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ASYMPTOTIC ANALYSIS OF SKOLEM’S EXPONENTIAL FUNCTIONS

ALESSANDRO BERARDUCCI AND MARCELLO MAMINO

Abstract. Skolem (1956) studied the germs at infinity of the smallest class of real valued functions on
the positive real line containing the constant 1, the identity function x, and such that whenever f and g are
in the set,f + g, fg andfg are in the set. This set of germs is well ordered and Skolem conjectured that its
order type is epsilon-zero. Van den Dries and Levitz (1984) computed the order type of the fragment below
22x

. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions
has order type�. As a consequence we obtain, for each positive integer n, an upper bound for the fragment
below 2n

x
. We deduce an epsilon-zero upper bound for the fragment below 2xx

, improving the previous
epsilon-omega bound by Levitz (1978). A novel feature of our approach is the use of Conway’s surreal
number for asymptotic calculations.

§1. Skolem problem. Let Sk be the smallest set of functions f : R>0 → R
>0

containing the constant function 1 and the identity function x, and such that if
f, g ∈ Sk, then also f + g, fg and fg are in Sk. A Skolem function is a function
belonging to Sk. Each Skolem function restricts to a function f : N>0 → N

>0 from
positive integers to positive integers and it is determined by its restriction.

We order Sk by f < g if f(x) < g(x) for all large enough x in R (or equivalently
in N). This defines a total order. Indeed Hardy [17] established the corresponding
result for a larger class of functions. The totality of the order also follows from
the fact that the structure Rexp = (R, <,+, ·, exp) is o-minimal [26] and the Skolem
functions are definable in Rexp.

In this paper we study the order type of Sk and its fragments. Skolem [25]
conjectured that (Sk,<) is a well order and its order type is ε0 = sup{�,��,��� , ...}
(the least ordinal ε such that ε = �ε). He also exhibited a well ordered subset of
order type ε0, namely the subset generated from 1 and x using the operations +, ·
and exponentiation g �→ xg with base x. Ehrenfeucht [13], using the tree theorem
of Kruskal [18], proved that Sk is indeed well ordered. Levitz [19] showed that its
order type is at most equal to the smallest critical epsilon-number (the least ordinal
α such that α = εα). This improves the earlier bound Γ0 established by Schmidt
[23], where Γ0 is the Feferman–Schütte ordinal.

Given a well ordered set X, we write |X | for the order type of X. If f ∈ Sk, we
let |f| be the order type of the set of Skolem functions less than f. The Skolem
functions < 2x coincide with the nonzero polynomial functions with coefficients in
N, so |2x| = |��|.
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In [19] Levitz introduced the following definition: a regular function is a Skolem
function g such that for every Skolem function f < g, one has fx < g. The first
regular functions are g0 = 2 and g1 = 22x

and it is not difficult to show that the
regular functions < 2xx

are exactly the functions of the form 2n
x

with 2 ≤ n ∈ N.
Levitz proved that |g1+α | ≤ εα , where (gα)α is a transfinite enumeration of the
regular functions, and (εα)α is an enumeration of the epsilon numbers (i.e. the
ordinals ε satisfying ε = �ε). Levitz’s result then yields |22x | ≤ ε0, 23x ≤ ε1 and
|2xx | ≤ ε� (since g1+� = g� = 2xx

).
In [10] van den Dries and Levitz made a dramatic improvement on Levitz’s bound

on g1 by showing that |22x | = ��
�

. Here we prove the following bound on the
fragments determined by the first � regular functions. Let �0 = 1 and �n+1 = ��n

for n ∈ N. We have:

Theorem 14.1. |2nx | ≤ �n+1 for n ≥ 1. In particular |23x | ≤ �4 = ��
��

.

Theorem 14.1 should be compared with Levit’z bound |23x | ≤ ε1. As a consequence
we obtain the following upper bound on 2xx

, which improves Levitz’s ε� bound.

Theorem 14.2. |2xx | ≤ ε0.

A novel feature of our approach is the use of Conway’s surreal numbers
[7] for asymptotic calculations, justified by the fact that the Skolem functions
can be embedded in the exponential field of surreal numbers, that is, one can
associate a surreal number to each Skolem function preserving the field operations,
exponentiation, and ordering. Our main result is as follows.

Theorem 11.1. Let c ≥ 1 be a surreal number and let Q be a Skolem function.
The set of real numbers r ∈ R such that there is a Skolem function h satisfying
(h/Q)c = r + o(1) has no accumulation points in R.

The case c = 1 of the theorem says that, if we fix a Skolem functionQ(x), the set of
real numbers r such that there is a Skolem function h(x) with limx→∞ h(x)/Q(x) =
r, has no accumulation points in R. This special case is sufficient to obtain the
bounds above, and also yields a different proof of the upper bound in [10]. It turns
out that, for technical reasons, we need to consider the general case c ≥ 1 in order
to prove the special case c = 1.

In the preliminary part of the paper, we prove a result concerning the order type of
the set of finite sums

∑
A of a well ordered set A of positive elements of an ordered

group (Theorem 4.5). Unlike the known bounds by Carruth [6] and other authors,
our bound takes into account the set of archimedean classes of A.

The equality of two Skolem functions (given the defining expressions) is decidable
[22], but it is an open problem whether the order < is decidable. Gurevič [15]
established the decidability of < below 2x2

and showed that the decidability of <
below 22x

is Turing equivalent to the decidability of the equality of two “exponential
constants,” where the exponential constants are the elements in the smallest subset
E

+ ⊂ R containing 1 and closed under addition, multiplication, division, and the
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real exponential function. In [10] van den Dries and Levitz proved that if the quotient
f/g of two Skolem functions smaller than 22x

tends to a limit in R, then the limit
is in E

+. They announced that the result could be extended to the whole class of
Skolem functions using the work of [8], where a version of the field of transseries
made its first appearance. In the last part of the paper we give a proof of these facts
using surreal numbers.

§2. Asymptotic relations. Givenf, g in an ordered abelian group, we writef � g
if |f| ≤ n|g| for some n ∈ N. We say in this case that f is dominated by g. If both
f � g and g � f hold, we say that f and g belong to the same archimedean class,
and we write f 	 g. We say that f is strictly dominated by g if we have both f � g
and f 
	 g; we write f ≺ g to express this relation. We define f ∼ g as f – g ≺ f
and we say in this case that f is asymptotic to g. Notice that∼ is a symmetric relation.
Indeed assume f – g ≺ f and let us prove that f – g ≺ g. This is clear if f � g.
On the other hand if g ≺ f, then clearly f – g 	 f, contradicting the assumption.

We write f = o(g) if f ≺ g and f = O(g) if f � g.
The set of germs at +∞ of the Skolem functions generates an ordered field by the

results of [17] or [26] cited in the introduction, so we can use the above notations for
the Skolem functions. By the cited results, the quotient f(x)/g(x) of two Skolem
functions tends to a limit in R ∪ {+∞} for x → +∞. We then have f ≺ g if f/g
tends to 0; f ∼ g if f(x)/g(x) tends to 1; and f 	 g if f/g tends to a nonzero
limit in R. Note that f 	 g if and only if there is a nonzero real number r such that
f ∼ rg. We will prove as a special case of Theorem 11.1 that, if we fix g and let f vary
in Sk, then the corresponding real r ranges in a subset of R without accumulation
points.

§3. Ordinal arithmetic. Let On be the class of all ordinal numbers. Given α ∈ On
and � ∈ On, we write α + � and α� (or sometimes α · �) for the ordinal sum and
product of the given ordinals, and α� for the ordinal exponentiation. We identify
each ordinal with the set of its predecessor and we denote by � the first infinite
ordinal, which can also be thought as the set of all finite ordinals, that is, the set of
natural numbers N.

Definition 3.1. Given a sequence (αi)i of ordinals, we define inductively:

(1)
∑
i<0 αi = 0;

(2)
∑
i<�+1 αi =

∑
i<� αi + α� ;

(3)
∑
i<� αi = sup�<�

∑
i<� αi for � a limit ordinal.

We recall that every ordinal α can be written in a unique way in the form α =∑
i<n �

�i ni where n ∈ N, (�i)i<n is a decreasing sequence of ordinals, and ni ∈ N
>0

for each i < n. This is called the Cantor normal form of α.
We write α ⊕ � and α � � for the Hessenberg sum and product [24]. We recall

the definitions below.

Definition 3.2. Given α ∈ On and � ∈ On, we can find k ∈ N and a decreasing
finite sequence of ordinals (�i)i<k such that α =

∑
i<k �

�imi and � =
∑
i<k �

�i ni
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with mi, ni < � (possibly zero). We define

α ⊕ � =
∑
i<k

��i (mi + ni).

Definition 3.3. If α =
∑
i<k �

αimi and � =
∑
i<l �

�j nj are two ordinals in
Cantor normal form, their Hessenberg product is defined as

α � � =
⊕
i<k,j<l

�αi⊕�jminj.

We shall need transfinite iterations of the Hessenberg sum and product.

Definition 3.4. Given a sequence of ordinals (αi)i we define inductively:

(1)
⊕
i<0 αi = 0,

(2)
⊕
i<�+1 αi = (

⊕
i<� αi ) ⊕ α�,

(3)
⊕
i<� αi = sup�<�

⊕
i<� αi for � limit.

The paper [20] contains some comparison results between
∑
i<� and

⊕
i<� .

Similarly we define the transfinite iteration of the Hessenberg product.

Definition 3.5. Given a sequence of ordinals (αi)i we define inductively:

(1)
⊙
i<0 αi = 1,

(2)
⊙
i<�+1 αi = (

⊙
i<� αi ) � α�,

(3)
⊙
i<� αi = lim sup�<�

⊙
i<� αi for � limit.

Definition 3.6. Given two ordinals α and � we define α�� =
⊙
i<� α.

Proposition 3.7. If n < �, then n�� = n� for every � ∈ On.

Proof. We can assume n > 1. Write � = �� + k with � ∈ On and k < �. Since
n < �, n� = �, and therefore n��+k = ��nk . On the other hand by [1, Lemma 3.6]
we have n���+k = ��nk = n��+k , thus concluding the proof. �

Lemma 3.8. If α ≥ � , then α ⊕ � ≤ α + �2.

Proof. We can assume � > 0. Let α =
∑
i<k �

αimi and � =
∑
j<l �

�j nj be
Cantor normal forms. For some i0 ≤ k, α ⊕ � has the form

∑
i<i0
�αimi + ��0n0 +

� with � < ��0 ≤ � . Since ��0n0 ≤ � , we obtain α ⊕ � ≤ α + � + � = α + �2.
�

Lemma 3.9. α� ≤
⊕
i<� α ≤ α2� .

Proof. By induction on � based on Lemma 3.8. The case when � is zero
or a limit ordinal follows at once from the induction hypothesis. If � = � + 1,
then α(� + 1) ≤

⊕
i<�+1 α = (

⊕
i<� α) ⊕ α ≤ α2� ⊕ α ≤ α2� + α2 = α2(� + 1),

where we used Lemma 3.8 and the induction hypothesis. �

Corollary 3.10. If � is limit, then
⊕
i<� α = α�.
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Proof. If � is limit, then 2� = � , so we can conclude by Lemma 3.9. �
Let α be an ordinal. We say that α is additively closed if the sum of two ordinals

less than α is less than α. Similarly, α is multiplicatively closed if the product of
two ordinals less than α is less than α. We obtain an equivalent definition using the
Hessenberg sum and product. The additively closed ordinals> 0 are the ordinals of
the form �	 for some 	; the multiplicatively closed ordinals > 1 are the ordinals of
the form ��

	
for some 	 [24].

Proposition 3.11. If α ∈ On and � is a limit ordinal, then α�� = α�. Moreover
α� is additively closed.

Proof. The case α < � follows from Proposition 3.7. Assume α ≥ � and
consider first the special case α = �� . For every � it is easy to verify by induction
that (��)�� =

⊙
i<� �

� = �
⊕
i<� � . Now take � = �. Since � is limit, by Corollary

3.10,
⊕
i<� � = ��, so (��)�� = ���.

For a general α ≥ �, let 	 > 0 be such that �	 ≤ α < �	+1. Since � is limit, (	 +
1)� = 	�. The result now follows from the inequalities α�� ≤ (�	+1)�� = �(	+1)� =
�	� ≤ α� ≤ α��. �

Corollary 3.12. For � ∈ On, let � = �+ k with � a limit ordinal or zero and
k < �. Then α�� = α� � α�k .

§4. Well ordered subsets of ordered groups. The Hessenberg sum and product can
be characterized as follows. Consider disjoint well ordered sets A and B of order
type α and � respectively. By [6] or [12] the Hessenberg sum α ⊕ � is the sup of all
ordinals � such that one can extend the given partial order onA ∪ B to a total order
of order type �; the Hessenberg product α � � is the sup of all ordinals � such that
one can extend the componentwise partial order on A× B to a total order of order
type �. By the cited papers, the sups are achieved. An immediate consequence of the
above characterization is the following:

Fact 4.1. LetX = (X,<) be a totally ordered set and letA,B ⊆ X be well ordered
subsets. We have:

(1) A ∪ B is well ordered and |A ∪ B | ≤ |A| ⊕ |B |.
(2) Let f : X × X → X be a binary function which is weakly increasing in both

arguments and let f(A,B) := {f(a, b) : a ∈ A, b ∈ B}. Then f(A,B) is well
ordered and |f(A,B)| ≤ |A| � |B |.

Given two sets A and B of Skolem functions we write: A+ B for the set of all
sums f + g with f ∈ A and g ∈ B ; AB for the set of all products fg with f ∈ A
and g ∈ B ; AB for the set of all functions of the form fg with f ∈ A and g ∈ B .
We write A/	 for the ordered set of all 	 classes of elements of A, and similarly for
A/∼.

Corollary 4.2. Let A and B be sets of Skolem functions. Then:
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(1) A ∪ B has of order type ≤ |A| ⊕ |B |.
(2) A+ B, AB and AB have order type ≤ |A| � |B |.
(3) AB/	 has order type ≤ |A/	 | � |B/	 |.

Proof. The first two points are immediate from Fact 4.1. To prove point (3) we
use again Fact 4.1 together with the observation that the 	-class offg depends only
on the respective 	-classes of f and g, and this dependence is weakly increasing in
both arguments. �

Given a subset A ⊂ Sk, we write
∑
A for the set of finite nonempty sums of

elements from A. We want to give an upper bound on |
∑
A|. The definition of

∑
A

can be given more generally for a subset A of an ordered abelian group G, so it is
convenient to work in this context. If A is a well ordered subset of G>0,

∑
A is well

ordered and Carruth [6] gave an upper bound on its order type in terms of the order
type of A. In Theorem 4.5 we obtain a different bound which takes into account the
set of archimedean classes of A.

Lemma 4.3. Let (G,+, <) be an ordered abelian group and let A ⊆ G>0 be a
well ordered subset of order type α. Suppose all the elements of A belong to distinct
archimedean classes. Then the order type of

∑
A is ≤ �α .

Proof. Let (ai : i < α) be an increasing enumeration of A. Let x ∈
∑
A. Then

x can be written uniquely in the form x =
∑
i<α aini where ni ∈ N and ni = 0 for

all but finitely many i. We associate to x the ordinal
⊕
i<α �

ini . This defines an
increasing map from

∑
A to �α yielding the desired result. �

Lemma 4.4. Let (G,+, <) be an ordered abelian group and let A ⊆ G>0 be a well
ordered subset of order type α ≥ 2. Suppose all the elements of A belong to the same
archimedean class. Then

|
∑
A| ≤ α�.

(If |A| ≤ 1, clearly |
∑
A| ≤ �.)

Proof. Let b ∈
∑
A, let (

∑
A)<b be the set of elements less than b in

∑
A.

Since all elements of A belong to the archimedean class of its least element,
there exists m ∈ N, depending on b, such that every element of (

∑
A)<b is the

sum of at most m elements of A. By induction on i ≤ m using Corollary 4.2,
the set of sums of i elements of A has order type ≤ α�i . By the same corollary
it then follows by induction on m that |(

∑
A)<b | ≤

⊕m
i=1 α

�i . Now for each
i ≤ m, α�i < α�� and α�� = α� is additively closed (Proposition 3.11). It follows
that |(

∑
A)<b | < α� . Since this holds for every b ∈

∑
A, we can conclude that

|
∑
A| ≤ α� . �

Theorem 4.5. Let (G,+, <) be an ordered abelian group, let A ⊆ G>0 be a well
ordered set of order type α ≥ 2 and let � = |A/	| be the order type of the set of
archimedean classes of A. Then the order type of

∑
A is ≤ (α�)�� .
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Proof. Let B ⊆ A be a set of representatives for the archimedean classes of A
and let (bi : i < �) be an increasing enumeration of B. We reason by induction on
� . The case � = 1 is Lemma 4.4.

Case� limit. For b ∈ G>0, letA�b be the subset of A consisting of the elements� b
and letA�b be the set of elements of A which are 	 b. Then

∑
A =

⋃
�<�

∑
(A�b� ).

The sets in the union are pairwise initial segments of one another. It follows that
the order type of the union is the sup of the respective order types. By induction
|
∑
A| ≤ sup�<�(α�)�� = (α�)�� .

Case � = � + 1. We have
∑
A =

∑
(A≺b� ) +

∑
(A�b� ). By the induction hypoth-

esis |
∑

(A≺b� )| ≤ (α�)�� . The elements of A�b� live in a single archimedean class,
so |

∑
(A�b� )| ≤ α� . It follows that |

∑
A| ≤ (α�)�� � α� = (α�)�(�+1). �

We define a sequence of countable ordinals as follows.

Definition 4.6. Let �0 = 1 and, inductively, �n+1 = ��n .

Remark 4.7. For all n ∈ N, �n is multiplicatively closed.

Proof. Clearly the product of two ordinals < 1 is < 1, so the property holds for
n = 0. For n ≥ 1, �n has the form ��

	
(e.g. �1 = � = ��

0
and �2 = �� = ��

1
),

so it is multiplicatively closed. �
For our applications we need the following lemma.

Lemma 4.8. Let 2 ≤ n < �. If α < �n+1 and � < �n, then (α�)�� < �n+1.

Proof. We can write � = �+ k where � is a limit ordinal or zero and k < �. By
Corollary 3.12 we have (α�)�� = α�� � (α�)�k . Since α < �n+1 = ��n and�n is a
limit ordinal, there is some � < �n such that α ≤ �� . Since� and � are< �n and�n
is multiplicatively closed, we have�� < �n, hence α�� < �n+1. Similarly, (α�)�k =
α��k < �n+1. Now since �n+1 is multiplicatively closed, α�� � (α��k) < �n+1, as
desired. �

Corollary 4.9. Let (G,+, <) be an ordered abelian group, let A ⊆ G>0 be a well
ordered set of order type< �n+1 whose set of archimedean classes has order type< �n.
Then the order type of

∑
A is< �n+1 and its set of archimedean classes has order type

< �n.

Proof. By Lemma 4.8 and Theorem 4.5, together with the observation that the
set of archimedean classes does not changes under taking finite sums. �

Another interesting bound on |
∑
A| is contained in [9]: if |A| ≤ α, then |

∑
A| ≤

��α . For our purposes we need the bound in Corollary 4.9 which takes into account
also the order type of the archimedean classes of A. Note that both bounds imply
that if |A| < ε0, then |

∑
A| < ε0.

§5. Generalized power series. Given an ordered field K, a multiplicative subgroup
M ofK>0 is called a group of monomials if for each nonzero element x of K there is
one and only one m ∈ M such that x 	 m. We assume some familiarity with Hahn’s
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field R((M)) of generalized power series [16], but we recall a few definitions. An
element of R((M)) is a formal sum f =

∑
i<α mi ri where α is an ordinal, (mi)i<α is

a decreasing sequence in M, and 0 
= ri ∈ R for each i < α. We say that {mi | i < α}
is the support of the series

∑
i<α mi ri . The sum and product of generalized series is

defined in the obvious way. We order R((M)) by f =
∑
i<α mi ri > 0 ⇐⇒ r0 > 0.

This makes R((M)) into an ordered field with M as a group of monomials (where
we identify m ∈ M with m1 ∈ R((M))).

A family (fi)i∈I of elements of R((M)) is summable if each monomial m ∈ M

is contained in the support of finitely many fi and there is no strictly increasing
sequence (mn)n∈N of monomials such that each mn belongs to the support of some
fi . In this case

∑
i∈I fi ∈ No is defined adding the coefficients of the corresponding

monomials.
To prove that R((M)) is a field, we write a nonzero element x of R((M))

in the form rm(1 + ε) with r ∈ R
∗,m ∈ M and ε ≺ 1 and observe that x–1 =

r–1m–1
(∑

n∈N
(– 1)nεn

)
where the summability of (– 1)nεn is ensured by Neumann’s

Lemma [21]. More generally Neumann’s Lemma says that if ε is an infinitesimal
element of R((M)) and (rn)n∈N is any sequence of real numbers, then (rnεn)n∈N is
summable, so we can evaluate the formal power series P(X ) =

∑
n∈N
rnX

n at any
infinitesimal element of R((M)) .

Given f and g in R((M)) we say that g is a truncation of f if f =
∑
i<α mi ri and

g =
∑
i<� mi ri ∈ R((M)) for some � < α. If G ⊆ M is a subset, we write R((G))

for the set of all f ∈ R((M)) whose support is contained in G.

§6. Surreal numbers. Conway’s field No of surreal numbers [7, 14] is an ordered
real closed field extending the field R of real numbers and containing a copy of the
ordinal numbers. In particular No is a proper class, and admits a group of monomials
M ⊂ No>0 which is itself a proper class. We can define generalized power series with
monomials in M exactly as above, but we denote the resulting field as R((M))On,
where the subscript is meant to emphasize that, although M is a proper class, the
support of a generic element

∑
i<α mi ri of No is a set (because α is still assumed to

be an ordinal). Conway [7] showed that we can identity No with R((M))On, where
the class M ⊂ No of monomials is defined explicitly (it coincides with the image of
Conway’s omega-map).

A surreal x =
∑
i<α mi ri ∈ R((M))On is purely infinite if all monomials mi in its

support are > 1 (hence infinite). We write No↑ for the (nonunitary) ring of purely
infinite surreals. We observe that every x ∈ No can be written in a unique way in the
form x = x↑ + x◦ + x↓ where x↑ ∈ No↑, x◦ ∈ R and x↓ ≺ 1. This yields a direct
sum decomposition of R-vector spaces

No = No↑ + R + o(1),

where o(1) is the set of elements ≺ 1. Gonshor [14] defined an isomorphism
of ordered groups exp : (No,+, <) → (No>0, ·, <) extending the real exponential
function and satisfying exp(x) ≥ 1 + x for all x ∈ No and exp(x) =

∑
n∈N

xn

n! for
x ≺ 1 (we need x ≺ 1 to ensure the summability of the series). Gonshor’s exp is
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defined in such a way that exp(No↑) = M, namely the monomials are the images
of the purely infinite numbers. The stated properties are already sufficient to ensure
that No, with Gonshor’s exp, is a model of the elementary theory Texp of the real
exponential field Rexp = (R, <,+, ·, exp); in other words (No, exp) satisfies all the
property which are true inRexp and are expressible by a first-order formula in the ring
language and a symbol for the exponential function [9]. A discussion of these issues
can also be found in [5], where other fields of generalized power series admitting an
exponential map resembling the surreal exp have been considered.

As long as we are only interested in the elementary theory of No as an exponential
field, both the choice of the monomials M ⊂ No and the details of the definition
of exp on No↑ are not important. However they become important for summability
issues and the properties of infinite sums, so we need to state a few more facts that are
needed in this paper (all of them can be found in [4]). We denote by log : No>0 → No
the compositional inverse of exp and we also write ex for exp(x). It can be shown that

if x ≺ 1, then log(1 + x) =
∑∞
n=1

(–1)n+1

n xn. An important fact, that depends on the
choice ofM ⊂ No>0, is that� is a monomial (where� is the least infinite ordinal seen
as a surreal). More generally, for each n ∈ N, logn(�) is an infinite monomial [14],
where log0(�) = � and logn+1(�) = log(logn(�)). This fact is used in [4] to show
that No contains an isomorphic copy of the field T of transseries as an exponential
field (the notation T is used in [2] and refers to the version of the transseries
defined [11] under the name “logarithmic exponential series).” Moreover No admits
a differential operator ∂ : No → No extending the one onT [3, 4]. Since No↑ is closed
under multiplication by a real number, any real power mr = er log(m) of a monomial
is again a monomial. Moreover, if m is an infinite monomial, em is again a monomial
(because exp(No↑) = M).

From the equations No = R((M))On and M = eNo↑ it follows that every surreal
can be written in a unique way in the form

∑
i<α e

�i ai where α is an ordinal, (�i)i<α
is a decreasing sequence in No↑ and ai ∈ R

∗ (the empty sum is 0). Following [3], we
call this representation Ressayre form.

§7. Surreal expansions of Skolem functions. Since the surreal numbers are a model
of Texp there is a unique map from Sk to No sending the identity function x into �
and preserving 1,+, · and the function (a, b) �→ ab where ab = eb log(a). Since � is
greater than any natural number, this map preserves the order, so it is an embedding
of ordered semirings endowed with an exponential (a, b) �→ ab . We identify a
Skolem function f = f(x) ∈ Sk with its image f(�) ∈ No under this embedding,
and we define the Ressayre form of f ∈ Sk as the Ressayre form of the surreal
number f(�).

If we identify the transseries T with a subfield of No (as in [4]), it is easy to see
that the image of the embedding of Sk in No is contained in T, but we shall not need
this fact.

We can consider the Ressayre form of a Skolem function f(x) as an asymptotic
development for x → +∞. For example consider the Skolem function (x + 1)x and
identify x with � ∈ No. To find its Ressayre form we write (x + 1)x = ex log(1+x) and
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we expand log(1 + x) as follows

log(1 + x) = log(x(1 + x–1))

= log(x) +
∞∑
n=1

(– 1)n+1

n
x–n

= log(x) + x–1 – x–2/2 + ···

Now, using xx = ex log(x) and exp(ε) =
∑
n∈N
εn/n! = 1 + ε + ··· for ε ≺ 1, we

obtain

(x + 1)x = exp(x log(x) + 1 – x–1/2 + ··· )

= exx(1 – x–1/2 + ··· )

= exx – e2–1xx–1 + ···

Replacing x with � we find the Ressayre form of the surreal (� + 1)� .

§8. Finer asymptotic relations. The results in this section are stated for No but
they hold more generally in every model of Texp. We identify Sk as a subset of No
as discussed in the previous section. In particular x = � ∈ No.

Definition 8.1. Let 1 ≤ c ∈ K. Given two positive surreals f and g we define
f ∼c g if fc ∼ gc and f 	c g if fc 	 gc .

When c = 1, the relations ∼c and 	c become the usual ∼ and 	 relations. When
c > 1 we obtain finer equivalence relations. One of the main ideas of this paper is to
try to understand how many classes modulo ∼c there are inside a class modulo 	c .
We are primarily interested in the case c = 1, but we need to consider the general
case to carry out the induction. In our terminology, the paper of [10] deals with the
case when c is equal xn for some n ∈ N, but we need to follow a different approach
to be able to generalize it. A consequence of our main result (Theorem 11.1) is that
the set of ∼c-classes within any class modulo 	c has order type ≤ �.

In this section we establish some basic properties of ∼c and 	c . In particular
we show that f 	c g ⇐⇒ c(f – g) � g and f ∼c g ⇐⇒ c(f – g) ≺ g, yielding
a characterization of these relations which does not depend on the exponential
function.

Lemma 8.2. For any t ∈ K we have t � 1 if and only if et 	 1.

Proof. We have t � 1 if and only if there is k ∈ N such that – k ≤ t ≤ k. This
happens if and only if e–k ≤ et ≤ ek for some k ∈ N, or equivalently et 	 1 (because
e–k 	 1 	 ek). �

Lemma 8.3. For t ∈ K we have t ≺ 1 if and only if et ∼ 1.

Proof. We have t ≺ 1 if and only if – 1/k ≤ t ≤ 1/k for all positive k ∈ N.
This happens if and only if e–1/k ≤ et ≤ e1/k for all positive k ∈ N, or equivalently
et ∼ 1 (because |et – 1| ≤ |e1/k – e–1/k | and |e1/k – e–1/k | becomes smaller than any
positive real for k sufficiently large). �
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Proposition 8.4. Let c ≥ c′ ≥ 1 and let f, g > 0.

(1) If f 	c g, then f 	c′ g.
(2) If f ∼c g, then f ∼c′ g.

In particular, if f 	c g, then f 	 g.

Proof. We first observe that, for z ∈ K
>0 and d ∈ K

≥1, we have z < 1 =⇒ zd <
z and z > 1 =⇒ zd > z, so in any case |z – 1| ≤ |zd – 1|. Taking z = f/g and
d = c/c′, we deduce that |(f/g)c

′
– 1| ≤ |(f/g)c – 1|. Thus iff ∼c g, thenf ∼c′ g.

This
proves (2).

To prove (1) assume that f 	c g and let r ∈ R
>0 be such that (f/g)c ∼ r. Now

observe that (f/g)c
′

is between 1 and (f/g)c ∼ r > 0, hence it is asymptotic to a
positive real. �

Lemma 8.5. For c ≥ 1 and z > 0, we have

(1) zc 	 1 ⇐⇒ z = 1 +O(1/c);
(2) zc ∼ 1 ⇐⇒ z = 1 + o(1/c).

Proof. The case c � 1 can be reduced the case c = 1 using Proposition 8.4. If
c � 1, we can assume z ∼ 1, as otherwise both sides of either equivalence are false.
We can thus write z = 1 + ε for some ε ≺ 1. The results follow from the following
chains of equivalences.

zc 	 1
⇐⇒ ec log(1+ε) 	 1
⇐⇒ c log(1 + ε) � 1
⇐⇒ log(1 + ε) � 1/c
⇐⇒ ε � 1/c

zc ∼ 1
⇐⇒ ec log(1+ε) ∼ 1
⇐⇒ c log(1 + ε) ≺ 1
⇐⇒ log(1 + ε) ≺ 1/c
⇐⇒ ε ≺ 1/c

where in the last step of both columns we used log(1 + ε) ∼ ε (which follows from
ε ≺ 1). �

Proposition 8.6. For c ≥ 1 and f, g > 0, we have:

(1) f 	c g ⇐⇒ c(f – g) � g;
(2) f ∼c g ⇐⇒ c(f – g) ≺ g.

Proof. By Lemma 8.5 with z = f/g. �

Proposition 8.7. Let c > N, z > 0 and r ∈ R. Then

zc ∼ er ⇐⇒ z = 1 + r/c + o(1/c).

Proof. Let z = 1 + r/c + o(1/c). Then zc = (1 + r/c + o(1/c))c ∼ er . Con-
versely, assume zc ∼ er . Then in particular zc 	 1. By Lemma 8.5, z = 1 +O(1/c)
so we can write z = 1 + s/c + o(1/c) for some s ∈ R. By the previous part es ∼ er ,
hence s = r. �
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Proposition 8.8. Let c ≥ 1 and f, g, a, b > 0.

(1) if f 	c a and g 	c b, then fg 	c ab and f + g 	c a + b;
(2) If f ∼c a and g ∼c b, then fg ∼c ab and f + g ∼c a + b.

Proof. Assumef 	c a and g 	c b. By Proposition 8.6, c(f – a) � a and c(g –
b) � b. Since a, b are positive, c(f – a) � a + b and c(g – b) � a + b. It follows
that c(f + g – (a + b)) � a + b, hence f + g 	c a + b.

In order to prove fg 	c ab we recall that f 	c a means fc 	 ac and g 	c b
means gc 	 bc . Multiplying we obtain (fg)c 	 (ab)c .

The proof of second part is essentially the same: it suffices to replace � with ≺
and 	c with ∼c . �

§9. The support of a Skolem function. We consider Sk as a substructure of No =
R((M))On through the embedding induced by the identification x = �. Given f ∈
Sk, we can then write f =

∑
i<α mi ri with α ∈ On, mi ∈ M and ri ∈ R

∗. It thus
makes sense to consider the support of a Skolem function, that is, the set of monomials
mi which can appear in the above representation. We recall that a surreal number
is an omnific integer if it belongs to the subring No↑ + Z ⊂ No. We show that every
Skolem function is an omnific integer, so it does not have infinitesimal monomials
in its support. More generally we prove that a monomial in the support of a Skolem
function is either 1 or ≥ x (so it cannot be log(x) or

√
x, say). To this aim we first

show that every Skolem function belongs to a subfield K ⊂ No which is similar to
the field of transseries defined in [11], but unlike the transseries it is not closed under
log, although it is closed under exp.

Definition 9.1. Let x = � ∈ No. Working inside No we define

(1) G0 = xZ and K0 = R((G0));

(2) Gn+1 = eK
↑
nxK

↑
n+Z = eK

↑
n+log(x)(K↑+Z) and Kn+1 = R((Gn+1)).

Let G =
⋃
n Gn and let K =

⋃
n Kn ⊆ R((G)). Finally, let K↑ = K ∩ No↑.

We recall that a subfield of No is truncation closed if whenever it contains∑
i<α mi ri , it also contains its truncations

∑
i<� mi ri for all � < α. Since K is an

increasing union of the fields R((Gn)), it is obviously a subfield of No closed under
truncations.

Theorem 9.2. K is a truncation closed subfield of No closed under exp. If f and g
are positive elements of the semiring K

↑ + N ⊂ K, then fg = eg log(f) ∈ K
↑ + N. It

follows that Sk ⊆ K
↑ + N. In particular every Skolem function is an omnific integer.

Proof. For each n ∈ N, Gn is a multiplicative group and therefore Kn is a field.
Moreover G0 ⊆ G1 and inductively Gn ⊆ Gn+1 and Kn ⊆ Kn+1. The fact that K is a
truncation closed subfield of R((G)) is clear. To show that K is closed under exp, let
x ∈ K and write ex = ex

↑
ex

◦
ex

↓
. Now it suffices to observe that ex↑ ∈ G, ex◦ ∈ R

and ex↓ =
∑
n∈N

(x↓)n/n!∈ K. More generally K is closed under the evaluation of a
power series at an infinitesimal element. It remains to show that if a, b are positive
elements of K↑ + N, then ab ∈ K

↑ + N. �
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Claim 1. If m ∈ G and 0 < t ∈ K
↑, then mt ∈ G.

To prove the claim, write m = e�x�+n with �, � ∈ K
↑ and n ∈ Z. Then mt =

et�xt(�+n) ∈ G, as desired.

Claim 2. Let a and b be positive elements ofK↑ + N. Then ab ∈ K
↑ + N. Moreover

if a ≥ 2 (i.e. a 
= 1) and b > N, then ab ∈ K
↑.

We can write b = b↑ + n for some n ∈ N and 0 < b↑ ∈ K
↑. Since K↑ + N is closed

under finite products, an ∈ K
↑ + N. It remains to show that ab

↑ ∈ K
↑. This is clear

if a ∈ N. If a 
∈N, we can write

a = rm(1 + ε),

where 1 < m ∈ G is the leading monomial of a, r ∈ R
>0 and ε ≺ 1. Then

ab
↑

= rb
↑
mb

↑
(1 + ε)b

↑
.

By Claim 1 mb
↑ ∈ G. By definition of G we also have rb

↑
= eb

↑ log(r) ∈ G. The third
factor (1 + ε)b

↑
can be written in the form

(1 + ε)b
↑

= eb
↑ log(1+ε)

= e(b↑ log(1+ε))
↑
e(b↑ log(1+ε))

◦
e(b↑ log(1+ε))

↓
.

Since log(1 + ε) =
∑∞
n=1

(–1)n+1

n εn ∈ K and b↑ ∈ K, we have b↑ log(1 + ε) ∈ K, so

e(b↑ log(1+ε))↑ ∈ G. Moreover e(b↑ log(1+ε))
◦
∈ R. The element 	 = (b↑ log(1 + ε))↓ is

an infinitesimal element of K and e	 =
∑
n∈N

	n

n! is a power series in 	, so it belongs

to K. We have thus proved that (1 + ε)b
↑ ∈ K and therefore ab

↑ ∈ K.
It remains to show that if a ≥ 2, then ab

↑
is purely infinite. Since a = rm(1 + ε)

is an omnific integer, each monomial in the support of ε is ≥ m–1. It follows
that each monomial in the support of (1 + ε)b

↑
is m–n for some n ∈ N. Since

ab
↑

= rb
↑
mb

↑
(1 + ε)b

↑
, it follows that every monomial in the support of ab

↑
is

≥ rb↑mb↑m–n = rn(rm)b
↑–n, which is infinite. We conclude that ab

↑ ∈ K
↑, as desired.

It follows from the claim that the set of positive elements of the semiring K
↑ + N

is closed under the operation a, b �→ ab and therefore it contains Sk.

Proposition 9.3. For every Skolem function f there is a purely infinite surreal
number g and some n ∈ N such that f = g + n. Moreover g is a Skolem function.

Proof. By Theorem 9.2, f = g + n with g ∈ K
↑ and n ∈ N, so we only need to

show that g ∈ Sk. We proceed by induction on the formation of the Skolem terms.
The case when f is the sum or product of shorter terms is immediate. It remains to
consider the case when f = ab with a ≥ 2 and b > N. In this case by Theorem 9.2,
ab ∈ K

↑, so it is purely infinite. �

Theorem 9.4. The monomial x is the smallest infinite monomial in K.
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Proof. We prove by induction on n ∈ N that if 1 < m ∈ Mn, then m ≥ x. This is
clear for n = 0 since M0 = xZ. Let 1 < m ∈ Mn+1 and assume the result holds for
the monomials in Mn. By definition m = e�x�+k = e�+log(x)(�+k) with �, � ∈ K

↑
n and

k ∈ Z. By the induction hypothesis, x is the smallest infinite monomial in Kn. If for
a contradiction 1 < m < x = e log(x), then

0 < � + log(x)(� + k) < log(x).

Case 1. If � 	 log(x)(� + k), then log(x) 	 �
�+k ∈ Kn, contradicting the induction

hypothesis.
Case 2. If � � log(x)(� + k), then 0 < � < 2 log(x), against the induction

hypothesis.
Case 3. If � ≺ log(x)(� + k), we obtain 0 < log(x)(� + k) < 2 log(x), whence 0 <

� + k < 2. Since � is purely infinite and k ∈ Z, we obtain � = 0, hence � ≺ log(x),
contradicting the induction hypothesis. �

Corollary 9.5. If m is a monomial in the support of a Skolem function, then either
m = 1 or m ≥ x.

Proof. Immediate from Theorem 9.4 and the inclusion Sk ⊂ K
↑ + N (Theo-

rem 9.2). �

Corollary 9.6. For f, g ∈ Sk we have:

(1) f ∼ g ⇐⇒ f = g +O(g/x).
(2) fx 	 gx ⇐⇒ f ∼ g.

Proof. The first part follows from Theorem 9.4 and Theorem 9.2, observing that
f – g ∈ K. For (2) we take z = f/g and c = x in Lemma 8.5 to obtain fx 	 gx

if and only if f = g +O(g/x). By the first part this happens if and only if f ∼ g.
�

Corollary 9.7. For any A ⊆ Sk, we have |Ax/	 | = |A/∼ |.

Proof. By part (2) of Corollary 9.6 . �

§10. Components. Let f be a Skolem function. We say that f is additively
irreducible if it cannot be written as a sum of two smaller Skolem functions; f
is multiplicatively irreducible if it cannot be written as a product of two smaller
Skolem functions; Following [19] we say that f is a component if it is both additively
and multiplicatively irreducible.

Remark 10.1. We can write every Skolem function as a finite sum of finite
products of components (not necessarily in a unique way).

Proposition 10.2. Every component has the form 1, x orfg . Iffg is a component,
then f is multiplicatively irreducible and g is additively irreducible. Every component
> x can be written in the form fg where f ≥ 2, g ≥ x, and g is a component.
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Proof. A Skolem functions< x is a positive integers, so it is either 1 or additively
reducible. It follows that a component is either 1, or x, or > x. In the latter case it
must have the form fg (because it cannot be of the form f + g or fg). The rest
follows at once from the following identities:

• if f = f1f2, then fg = fg1f
g
2 ;

• if g = g1 + g2, then fg = fg1fg2 ;
• if g = g1g2, then fg = (fg1)g2 . �

Corollary 10.3. For every Skolem function h one of the following cases holds:

(1) h = f · g where f ≥ x and g ≥ x;
(2) h = fg where f ≥ 2 and g is a component ≥ x;
(3) h = f + g, where f 	 h and f is a component;
(4) h = 1 or h = x.

§11. Main theorem. We work inside the surreal numbers No and identify Sk as a
subset of No, with x = � ∈ No. Our main result is the following.

Theorem 11.1. Let c ≥ 1 be a surreal number and let Q ∈ Sk. The set of real
numbers r ∈ R

>0 such that there is h ∈ Sk satisfying (h/Q)c ∼ r, is well ordered and
has no accumulation points in R (hence it has order type ≤ �).

Proof. Given Q and c, the set of reals r ∈ R
>0 such that there is h ∈ Sk with

(h/Q)c ∼ r is in order preserving bijection with the set of Skolem functions 	c Q,
so it is well ordered (as Sk is well ordered). A well ordered subset of R

>0 has
an accumulation point if and only if it contains a strictly increasing and bounded
sequence. Assuming for the sake of a contradiction that the theorem fails, let Q
be minimal in the well order of Sk such that there exist a surreal number c ≥ 1, a
strictly increasing and bounded sequence of positive real numbers (rn)n∈N, and a
sequence (hn)n∈N of Skolem functions, such that

(hn/Q)c ∼ rn.

By the assumptions, for all n ∈ N, we have

hn 	c Q

which in turn implies hn 	 Q (by Proposition 8.4). In other words, all the functions
hn belong to the archimedean class of Q. Let us also notice that, given c ≥ 1 as
above, the minimality property of Q implies that Q is minimal in its 	c-class in Sk
(using the fact that if Q′ 	c Q, there is s ∈ R

>0 with (hn/Q′)c ∼ srn for all n ∈ N).
Now let h be the least Skolem function	 Q, and note that its multiples nh (n ∈ N)

are cofinal in the archimedean class of Q. There is N ∈ N such that hn ≤ Nh for all
n ∈ N, for otherwise the sequence (rn)n∈N is unbounded. We call the least such N
the characteristic bound of the sequence (hn)n∈N.

We now choose (hn)n with the additional property that (hn)n has minimal
characteristic bound N ∈ N. Note that the characteristic bound N is only defined
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for those sequences (hn)n such that there is c ≥ 1 and a strictly increasing bounded
sequence rn ∼ (hn/Q)c as above, but it does not depend on the choice of c, so we can
minimize N before choosing c. Finally we fix the exponent c ≥ 1 and we get a strictly
increasing bounded sequence (rn)n of positive real numbers such that (hn/Q)c ∼ rn.

Along the sequence (hn)n there is one of the cases of Corollary 10.3 which holds
infinitely often. By taking a subsequence we can thus assume to be in one of the
following cases:

(1) for all n ∈ N, hn = fn · gn where fn ≥ x and gn ≥ x;
(2) for all n ∈ N, hn = fgnn where fn ≥ 2 and gn ≥ x;
(3) for all n ∈ N, hn = fn + gn, where fn 	 Q and fn is a component;

with (fn)n and (gn)n weakly increasing (taking advantage of the fact that Sk is well
ordered).

We will need the following observation. Define r ∈ R
>0 by (Q/h0)c ∼ r and let

r′n = rnr. Notice that

(hn/h0)c ∼ r′n
for all n ∈ N and observe that (r′n)n is again increasing and bounded.

Case 1. Suppose hn = fn · gn where fn ≥ x and gn ≥ x for all n ∈ N. By our
assumptions r′n ∼ (hn/h0)c = (fn/f0)c(gn/g0)c . Both factors in the last expression
are ≥ 1 because the sequences (fn)n and (gn)n are weakly increasing. It then follows
that there are real numbers sn ≥ 1 and tn ≥ 1 such that

(fn/f0)c ∼ sn, (gn/g0)c ∼ tn
and r′n = sntn. Since (r′n)n is bounded, the sequences (sn)n∈N and (tn)n∈N must
also be bounded. Since both fn and gn are ≥ x and their product is hn, they
are both ≺ hn 	 Q. In particular f0 and g0 are ≺ Q. By the minimality of Q, the
sequences (sn)n and (tn)n are eventually constant, hence (r′n)n is eventually constant,
a contradiction.

In the next case we use the full strength of the fact that we work with all the
equivalence relations ∼c and not only with ∼.

Case 2. Suppose hn = fgnn where fn ≥ 2 and gn ≥ x for all n ∈ N. Note that r′n ∼
(hn/h0)c ≥ hn/h0 = fgnn /f

g0
0 ≥ fgn–g0

0 ≥ 2gn–g0 for n ∈ N. Since (r′n)n is bounded in
R, there is M ∈ N such that gn – g0 < M for all n ∈ N. If the difference between
two Skolem functions is bounded by a natural number, then it is equal to a natural
number (Proposition 9.3). Since (gn)n∈N is weakly increasing, there must be some
k ∈ N such that gn = gk for all n ≥ k. For n ≥ k we have (hn/hk)c ∼ sr′n where
s ∈ R

>0 is defined by s ∼ (h0/hk)c . Taking a subsequence we can assume k = 0.
Thus s = 1 and

r′n ∼ (hn/h0)c = (fn/f0)g0c

for all n ∈ N. Since fn ≥ 2 and gn ≥ x, we have fn ≺ fgnn = hn 	 Q for all n ∈ N.
Since (fn/f0)g0c ∼ r′n and f0 ≺ Q, by the minimality of Q we deduce that (r′n)n∈N

is eventually constant, a contradiction.
We have shown that a sequence (hn)n with minimal characteristic bound falls

necessarily under case 3, so it cannot consist entirely of components. It remains to
deal with case 3.
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Case 3. Suppose that hn = fn + gn where fn 	 Q and fn is a component for all
n ∈ N. It suffices to consider the cases c = 1 and c > N, for if c 	 c′ and (hn/Q)c ∼
rn, then (hn/Q)c

′ ∼ rtn, where t ∈ R
>0 is such that t ∼ c′/c. Taking a subsequence

we can further assume that either gn 	 Q for all n ∈ N, or gn ≺ Q for all n ∈ N.
Case c = 1. The assumption (hn/Q)c ∼ rn becomes hn/Q ∼ rn. Recall that hn =

fn + gn. Consider first the subcase with gn 	 Q for all n ∈ N. Then all the functions
hn, fn, gn are in the archimedean class of Q, so there are positive real numbers
an ∈ R

>0 and bn ∈ R
>0 such that

an ∼ fn/Q and bn ∼ gn/Q

for all n ∈ N. It follows that an + bn = rn for all n ∈ N. Since (rn)n is bounded, it
follows that (an)n and (bn)n are also bounded. Recall that Q is minimal in its	c-class.
Since c = 1, this means that Q is minimal in its archimedean class, so the functions
hn, fn, gn are all ≥ Q. If N is the characteristic bound of (hn)n, we have fn ≥ Q
and gn ≥ Q and fn + gn = hn ≤ NQ, so both (hn)n and (gn)n have characteristic
bound ≤ N – 1. By the minimality of N, we deduce that the sequences (an)n and
(bn)n are eventually constant, hence their sum (rn)n is also eventually constant, a
contradiction.

Now consider the subcase with gn ≺ Q for all n ∈ N. Then the functions hn and
fn are in the archimedean class of Q, but gn is in a lower archimedean class. It
follows that

rn ∼ hn/Q = (fn + gn)/Q ∼ fn/Q

for all n ∈ N. The sequence (fn)n is then a counterexample to the theorem with
the same characteristic bound than (hn)n but consisting entirely of components. We
have already shown that this cannot happen, so we have a contradiction.

Case c > N. We are still inside the case hn = fn + gn with hn a component. By
Proposition 8.7 the condition (hn/h0)c ∼ r′n can be rewritten in the form

hn/h0 – 1 = sn/c + o(1/c)(11.1)

where sn = log(r′n) for n ∈ N. Note that since (hn)n is increasing, we have r′n ≥ 1,
so log(r′n) is well defined and ≥ 0. Moreover (sn)n is strictly increasing. Using
hn = fn + gn, Equation 11.1 becomes

(fn – f0) + (gn – g0) = sn(f0 + g0)(1/c + o(1/c)).

Dividing by f0 and multiplying by c, it can be rewritten as

c

(
fn
f0

– 1
)

+
(
c

f0

)
(gn – g0) = sn

(
1 +
g0

f0

)
+ o(1)

Since g0 � Q 	 f0 the right-hand-side is finite. The two summands on the left are
≥ 0 and their sum is finite, so they are both finite, that is, they can be written as a
real number plus an infinitesimal. This means that we can define an ∈ R and bn ∈ R

by the equations

an = c
(
fn
f0

– 1
)

+ o(1) and bn =
(
c

f0

)
(gn – g0) + o(1).
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We can then write

an + bn = sn

(
1 +
g0

f0

)
+ o(1).(11.2)

Since (fn)n and (gn)n are weakly increasing, the sequences of real numbers (an)n
and (bn)n are weakly increasing. Moreover, since (sn)n∈N is bounded and g0/f0 does
not depend on n, (an)n∈N and (bn)n∈N are also bounded.

By Proposition 8.7 (and the assumption c > N) the definition of an can be
rewritten in the form

(fn/f0)c ∼ ean .

We claim that (an)n is eventually constant. Iff0 < Q this follows from the minimality
property of Q, so we can assume Q ≤ f0. We also have f0 ≤ h0 ≤ hn 	c Q, so all
the functionsfn are in the	c-class of Q and therefore there is a real number s ∈ R

>0

such that

(fn/Q)c ∼ sean

for all n ∈ N. Assuming for a contradiction that (an)n is not eventually constant,
(fn)n would be a counterexample to the theorem with a characteristic bound at
most equal to that of (hn)n (because fn ≤ hn). However (fn)n has the additional
property that it consists entirely of components and we have already shown that this
cannot happen. This contradiction shows that (an)n is indeed eventually constant.

We now claim that (bn)n∈N is eventually constant. By our definitions we have
bn = (c/f0)(gn – g0) + o(1) so we can write

gn – g0 = bnP + o(P)(11.3)

where P = f0/c.
We distinguish three subcases.
Subcase 1. If g0 ≺ P, then for all n we have gn = bnP + o(1), or equivalently

gn/P = bn + o(1). Since P = f0/c ≺ f0 	 Q, by the minimality of Q we conclude
that (bn)n∈N is eventually constant (possibly 0), as desired.

Subcase 2. If g0 	 P, then there is r ∈ R
>0 such that g0 ∼ rP, so gn = (bn + r)P +

o(1) for all n ∈ N. Reasoning as above, (bn + r)n∈N is eventually constant, hence so
is (bn)n∈N.

Subcase 3. If g0 � P, we divide Equation 11.3 by g0 obtaining (gn/g0 – 1) =
bn(P/g0) + o(P/g0). Now we multiply by c′ = g0/P to get c′(gn/g0 – 1) = bn +

o(1). Since c′ > N, by Proposition 8.7 we obtain
(
gn
g0

)c′
∼ ebn . If g0 < Q, then by

the minimality of Q we conclude that (bn)n∈N is eventually constant, as desired. In
the opposite case we have g0 	c Q (since Q ≤ g0 ≤ h0 	c Q). The new exponent
c′ is in the same archimedean class of c, because c′ = (g0/f0)c and g0 	 f0, thus
c/c′ = � + o(1) for some real � > 0. Raising to the power � both sides of the relation(
gn
g0

)c′
∼ ebn we then obtain

(
gn
g0

)c
∼ ebn� . Since g0 	c Q, there is a real r > 0 such

that
(
gn
Q

)c
∼ rebn� . All the functions hn, fn, gn are in the same archimedean class,

namely that of Q. Since hn = fn + gn, it follows that the characteristic bound of
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(gn)n is lower than the characteristic bound N of (hn)n. By the minimality of N, we
deduce that (rebn�)n is eventually constant, hence also (bn)n is eventually constant,
as desired.

From Equation (11.2) we can now conclude that (sn)n∈N is also eventually
constant, against the assumptions. This contradiction concludes the proof. �

Corollary 11.2. Let 1 ≤ c ∈ No. The set of∼c-classes of Skolem functions within
any class modulo 	c has order type ≤ �. In particular, the set of asymptotic classes
of Skolem functions within any archimedean class has order type ≤ �.

Proof. Fix Q ∈ Sk. For every h 	c Q, the ∼c-class of h is determined by the
real number r ∈ R

>0 defined by r ∼ (h/Q)c , so we can apply Theorem 11.1. �
We need the following corollary to obtain an upper bound on the order type of

the set of Skolem functions < 2xx
.

Corollary 11.3. For any A ⊆ Sk, |Ax/	 | = |A/∼| ≤ �|A/	|.

Proof. The first equality is Corollary 9.7. The inequality |A/∼| ≤ �|A/	|
follows from Corollary 11.2. �

We give below other consequences of the main theorem.

Corollary 11.4. LetQ =
∑
i<α mi ri ∈ No and let m a monomial smaller than all

monomials mi in the support of Q. Then there is a well ordered subset D ⊆ R without
accumulation points such that for every Skolem function f, if f (seen as an element of
No) has a truncation of the form Q + rm, then r ∈ D.

Proof. If Q = 0 the desired result is an immediate consequence of Theorem
11.1. Assume Q 
= 0. We can write f = Q + rm + o(m). Thus f/Q = 1 + rm/Q +
o(m/Q). Let c = Q/m. Then c > N and f/Q = 1 + r/c + o(1/c). By Proposition
8.7, (f/Q)c ∼ er . Let D be the set of possible values of er as f varies. Since Sk is well
ordered, D is well ordered. Suppose for a contradiction that there is an increasing
sequence ern ∈ D with an accumulation point er ∈ R. We can then find fn ∈ Sk
with (fn/Q)c ∼ ern , contradicting Theorem 11.1. �

By Theorem 9.4, given two Skolem functions f, g, the smallest infinite monomial
in the support of f/g (seen as a surreal number) is x = �. We thus obtain the
following result, which extends to the whole class Sk the corresponding result of
van den Dries and Levitz [10] for the fragment below 22x

.

Corollary 11.5. Let g ∈ Sk. For every finite sequence r0, ... , rk of real numbers
(empty if k = – 1), there is a well ordered subset R = R(g, r0, ... , rk) ⊆ R without
accumulation points such that for every f 	 g in Sk satisfying

f/g = r0 + r1/x + ...+ rk/xk + rk+1/xk+1 +O(1/xk+2)

we have rk+1 ∈ R.
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§12. Levitz’s regular functions. We say that f ∈ Sk is an additive scale if the sum
of two Skolem functions less than f is less than f. We define f to be a multiplicative
scale if the product of two Skolem functions less than f is less than f. Clearly every
additive scale is additively irreducible and every multiplicative scale is multiplica-
tively irreducible. It is also easy to see that a multiplicative scale f 
= 2 is an additive
scale. Indeed if f is not an additive scale, there is g < f with g + g ≥ f. Sincef 
= 2,
we have g 
= 1, so gg ≥ g + g ≥ f, contradicting the fact that f is a multiplicative
scale. We have thus proved that a multiplicative scale 
= 2 is a component (recall that
f is a component if it is both additively and multiplicatively irreducible).

We say that h ∈ Sk is regular if h 
= 1 and for all Skolem functions f < h we
have fx < h. Regular functions play a crucial role in the work of Levitz [19]. Every
regular function is a multiplicative scale, so it is either equal to 2 or a component.
In the rest of the sections we characterize the regular functions ≤ 2xx

.

Proposition 12.1. The components < xx are 1, x and px with p ∈ N prime.

Proof. If h is a component > x, we can write h = fg where f ≥ 2 is
multiplicatively irreducible and g is a component ≥ x (Proposition 10.2). Since
h < xx, we must have g ≤ x and f < x, so h = px with p a prime in N. �

Lemma 12.2. Let n > 0. If f is a Skolem function < 2(n+1)x
, then there is k ∈ N

such that f < 2n
xxk . It follows that fx < 2(n+1)x

, hence 2(n+1)x
is a regular function.

Proof. For a contradiction let n > 0 be minimal such that the statement fails.
Let Hn ⊂ Sk be the set of Skolem functions bounded by one of the functions 2n

xxk

as k ranges in N. Let f < 2(n+1)x
be the minimal Skolem function such that f 
∈Hn.

We need to consider the following cases.

(1) f is not a component;
(2) f is either 1 or x;
(3) f is a component of the form ax;
(4) f is a component of the form ab with b > x.

Case (2) is clearly impossible. Cases (1) and (3) are also impossible by the minimality
of f and the fact that Hn is closed under sums, products and exponentiation to the
power x. Finally, in case (4), by Proposition 12.1, we can write b = px with p prime
< n + 1. Let q ∈ N be minimal such that qp ≥ n + 1 and notice that 2 ≤ q ≤ n. We
must have a < (2q

x
), so by the minimality of n we have a < 2(q–1)xxk for some k ∈ N.

It follows that f = ab < 2((q–1)p)xxk ≤ 2n
xxk . �

Proposition 12.3. Let f < 2xx
be a Skolem function. Then there is n ∈ N such

that f < 2n
x
. It follows that 2xx

is the smallest regular function bigger than 2n
x

for all
positive n ∈ N.

Proof. Let f < 2xx
and assume by induction that the proposition holds for all

Skolem functions < f. If f is not a component, then it is a sum of products of
smaller functions, and we conclude observing the the Skolem functions less that 2n

x

for some n ∈ N form an initial segment closed under sums and products. The cases
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f = 1 or f = x are trivial. It remains to consider the case when f is a component
of the form ab where b > 1 is a component and a ≥ 2. Since f = ab < 2xx

, we
have b < xx. By Proposition 12.1, either b = x or b = px for some prime p ∈ N. By
the induction hypothesis a < 2m

x
for some m ∈ N, hence in the first case f = ab <

2(m+1)x
and in the second case f = ab < 2m

xpx
= 2(mp)x

. In either case f ≤ 2n
x

for
a suitable n. �

§13. The fragment of van den Dries and Levitz. Van den Dries and Levitz [10]
proved that |22x | = �3 = ��

�
. As a preparation for the results in the next section

we give a proof of the inequality |22x | ≤ �3 based on Corollary 11.3. Thanks to the
fact that Corollary 11.3 holds for the whole class Sk, we shall then be able to extend
the result to bigger fragments with a similar technique.

We recall that given a set X ⊆ Sk,
∑
X is the set of finite non empty sums of

elements of X (we exclude the empty sum because 0 is not a Skolem function).
Similarly, we write

∏
X for the set of finite products of elements of X, with the

convention that the empty product is 1.

Theorem 13.1 ([10]). |22x | ≤ ��� . Moreover the set of archimedean classes of the
set of Skolem functions < 22x

has order type ≤ �� .

Proof. Let A be the set of Skolem functions< 22x
. We need to prove that |A| ≤ �3

and |A/	| ≤ �2, where A/	 is the set of 	-classes of elements of A.
By Lemma 12.2 for n = 1 we can write

A =
⋃
d∈N

Sd

where Sd is set of Skolem functions < 2xd .
By induction on d we show that

|Sd | < �3 and |Sd/	| < �2.

Granted this, the supremum over d of these ordinals is ≤ �3 and ≤ �2 respectively,
yielding the desired bounds |A| ≤ �3 and |A/	| ≤ �2.

The case d = 0 of the inductive proof is obvious, so assume d > 0. Writing a
Skolem function as a finite sum of finite products of components, and observing
that gx ≤ 2xd =⇒ g < 2xd–1

, we obtain

Sd ⊆
∑ ∏

(xN ∪ Sx
d–1)

By the induction hypothesis |Sd–1| < �3 and |Sd–1/	| < �2. Now observe that
|Sx
d–1| = |Sd–1| < �3. Moreover by Corollary 11.3 we have

|Sx
d–1/	| ≤ �|Sd–1/	| < �2

(because the set of ordinals < �2 is closed under multiplication by �). Letting X =
xN ∪ Sx

d–1, it follows that |X | < �3 and |X/	| < �2. Now observe that each element
of

∏
X is a product of at most 2 elements of X (because xN andSx

d–1 are closed under
finite products). By Corollary 4.2 we then obtain |

∏
X | < �3 and |

∏
X/	| < �2.
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By Corollary 4.9 we conclude that |
∑ ∏

X | < �3 and |
∑∏

X/	| < �2. Since Sd
is included in

∑∏
X we get the desired bounds. �

§14. Fragments bounded by larger regular functions. We have seen that |22x | ≤ �3.
The following result gives bounds on |2nx |. In particular |23x | ≤ �4, |24x | ≤ �5, and
so on.

Theorem 14.1. Let 1 ≤ n ∈ N. Then |2(n+1)x | < �n+2. Moreover the set of
archimedean classes of the set of Skolem functions < 2(n+1)x

has order type ≤ �n+1.

Proof. LetAn be the set of all Skolem functions< 2(n+1)x
. We prove by induction

on n that |An| ≤ �n+2 and |An/	| ≤ �n+1.
For n = 1,An is the set of Skolem functions< 22x

so we can apply Theorem 13.1.
Assume n > 1. For d ∈ N, let Sn,d be the set of Skolem functions < 2n

xxd . By
Lemma 12.2

An =
⋃
d∈N

Sn,d .

By a secondary induction on d we show that

|Sn,d | < �n+2 and |Sn,d /	| < �n+1.

Granted this, the sup over d of these ordinals is ≤ �n+2 and ≤ �n+1 respectively,
yielding the desired bounds

|An| ≤ �n+2 and |An/	| ≤ �n+1.

The case d = 0 of the secondary induction follows from

Sn,0 = An–1

applying the primary induction on n.
Assume d > 0. We claim that

Sn,d ⊆
∑ ∏

(xN ∪ Sx
n,d–1 ∪ A2x

n–2 ∪ ··· ∪ Anx

n–2).

To prove the claim, it suffices to show that if h ∈ Sn,d is a component, then it
belongs to xN ∪ Sx

n,d–1 ∪ A2x

n–2 ∪ ··· ∪ Anx

n–2. We can assume that h > x, so we can
write h in the form h = fg where f ≥ 2 and g is a component ≥ x (Proposition
10.2). Since h < 2xx

, we have g < xx, so either g = x or g = px for some prime
p ∈ N (Proposition 12.1). Since h ∈ Sn,d , we have h = fg < 2n

xxd . So if g = x we
get f < 2n

xxd–1
and therefore h ∈ Sx

n,d–1. On the other hand if g = px, then from

fg < 2n
xxd < 2(n+1)x

we obtain f < 2(n–1)x
and p ≤ n, so h ∈ A2x

n–2 ∪ ... ∪ An
x

n–2 and
the claim is proved.

By the primary induction |An–2| ≤ �n. By the secondary induction |Sn,d–1| <
�n+2 and |Sn,d–1/	| < �n+1. It follows that |Sx

n,d–1| = |Sn,d–1| < �n+2. Moreover by
Corollary 11.3 we have ∣∣Sx

n,d–1/	
∣∣ ≤ �|Sn,d–1/	| < �n+1.
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We also have |Akx

n–2| = |An–2| and
∣∣∣Akx

n–2/	
∣∣∣ ≤ |Akx

n–2|. Taking the union of these sets

it follows that the set X = xN ∪ Sx
n,d–1 ∪ A2x

n–2 ∪ ... ∪ An
x

n–2 satisfies |X | < �n+2 and
|X/	| < �n+1. The same bounds hold for

∏
X because each element of X is a

product of at most n + 1 elements of X (as X is the union of n + 1 sets closed under
products). By Corollary 4.9 we conclude that |

∑ ∏
X | < �n+2 and |

∑∏
X/	| <

�n+1. Since Sn,d is included in
∑∏

X we get the desired bounds. �

Theorem 14.2. The set of Skolem functions < 2xx
has order type ≤ ε0.

Proof. Immediate from Theorem 14.1 and Proposition 12.3. �

§15. Exponential constants. Let E
+ ⊆ R

>0 be the smallest set of real numbers
containing 1 and closed under +, ·,–1 and exp. Let E = E

+ – E
+. Note that E is

a subring of R, exp(E) ⊆ E
+ and E

+ ⊆ E (because 1 ∈ E and E
+ · E ⊆ E). The

following result is inspired by the final remarks of [10]. The authors gave a detailed
proof for the fragment below 22x

, working with Laurent expansions rather than
Ressayre forms, and announced a proof for the whole class Sk using the embryonic
form of the transseries in [8].

Proposition 15.1. Let f =
∑
i<� e

�i ci ∈ No be the Ressayre form of a Skolem
function f. Then c0 ∈ E

+ and ci ∈ E for every i < α.

Proof. By induction on the formation of f. The cases f = a + b or f = a · b
are straightforward, so it suffices to consider the case f = ab with a ≥ 2 and b > N

(note that in this case b is purely infinite). By definition

ab = e(b log(a))↑e(b log(a))◦e(b log(a))↓.

We must study the coefficients of the Ressayre form of ab . Note that e(b log(a))↑ is
a monomial, so it does not contribute to the coefficients. Let us consider the other
two factors.

Write a =
∑
i<α e

�i ai = e�0a0(1 + ε) where ε =
∑

1≤i<α
ai
a0
e�i –�0 . Then

log(a) = �0 + log(a0) + log(1 + ε).

Since b is purely infinite, (b log(a))◦ = (b log(1 + ε))◦. Since log(1 + ε) is a power
series in ε with rational coefficients, and the coefficients aia0

of ε belong toE, it follows

that (b log(a))◦ ∈ E and therefore e(b log(a))◦ ∈ E
+. This is the leading coefficient

of ab .
The other coefficients of ab come from the power series expansion of e(b log(a))↓,

so they belong to the ring generated by the coefficients of b and those of ε, which is
included in E. �
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UNIVERSITÀ DI PISA

LARGO BRUNO PONTECORVO 5, 56127 PISA, ITALY
E-mail: alessandro.berarducci@unipi.it

https://doi.org/10.1017/jsl.2020.26 Published online by Cambridge University Press

mail to: alessandro.berarducci@unipi.it
https://doi.org/10.1017/jsl.2020.26

	1 Skolem problem
	2 Asymptotic relations
	3 Ordinal arithmetic
	4 Well ordered subsets of ordered groups
	5 Generalized power series
	6 Surreal numbers
	7 Surreal expansions of Skolem functions
	8 Finer asymptotic relations
	9 The support of a Skolem function
	10 Components
	11 Main theorem
	12 Levitz's regular functions
	13 The fragment of van den Dries and Levitz
	14 Fragments bounded by larger regular functions
	15 Exponential constants

