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In this paper we are interested in a sharp result about the global existence and
blowup of solutions to a class of pseudo-parabolic equations. First, we represent a
unique local weak solution in a new integral form that does not depend on any
semigroup. Second, with the help of the Nehari manifold related to the stationary
equation, we separate the whole space into two components S+ and S− via a new
method, then a sufficient and necessary condition under which the weak solution
blows up is established, that is, a weak solution blows up at a finite time if and only
if the initial data belongs to S−. Furthermore, we study the decay behaviour of both
the solution and the energy functional, and the decay ratios are given specifically.
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1. Introduction

The aim of this paper is to study the initial boundary-value problem (IBVP) for a
class of pseudo-parabolic equations

ut − ∆ut − ∆u + u = |u|p−2u, (x, t) ∈ Ω × (0,∞),
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

⎫⎪⎬
⎪⎭ (1.1)

where p ∈ (2, 2∗) and either Ω = R
N (N � 3) or Ω is a smooth bounded domain

in R
N . Here, 2∗ = 2N/(N − 2) for N � 3. When Ω = R

N , the boundary condition
that u(x, t) = 0 for all (x, t) ∈ ∂Ω × (0,∞) is ineffective.

In physics, (1.1) with a general nonlinear term f(u) describes a variety of physical
phenomena such as the unidirectional propagation of nonlinear, dispersive, long
waves [1] and the aggregation of populations [18]. Moreover, (1.1) is often used
in the analysis of non-stationary processes in semiconductors in the presence of
sources, where ∆ut − ut stands for the free electron density rate, ∆u stands for
the linear dissipation of free charge current, while |u|p−1u describes a source of free
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electron current [11]. Furthermore, (1.1) is also regarded as a Sobolev-type equation
or a Sobolev–Galpern-type equation, which were introduced in [16].

Since the work of Ting [22, 23], pseudo-parabolic equations have been paid a
large amount of attention by mathematicians; see [1, 2, 4–7, 12, 14, 17, 20, 21, 25,
26] and the references therein. Among this literature, Colton [5] studied pseudo-
parabolic equations in one space variable. He constructed the Riemann function for
the pseudo-parabolic equation and reduced the solution of the first IBVP for the
pseudo-parabolic equation to that of a one-dimensional Volterra integral equation.
Di Benedetto and Pierre established a comparison theorem for (1.1) in [7], and
in [2] Cao et al . obtained the critical global existence exponent and the critical
Fujita exponent for (1.1) by way of the integral representation and the contraction
mapping principle. It should be pointed out that the semigroup theory was used
in [2] to give the integral representation. In this paper we represent the weak solution
to IBVP (1.1) in a different integral form that does not contain any semigroup.

Furthermore, as in the study of the parabolic equation, the blowup of solutions to
pseudo-parabolic equations has also been extensively investigated; see, for example,
[2,12,14,17,25]. For example, it can be derived from [14, theorem II] that for IBVP
(1.1) the negative initial energy (J(u0) < 0) is a sufficient condition for finite time
blowup of the solution, and in [17] Meyvaci obtained sufficient conditions for the
blowup of solutions of the IBVP for a class of nonlinear pseudo-parabolic equations
involving a nonlinear convective term. He proved that if the initial data u0 has
a large norm in some suitable space, then the solution blows up at a finite time.
Moreover, the establishment of a sharp criteria for the blowup and global existence
of weak solutions to IBVP (1.1) is also followed with interest. To achieve such a
criterion, it is well known that the Nehari functional I, the energy functional J and
the ground state energy d of the stationary equation related to IBVP (1.1) play an
important role, where the quantities I, J and d will be explained concretely in the
latter part of this section. Recently, when Ω is a smooth bounded domain in R

N

and J(u0) � d, Xu and Su [25] achieved a criterion for the global existence and
finite time blowup for (1.1) via the potential wells method introduced by Payne
and Sattinger [19]. Under the assumption that J(u0) � d, they proved that if
I(u0) > 0, then the solution is global and if I(u0) < 0, then the solution blows up
at a finite time. In view of the above conclusion derived in [25], a natural question
for IBVP (1.1) is whether or not the condition I(u0) < 0 is still sufficient for finite
time blowup when J(u0) > d. The same question also arises in the study of the
parabolic IBVP (see [10, § 1, pp. 963–964])

ut − ∆u = |u|p−2u, (x, t) ∈ Ω × (0,∞),
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

⎫⎪⎬
⎪⎭ (1.2)

where p ∈ (2, 2∗) and Ω is a smooth bounded domain in R
N , and recently Dickstein

et al . [8] proved that the answer is negative and there exist solutions converging to
any given steady state, with initial Nehari energy I(u0) either negative or positive.
In other words, they proved that I(u0) < 0 is not a sufficient condition for finite time
blowup of solutions to parabolic IBVP (1.2). However, as for the pseudo-parabolic
case, in this paper we will prove that the answer to the above question is positive,
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that is, I(u0) < 0 is a sufficient condition for finite time blowup of solutions to
IBVP (1.1) whether Ω is smooth bounded or is equal to R

N (see theorems 5.1
and 1.4). This surprising phenomena indicates again the difference between the
pseudo-parabolic and parabolic equations. Moreover, to the best of our knowledge,
when J(u0) > d the conclusions about the global existence and blowup of weak
solutions to IBVP (1.1) are very few, and there is no sharp criterion for the global
existence and blowup of weak solutions without the assumption that J(u0) � d.

In order to state our main results specifically, we shall introduce some definitions
and notation as follows.

Throughout this paper, we use ‖·‖ and (·, ·) as the norm and the associated inner
product on H1

0 (Ω), respectively, that is

‖u‖ =
( ∫

Ω

[|∇u|2 + u2]
)1/2

and (u, v) =
∫

Ω

[∇u · ∇v + uv]

for u, v ∈ H1
0 (Ω). Note that H1

0 (RN ) = H1(RN ). Then we also use H1
0 (Ω) as the

working space for the case in which Ω = R
N . Moreover, we denote by Sp the best

Sobolev constant for the embedding H1
0 (Ω) ↪→ Lp(Ω) for p ∈ [2, 2∗], that is,

Sp = inf
u∈H1

0 (Ω)\{0}

‖u‖2

|u|2p
= inf

u∈H1
0 (Ω), |u|p=1

‖u‖2, (1.3)

where | · |p stands for the norm on Lp(Ω), and we use C as a different constant on
different lines.

First we give the definition of a weak solution to IBVP (1.1).

Definition 1.1. A function u ∈ L2
loc([0, T ), H1

0 (Ω)) with u′ ∈ L2
loc([0, T ), H1

0 (Ω))
is a weak solution of IBVP (1.1) on Ω × [0, T ) provided that

(i) for almost every (a.e.) t ∈ [0, T ), the identity

(u′(t), v) + (u(t), v) =
∫

Ω

|u(t)|p−2u(t)v, v ∈ H1
0 (Ω),

holds; and

(ii) u(0) = u0.

Since u ∈ L2
loc([0, T ), H1

0 (Ω)) and u′ ∈ L2
loc([0, T ), H1

0 (Ω)), we have that u ∈
H1

loc((0, T ), H1
0 (Ω)) [3, definition 1.4.33, p. 13]. According to [3, corollary 1.4.36,

p. 14], we have that u ∈ C([0, T ), H1
0 (Ω)). Then u is continuous at 0 and defini-

tion 1.1(ii) is valid. Next we will define the maximal existence time T = T (u) for a
weak solution u of IBVP (1.1).

Definition 1.2.

(i) If u is a weak solution of IBVP (1.1) on Ω×[0,∞), then we define the maximal
existence time T = ∞, that is, u is a global solution.

(ii) If there exists a T0 ∈ (0,∞) such that u is a weak solution of IBVP (1.1) on
Ω × [0, T0) but, for any δ > 0, u cannot be expanded into a weak solution on
Ω × [0, T0 + δ), then we define the maximal existence time T = T0.
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Our first result is the following theorem.

Theorem 1.3. Assume that u0 ∈ H1
0 (Ω). Then IBVP (1.1) admits a unique weak

solution u ∈ C1([0, T ), H1
0 (Ω)), where T is its maximal existence time, and u can

be represented in the integral form

u(t) = u0 +
∫ t

0
[(I − ∆)−1|u(s)|p−2u(s) − u(s)] ds, t ∈ [0, T ),

or

u(t) = e−tu0 +
∫ t

0
e−(t−s)(I − ∆)−1|u(s)|p−2u(s) ds, t ∈ [0, T ).

Moreover, if T < ∞, then lim supt→T − ‖u(t)‖ = ∞.

Let u = u(x, t; u0) be the unique weak solution to IBVP (1.1) obtained by
theorem 1.3 whose maximal existence time is T . Then, as a consequence of u ∈
C1([0, T ), H1

0 (Ω)), definition 1.1(i) holds for all t ∈ [0, T ) and v ∈ H1
0 (Ω). More-

over, we can claim that if u0 �= 0, then u(t) �= 0 for all t ∈ [0, T ) (see remark 2.4).
Therefore, in this paper, we assume that u0 �= 0.

To account for our sharp result about the global existence and the blowup phe-
nomenon of weak solutions to IBVP (1.1), we also introduce the following function-
als and sets. It is well known that the energy functional related to the stationary
equation of IBVP (1.1) is

J(u) = 1
2‖u‖2 − 1

p
|u|pp, u ∈ H1

0 (Ω). (1.4)

We introduce the set
K = {u ∈ H1

0 (Ω) : J ′(u) = 0},

i.e. K is a set consisting of all stationary solutions of (1.1), and, for c ∈ R,

Kc = {u ∈ K : J(u) = c}.

Let
I(u) = 〈J ′(u), u〉 = ‖u‖2 − |u|pp, u ∈ H1

0 (Ω).

Then the Nehari manifold associated with the steady state of IBVP (1.1) is

N = {u ∈ H1
0 (Ω) \ {0} : I(u) = 0}.

We also define two sets N± related to the Nehari manifold N as follows:

N+ = {u ∈ H1
0 (Ω) : I(u) > 0}, N− = {u ∈ H1

0 (Ω) : I(u) < 0}.

Then the whole space is the union of N , N± and {0},

H1
0 (Ω) = N ∪ N+ ∪ N− ∪ {0}, (1.5)

and N− will be proved to be an invariant set in § 5, that is, if u0 ∈ N−, then
u(t) ∈ N− for all t ∈ [0, T ).
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Since, for all u ∈ H1
0 (Ω) and t ∈ [0,∞),

I(tu) = t2(‖u‖2 − tp−2|u|pp),
d
dt

[J(tu)] = t(‖u‖2 − tp−2|u|pp),

we have that for each u ∈ H1
0 (Ω) \ {0} there exists a unique tu > 0 such that

I(tuu) = 0, I(tu) > 0 for t ∈ (0, tu) and I(tu) < 0 for t ∈ (tu,∞), and so J(tu)
achieves its maximum at tu on [0,∞). This implies that the sets N and N± are not
empty.

For u ∈ N , by the Sobolev embedding, we can derive that ‖u‖2 = |u|pp �
S

−p/2
p ‖u‖p. This implies that ‖u‖p−2 � S

p/2
p , and then

J(u) =
p − 2
2p

‖u‖2 � p − 2
2p

Sp/(p−2)
p .

Thus,
d = inf

u∈N
J(u) (1.6)

is well defined and

d � p − 2
2p

Sp/(p−2)
p .

Moreover, in § 3 we prove that the identity in the above inequality holds no matter
whether Ω = R

N or Ω is a smooth bounded domain in R
N .

In the remainder of this section, we always assume that u0 ∈ H1
0 (Ω) and u =

u(x, t; u0) is the weak solution of IBVP (1.1) whose maximal existence time is T .
Using a flow decided by the weak solution u and the decomposition (1.5), we can
separate the whole space into two new parts. Specifically, we first introduce sets

S+ = {u0 ∈ H1
0 (Ω) : u(t) �∈ N−, t ∈ [0, T )}, (1.7)

S− = {u0 ∈ H1
0 (Ω) : there is a t0 ∈ [0, T ) such that u(t0) ∈ N−},

where the character S stands for the word ‘source’. Then we have the decomposition

H1
0 (Ω) = S+ ∪ S−,

and the fact that N− ∪ (N \K) ⊂ S− is confirmed in § 5. In particular, for the case
in which Ω is a smooth bounded domain in R

N we can prove that S− is strictly
larger than N− by illustrating that N \ K �= ∅ (see remark 5.4).

Now we state our sharp results about the global existence and the blowup phe-
nomenon of weak solutions to the IBVP (1.1) as the following theorem.

Theorem 1.4.

(i) T < ∞ if and only if u0 ∈ S−. In other words, T < ∞ if and only if
there exists a t0 ∈ [0, T ) such that I(u(t0)) < 0. Moreover, if T < ∞, then
limt→T − ‖u(t)‖ = ∞.

(ii) Zero is the unique stable equilibrium solution of IBVP (1.1).
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Remark 1.5. Firstly, different from the previous literature, theorem 1.4(i) gives a
criterion for the blowup of weak solutions to IBVP (1.1) that is not really related
to the initial data but depends on the corresponding trajectory of the solution.
Moreover, in § 5, we also obtain that N−, S− are invariant under the flow decided
by the solution u. In this sense, the blowup of a solution can be linked with some
invariant sets related to itself. This is unusual and interesting.

Secondly, it is known that the ground state equilibrium solution of IBVP (1.1)
is unstable. Now, from theorem 1.4(ii), we can also deduce that all the non-zero
equilibrium solutions are unstable. Therefore, our result is more complete than
those obtained to this point.

In the proof of theorem 1.4, we also derive the following interesting conclusions.

Theorem 1.6.

(i) If I(u0) > 0 and J(u0) � d, then T = ∞ and u0 ∈ S+. Moreover, for any
t∗ ∈ [0,∞) with t∗ + [d − J(u0)] > 0, the decay estimates

‖u(t)‖2 � ‖u(t∗)‖2e−ω∗(t−t∗), t ∈ [t∗,∞),
J(u(t)) � C∗/t, t ∈ (t∗,∞),

always hold, where ω∗ and C∗ are given by the specific form

ω∗ = 2(1 − δ∗), C∗ =
(p − 2δ∗)‖u(t∗)‖2

4p(1 − δ∗)
+ t∗J(u(t∗)),

and

δ∗ =
[
J(u(t∗))

d

](p−2)/2

.

(ii) If T = ∞, then u, u′ ∈ L∞([0,∞), H1
0 (Ω)). Moreover, for the case in which Ω

is a smooth bounded domain in R
N , there exists c ∈ [0,∞) such that Kc �= ∅,

and there exist {tn} with tn → ∞ and u∗ ∈ Kc such that

lim
n→∞

‖u(tn) − u∗‖ = 0.

In particular, if u∗ is also an isolated equilibrium solution of IBVP (1.1), then
limt→∞ u(t) = u∗.

Remark 1.7. The exponential decay obtained in theorem 1.6(i) can also be found
in [25]. But, in this paper, we give a new proof with a different and simpler method,
and the δ∗ that decides the exponential decay ratio is given in a specific form. As for
the algebraic decay of the energy functional for the pseudo-parabolic equation and
the properties of the global solutions obtained in theorem 1.6(ii), our conclusion
may be the first result.

This paper is organized as follows. First, we establish the local existence and
uniqueness for a weak solution in § 2, then we consider the case in which J(u0) � d in
§ 3 and, at the same time, we give the proof of theorem 1.6(i). Then the boundedness
of global weak solutions and the proof of theorem 1.6(ii) are given in § 4. Finally,
in § 5, we prove theorem 1.4.
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2. Proof of theorem 1.3

In this part we will consider the local existence and uniqueness of a weak solution
to IBVP (1.1). First, we recall a classical lemma that can be derived directly from
the Sobolev embedding and Riesz representation theorem.

Lemma 2.1. Suppose that Ω is smooth bounded and q � 2∗/(2∗ − 1). Then for
arbitrary given f ∈ Lq(Ω), the elliptic Dirichlet problem

−∆u + u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

admits a unique weak solution u := (I − ∆)−1f in H1
0 (Ω) and ‖u‖ � S

−1/2
q′ |f |q,

where q′ = q/(q − 1).

Similarly, we can also deduce the following conclusion easily.

Corollary 2.2. Suppose that q ∈ [2∗/(2∗ − 1), 2]. Then for arbitrary given f ∈
Lq(RN ), the equation −∆u + u = f has a unique weak solution u ∈ H1(RN ) and
‖u‖ � S

−1/2
q′ |f |q, where q′ = q/(q − 1).

In addition, we can conclude the following simple lemma.

Lemma 2.3. Define a mapping Ψ : H1
0 (Ω) → Lq(Ω) by Ψ(u) = |u|p−2u, where

q = p/(p − 1). Then Ψ is locally Lipschitz continuous.

Proof. For all u, v ∈ H1
0 (Ω), by using the mean value theorem, the Hölder inequality

and the Sobolev embedding, one can derive that

|Ψ(u) − Ψ(v)|q � (p − 1)S−(p−1)/2
p (‖u‖ + ‖v‖)p−2‖u − v‖.

Thus, the mapping Ψ is locally Lipschitz continuous.

Next we give some equivalence results. Let u be a weak solution of IBVP (1.1) on
Ω × [0, T ). Then u ∈ H1

loc((0, T ), H1
0 (Ω)) and so u ∈ C([0, T ), H1

0 (Ω)). According
to definition 1.1, lemma 2.1 and corollary 2.2, for a.e. t ∈ [0, T ) and each v ∈ H1

0 (Ω)
we have that

(u′(t), v) + (u(t), v) =
∫

Ω

Ψ(u(t))v = ((I − ∆)−1Ψ(u(t)), v).

Thus, it is obvious that u ∈ L2
loc([0, T ), H1

0 (Ω)) with u′ ∈ L2
loc([0, T ), H1

0 (Ω)) is a
weak solution of IBVP (1.1) if and only if u is a solution of the following initial-value
problem in H1

0 (Ω):

u′(t) = (I − ∆)−1Ψ(u(t)) − u(t) a.e. t ∈ [0, T ),
u(0) = u0.

}
(2.1)

According to lemma 2.1, corollary 2.2 and lemma 2.3, the following integral equa-
tion is well defined:

u(t) = u0 +
∫ t

0
[(I − ∆)−1Ψ(u(s)) − u(s)] ds, t ∈ [0, T ). (2.2)
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It is obvious that u is a solution of the initial-value problem (2.1) in H1
0 (Ω) if and

only if u ∈ C([0, T ), H1
0 (Ω)) is a solution of the integral equation (2.2). Here, it

is sufficient to illustrate that the vector-valued function (I − ∆)−1Ψ(u) : [0, T ) →
H1

0 (Ω) is measurable for all u ∈ L2
loc([0, T ), H1

0 (Ω)). In fact, since the vector-
valued function u : [0, T ) → H1

0 (Ω) is measurable, it follows from [3, definition 1.4.1,
p. 4] that there exists a set E ⊂ [0, T ) of measure 0 and a sequence {un} ⊂
Cc([0, T ), H1

0 (Ω)) such that un(t) → u(t) in H1
0 (Ω) as n → ∞ for all t ∈ [0, T ) \ E.

Thus, by lemma 2.1, corollary 2.2 and lemma 2.3 it holds that {(I −∆)−1Ψ(un)} ⊂
Cc([0, T ), H1

0 (Ω)) and (I − ∆)−1Ψ(un(t)) → (I − ∆)−1Ψ(u(t)) as n → ∞ for all
t ∈ [0, T ) \ E. This yields that (I − ∆)−1Ψ(u) is measurable by [3, definition 1.4.1,
p. 4].

Note that the mapping u �→ (I − ∆)−1Ψ(u) − u is locally Lipschitz continuous
on H1

0 (Ω), so the initial-value problem (2.1) admits a unique saturated solution in
H1

0 (Ω).
Combining the above results, we can derive the local existence and uniqueness for

a weak solution of IBVP (1.1) directly. Moreover, u can be represented in the inte-
gral form (2.2), which implies that u ∈ C1([0, T ), H1

0 (Ω)), where T is the maximal
existence time of u.

In order to finish the proof of theorem 1.3, we must also claim that if T < ∞,
then lim supt→T − ‖u(t)‖ = ∞. Otherwise, suppose that there exists M > 0 such
that ‖u(t)‖ � M for t ∈ [0, T ). Then for 0 < t1 < t2 < T , according to the integral
representation (2.2), we have that

u(t2) − u(t1) =
∫ t2

t1

[(I − ∆)−1|u(s)|p−2u(s) − u(s)] ds.

Hence, it follows from lemma 2.1 and corollary 2.2 that

‖u(t2) − u(t1)‖ �
∫ t2

t1

[S−1/2
p ||u(s)|p−1|q + ‖u(s)‖] ds

�
∫ t2

t1

[S−p/2
p ‖u(s)‖p−1 + ‖u(s)‖] ds

� C(t2 − t1) → 0, t2, t1 → T−.

Therefore, there exists some u∗ ∈ H1
0 (Ω) such that limt→T − u(t) = u∗. Consider

the following initial-value problem in H1
0 (Ω):

v′ = (I − ∆)−1Ψ(v) − v = g(v),
v(T ) = u∗.

}
(2.3)

Since the mapping g is locally Lipschitz continuous, by [13, section 2.1, p. 33] there
exists some δ > 0 such that problem (2.3) has a unique solution on [T, T+δ]×H1

0 (Ω).
Combining this with (2.2), one can expand the solution u to problem (2.1) into a
solution on Ω×[0, T +δ], which contradicts the fact that T is the maximal existence
time of u.

Remark 2.4. Let u = u(x, t; u0) be a solution to IBVP (1.1) obtained by theo-
rem 1.3, and let its maximal existence time be T . If u0 �= 0, then u(t) �= 0 for all
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t ∈ [0, T ). Actually, according to definition 1.1(i) and u ∈ C1([0, T ), H1
0 (Ω)), using

u(t) as a test-function, one can obtain that

1
2

d
dt

‖u(t)‖2 + ‖u(t)‖2 = |u(t)|pp � 0, t ∈ [0, T ).

Hence, (d/dt)[e2t‖u(t)‖2] � 0, which implies that t �→ e2t‖u(t)‖2 is non-decreasing.
Furthermore, if there exists some t0 ∈ (0, T ) such that u(t0) = 0, then 0 < ‖u0‖2 �
e2t0‖u(t0)‖2 = 0, so a contradiction occurs.

3. The case in which J(u0) � d

In this section we discuss the case in which J(u0) � d, and give the proof of
theorem 1.6(i).

Recall the definitions of J and d defined by (1.4) and (1.6), respectively. We will
first prove that d is a critical value of J . When Ω is a smooth bounded domain in
R

N , since the embedding H1
0 (Ω) ↪→ Lp(Ω) is compact for p ∈ (2, 2∗), it is easy to

deduce that d is a critical value by the mountain pass theorem. When Ω = R
N ,

since the above compactness fails, the proof becomes more difficult. The following
lemma gives a unified proof for these two cases.

Lemma 3.1. Suppose that p ∈ (2, 2∗) and d is defined as (1.6). Then d is a critical
value of J and

d =
p − 2
2p

Sp/(p−2)
p . (3.1)

Proof. First, it is well known that Sp defined in (1.3) can be attained. In fact,
when Ω is a smooth bounded domain, it follows from the compact embedding
H1

0 (Ω) ↪→ Lp(Ω) for p ∈ (2, 2∗) that the infimum in (1.3) can be attained. For the
case of Ω = R

N , we only need to use [24, theorem 1.34, p. 22].
Now, we introduce a set

S1 = {u ∈ H1
0 (Ω) : |u|pp = 1}.

Then there is a one-to-one mapping Φ from S1 onto N ,

Φ(u) = t(u)u,

where t(u) = ‖u‖2/(p−2). Moreover, for u ∈ S1, from the definitions of N , I and J
we get that

J(Φ(u)) =
p − 2
2p

‖Φ(u)‖2 =
p − 2
2p

‖u‖2p/(p−2).

Therefore,

d = inf
u∈N

J(u) = inf
u∈S1

J(Φ(u)) = inf
u∈S1

p − 2
2p

‖u‖2p/(p−2) =
p − 2
2p

Sp/(p−2)
p .

Since Sp can be attained, d can also be attained. Let u ∈ S1 and ‖u‖2 = Sp. To
finish the proof of this lemma, we claim that Φ(u) is a stationary solution of (1.1).
In fact, it follows from the Lagrange multiplier rule that there exists some µ ∈ R

such that u is a weak solution of

−2∆u + 2u = µp|u|p−2u.
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It is easy to see that µ = 2Sp/p. Thus, u is a weak solution to −∆u+u = Sp|u|p−2u.
Let v = S

1/(p−2)
p u. Then v = Φ(u) and v is a weak solution of

−∆v + v = |v|p−2v.

Therefore, Φ(u) is a stationary solution of (1.1), and d is a critical value of J .

It follows from the Sobolev embedding and (3.1) that if ‖u‖2 � 2pd/(p−2), then

I(u) � ‖u‖2(1 − S−p/2
p ‖u‖p−2) � ‖u‖2

[
1 − S−p/2

p

(
2pd

p − 2

)(p−2)/2]
= 0. (3.2)

Furthermore, according to lemma 3.1 we know that d can be attained. Thus, the
following assertion holds:

V = {u ∈ H1
0 (Ω) : I(u) < 0, J(u) < d} �= ∅. (3.3)

Indeed, assume that I(v) = 0 and J(v) = d for some v ∈ H1
0 (Ω). Let u = tv for

t > 1. Then u ∈ V .
In addition, we prove two important identities that will be used frequently in the

remaining part of this paper.

Lemma 3.2. Let u = u(x, t; u0) be the solution to IBVP (1.1) whose maximal exis-
tence time is T . Then the identities

J(u(t)) +
∫ t

0
‖u′(s)‖2 ds = J(u0), t ∈ [0, T ), (3.4)

and
1
2

d
dt

‖u(t)‖2 = (u(t), u′(t)) = −I(u(t)), t ∈ [0, T ), (3.5)

hold.

Proof. The energy identity (3.4) follows by testing (1.1) with u′ and integrating
with respect to t, and through testing (1.1) with u one can also conclude that the
identity (3.5) holds.

It is easy to derive that the energy function J(u(·)) is non-increasing from the
energy identity (3.4). Furthermore, by the identity (3.5) it also holds that

d
dt

‖u(t)‖2 = −2I(u(t)) = (p − 2)‖u(t)‖2 − 2pJ(u(t))

� (p − 2)‖u(t)‖2 − 2pJ(u0), t ∈ [0, T ). (3.6)

Proof of theorem 1.6(i). First we claim that

I(u(t)) > 0, J(u(t)) < d, t ∈ (0, T ). (3.7)

This means that u0 ∈ S+, which is defined as (1.7).
Indeed, since I(u0) > 0, which means that u0 /∈ K, i.e. u0 is not a stationary

solution of IBVP (1.1), we have that J(u(·)) is decreasing, and then J(u(t)) <
J(u0) � d for all t ∈ (0, T ). On the other hand, due to the continuity of u and I,
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if there exists t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u(t)) > 0 for all t ∈ [0, t0),
then it follows from remark 2.4 and the characterization (1.6) of d that J(u(t0)) � d
and a contradiction occurs.

As a consequence of (3.7), it holds that

d > J(u(t)) � p − 2
2p

‖u(t)‖2, t ∈ [0, T ). (3.8)

Therefore, we can derive that ‖u(t)‖2 < 2pd/(p − 2) for all t ∈ [0, T ), which yields
that T = ∞ by virtue of theorem 1.3.

Next we consider the decaying behaviour of the solution u. It follows from (1.3),
(3.8), the decreasing of J(u(·)) and (3.1) that for any t∗ ∈ [0,∞) with t∗ + [d −
J(u0)] > 0,

|u(t)|pp � S−p/2
p ‖u(t)‖p−2‖u(t)‖2

� S−p/2
p

[
2p

p − 2
J(u(t))

](p−2)/2

‖u(t)‖2

� S−p/2
p

[
2p

p − 2
J(u(t∗))

](p−2)/2

‖u(t)‖2

=
[
J(u(t∗))

d

](p−2)/2

‖u(t)‖2 := δ∗‖u(t)‖2, t ∈ [t∗,∞),

that is,
|u(t)|pp � δ∗‖u(t)‖2. (3.9)

Note that J(u(t∗)) < d. Then it is easy to see that δ∗ ∈ (0, 1) and that δ∗ depends
only on u(t∗). Furthermore, by (3.5) we know that

d
dt

‖u(t)‖2 = 2[|u(t)|pp − ‖u(t)‖2] � −2(1 − δ∗)‖u(t)‖2, t ∈ [t∗,∞).

This implies that

‖u(t)‖2 � ‖u(t∗)‖2e−2(1−δ∗)(t−t∗) := ‖u(t∗)‖2e−ω∗(t−t∗), t ∈ [t∗,∞).

Finally, we claim that for the above t∗ there exists C∗ > 0 such that

J(u(t)) � C∗/t, t ∈ (t∗,∞). (3.10)

Note that
d
dt

[tJ(u(t))] � J(u(t)), t ∈ [0,∞). (3.11)

Let a(t) = ‖u(t)‖2 and b(t) = |u(t)|pp for all t ∈ [t∗,∞). Then it follows from (3.9)
that c(t) := b(t)/a(t) ∈ [0, δ∗] for all t ∈ [t∗,∞). Since I(u(t)) > 0 for all t ∈ [t∗,∞),
we have

J(u(t))
I(u(t))

=
a(t)/2 − b(t)/p

a(t) − b(t)
=

p − 2c(t)
2p(1 − c(t))

, t ∈ [t∗,∞).

Noting that the function d(t) = (p−2t)/(1− t) is increasing on [0, δ∗], we have that
p � d(t) � (p − 2δ∗)/(1 − δ∗) for all t ∈ [0, δ∗], and thus

1
2

� J(u(t))
I(u(t))

� p − 2δ∗

2p(1 − δ∗)
:= M∗, t ∈ [t∗,∞). (3.12)
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Integrating the inequality (3.11) over [t∗, t], we derive from (3.12) and (3.5) that,
for t ∈ [t∗,∞),

tJ(u(t)) − t∗J(u(t∗)) �
∫ t

t∗
J(u(s)) ds

� M∗
∫ t

t∗
I(u(s)) ds

= − 1
2M∗

∫ t

t∗

d
ds

‖u(s)‖2 ds

� 1
2M∗‖u(t∗)‖2,

which yields that (3.10) holds for

C∗ = 1
2M∗‖u(t∗)‖2 + t∗J(u(t∗)) =

(p − 2δ∗)‖u(t∗)‖2

4p(1 − δ∗)
+ t∗J(u(t∗)).

The proof is complete.

Next, we prove a lemma that describes the blowup phenomenon of weak solutions
to IBVP (1.1).

Lemma 3.3. Assume that u0 ∈ H1
0 (Ω) and that u = u(x, t; u0) is the weak solution

of IBVP (1.1) whose maximal existence time is T . Then T < ∞ if and only if there
exists t0 ∈ [0, T ) such that u(t0) ∈ V , which is defined in (3.3). In particular, if
u0 ∈ V , then u blows up at T , that is, limt→T − ‖u(t)‖ = ∞.

Proof. Assume first that there exists t0 ∈ [0, T ) such that u(t0) ∈ V , and without
loss of generality assume that t0 = 0. Similar to the proof of theorem 1.6(i), we can
also prove that u(t) ∈ V for all t ∈ [0, T ). In fact, by (3.4), J(u(t)) � J(u0), so we
have that J(u(t)) < d for all t ∈ [0, T ). On the other hand, due to the continuity
of u and I, if there exists t1 ∈ (0, T ) such that I(u(t1)) = 0 and I(u(t)) < 0 for
t ∈ [0, t1), then remark 2.4 and the definition of d imply that J(u(t1)) � d, which
is a contradiction.

It follows from the fact that I(u(t)) < 0 for all t ∈ [0, T ) and (3.2) that

‖u(t)‖2 >
2pd

p − 2
, t ∈ [0, T ). (3.13)

Now, we will prove that T < ∞. Suppose that u is a global solution. Then we define
a function F : [0,∞) → [0,∞) as follows:

F (t) =
∫ t

0
‖u(s)‖2 ds.

Through simple calculations and due to (3.5), we obtain that

F ′(t) = ‖u(t)‖2 > 0, t ∈ [0,∞), (3.14)

and

F ′′(t) = 2(u(t), u′(t)) = −2I(u(t)) = (p − 2)‖u(t)‖2 − 2pJ(u(t)), t ∈ [0,∞).
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Then it follows from the energy identity (3.4) that

F ′′(t) = (p − 2)‖u(t)‖2 + 2p

∫ t

0
‖u′(s)‖2 ds − 2pJ(u0), t ∈ [0,∞). (3.15)

Noting that ( ∫ t

0
(u(s), u′(s)) ds

)2

=
(

1
2

∫ t

0

d
ds

‖u(s)‖2 ds

)2

= 1
4 (‖u(t)‖2 − ‖u0‖2)2

� 1
4 ([F ′(t)]2 − 2‖u0‖2F ′(t)),

we have that

[F ′(t)]2 � 4
( ∫ t

0
(u(s), u′(s)) ds

)2

+ 2‖u0‖2F ′(t). (3.16)

It then follows from (3.15) and (3.16) that

F (t)F ′′(t) − p

2
[F ′(t)]2

� 2p

[ ∫ t

0
‖u(s)‖2 ds

∫ t

0
‖u′(s)‖2 ds −

( ∫ t

0
(u(s), u′(s)) ds

)2]
+ (p − 2)F (t)F ′(t) − 2pJ(u0)F (t) − p‖u0‖2F ′(t). (3.17)

Note that F (t) → ∞ as t → ∞ by (3.13). Then we have that there exists a
sufficiently large t2 > 0 such that

F (t)
[

1
2 (p − 2) − pJ(u0)

‖u(t)‖2

]
− p‖u0‖2 � 0, t ∈ [t2,∞). (3.18)

In fact, it is easy to see that (3.18) holds for the case in which J(u0) � 0. If
J(u0) ∈ (0, d), then it follows from (3.13) that

1
2 (p − 2) − pJ(u0)

‖u(t)‖2 > 1
2 (p − 2)

(
1 − J(u0)

d

)
> 0,

so (3.18) holds by the fact that F (t) → ∞ as t → ∞. Furthermore, combining
(3.17) with Schwarz’s inequality, (3.13), (3.14) and (3.18), we obtain that, for all
t ∈ [t2,∞),

F (t)F ′′(t) − 1
2p[F ′(t)]2

� (p − 2)F (t)F ′(t) − 2pJ(u0)F (t) − p‖u0‖2F ′(t)

= F (t)[ 12 (p − 2)‖u(t)‖2 − pJ(u0)]

+ F ′(t)
{

F (t)
[

1
2 (p − 2) − pJ(u0)

‖u(t)‖2

]
− p‖u0‖2

}
� p(d − J(u0))F (t)
> 0.
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Let M(t) = [F (t)]−(p−2)/2 for all t ∈ (0,∞). Then M(t) > 0, M ′(t) < 0 for all
t ∈ (0,∞) and M ′′(t) < 0 for all t ∈ [t2,∞). This implies that M reaches 0 in a
finite time, which contradicts that M(t) > 0 for all t ∈ (0,∞). Thus, the maximal
existence time satisfies T < ∞. Since u(t) ∈ V for all t ∈ [0, T ), (‖u(t)‖2)′ =
−2I(u(t)) > 0, and so ‖u(t)‖2 is increasing on [0, T ). From theorem 1.3, we have
that limt→T − ‖u(t)‖ = ∞.

Conversely, assume now that T < ∞. Note that∫ t

0
‖u′(s)‖2 ds � 1

t

( ∫ t

0
‖u′(s)‖ ds

)2

� 1
t
(‖u(t)‖ − ‖u0‖)2, t ∈ (0, T ),

and

J(u) = 1
2I(u) +

(
1
2

− 1
p

)
|u|pp � 1

2I(u), u ∈ H1
0 (Ω).

Then it follows from the energy identity (3.4) that

1
2I(u(t)) � J(u(t)) � J(u0) − 1

t
(‖u(t)‖ − ‖u0‖)2, t ∈ (0, T ).

Since lim supt→T − ‖u(t)‖ = ∞, we have

lim
t→T −

I(u(t)) = lim
t→T −

J(u(t)) = −∞.

The proof is complete.

Remark 3.4. In [25] Xu and Su also proved that if u0 ∈ V , then T < ∞. To achieve
the inequality F (t)F ′′(t)−p[F ′(t)]2/2 > 0 for t large enough, they introduced some
sets Nδ, Wδ, Vδ and the depth of potential wells d(δ), whose properties must be
verified through a difficult process. Making full use of equality (3.1), we obtain the
same inequality more simply than in [25].

4. The boundedness of global weak solutions

In this section we will prove theorem 1.6(ii), and suppose that u is a global weak
solution to IBVP (1.1). Without loss of generality, we can assume that

d � J(u(t)) � J(u0), t ∈ [0,∞). (4.1)

In fact, the second inequality follows from the energy identity (3.4). As for the first
inequality, we assume that there exists t0 ∈ [0,∞) such that J(u(t0)) < d. It follows
from theorem 1.3 and the definition of d that I(u(t0)) �= 0. If I(u(t0)) > 0, according
to theorem 1.6(i), u ∈ L∞([0,∞), H1

0 (Ω)) and limt→∞ u(t) = 0. If I(u(t0)) < 0, u
blows up at a finite time (which does not satisfy the assumption T = ∞).

Noting that J(u(·)) is non-increasing and bounded on [0,∞) by (4.1), we can also
derive that the limit limt→∞ J(u(t)) exists. Therefore, it follows from the energy
identity (3.4) that ∫ ∞

0
‖u′(s)‖2 ds = J(u0) − lim

t→∞
J(u(t)).
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This yields that ∫ ∞

0
‖u′(t)‖2 dt < ∞. (4.2)

Motivated by [9], we first prove a stability result that plays a crucial role in the
following proof.

Lemma 4.1. Suppose that u is a global weak solution to IBVP (1.1). Then for every
l > 0,

lim
t→∞

‖u(t) − u(t + τ)‖ = 0 uniformly for τ ∈ [0, l].

Proof. Since u is absolutely continuous locally, for any given l > 0 it follows from
the Hölder inequality that

‖u(t) − u(t + τ)‖2 =
∥∥∥∥

∫ t+τ

t

u′(s) ds

∥∥∥∥
2

� l

∫ t+l

t

‖u′(s)‖2 ds.

By (4.2), limt→∞
∫ t+l

t
‖u′(s)‖2 ds = 0, and the proof is complete.

Now we are ready to prove theorem 1.6(ii).

Proof of theorem 1.6(ii). Suppose by contradiction that u �∈ L∞([0,∞), H1
0 (Ω)).

Then due to the continuity of u, we can choose an increasing diverging sequence
{tn} such that ‖u(tn)‖ = n + 1 for n > ‖u0‖. By lemma 4.1, it is easy to obtain
that

lim
t→∞

sup{l > 0: ‖u(t) − u(t + τ)‖ < 1, τ ∈ [0, l]} = ∞.

Let
τn = sup{l > 0: ‖u(tn) − u(tn + τ)‖ < 1, τ ∈ [0, l]}.

Then limn→∞ τn = ∞ and, for n > ‖u0‖,

n � ‖u(t)‖ � n + 2, t ∈ [tn, tn + τn]. (4.3)

By integrating (3.6) on the time interval [tn, t] for each t ∈ (tn, tn + τn], we can
derive that

‖u(t)‖2 � ‖u(tn)‖2 +
∫ t

tn

[(p − 2)‖u(s)‖2 − 2pJ(u0)] ds.

Then it follows from (4.3) that for sufficiently large n,

‖u(t)‖2 � ‖u(tn)‖2 + 1
2 (p − 2)

∫ t

tn

‖u(s)‖2 ds, t ∈ (tn, tn + τn].

Combining this inequality with (3.6) and (4.3), we obtain that for sufficiently large
n and t ∈ [tn, tn + τn],

(u(t), u′(t)) � 1
2 (p − 2)‖u(t)‖2 − pJ(u0)

� 1
2 (p − 2)‖u(tn)‖2 − pJ(u0) + 1

4 (p − 2)2
∫ t

tn

‖u(s)‖2 ds

� C

∫ t

tn

‖u(s)‖2 ds, (4.4)
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where C does not depend on n. On the other hand, it is easy to see that

(u(t), u′(t)) � 1
2 [‖u′(t)‖2 + ‖u(t)‖2], t ∈ [tn, tn + τn]. (4.5)

Let Mn(t) =
∫ t

tn
‖u(s)‖2 ds for all t ∈ [tn, tn + τn]. Then, by virtue of (4.4) and

(4.5), we derive that for sufficiently large n,

M ′
n(t) − 2CMn(t) � −‖u′(t)‖2, t ∈ [tn, tn + τn].

Multiplying this inequality by e−2Ct and integrating over [tn + 1
2τn, tn + τn], we

obtain that for sufficiently large n,

Mn(tn + τn) � eCτnMn(tn + 1
2τn) −

∫ tn+τn

tn+τn/2
e2C(tn+τn−s)‖u′(s)‖2 ds

� eCτnMn(tn + 1
2τn) − αeCτn ,

where α =
∫ ∞
0 ‖u′(s)‖2 ds is independent of n by (4.2). It follows from (4.3) that

for sufficiently large n,

Mn(t) � n2(t − tn) � 1
2n2τn, t ∈ [tn + 1

2τn, tn + τn]. (4.6)

Hence, it is easy to see that for sufficiently large n,∫ tn+τn

tn

‖u(s)‖2 ds = Mn(tn + τn) � 1
2eCτn(n2τn − 2α) � 1

4n2τneCτn ,

where (4.6) has been used. However, according to (4.3), it can also be proved that∫ tn+τn

tn

‖u(s)‖2 ds � (n + 2)2τn.

This yields that for sufficiently large n,

1
4n2eCτn � (n + 2)2,

which is absurd since limn→∞ τn = ∞. Therefore, u ∈ L∞([0,∞), H1
0 (Ω)).

Furthermore, for all t ∈ [0,∞), through using u′(t) + u(t) as a test-function, the
Hölder inequality and the Sobolev embedding, we can also derive that

‖u′(t) + u(t)‖2 =
∫

Ω

|u(t)|p−2u(t)[u′(t) + u(t)] � S−p/2
p ‖u(t)‖p−1‖u′(t) + u(t)‖.

Thus, it holds that ‖u′(t) + u(t)‖ � S
−p/2
p ‖u(t)‖p−1, t ∈ [0,∞). Moreover, since

u ∈ L∞([0,∞), H1
0 (Ω)), we have u′ ∈ L∞([0,∞), H1

0 (Ω)).
Now we will prove the second part of theorem 1.6(ii). Let Ω be a smooth bounded

domain in R
N . Since u is a global weak solution of IBVP (1.1), it follows from the

definitions of J and u that for each ϕ ∈ H1
0 (Ω),

〈J ′(u(t)), ϕ〉 =
∫

Ω

[∇u(t) · ∇ϕ + u(t)ϕ − |u(t)|p−2u(t)ϕ] = −(u′(t), ϕ), t ∈ [0,∞).

This implies that
‖J ′(u(t))‖H−1 = ‖u′(t)‖, t ∈ [0,∞), (4.7)
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where H−1 is the dual space of H1
0 (Ω). It thus follows from (4.2) that

lim inf
t→∞

‖J ′(u(t))‖H−1 = lim inf
t→∞

‖u′(t)‖ = 0.

Therefore, there exists an increasing sequence {tn} such that limn→∞ tn = ∞
and limn→∞ J ′(u(tn)) = 0. It follows from assumption (4.1) that the sequence
{J(u(tn))} is bounded. Then {u(tn)} is a Palais–Smale (PS) sequence of the energy
functional J . Since Ω is a smooth bounded domain in R

N , the embedding H1
0 (Ω) ↪→

Lp(Ω) is compact, and so J satisfies the PS condition [24, lemma 1.20, p. 15]. Thus,
there exists u∗ ∈ H1

0 (Ω) such that limn→∞ u(tn) = u∗ in H1
0 (Ω) (going to a sub-

sequence if necessary), and it is easy to see that u∗ �= 0. Let c = J(u∗) � d. Then
u∗ ∈ Kc.

Finally, we claim that if the u∗ obtained above is an isolated critical point of J ,
then limt→∞ u(t) = u∗. Our proof is motivated by [15]. Let f(t) = ‖u(t) − u∗‖ for
all t ∈ [0,∞). Then it is sufficient to prove that limt→∞ f(t) = 0. In fact, since
u∗ is an isolated critical point of J , there exists r > 0 such that J ′(v) �= 0 for
all v ∈ B2r(u∗) \ {u∗}, where B2r(u∗) = {v ∈ H1

0 (Ω) : ‖v − u∗‖ < 2r}. Now, we
suppose that the limit limt→∞ f(t) = 0 does not hold. Then there exist ε0 > 0 and
an increasing diverging sequence {sn} such that sn > tn and f(sn) > ε0 for all
n ∈ N := {1, 2, . . . }, where {tn} is obtained in the above paragraph and satisfies
limn→∞ f(tn) = 0. Let 2δ1 = min{ε0, 2r}. Then there must be a subsequence of
{tn} (still denoted by {tn}) such that f(tn) < δ1 for all n ∈ N. Define sup{t ∈
(tn, sn) : f(t) = δ1} := t′n and inf{t ∈ (t′n, sn) : f(t) = 2δ1} := t′′n. Then it can be
derived from the continuity of f that f(t) ∈ (δ1, 2δ1) for all t ∈ (t′n, t′′n). Moreover,
one can also derive that

δ2 := inf
v∈B2δ1 (u∗)\Bδ1 (u∗)

‖J ′(v)‖ > 0. (4.8)

Otherwise, there exists a sequence {vn} ⊂ B2δ1(u∗) \ Bδ1(u
∗) such that J ′(vn) → 0

as n → ∞. Noting that J is bounded on B2δ1(u∗) \ Bδ1(u
∗), we have that {vn}

is a PS sequence of the functional J . Because J satisfies the PS condition, there
exist a subsequence of {vn} still denoted by {vn} and v0 ∈ H1

0 (Ω) such that vn →
v0 in H1

0 (Ω) as n → ∞. Therefore, v0 ∈ B2δ1(u∗) \ Bδ1(u
∗) and J ′(v0) = 0 by

the continuity of J ′. This contradicts the choice of r, and so (4.8) holds. As a
consequence of the choice of t′n, t′′n and the equalities (4.7) and (4.8), it also holds
that

‖u(t′n) − u∗‖ = δ1, ‖u(t′′n) − u∗‖ = 2δ1

and

‖u′(t)‖ = ‖J ′(u(t))‖ � δ2, t ∈ [t′n, t′′n].

Furthermore, it follows from (4.7) that

δ2‖u′(t)‖ � ‖u′(t)‖2 = −〈J ′(u(t)), u′(t)〉 = − d
dt

[J(u(t))], t ∈ [t′n, t′′n].
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Thus, we have that

δ1 � ‖u(t′′n) − u(t′n)‖ �
∫ t′′

n

t′
n

‖u′(t)‖ dt � 1
δ2

∫ t′′
n

t′
n

− d
dt

[J(u(t))] dt

=
1
δ2

[J(u(t′n)) − J(u(t′′n))].

This is a contradiction since the limit limt→∞ J(u(t)) exists. It therefore follows
that limt→∞ u(t) = u∗.

5. Proof of theorem 1.4

In this section we will prove theorem 1.4.

Theorem 5.1. Suppose that u0 ∈ H1
0 (Ω) with I(u0) < 0, and u = u(x, t; u0) is the

solution to IBVP (1.1) whose maximal existence time is T . Then T is finite and u
blows up at the time T .

Proof. First we claim that I(u(t)) < 0 for all t ∈ [0, T ). In fact, by (3.4) and (3.5),
we have that for all t ∈ [0, T ),

d
dt

[I(u(t))] =
d
dt

[pJ(u(t)) − 1
2 (p − 2)‖u(t)‖2] = −p‖u′(t)‖2 + (p − 2)I(u(t))

� (p − 2)I(u(t)). (5.1)

Therefore, it follows from the Gronwall inequality that

I(u(t)) � I(u0)e(p−2)t, t ∈ [0, T ). (5.2)

Furthermore, since I(u0) < 0, it holds that I(u(t)) < 0 for all t ∈ [0, T ).
Now we will prove that T < ∞. Due to lemma 3.3, if there exists some t0 ∈

[0, T ) such that J(u(t0)) < d, then T < ∞. Therefore, to finish the proof of this
theorem, we need only consider the case that d � J(u(t)) � J(u0) for all t ∈
[0, T ). Suppose that T = ∞. Then as a result of theorem 1.6(ii), it holds that
u ∈ L∞([0,∞), H1

0 (Ω)). Moreover, it follows from (4.2) that there exists a diverging
sequence {tn} such that

lim
n→∞

‖u′(tn)‖ = 0.

Thus, on one hand, given (4.7), the fact that u ∈ L∞([0,∞), H1
0 (Ω)) and the

continuity of u, we can obtain that

|I(u(tn))| = |〈J ′(u(tn)), u(tn)〉| = |(u′(tn), u(tn))|
� ‖u′(tn)‖‖u(tn)‖ → 0, n → ∞.

On the other hand, by (5.2) it holds that |I(u(tn))| � −I(u0)e(p−2)tn → ∞. So a
contradiction occurs. Therefore, T < ∞ and it follows from (3.5) and the fact
that I(u(t)) < 0 for all t ∈ [0, T ) that ‖u(·)‖2 is increasing on [0, T ). Thus, by
theorem 1.3, we can conclude that limt→T − ‖u(t)‖ = ∞.
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Remark 5.2. If I(u0) = 0 and J ′(u0) �= 0, then the conclusion of theorem 5.1 still
holds. In fact, since u0 is not a stationary solution to IBVP (1.1), by (4.7) it holds
that u′(0) �= 0 in H1

0 (Ω). Thus, by (5.1), we have that

d
dt

[I(u(t))]|t=0 = −p‖u′(0)‖2 < 0.

Therefore, there must be some t0 ∈ (0, T ) sufficiently small such that I(u(t0)) < 0,
that is, u0 ∈ S−. Furthermore, through taking t0 as the initial time and repeating
the proof of theorem 5.1, we can derive that T < ∞ and the solution blows up at T .

Remark 5.3. Suppose that there exists some t0 ∈ (0, T ) such that I(u(t0)) = 0 and
J ′(u(t0)) �= 0. Firstly, from remark 5.2 we know that the solution also blows up at its
finite maximal existence time. Secondly, since I(u(·)) is continuously differentiable
and [I(u(·))]′(t0) < 0, there exists some δ ∈ (0, t0/2) such that

d
dt

[I(u(t))] < 0, t ∈ (t0 − δ, t0].

Therefore, we have that I(u(t)) > 0 for all t ∈ (t0 − δ, t0). This means that the
weak solution with the initial data in the set N+ may also blow up. Thus, describ-
ing the blowup phenomenon completely by way of N− is impossible. Hence, our
introduction of S± is valid and essential.

Remark 5.4. It follows from (5.2) that the set N− is invariant under the flow
decided by the weak solution. Furthermore, by the definition of S− and remark 5.2
it also holds that N− ∪ (N \ K) ⊂ S−. In particular, if Ω is a smooth bounded
domain in R

N , then N \ K �= ∅, which implies that S− is strictly larger than N−.
Indeed, suppose that λ1 > 0 is the principal eigenvalue of the operator −∆ in
H1

0 (Ω) related to the homogeneous Dirichlet boundary condition and ϕ1 ∈ H1
0 (Ω)

is the corresponding eigenfunction, which can be chosen as positive. Then it follows
from the definition of I that there exists a unique t0 > 0 such that I(t0ϕ1) = 0,
that is, t0ϕ1 ∈ N . Now, we claim that J ′(t0ϕ1) �= 0. Otherwise, t0ϕ1 is a stationary
solution to IBVP (1.1), and so it holds that

(λ1 + 1)t0ϕ1 = −∆(t0ϕ1) + t0ϕ1 = (t0ϕ1)p−1.

Therefore, ϕ1(x) ≡ (λ1 + 1)1/(p−2)/t0 for all x ∈ Ω, which contradicts the fact that
ϕ1 = 0 on ∂Ω. Hence, J ′(t0ϕ1) �= 0 and so t0ϕ1 ∈ N \ K.

Proof of theorem 1.4. (i) First, theorem 5.1 implies directly the sufficiency of theo-
rem 1.4(i). Next, to obtain the necessity, we will prove that if u0 �∈ S−, then T = ∞.
Actually, according to remark 5.2 and theorem 1.6(i), we need only prove that if
J(u(t)) > d and I(u(t)) > 0 for all t ∈ [0, T ), then T = ∞.

In what follows we assume that J(u0) > d and I(u(t)) > 0 for all t ∈ [0, T ). By
the fact that J(u(t)) � J(u0), it holds that

p − 2
2p

‖u(t)‖2 <
p − 2
2p

‖u(t)‖2 +
1
p
I(u(t)) = J(u(t)) � J(u0), t ∈ [0, T ).

This implies that ‖u(·)‖ is bounded on [0, T ). Thus, according to theorem 1.3, we
obtain that T = ∞.
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(ii) Now we prove theorem 1.4(ii). Since

I(u) � ‖u‖2[1 − S−p/2
p ‖u‖p−2], J(u) � 1

2‖u‖2, u ∈ H1
0 (Ω),

there exists a positive r0 with r2
0 = min{S

p/(p−2)
p , 2d} = 2d such that I(u) > 0 and

J(u) < d for 0 < ‖u‖ < r0. Thus, according to theorem 1.6(i), we obtain that 0 is
stable.

Assume that u0 �= 0 and J ′(u0) = 0. Then I(u0) = 0. It follows that

I(tu0) = t2(1 − tp−2)‖u0‖2, t ∈ [0,∞).

Then I(tu0) < 0 for all t > 1. Thus, according to theorem 1.4(i), we have that u0
is unstable.
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