balanced and unbalance ageostrophic energy summed
over all wavenumbers as a function of Ro. According to (3.7a), when the flow is
balanced we expect Ak∼O(Ro). Hence, the ageostrophic energy asymptotes to Ro2 as
Ro→ 0. Figure 21 also shows that the unbalanced ageostrophic energy increases faster
as rotation gets weak. The unbalanced ageostrophic energy scales as Roα, with α
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between 5 and 6, whereas the balanced energy scales as Ro2 at low Ro, and becomes
even weaker at larger Ro. At small Rossby numbers, different balance definitions
should asymptote to the same behaviour as in figure 21. However, as Ro increases
the scaling of unbalanced ageostrophic energy is subject to the error in the definition
of balance.

6. Conclusion
We have described the evolution of nonlinearly balanced initial conditions under the

non-hydrostatic Boussinesq equations. To that end, we used the Baer–Tribbia scheme,
which is a nonlinear normal mode initialization method enforcing balance at O(Ro2)
by calculating ageostrophic modes that eliminate fast time derivatives, at least initially.

We investigated how initially balanced and energetically equivalent unbalanced
flows differ in their evolution in time and modal interplay. At strong rotation, the
time series of large-scale average quantities of initially balanced and unbalanced
simulations do not show large differences. Nevertheless, there is a considerable
difference in the frequency spectra over the range of their linear inertia-gravity wave
frequencies. This shows that the initialization can lower the amplitude of these wave
modes while not substantially affecting slower subinertial frequencies associated with
the large-scale quasigeostrophic flow. Of course the effectiveness of this procedure is
reduced as Ro increases.

The initialization produces an ageostrophic spectrum that is much steeper than the
(already steep) geostrophic spectrum. Hence, one can conclude that balance occurs
in conjunction with steep spectra and that balance dynamics cannot explain the
observed subdeformation scale −5/3 spectra in the atmosphere and ocean. If Ro is
small enough, ageostrophic modes maintain their steep balanced spectrum at a given
resolution and over a given integration period. As Ro is increased, a shallow tail
develops in the ageostrophic spectrum after a short time, which we have identified
as signalling the growth of unbalanced dynamics. The onset of this unbalanced
range occurs at lower wavenumbers when Ro is increased further. It also becomes
increasingly shallow, and asymptotes to a slope consistent with k−5/3, if the Reynolds
number is high enough. In fact, we found the slope of the shallow range to be
somewhat sensitive to viscosity and diffusion at our resolutions.

Our results for strong rotation confirm and complete the picture drawn by Dritschel
& McKiver (2015) for the maintenance of balance. At very small Rossby numbers,
the ageostrophic spectrum stays balanced and steep in the resolutions considered
in their study. However, our numerous simulations at different Ro and Re hint that
any initially balanced rotating stratified flow develops an unbalanced shallow tail at
sufficiently large times if the resolution is large enough (or equivalently dissipation is
weak enough) to permit it. This is indeed an open question that can be addressed with
higher-resolution simulations. Even if future investigations show the existence of a
shallow tail at very small Ro, it will clearly be at very small scales. Considering that
its energy will then be very low, unbalanced energy is much smaller than balanced
energy, once again consistent with Dritschel & McKiver (2015).

The shallow spectrum resulting from the growth of unbalanced ageostrophic modes
is clearly consistent with the atmospheric data (Gage & Nastrom 1986). However,
this similarity should be considered within the limitation of our idealized boundary
conditions. Internal and external boundaries have been shown to play an important
role in the breakdown of balance. Nevertheless, characteristics of unbalanced modes
generated spontaneously can be analysed in a periodic configuration such as ours, as
a first step in understanding at least the internal dynamics far from boundaries.
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When Ro is large enough such that the ageostrophic spectrum admits an unbalanced
shallow range, the corresponding frequency spectrum does not exhibit large peaks in
the frequency band between N and f . This signals that the developing unbalanced part
of the dynamics is not composed of quasilinear high-frequency inertia-gravity waves,
but a transition to a more general form of turbulence involving both stratification and
rotation.
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Appendix A. Numerical implementation of the Baer–Tribbia scheme

To describe our algorithm succinctly, we use the notation/terminology of linear
and nonlinear operators in phase space interchangeably with the vector form modal
variables. The evolution of the state variable X can be expressed by

∂X
∂t
= iLX+N (X). (A 1)

This equation is the equivalent of (2.1), where all the linear terms are collected in
the matrix, L, and the quadratic terms are presented with N (X), a nonlinear vector
function of the state vector X.

Using the pseudospectral technique, N (X) can be efficiently computed by
transforming the modal variables to real space, carrying the multiplication for physical
variables and then transforming the multiplied terms back to spectral space. The
operator N (X) can take any other vector with the same dimension as X and output
the convolution sum fast and efficiently. In addition to this operator, we consider the
following linear projections

ζ = G X, η=A X, X=P−1(ζ , η), (A 2a−c)

where G and A are the projections on geostrophic and ageostrophic manifolds. P−1

does the inverse transform, by taking the projected geostrophic and ageostrophic
components and outputting the original state variable. Note that all operators in (A 2)
are linear, hence easy to compute.

Using these we derive the nonlinear terms in (2.4) when ageostrophic modes are
set to zero

η̂=Φ(G, 0)=A N (P−1(G X, 0)), ζ̂ =Ψ (G, 0)= G N (P−1(G X, 0)). (A 3a,b)

In the next step, all coefficients in (3.8) are derived as follows

Ψ
0,0

k = η̂, (A 4)

Ψ
1,0

k =A N (P−1(G X, η̂))−A N (P−1(0, η̂))−A N (P−1(G X, 0)), (A 5)
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Ψ
0,1

k =
∑
kp+q

ψGG

(
Gp +

∑
p=m+n

φGGGmGn

)(
Gq +

∑
q=r+s

φGGGrGs

)

−
∑

k=p+q

ψGGGpGq −
∑

k=p+q

ψGG

( ∑
p=m+n

φGGGmGn

)(∑
q=r+s

φGGGrGs

)
= A N (P−1(ζ̂ + G X, 0))−A N (P−1(G X, 0))−A N (P−1(ζ̂ , 0)). (A 6)
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